Antiproliferative Activity of Cytokinine Derivatives Against HCT-15 Colon and MCF-7 Breast Cancer Cells: Cell Cycle Analysis and BSA &DNA-Binding Study

Il dottorando
Dr. Mehdi Rajabi
Matr. R07902

Il Tutore
Prof. Riccardo Ghidoni

Il Direttore
Prof.ssa Maria Luisa Villa

ANNO ACCADEMICO 2009/2010
ABSTRACT

Background. N\(^6\)-Isopentenyladenosine (iPA) is a member of the cytokinins, a family of plant hormones that regulate plant cell growth and differentiation. iPA is present in mammalian cells in a free form, as a mononucleotide in the cytoplasm, or in a tRNA-bound form. Kinetin Riboside (KR) is devoid of cyclin-dependent kinase inhibitory activity and displayed potent antiproliferative activity against various human cancer cell lines and induced apoptosis in human myeloid leukemia cells. Earlier research has demonstrated that KR antiproliferative and apoptogenic activities are antagonized by pharmacological inhibitors of adenosine kinase (ADK), suggesting that KR bioactivation through metabolic conversion into the nucleotide form is essential for KR cytotoxicity.

Aims. Apoptotic mechanism of iPA and KR led us to study in details the dose-dependent cell cycle arrest and apoptogenic effect of iPA and KR on MCF-7 breast and HCT-15 colon cell lines. On the other hand, cell cycle progression or apoptosis can be affected by activation of cell cycle checkpoints in response to DNA damage. We have also studied the interaction of iPA with DNA & BSA as a complementary information related to iPA antiproliferative activity.

Methods. Human breast cancer MCF-7 and HCT-15 colon cancer cells were supplied from ATCC. Growth activity of iPA and KR in vitro was evaluated by the Sulforhodamine B (SRB) assay. Apoptosis and cell cycle profile were assessed by flow cytometry. To explore the structural changes of macromolecules on addition of ligands, UV-vis absorbance spectra of macromolecules were measured at different concentrations of ligands.

Results. We have calculated an IC\(_{50}\) of 12.2 μmol/L for iPA and IC\(_{50}\) of 15 μmol/L for KR against MCF-7 and same IC\(_{50}\) of 2.5 μmol/L for both iPA and KR against HCT-15. The cell morphology of treated cells was affected by iPA and KR treatment and loss of adhesion, rounding, cell shrinkage and detachment from the substratum. The MCF-7 cell cycle analysis by flow cytometry showed that there was a prominent increase in the amount of sub-G\(_1/G_0\) phase by iPA treatment. At the concentration of 5 µM, KR led to decrease in the percentage of cells in G\(_0/G_1\) phase, which and increase percentage of cells in S and G\(_2/M\) phase. Our result from structural analysis showed interaction of iPA with DNA and the binding constant value K\(_{iPA-DNA}\)=4.4 x 10\(^3\) M\(^{-1}\) together with the shift of UV-vis absorbance suggest that iPA interacts at DNA surface. The BSA binding studies showed that iPA is located along the polypeptide chains with overall affinity constant of K\(_{iPA-BSA}\)=4.9 x 10\(^4\) M\(^{-1}\) and these spectral changes were caused by compound–BSA complex formation, in which compound iPA was strongly bound at the hydrophobic positions of the BSA supported by the hydrophobic interaction.

Conclusion. We concluded that the iPA and KR have cytotoxic effect on human MCF-7 and HCT-15 cells with loss of adhesion, rounding, cell shrinkage and detachment from the substratum in treated cells. Cell cycle analysis showed an indication of the inhibition of cell growth through a mechanism of apoptosis. Our result from structural analysis showed interaction of iPA with DNA suggest that iPA interacts at DNA surface and research is required in order to demonstrate that this surface-binding effect may be related to DNA damage in MCF-7 cells.
INDEX

ABSTRACT ... II
INDEX ... III
SIMBOLS LIST .. 1

1. INTRODUCTION ... 2
 1.1 Cytokinins: Biological role and function ... 2
 1.2 Biosynthesis of CK and CKr .. 4
 1.2.1 Iospreneid cytokinins (IPCKs) ... 4
 1.2.2 Aromatic cytokinins .. 6
 1.2.3 Kinetin and Kinetin Riboside (KR) .. 7
 1.3 Occurrence of iPA and Kinetin and KR in mammalians 9
 1.4 Antiproliferation activity of CKr .. 12
 1.4.1 iPA Antitumor activity in vitro ... 15
 1.4.2 in vitro antitumor activity of KR .. 19

2. RATIONALE .. 22
 2.1 Cancer .. 22
 2.2 Chemotherapy ... 23
 2.3 MCF-7 Breast cancer ... 23
 2.4 HCT-15 a colorectal colon cancer cell line .. 24
 2.5 Binding study of mcarmolecules ... 24
 2.5.1 Drug-DNA interaction .. 25
 2.5.2 Conformation investigation of Bovine Serum Albumin 26
 2.6 Rational of this work .. 27

3. AIMS .. 29

4. MATERIALS AND METHODS ... 30
 4.1 Chemicals and materials ... 30
 4.2 Chemical synthesis of iPA .. 30
 4.3 Cell culture .. 30
 4.4 In vitro evaluation of cytotoxicity by SRB assay .. 30
 4.5 In vitro evaluation of cytotoxicity by MTT assay .. 31
 4.6 Tryptan blue exclusion test .. 31
 4.7 Evaluation of cell morphology .. 31
 4.8 Cell cycle analysis by flowcytometery .. 32
 4.9 DNA Fragmentation Analysis ... 32
 4.10 Clonogenic assays ... 33
 4.11 DNA titration experiments .. 33
 4.12 BSA binding experiments .. 33

5. RESULTS ... 34
5.1 Antiproliferation evaluation ... 34
 5.1.1 Inhibition growth of iPA against MCF-7 .. 34
 5.1.2 Inhibition growth of iPA against HCT-15 35
 5.1.3 Inhibition growth of KR against MCF-7 36
 5.1.4 Inhibition growth of KR against HCT-15 38
5.2 Cell shape and morphology study ... 39
5.3 Cell Cycle Analysis ... 42
 5.3.1 Cell cycle ... 42
 5.3.2 Flowcytometry (FCM) ... 43
 5.3.3 Measurement of cellular DNA content and cell cycle by FACS 43
 5.3.4 Apoptosis .. 44
 5.3.5 MCF-7 cell cycle analysing in treatment with iPA 44
 5.3.6 HCT-15 cell cycle analysing in treatment with KR 45
5.4 DNA binding study iPA by UV spectroscopy 46
5.5 BSA binding study iPA by UV spectroscopy 48
5.6 Binding Constant study of 5 with DNA and BSA 49
7. CONCLUSIONS .. 50
8. REFERENCES ... 52
<table>
<thead>
<tr>
<th>SYMBOLS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
</tr>
<tr>
<td>APIPT</td>
</tr>
<tr>
<td>BA</td>
</tr>
<tr>
<td>BAR</td>
</tr>
<tr>
<td>BSA</td>
</tr>
<tr>
<td>CK</td>
</tr>
<tr>
<td>CKs</td>
</tr>
<tr>
<td>CKr</td>
</tr>
<tr>
<td>cZ</td>
</tr>
<tr>
<td>DMAPP</td>
</tr>
<tr>
<td>DMEM</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
<tr>
<td>FACS</td>
</tr>
<tr>
<td>FBS</td>
</tr>
<tr>
<td>FCM</td>
</tr>
<tr>
<td>FPPS</td>
</tr>
<tr>
<td>HBA</td>
</tr>
<tr>
<td>HBAR</td>
</tr>
<tr>
<td>HepG2</td>
</tr>
<tr>
<td>HMBDP</td>
</tr>
<tr>
<td>HSA</td>
</tr>
<tr>
<td>iPA</td>
</tr>
<tr>
<td>iPAMP</td>
</tr>
<tr>
<td>IPT</td>
</tr>
<tr>
<td>IPCKs</td>
</tr>
<tr>
<td>Kinetin</td>
</tr>
<tr>
<td>KR</td>
</tr>
<tr>
<td>MEP</td>
</tr>
<tr>
<td>N6-IA</td>
</tr>
<tr>
<td>PBS</td>
</tr>
<tr>
<td>PI</td>
</tr>
<tr>
<td>TBE</td>
</tr>
<tr>
<td>tZ</td>
</tr>
<tr>
<td>TPA</td>
</tr>
<tr>
<td>tRNA-IPT</td>
</tr>
<tr>
<td>VHL</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1. Cytokinins (CKs): Biological role and function

CKs were discovered during the 1950s as substances able to induce the division of plant cells. They are a class of plant hormones that play various roles in many aspects of plant and development, including apical dominance, the formation and activity of shoot stems, leaf senescence, nutrient mobilization, seed germination, root growth, and stress responses. Generally natural CKs (Figure 1.1) are N^6- substituted adenine derivatives and generally the substitution at position N6 consists of an isoprenoid or an aromatic group [1].

![General structure of a cytokine CK](image1)

![General structure of a cytokine riboside CKR](image2)

Figure 1.1. Structure of naturally occurring cytokinin and cytokinin riboside

Kinetin (Figure 1.2) was the first and the best-known of CKs discovered as a degradation product of DNA and was shown to be able to promote cell division in plants [2]. The native kinetin was identified in plant root nodules of *Casuarina equisetifolia* [19] and isolated for the first time in 1950 [1] from autoclaved herring sperm DNA.

![Chemical structure of Kinetin](image3)

Figure 1.2. Chemical structure of Kinetin

Since then, a large number of biochemical, physiological and genetic studies have focused on elucidating the diverse roles of CKs in plant growth and development [3]. Both isoprenoid and aromatic CKs are naturally occurring, with the former more
frequently found in plants and in greater abundance than the latter. Common natural isoprenoid CKs are \(N^6-(\Delta^2\text{-isopentenyl})\) adenine (\(N^6\text{-iA}\)), \textit{trans}-Zeatin (\(tZ\)) and the related stereoisomer \textit{cis}-Zeatin (\(cZ\)) (Figure 1.3). Among them, the major derivatives generally are \(tZ\) and \(N^6\text{-iA}\) as well as their sugar conjugates, but there is a great variation depending on plant species, tissue, and developmental stage [4].

\[
\begin{align*}
\text{Isoprenoid CKs} & \\
\text{\(tZ\)} & \\
\text{\(cZ\)} & \\
\text{\(N^6\text{-iA}\)} & \\
\end{align*}
\]

\textit{Figure 1.3. Chemical structure of \(tZ\), \(cZ\), and \(N^6\text{-iA}\)}

Aromatic CKs, \(N^6\)-benzyladenine (BA) and the three isomeric Hydroxybenzyladenine (HBA, topolins) (Figure 1.4) were identified in several plant species including poplar and \textit{Arabidopsis} [5-7] but it is not yet clear whether they are ubiquitous in plants.

\[
\begin{align*}
\text{\(N^6\text{-Benzyl Adenine (BA)}\)} & \\
\text{\(N^6\text{-Hydroxy Benzyl Adenine (HBA)}\)} & \\
\end{align*}
\]

\textit{Figure 1.4. Chemical structure of Aromatic CKs, BA and the three isomeric HBA.}

Usually, for all natural CK nucleobases the corresponding nucleosides, nucleotides, and glycosides (Figure 1.5) have been isolated [4]. Glycosylation of CK has been observed at the N3, N7, and N9 position of the purine moiety as \(N\)-
glycosides, and at the hydroxyl group of the side chains of \(tZ \), \(cZ \), and dihydrozeatin as O-glucosides or O-xylosides (Figure 1.5). O-glycosylation is reversible and the deglycosylation is catalyzed by a \(\beta \)-glucosidase. On the contrary, \(N \)-glycoconjugates are not efficiently cleaved by \(\beta \)-glucosidase [8] and \(N \)-glycosylation results in a practically irreversible process. The physiological consequences of the differences in stability of \(N \)-glycosides and O-glycosides are not fully understood to date. However, it has been suggested that the readily cleaved O-glycosides represent inactive, stable storage forms of CKs [4].

\[\text{Figure 1.5. CK conjugates with sugars, sugar phosphates, and others. O-Glycosylation of side chain (colored in blue) is catalyzed by zeatin O-glucosyltransferase or O-xylosyltransferase. N-glycosylation of adenine moiety (colored in red) is catalyzed by cytokinin N-glucosyltransferase.} \]

1.2. Biosynthesis of CK and CKr
1.2.1. Iosprénoid cytokinins (IPCKs)
CK ribosides and their phosphates predominantly represent the primary products of CK biosynthesis and the concomitant occurrence of CK and the corresponding nucleosides and nucleotides in plant tissues suggests that important metabolic steps are shared with the purine metabolic pathway, i.e., salvage pathway [3] thus,
the metabolic flow from CK nucleotides to the active nucleobases is probably not unidirectional but circular (Figure 1.6).
Figure 1.6. Current model of IPCKs biosynthesis pathways in Arabidopsis. Isoprenoid side chains of N\(^6\)-iA and tZ predominantly originate from the MEP pathway, whereas a large fraction of the cZ side chain is derived from the MVA pathway (green arrows).

The first step in the isoprenoid CK biosynthesis [4] is N-prenylation of adenosine 5'-phosphates (AMP, ADP, or ATP) at the N6-terminus with dimethylallyl diphosphate (DMAPP) or hydroxymethylbutenyl diphosphate (HMBDP); this reaction is catalyzed by adenosine phosphate-isopentenyltransferase (APIPT) (Figure 1.6). CKs may derive from tRNA degradation as well and shortly after the discovery of CKs, it was assumed that tRNA is a major source of CKs because isoprenoid CKs were identified in the hydrolysates of tRNAs [9-11]. Thus, tRNA prenylation could contribute, at least to some extent, to CK production. Early calculations of turnover rates of tRNA led to the conclusion that tRNA degradation was not a major pathway of CKs synthesis [12].

1.2.2. Aromatic cytokinins

BA (Figure 1.7) has been long considered an artificial CK until this compound was isolated from a CK-autotrophic cell culture of anise, *Pimpinella anisum L.*

Figure 1.7. Chemical structure of BAR

Additional compounds structurally related to BA and BAR, are the three isomeric HBA and HBAR isolated from leaves of *Populus robusta* and N\(^6\)-(o-hydroxybenzyl)-2-methylthio-9-β-D-glucofuranosyladenine isolated from fruits of *Zantedeschia aethiopica robusta* [5]. Despite the fact that BA is one of the most effective and affordable CKs and has been widely used in plant biotechnology for several decades CK research has typically been focused on the isoprenoid class of CKs, typified by zeatin, dihydrozeatin and N\(^6\)-iA. The biosynthesis and degradation pathways of aromatic CKs remain to be elucidated, although the mechanisms of glycosylation and of their interaction with the cellular signaling system appear to be
shared with isoprenoid CKs. Apparently, the enzymes and receptors involved recognize members of both groups [13,14]. Indirect evidences on the metabolism of BA [and possibly BAR] seems to indicate that the HBA could be the result of the action of CYP735A or some other P450s on BAR or BA[15].

1.2.3. Kinetin and Kinetin Riboside (KR)
A recent review describes in details the multiple biological activities of kinetin [16]. Kinetin has been the first and the best-known CK, isolated for the first time in 1950 [1] from autoclaved herring sperm DNA [2]. For a long time, Kinetin was recognized as a unnatural synthetic product and was found in commercially available DNA, in freshly extracted cellular DNA from human cells, in plant cell extracts and human urine [17,18]. The native kinetin was identified in plant root nodules of *Casuarina equisetifolia* [19]. Recently Kinetin free base and its riboside (KR) (Figure 1.8) has been detected in the endosperm liquid of fresh young coconut fruits [20], at concentrations of 0.31 and 0.33 nM, respectively [21].

These findings contribute strongly to answer the question concerning the origin of kinetin and other CKs (Figure 1.9). It has been shown that the cells of legume nodules contain catalytic amounts of iron, which is required for Fenton reaction and formation of hydroxyl radical. The highly reactive oxygen species (ROS) cause degradation of cellular component in nodule extracts. The high yield of Fe-catalyzed Harber-Weiss reaction of deoxyribose damage sustained in vitrro by the cytosol of bean and cowpea nodules during senescence suggests their potential to generate •OH. These data strongly support the hypothesis that CKs can be recognized as the products of the oxidative metabolism of the cell [22,23]. The proposed mechanism of kinetin formation in DNA in vivo starts with the hydroxyl radical oxidation of the deoxyribose residue at the carbon 5' to yield furfural. This

![Chemical structure of K and KR](image-url)
newly formed aldehyde subsequently reacts with the amino group of adenine to form the Schiff base followed by intramolecular rearrangement, which can yield K formation *in vivo* (Figure 1.9) [24].
Figure 1.9. Scheme of synthesis of kinetin and KR. Furfural as a product of DNA oxidation product reacts with ribo or deoxyadenosine.

1.3. Occurrence of iPA and Kinetin and KR in mammalians

As stated in Section 1.2.3, there are good evidences that Kinetin and KR are formed in vivo in mammalians as an important component of a new salvage pathway of hydroxyl radical constituting a ‘free radical sink’. By this mechanism, the cell can find a way to respond to oxidative stress, inducing defence mechanisms of maintenance and repair [24]. According to this hypothesis, KR is formed from adenosine to neutralize the harmful properties of hydroxyl radical reaction products, such as furfural that is formed by degradation of sugar residues in DNA and is one of the major routes of cellular damage in addition to the other modifications of nucleic acid bases [25]. In conclusion, although KR is found in mammalians, the product represents an artefact of DNA oxidative stress.

iPA (Figure 1.10) has been found in tRNA from a wide variety of eukaryotic and prokaryotic cells [26].

Figure 1.10. Chemical structure of iPA

The modified base is derived from 3-methyl-2-butene-1-yI pyrophosphate, an intermediate in cellular isoprenoid biosynthesis. The enzyme that catalyzes the first reaction is Δ^2-isopentenyl pyrophosphate: 5'-AMP Δ^2-isopentenyltransferase commonly referred to as isopentenyl transferase (IPT) and is the enzyme central to all isoprenoid CKs biosynthesis [27]. IPT constitute a family of enzymes that are conserved from micro organisms to mammals and are involved in post transcriptional modification of tRNA, that, in the case of iPA, consists in the addition of the isopentenyl chain to adenosine of the residue 37 of tRNA [28]. iPA is found
adjacent to the 3’ end of the anticodon of tRNAs. This modified nucleoside appears only in tRNAs that bind to codons containing uridine as the first base (Figure 1.11).

Figure 1.11. Schematic diagram of the IPT reaction. The acceptor substrate is adenosine residue of tRNA in tRNA–IPT.

In bacteria, isopentenylated tRNAs have been implicated in the regulation of aromatic acid uptake [29] and aerobiosis [30], whereas the precise role of the modified nucleotide in tRNA metabolism of eukaryotes is unknown. In general, all of RNA modifications are essential in maintaining the correct reading frame of the translational machinery, thus improving fidelity and efficiency of protein synthesis and avoiding errors that could be detrimental for cells [31]. In this respect, it has also been demonstrated that tRNA containing iPA binds more efficiently the ribosome than the unmodified analogues. Therefore the loss of modified nucleotide
from the tRNA can produce pleiotropic effects on accuracy of protein synthesis leading to altered cell proliferation and differentiation [32]. Starting from the consideration that isoprenylated proteins may regulate DNA synthesis and the level of the isoprenylated protein would be low in cells expressing reduced rates of DNA replication, it was demonstrated that a 26-kDa protein was present in growing Chinese hamster ovary cells [33]. Regenerating liver tissue also exhibited elevated levels of iA26.

Figure 1.12. Biosynthesis of iPA in plants. AMP and DMAPP are converted in iPAMP and iPA. IPT is the key regulatory enzyme of the biosynthesis.

Thus, the expression of PA26 correlates with cellular proliferation and growth. It was proposed that iPA contains N⁶-iP moieties and mediates isoprenoid regulation of DNA synthesis, thus affecting cell proliferation and differentiation in plants and animals. The cellular level of free iPA was not decreased in defective yeast strains possessing mutations that result in severely reduced amounts of isopentenylated
Introduction

1.2 tRNAs. This latter result indicates that free iPA may be derived via a synthetic pathway independent of isopentenylated tRNA degradation. Free, non-tRNA-associated iPA has been observed in yeasts [34] and the cellular level of free iPA was not decreased in defective yeast strains possessing mutations that result in severely reduced amounts of isopentenylated tRNAs. This latter result indicates that free iPA may be derived via a synthetic pathway independent of isopentenylated tRNA degradation. iPA is formed from adenosine monophosphate (AMP) into isopentenyladenosine-5′-monophosphate (iPAMP) and following phosphate hydrolysis (Figure 1.12). The enzyme that catalyzes the first reaction is Δ^2-isopentenyl pyrophosphate: 5′-AMP Δ^2-isopentenytransferase commonly referred to as IPT and is the enzyme central to all isoprenoid CKs biosynthesis [35].

1.4 Antiproliferation activity of CKr
Crown gall disease, that is characterized by the development of neoplastic growth on the infected plant, affects many dicotyledonous plants and is caused by the soil bacterium Agrobacterium tumefaciens [36]. A small region of the Ti plasmid (the tmr locus), thought to be involved in phytohormone metabolism in Agrobacterium tumefaciens-transformed plant tissue, was cloned and expressed in Escherichia coli [37]. By enzyme assay, the tmr locus was shown to encode IPT, the enzyme that catalyzes the first step in CK biosynthesis. This established a connection between CKs and induction of callus, a cluster of differentiated plant cells that are immortal and proliferate indefinitely, to re-differentiate into adventitious buds. In this respect, plant callus cells are similar to human cancer cells and CKs were expected to be able to affect the differentiation in some human cancer cells, probably, through a common signal transduction system [38]. Antiproliferative activity has been confirmed by a recent report that examined the control of differentiation and apoptosis of human myeloid leukemia HL-60 cells by CKs and their ribosides CKr [39]. The HL-60 (Human promyelocytic leukemia cells) cell line is a leukemic cell line that has been used for laboratory research on how certain kinds of blood cells are formed. The cell line was derived from a 36-year-old woman with acute promyelocytic leukemia at the National Cancer Institute [40]. With this line, spontaneous differentiation to mature granulocytes can be induced by compounds such as dimethyl sulfoxide (DMSO), or retinoic acid. Other compounds like 1,25-dihydroxyvitamin D, 12-O-tetradecanoylphorbol-13-acetate (TPA) and GM-CSF can induce HL-60 to differentiate to monocyctic, macrophage-like and eosinophil phenotypes, respectively. The HL-60 cultured cell line provides a continuous source of human cells for studying the molecular events of myeloid differentiation and the effects of physiologic, pharmacologic, and virologic elements on this process. HL-60 cell model was used to study the effect of DNA topoisomerase IIα and IIβ on differentiation and apoptosis of cells [41]. Using HL-60 cell lines, it has been shown that CKs such as kinetin, BA and N^6-iP were very
effective in inducing nitroblue tetrazolium reduction and morphological changes of the cells into mature granulocytes (Table 1.1).

<table>
<thead>
<tr>
<th>Analogues</th>
<th>Growth inhibition (IC₅₀ μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purine</td>
<td>58.4</td>
</tr>
<tr>
<td>1-Methyladenine</td>
<td>1.713</td>
</tr>
<tr>
<td>3-Methyladenine</td>
<td>1.172</td>
</tr>
<tr>
<td>2-Aminopurine</td>
<td>1.341</td>
</tr>
<tr>
<td>Olomoucine</td>
<td>326.8</td>
</tr>
<tr>
<td>Adenine</td>
<td>261</td>
</tr>
<tr>
<td>2,6- Diaminopurine</td>
<td>61.3</td>
</tr>
<tr>
<td>Isopentenyladenine</td>
<td>47.6</td>
</tr>
<tr>
<td>Kinetin</td>
<td>48.8</td>
</tr>
<tr>
<td>6-Benzylaminopurine</td>
<td>67.6</td>
</tr>
<tr>
<td>6-Dimethylaminopurine</td>
<td>47.2</td>
</tr>
<tr>
<td>trans-Zeatin</td>
<td>516</td>
</tr>
<tr>
<td>6-n-Hexylaminopurine</td>
<td>87.5</td>
</tr>
<tr>
<td>6-Anilinopurine</td>
<td>56.3</td>
</tr>
<tr>
<td>6-Methylaminopurine</td>
<td>327</td>
</tr>
<tr>
<td>6-Methoxypurine</td>
<td>744</td>
</tr>
</tbody>
</table>

On the other hand, examining the corresponding ribosides CKr, these compounds were more potent than the corresponding CKs for growth inhibition and apoptosis. CKRs greatly reduced the intracellular ATP content and disturbed the mitochondrial membrane potential, consequentially impairing the accumulation of reactive oxygen species. The same effect was not observed for CKs when the cells were incubated with CKRs in the presence of O₂ scavenger, antioxidant or caspase inhibitor, apoptosis was significantly reduced and differentiation was greatly enhanced (Table 1.2).

<table>
<thead>
<tr>
<th>Analogues</th>
<th>Growth inhibition (IC₅₀ μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purine</td>
<td>58.4</td>
</tr>
<tr>
<td>1-Methyladenine</td>
<td>1.713</td>
</tr>
<tr>
<td>3-Methyladenine</td>
<td>1.172</td>
</tr>
<tr>
<td>2-Aminopurine</td>
<td>1.341</td>
</tr>
<tr>
<td>Olomoucine</td>
<td>326.8</td>
</tr>
<tr>
<td>Adenine</td>
<td>261</td>
</tr>
<tr>
<td>2,6- Diaminopurine</td>
<td>61.3</td>
</tr>
<tr>
<td>Isopentenyladenine</td>
<td>47.6</td>
</tr>
<tr>
<td>Kinetin</td>
<td>48.8</td>
</tr>
<tr>
<td>6-Benzylaminopurine</td>
<td>67.6</td>
</tr>
<tr>
<td>6-Dimethylaminopurine</td>
<td>47.2</td>
</tr>
<tr>
<td>trans-Zeatin</td>
<td>516</td>
</tr>
<tr>
<td>6-n-Hexylaminopurine</td>
<td>87.5</td>
</tr>
<tr>
<td>6-Anilinopurine</td>
<td>56.3</td>
</tr>
<tr>
<td>6-Methylaminopurine</td>
<td>327</td>
</tr>
<tr>
<td>6-Methoxypurine</td>
<td>744</td>
</tr>
</tbody>
</table>
Introduction

<table>
<thead>
<tr>
<th>Analogues</th>
<th>Growth inhibition (IC$_{50}$ μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine</td>
<td>685</td>
</tr>
<tr>
<td>Deoxyadenosine</td>
<td>662</td>
</tr>
<tr>
<td>Isopentenyladenine</td>
<td>0.972</td>
</tr>
<tr>
<td>Kinetin Riboside</td>
<td>0.981</td>
</tr>
<tr>
<td>Benzylaminopurine riboside</td>
<td>0.706</td>
</tr>
<tr>
<td>2,6-Diaminopurine deoxyriboside</td>
<td>6.23</td>
</tr>
</tbody>
</table>

Above results suggest that both CKs and CKr can induce granulocytic differentiation of HL-60 cells, but CKr also induce apoptosis prior to the differentiation process. In another study [42], the in vitro induction of apoptosis by N6-substituted derivatives of adenine (CKs and analogues) or adenosine (CKr and analogues) in HL-60 cells has been investigated. Using reversed phase HPLC/MS analysis they demonstrated that both N6-substituted derivatives of adenosine and adenine are phosphorylated within cells to the monophosphate level. While N6-substituted derivatives of adenosine were phosphorylated by adenosine kinase and corresponding mononucleotides were produced in large quantities, N6-substituted derivatives of adenine were converted into the corresponding mononucleotides via the phosphoribosyl transferase pathway, which yielded 50–100 times lower amounts of the mononucleotides than the adenosine kinase pathway. Accordingly, N6-substituted derivatives of adenine were relatively inefficient inductors of apoptosis (Figure 1.13).

![Figure 1.13. Effect of N6-substituted derivatives of adenosine or adenine on apoptosis induction in HL-60 cells. Cells were treated with N6-substituted](image-url)
derivatives of adenosine or adenine, as indicated. Cells were incubated for 12 h (black columns) or 24 h (white columns) and the number of apoptotic nuclei was evaluated using fluorescence microscopy. 1-Control (untreated cells), 2-10 μM N^6^-benzyladenosine, 3-100 μM N^6^-cyclopentyladenosine, 4-10 μM N^6^-dimethyladenosine, 5-10 μM KR, 6-100 μM N^6^-((4-hydroxy-3-methyl-2-buten-1-yl)adenosine, 7-10 μM iPA, 8-100 μM N^6^-benzyladenine, 9-100 μM N^6^-dimethyladenine, 10-100 μM kinetin, 11-100 μM N^6^-((4-hydroxy-3-methyl-2-buten-1-yl)adenine, and 12-100 μM N^6^-iP. The experimental points represent mean values from three replicate experiments with standard deviations.

Inhibitors of adenosine kinase, that abrogated the formation of the monophosphates from N6-substituted derivatives of adenosine, completely prevented cells from going into apoptosis. These results consistently support the idea that pro-apoptotic effects of N6-substituted derivatives of adenosine are related to their intracellular conversion into corresponding mononucleotides which activate apoptosis when accumulated. This accumulation leads to a rapid decrease in ATP production and consequently to apoptosis induction. Nevertheless, the detailed mechanism is unknown. These results proposed an interesting working hypothesis related to a different activity of CKs and their CKr, although this difference were limited only to human myeloid leukemia HL-60 cells. Among examined CKs and related ribosides CKr, it has been shown that BAR, KR and iPA are more effective than related adenine derivatives BA, K or iPA (Table 1 and 2).

1.4.1. iPA Antitumor activiyy in vitro.

Nearly forty years ago, Gallo and co-workers [43] observed that iPA can exert a promoting or inhibitory effect on human cell growth, on the bases of used concentration and the cell cycle phase. They reported that iPA is a potent inhibitor or a stimulator of the DNA synthesis, since addition of iPA at μM concentration produced inhibition. Lower concentrations (0.1-1.0 μM) had a stimulatory effect. Moreover they demonstrated that the addition of iPA at increasing times, after cells seeding and proliferation stimulation, determined a decrease of mitotic figures, suggesting that iPA effects depend on the phase of cell cycle. It was also demonstrated that the effects on DNA synthesis are preceded by the inhibition of RNA and protein synthesis. In 1973, Divekar et al. demonstrated that iPA is cytotoxic for Sarcoma 180 cells as for the majority of the mammalian cells [44]. It was observed that iPA at the concentration of 22 and 100 μM inhibited the growth of Sarcoma 180 cells (50% and 100% respectively) acting as a potent inhibitor of the uptake of purine and pyrimidine nucleosides. Studies performed on the extracts of these cells demonstrated that iPA is a substrate for adenosine kinase and it is also a weak inhibitor of adenosine deaminase, glucose-6-phosphate-dehydrogenase and methylase of mammalian tRNAs. The authors suggested that
iPA cytotoxicity for these cells might be due to its conversion in 5'-monophosphate, that is cytotoxic at high intracellular levels, affecting the enzymes involved in purine metabolism (Figure 1.14). The ability of CKs to induce apoptosis was studied by Meisel et al. [45] in several human cell lines and it was observed that iPA was the most active CK, specially with respect to Caco-2 and HL-60 cancer lines. As previously reported, CKr such as KR and iPA inhibited growth and differentiation of human myeloid leukaemia HL-60 cells, inducing their apoptosis [39,42]. Laezza and co-workers [46] demonstrated that iPA in thyroid cell FRTL-5 influences the cAMP dependent organization of the microfilaments. The same authors have later demonstrated that iPA caused a dose-dependent arrest of G0-G1 cell phase transition associated with a reduction of cells in S phase [47].

![Chemical Structures](image)

Figure 1.14. iPA cytotoxicity might be due to its conversion in 5'-monophosphate.

It was shown that iPA is able to inhibit farnesyl dipiphosphate synthesis (FPPS) and to affect protein prenylation. This can explain the arrest of tumour cells proliferation in a reversible mode, since the addition of farnesol could reverse the process. This effect was not mediated by the adenosine receptors but was due to a direct modulation of FPPS enzyme activity as a result of its uptake inside the cells.

In 2005 Dragani and coworkers showed by a pharmacogenomic approach that the human tRNA-isopentenyltransferase (TRIT1) gene could be a candidate lung tumor suppressor [48]. tRNA-isopentenyltransferase (tRNA-IPT) catalyses the addition of iPA on residue 37 of tRNA molecules that bind codons starting with uridine [28]. In the cited study [48], TRIT1 expression in normal lung parenchyma was compared with that in A549 lung cancer cells. Cancer cell lines overexpressing the biochemically functional TRIT1 variant were analyzed and, as a result, the TRIT1
gene was identified as a potential negative regulator of lung carcinogenesis. The results obtained by Laezza et al. [47] suggesting that the capability of iPA of inhibiting FPPS could concur to arrest tumour cells proliferations was not confirmed by Dragani and co-workers in another study. The antiproliferative activity of iPA in 9 human epithelial cancer cell line derived from different types of malignant tissue was examined [49] and FPPS downregulation in A549 cells was not involved in the antiproliferative activity of iPA. Dragani et al. observed complete suppression of clonogenic activity in 8 of the cell lines after exposure to iPA at a concentration of 10 μM. A clonogenic assay is a microbiology technique for studying the effectiveness of specific agents on the survival and proliferation of cells. It is frequently used in cancer research laboratories to determine the effect of drugs or radiation on proliferating tumor cells [50]. Although this technique can provide accurate results, the assay is time-consuming to set up and can only provide data on tumor cells that can grow in culture. The word "clonogenic" refers to the fact that these cells are clones of one another. The experiment involves as major steps plating the cells are in a tissue culture vessel and allowed to grow, production of colonies, and treatment of the formed colonies (the colonies produced are fixed, stained, and counted). Any type of cell could be used in an experiment, but since the goal of these experiments in oncological research is the discovery of more effective cancer treatments, human tumor cells are a typical choice. The cells either come from prepared cell lines, which have been well-studied and whose general characteristics are known, or from a biopsy of a tumor in a patient [51]. The cells are put in petri dishes or in plates which contain several circular "wells" and counting the cell colonies is usually done under a microscope. Figure 1.15 shows A549 colonies in untreated and 10 μM iPA-treated cells for 24, 48 or 72 h and maintained thereafter in culture medium alone until the end of the experiment.

![Control](image1.png) ![10 μM i^6A](image2.png)

| 24 h | 48 h | 72 h |

Figure 1.15. Representative plates showing A549 colonies in untreated and 10 μM iPA-treated cells for 24, 48 or 72 h and maintained thereafter in culture medium alone until the end of the experiment

In the cited work [49], a complete suppression of clonogenic activity in 8 of the lines after exposure to iPA was observed at a concentration of 10 μM. Specifically, iPA was effective with human lung cancer cell lines NCI-H520 and NCI-H596, with breast cancer cell lines MDA-MB-361 and MCF-7, and nasal septum squamous...
cell carcinoma cell line RPMI 2650 (Figure 1.16). Human lung cancer cell lines A549 and Calu-3, hepatocellular carcinoma cell line HepG2, and colorectal adenocarcinoma cell line HT-29 were also examined (Figure 1.17). Only the cell line HT-29 derived from a colorectal cancer showed a significant but incomplete inhibition upon iPA treatment, with about 70% colony inhibition as compared to untreated control cells.

Figure 1.16. Representative plates showing colony formation in untreated (top) or 10 μM iPA-treated (bottom) cancer cell lines of different tissue origins.

The incomplete inhibition of HT-29 cell clonogenic activity might rest in reduced intracellular adenosine kinase activity, with a consequent slower or decreased formation of intracellular iPA-5'-monophosphate which appears to be the ultimate cytotoxic agent [44]. Alternatively, a lower permeability of these cells to iPA, as compared to the other cell lines, cannot be excluded.

Figure 1.17. Representative plates showing colony formation in untreated (top) or 10 μM iPA-treated (bottom) cancer cell lines of different tissue origins. Only colorectal adenocarcinoma cell line HT-29 growth was not completely inhibited.
Differently from the results obtained with the human myeloid leukemia cell line HL-60 [39], only a modest increase in apoptosis after iPA treatment was revealed in epithelial cancer lines [48,49]. Indeed, in lung cancer cells tumor growth suppression appears to be mediated by inhibition of cell proliferation due to a block of DNA synthesis rather than apoptosis. These findings are consistent with the reported iPA-induced inhibition of proliferation of rat thyroid tumour cells [46,47,52]. Moreover, iPA is able to cause a pronounced change in the morphology of A549 cells. This is associated to disorganization of actin fibers in the cytoplasm (Figure 1.18) and overall results suggest a stress situation for that cell line under iPA exposure.

![Figure 1.18](image)

Figure 1.18. Changes in cell morphology and in distribution of actin fibers by iPA treatment of A549 cells. (a) Representative microscopic fields of A549 cells stained with 10% Giemsa 18 h after treatment with 0, 10 or 100 µM iPA. (b) Untreated (left) and 100 µM iPA-treated (right) cells showing fluorescence-labeled actin fibers (green) and DAPI nuclear staining (cyan).

In 2009, Laezza e al. studied iPA effects on DLD1 human colon cancer cells [52]. iPA suppressed the proliferation of cells through inhibition of DNA synthesis, causing a cell cycle arrest that correlated with a decrease in the levels of cyclins A, D1 and E with a concomitant increase in the levels of cyclin-dependent kinase inhibitor p21waf and p27kip1. iPA induced apoptosis through an increase in the number of annexin V-positive cells, a downregulation of antiapoptotic products and caspase-3 activation. The apoptotic effects of iPA were accompanied by sustained
phosphorylation and activation of c-jun N-terminal kinase (JNK) that induced phosphorylation of c-jun.

1.4.2. *in vitro* antitumor activity of KR

Only a few, recent reports are available in literature about *in vitro* antitumor activity of KR. In the seminal work by Ishii and coll., it has been reported that kinetin riboside together with isopentenyladenosine, and benzylaminopurine riboside were more potent than the corresponding N6-substituted purines for growth inhibition and apoptosis of human myeloid leukemia HL-60 cells [39]. It has also been reported that, at 1.5 and 0.2 μM concentration, kinetin riboside KR shows cytotoxic effects on M4 Beu human and B16 murine melanoma cells. At these concentrations, cell growth is reduced by 50%, respectively, but there was no effect on the growth of mice leukaemia P388. KR is toxic at the dose of 25 mg/kg [53]. More recent results have shown that KR induces apoptosis in HeLa and mouse melanoma B16F-10 cells [54]. B16F10 mouse melanoma cell line is an established model for metastasis [55-57]. HeLa cell is a cell type in an immortal cell line used in scientific research. It is one of the oldest and most commonly used human cell lines [58]. The line was derived from cervical cancer cells taken from a patient named Henrietta Lacks, who eventually died of her cancer on October 4, 1951. The cell line was found to be remarkably durable and prolific as illustrated by its contamination of many other cell lines used in research [59]. HeLa cells are termed “immortal” in that they can divide an unlimited number of times in a laboratory cell culture plate as long as fundamental cell survival conditions are met (i.e. being maintained and sustained in a suitable environment). There are many strains of HeLa cells as they continue to evolve by being grown in cell cultures, but all HeLa cells are descended from the same tumor cells removed from Mrs. Lacks. It has been estimated that the total number of HeLa cells that have been propagated in cell culture far exceeds the total number of cells that were in Henrietta Lacks' body. HeLa cells were used by Jonas Salk to test the first polio vaccine in the 1950's. Since that time HeLa cells have been used for “research into cancer, AIDS, the effects of radiation and toxic substances, gene mapping, and countless other scientific pursuits”. According to author Rebecca Skloot, by 2009, "more than 60,000 scientific articles had been published about research done on HeLa, and that number References was increasing steadily at a rate of more than 300 papers each month. The apoptotic effect of KR in HeLa and mouse melanoma B16F-10 cells was explained through disruption of the mitochondrial membrane potential, induction of the release of cytochrome c, and activation of caspase-3. Tumor growth in mice was dramatically suppressed by KR. In contrast, human skin fibroblast CCL-116 and bovine primary fibroblast cells show resistances to KR and no significant changes in Bad, Bcl-XL, and cleaved PARP were observed. Reported data suggest that KR selectively induces apoptosis in cancer cells through the classical mitochondria dependent apoptosis pathway [54]. More recent
results have added information on the mechanism of KR-induced antiproliferation and apoptosis of cancer cell lines. It has very recently demonstrated that KR induced marked suppression of \textit{CCND}2 transcription and rapidly suppressed cyclin D1 and D2 protein expression in primary myeloma cells and tumor lines, causing cell-cycle arrest, tumor cell–selective apoptosis, and inhibition of myeloma growth in xenografted mice [60]. In another very recent study, a hypothesis about the cytotoxic effects of KR was tested. KR effects may involve interference with DNA integrity and cellular energy status leading to stress response gene expression and cell cycle arrest. Results obtained from MiaPaCa-2 pancreas carcinoma, A375 melanoma, and various other human cancer cell lines indicate that massive ATP depletion and induction of genotoxic stress occurs rapidly in response to KR exposure. This is followed by early upregulation of HMOX1, CDKN1A, and other DNA damage/stress response genes. These data suggest that early induction of genotoxicity and energy crisis are causative factors involved in KR cytotoxicity and anticancer activity [61] (Table 1.3).

<table>
<thead>
<tr>
<th>Table 1.3. FAdo anti-proliferative activity against primary human skin cells and human melanoma, colon, and pancreas cancer cell lines.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC\textsubscript{50} values of FAdo-induced inhibition of proliferation of human skin cells [primary keratinocytes (HEK) and dermal fibroblasts (Hs27)] and melanoma (A375, G361, and LOX), colon (HT29 and HCT116), and pancreas (MiaPaCa-2) cancer cell lines were determined in proliferation</td>
</tr>
<tr>
<td>Cell line</td>
</tr>
<tr>
<td>G361</td>
</tr>
<tr>
<td>LOX</td>
</tr>
<tr>
<td>A375</td>
</tr>
<tr>
<td>HT29</td>
</tr>
<tr>
<td>HCT116</td>
</tr>
<tr>
<td>MiaPaCa-2</td>
</tr>
<tr>
<td>HEK</td>
</tr>
<tr>
<td>Hs27</td>
</tr>
</tbody>
</table>
2. RATIONAL

2.1 Cancer
Cancer is a class of diseases in which a cell, or a group of cells display uncontrolled growth (division beyond the normal limits), invasion (intrusion on and destruction of adjacent tissues), and sometimes metastasis (spread to other locations in the body via lymph or blood). These three malignant properties of cancers differentiate them from benign tumors, which are self-limited, and do not invade or metastasize. Most cancers form a tumor but some, like leukemia, do not. The branch of medicine concerned with the study, diagnosis, treatment, and prevention of cancer is oncology [62]. Nearly all cancers are caused by abnormalities in the genetic material of the transformed cells. These abnormalities may be due to the effects of carcinogens, such as tobacco smoke, radiation, chemicals, or infectious agents. Other cancer-promoting genetic abnormalities may be randomly acquired through errors in DNA replication, or are inherited, and thus present in all cells from birth. The heritability of cancers is usually affected by complex interactions between carcinogens and the host's genome. New aspects of the genetics of cancer pathogenesis, such as DNA methylation, and microRNAs are increasingly recognized as important. Genetic abnormalities found in cancer typically affect two general classes of genes. Cancer-promoting "oncogenes" are typically activated in cancer cells, giving those cells new properties, such as hyperactive growth and division, protection against programmed cell death, loss of respect for normal tissue boundaries, and the ability to become established in diverse tissue environments. "Tumor suppressor genes" are then inactivated in cancer cells, resulting in the loss of normal functions in those cells, such as accurate DNA replication, control over the cell cycle, orientation and adhesion within tissues, and interaction with protective cells of the immune system (Figure 2.1) [63-64].

Figure 2.1. A cancerous cell looks and acts differently from a normal cell (and may have molecules on its surface that are different in number or type from those on a normal cell).
2.2 Chemotherapy

Chemotherapy is a general term for treatments that use chemical agents (drugs) to kill cancer cells. Many different kinds of drugs are used, either alone or in combination, to treat different cancers. The specific drug or combination used is chosen to best combat the type and extent of cancer present. Chemotherapy drugs are given for several reasons: i) To treat cancers that respond well to chemotherapy, ii) To decrease the size of tumors for easier and safer removal by surgery, iii) To enhance the cancer-killing effectiveness of other treatments, such as radiation therapy, iv) In higher dosages, to overcome the resistance of cancer cells, v) To control the cancer and enhance the patient's quality of life. Healthy normal cells in the body grow and divide in an orderly manner to replace old or damaged cells. Cancer cells have lost that capacity and divide out of control. Chemotherapy drugs work by interfering with the ability of cancer cells to divide and reproduce themselves. Chemotherapy can be delivered by the bloodstream to reach cancer cells all over the body, or it can be administered directly to specific cancer sites. Each chemotherapy drug works in a different way to prevent cells from growing. Often a combination of drugs will be used, with each drug attacking the cancer cells in a different way. This decreases the possibility that cancer cells will survive, become resistant and continue to grow [65-66].

2.3 MCF-7 breast cancer

In 1970, the MCF-7 cell line was derived from a pleural effusion of a patient with metastatic breast cancer [67] and was later recognized as the first hormone-responsive breast cancer cell line [68]. The usefulness of the MCF-7 cell line as an investigative tool led to its adoption in laboratories worldwide and several decades of use in independent laboratories have facilitated the evolution of distinct MCF-7 lineages [69]. Documented differences include the ability to undergo DNA fragmentation, differential sensitivities to estrogens and anti-estrogens, differential expression of estrogen receptors (ER), ER-mRNA, progesterone receptors and differences in tumorigenicity and proliferative rates. It has been well established that the MCF-7 cell line is a novel tool for the study of breast cancer resistance to chemotherapy, because it appears to mirror the heterogeneity of tumor cells in vivo [70]. In this respect, it has already been proved that breast cancer cell lines are considered as representative models of transformed cells in vivo [71]. In addition to retaining their estrogen sensitivity, MCF-7 cells are also sensitive to cytokeratin. They are unreceptive to desmin, endothelin, GAP, and vimentin. When grown in vitro, the cell line is capable of forming domes and the epithelial like cells grow in monolayers. Growth can be inhibited using tumor necrosis factor alpha (TNF alpha), and treatment of MCF-7 cancer cells with anti-estrogens can modulate insulin-like growth factor finding protein's, which ultimately have the effect of a reduction in cell growth.
2.4 HCT-15 a colorectal cancer cell line

Colorectal cancer is the second leading cause of cancer death in the United States[72]. Despite advances in medical practices and chemotherapeutic protocols, survival rates in cases of colorectal cancer have changed little over the last 20 years. HCT-15 cells have mutant p53. Mutated p53 is often expressed in variety of human tumors and contribute to malignant process by loss of tumor suppressor function and gain of novel functions that enhance transformed properties of cells [73] Swamy et al [74] reported that celecoxib increases nuclear localization of active p53. The treatment of celecoxib in HCT-15 cells might involve inhibition of function of mutated p53.

2.5 Binding study of macromolecules

Macromolecules in the body form noncovalent associations, such as DNA-protein or protein-protein complexes, that control and regulate numerous cellular functions. Understanding how changes in the concentration and
conformation of these macromolecules can trigger physiological responses is essential for researchers developing drug therapies to treat diseases affected by these imbalances.

2.5.1 Drug-DNA interaction
DNA as carrier of genetic information is a major target for drug interaction [75] because of the ability to interfere with transcription (gene expression and protein synthesis) and DNA replication [76], a major step in cell growth and division [77]. The latter is central for tumorigenesis and pathogenesis [78]. Thanks to the work of James Watson, Francis Crick, Linus Pauling, and many other scientists, we now know that DNA is a double helix (spiral) molecule, consisting of two complementary strands of sugar-phosphate groups with bases attached (Figure 2.4).

![Figure 2.4](image)

Figure 2.4. Francis Crick was a pre-doctoral student of James Watson. They did their research in 1951 at Cambridge University in England.

The sequence of bases (A, G, C, and T) provide all the genetic information needed to carry out the cell’s activities. A mutation is a permanent change in the DNA. A mutation can arise spontaneously without apparent cause, or in response to radiation, ultraviolet light, certain chemicals, or viruses. Some mutations involve the substitution of one base pair for another, for example inserting a G-C where there should be a T-A pair. In other cases, one or more base pairs can be added to, or removed from, the chain. Sometimes huge segments are altered, rearranged, or misaligned. Mutations can lead to cell death, to alterations in the way a cell functions, or in some cases to cancer. This may be because treatment is difficult, there may be no cure, and the disease seems to strike without warning.
There are three principally different ways of drug-binding. First, through control of transcription factors [79,80] and polymerases [81, 82, 83]. Here, the drugs interact with the proteins that bind to DNA. Second, through RNA binding to DNA double helices to form nucleic acid triple helical structures or RNA hybridization (sequence specific binding) to exposed DNA single strand regions forming DNA-RNA hybrids that may interfere with transcriptional activity. Third, small aromatic ligand molecules that bind to DNA double helical structures by (i) intercalating between stacked base pairs thereby distorting the DNA backbone conformation and interfering with DNA-protein interaction or (ii) the minor groove binders. The latter cause little distortion of the DNA backbone (Figure 2.5). Both work through non covalent interaction. The small ligand drug approach offers a simple solution. The synthesis and screening of synthetic compounds that do not exist in nature, work much like pharmacological ligand for cell surface receptors in excitable tissue, and appear to be more readily delivered to cellular targets than large RNA or protein ligands. The lack of sequence specificity for intercalating molecules, however, does not allow to target specific genes, but rather certain cellular states or physiological and pathological conditions, like rapid cell growth and division that can be selectively suppressed as compared to non growing or slowly growing healthy tissue [84-92].

Figure 2.5. Schematic diagram showing the different binding modes of ligands to DNA.

2.5.2 Conformation investigation of Bovine Serum Albumin

Serum albumins are the major soluble protein constituents of the circulatory system and have many physiological functions[93-96]. Binding to albumin is an important
factor in the solubilization and transportation of drugs in blood [97-99] and the molecules that have higher affinity for serum albumin and show preferential binding sites on serum albumin may find important therapeutical applications[100]. The most important property of this group of proteins is that they serve as transporters for a variety of compounds. BSA (Figure 5.18) has been one of the most extensively studied of this group of proteins, particularly because of its structural homology with human serum albumin (HSA) [101-103]. Over the past years, studies on the interactions between drugs and BSA in aqueous solution have attracted intense attentions [104-109].

Figure 2.5. Structure of BSA

2.6 Rational of this work

Studying on cytotoxic effect of antiproliferative agents on human cancer cell lines that cause apoptotic morphological changes in cells is very interesting in molecular biological chemistry field. The cell cycle analysis by flow cytometry with increase of hypoploid DNA is an indication of the inhibition of cell growth through a mechanism of apoptosis that has been suggested also for other cell lines [39, 46-47]. On the other hand, the connection between DNA damage and apoptosis is supported by a large body of literature [110,111] and also plasma protein binding is one major determinant of the distribution of chemicals in the body. In vitro, in cell cultures for example, media often are supplemented with up to 20% (v/v) serum and in those cases the distribution of chemicals can also be determined by protein binding. Binding to serum components in the medium can reduce the availability of chemicals in cell culture systems, which means that the freely dissolved concentrations are lower than the nominal ones. In most cases in vitro potency data, used to characterise the biological activity of chemicals, are based on nominal concentrations and not on the actual effective freely dissolved...
concentrations. As consequence binding to serum components in the medium also affects potency data obtained with cell cultures. The dependency of in vitro potency data upon serum or albumin content of the medium has been shown frequently [112-114]. At present work, As a complementary information related to the antiproliferative activity, no clear evidence of cytokinines-induced DNA damage and protein structural analysis has been demonstrated.
3. AIMS

CKs are purine derivatives with potential anticancer activity originally discovered as phytohormones that promote cell division, leaf expansion, and callus cell redifferentiation, early and recent experimental evidence suggests that naturally occurring and synthetic CKs target human cancer cells through anti-proliferative, apoptogenic, and differentiation-inducing activities.

iPA is a member of the CKs, a family of plant hormones that regulate plant cell growth and differentiation. iPA is present in mammalian cells in a free form, as a mononucleotide in the cytoplasm, or in a tRNA-bound form. On the other hand, KR has been shown to exert growth inhibitory effects and also induce apoptosis. It has been implicated in the reduction of intracellular ATP level and mitochondrial membrane potential and the induction of reactive oxygen species, whereas CK protects against mitochondrial disruption and apoptosis in HL-60 cells. In addition, treatment with KR leads to cytotoxic effects on mouse, human, and plant tumor cells. Thus, iPA and KR appear to have an important role in the induction of cell death in different types of cancer cells.

Therefore, In the present work, we report our results from a study designed to determine the time dose-dependent antiproliferative and cytotoxicity effect of iPA and KR against MCF-7 breast cancer and HCT-15 colon cancer cell lines that measured by the SRB assay and other antiproliferation assays. Also incubation of the MCF-7 and HCT-15 cell lines with different concentrations of iPA and KR investigated after treatment with significant morphological changes including cell rounding and detachment from the substratum. Then dose-dependent cell cycle arrest and apoptogenic effect of iPA and KR on cell lines were investigated. As a complementary information related to the antiproliferative activity, iPA interaction with DNA has been studied analyzing absorbance changes in the UV–vis frequency range with the aim to obtain structural information regarding the iPA binding mode, apparent binding constant, and the effects of iPA complexation on the biopolymer secondary structure. Additionally, we present results obtained from the interaction of iPA and BSA since protein–drug binding greatly influences absorption, distribution, metabolism, and excretion properties of typical drugs, studies on the protein–drug binding are important for the elucidation of the reaction mechanisms, providing a pathway to the pharmacokinetics and pharmacodynamic mechanisms of these substances in various tissues.
4. MATERIALS AND METHODS

4.1 Chemicals and materials
iPA and KR dissolved in DMSO was from Sigma company. Trypsin, Trypan Blue, antibiotic and antimycotic agent, fetal bovine serum (FBS), SRB, DMSO, and fish sperm DNA (fs-DNA), Bovine Serum Albumin, Kinetin Riboside were purchased from Sigma Chemical Co. (St. Louis, MO). Chemicals and solvents for iPA synthesis were purchased from Sigma-Aldrich Italia (Milan, Italy).

4.2 Chemical synthesis of iPA
iPA was prepared following the method described by Robins [115]. Briefly, reaction of adenosine with isopentenyl bromide affords iPA in 40% overall yield. An alternative procedure required more expensive 6-chloropurine riboside and isopentenylamine, but proceeded with 82% yield of the final product.

4.3 Cell culture
Human breast cancer MCF-7 and HCT-15 colon cancer cells were supplied from ATCC and were maintained in the standard medium and grown as a monolayer in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% FBS, 2 mM glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin. Cultures were maintained at 37 °C with 5% CO₂ in a humidified atmosphere.

4.4 In vitro evaluation of cytotoxic activities by SRB assay
Growth activity of iPA and KR in vitro were evaluated by the SRB assay [116-117]. iPA and KR stock solution (10 mM in DMSO) was stored at 4°C and diluted with DMEM up to 0.1–1 mM range at room temperature before treatment. The final percentage of DMSO in the reaction mixture was less than 1% (v/v). Cancer cells (2 x 10³ cells/ well) were plated in 96-wells plates and incubated in medium for 24 hours. Serial dilutions of individual compounds were added. The plates were incubated at 37 °C, for 72 hours prior to addition of iPA and KR. The assay was terminated by the addition of 50 µL of ice-cold trichloroacetic acid (final concentration, 10% TCA) and incubated for 60 min at 4°C. The plates were washed five times with distilled water and air-dried. SRB solution (50 µL) at 0.4% (w/v) in 1% acetic acid was added to each of the wells, and plates were incubated for 30 min at room temperature. The residual dye was removed by washing five times with 1% acetic acid. The plates were air-dried or under hood. Bound stain was subsequently eluted with 10 mM Trizma base, and the absorbance was read on an ELISA plate reader at a wavelength of 540 nm and used as a relative measure of viable cell number. The percentage of growth inhibition was calculated by using the equation: percentage growth inhibition (1- At/Ac) x 100, where At and Ac represent the absorbance in treated and control cultures, respectively. IC₅₀ was determined by interpolation from dose–response curves.
4.5 **In vitro evaluation of cytotoxic activities by MTT assay**

MTT is a simple colorimetric assay, as a test for cell proliferation and survival, has been adapted for the measurement of cytotoxicity. This assay involves the ability of viable cells to convert a soluble tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) into a blue formazan endproduct by mitochondrial dehydrogenase enzymes. The blue color reaction is used as a measure of cell viability. The assay is performed in 96-well plates, and results are read on a multiwell spectrophotometer. For this purpose, 2×10^3 cells in 150 μL of culture medium were seeded in each well of 96 wells. The assay was run in quadruplicate so that control and dilution values were obtained as the mean values of four identical wells. After 24 h incubation at 37°C under a humidified 5% CO$_2$ containing air atmosphere, the series of drug concentrations were prepared and added to each well. After 72 hours incubation 25 μL of 5 mg/ml of MTT (Sigma Chemical Co.) in saline was added into each well and incubated for a further 4 hours at 37°C and then removed and formazan precipitate. 200 μM of DMSO was added to each well for solubilization of precipitated formazan. The absorbance was read on an ELISA plate reader at a wavelength of 540 nm and used as a relative measure of viable cell number. The percentage of growth inhibition was calculated by using the equation: percentage growth inhibition = \((1 - \frac{A_t}{A_c}) \times 100 \), where A_t and A_c represent the absorbance in treated and control cultures, respectively. IC$_{50}$ was determined by interpolation from dose–response curves.

4.6 **Tryptan blue exclusion test**

The trypan blue exclusion test is used to determine the number of viable cells present in a cell suspension. In fact programmed cell death or apoptotic cell death was confirmed by trypan blue was analyzed by trypan blue dye (Sigma–Aldrich, Germany) on both HCT-15 and MCF-7 cell line. The cell culture plates with 70–80% confluence were treated with IC50 dose of iPA and KR for 24 h, 48h and 72hr. The supernatant medium with floating cells was collected after treatment and centrifuged to collect the dead and apoptotic cells. The cell pellet was resuspended in serum free media. Equal amounts of cell suspension and trypan blue were mixed and this was analyzed under a microscope. The cells which were viable excluded the dye and were colorless and the ones whose cell membrane was destroyed were turning into blue. If the proportion of colorless cells were more compared to the ones that were colored then the death can be characterized as apoptotic.

4.7 **Evaluation of cell morphology**

It is now generally accepted that cell death is an important phenomenon, reflected by the appearance of numerous publications on the subject every year. For more than 150 years, morphological features played the leading role in the description of cell death [118]. However, during the past three decades cell death has been characterized on the molecular level, which markedly increased our understanding
of the morphology [119]. Under inverted microscope, cell shape and its changes can be observed clearly. Treated and untreated (control) cells were viewed using an inverted phase-contrast microscope model Zeiss and photographed using a Nikon camera attached to the microscope. The evaluation of cell morphology investigated by the incubation of the cells with different concentrations of iPA and KR after 48 h treatment. HCT-15 and MCF-7 cells were plated at about 20,000 cells/well on chamber-slides (8 wells), were treated with 0, 2.5, 5 and 10µM of iPA for 48 hours. After rinsing in PBS, cells were either fixed in methanol and stained with 10% Giemsa and photographed using a Nikon camera attached to the microscope.

4.8 Cell cycle analysis by flowcytometery
Analysis of a population of cells replication state can be achieved fluorescence labelling of the nuclei of cells in suspension and then analyzing the fluorescence properties of each cell in the population. Quiescent and G₁ cells will one copy of DNA and will therefore have 1X fluorescence intensity. Cells in G₂/M phase of cell cycle will have to copies of DNA and accordingly will have 2X intensity. Since the cells in S phase are synthesizing DNA they will have fluorescence values between the 1X and 2X populations. The resulting histograms consists of three populations: two peaks (G₁ and G₂/M populations) and the S-phase population. Apoptosis and cell cycle profile were assessed by flow cytometry analysis by DNA staining with propidium iodide (PI). MCF-7 and HCT-15 cells were plated at a density of 5 x 10⁵ cells/well on six-well plates. Cells treated with iPA at different concentration of 1, 5 and 10 µM for 72 hours were harvested, rinsed in PBS, suspended in 600µl of PBS containing 1%FBS, fixed by 1.4 ml 80% ethanol and stored at -20 °C in fixation buffer. Then the pellets were suspended in 1 ml of fluorochromic solution [0.08 mg/ml PI in 1x PBS] at room temperature in the dark for 60 min. The DNA content was analyzed by FACScan flow cytometer (Beckman Counter, cytomics FC 500) and CellQuest software (Becton Dickinson). The population of apoptotic nuclei (subdiploid DNA peak in the DNA fluorescence histogram) was expressed as the percentage in the entire population.

4.9 DNA Fragmentation Analysis
Cells were harvested, washed with ice-cold Phosphate Buffer Salin (PBS), and lysed in 50mL lysis buffer (5mM Tris–HCl pH 8.0, 10mM EDTA, and 0.5% Triton X-100) on ice for 20 min. Then, the cell lysate was centrifuged at 12 000 rpm for 20 min. The supernatant was treated with RNase A (100 mg/mL) at 378C for 60 min and proteinase K (200 mg/mL) at 508C for 120 min. Then, the DNA was extracted by phenol/chloroform before loading and analysis by 1.8% agarose gel electrophoresis. The gels were run at 50V for 120 min in Tris–borate/EDTA (TBE) buffer. Approximately, 20 mL DNA was loaded, stained by ethidium bromide, and visualized under UV light.
4.10 Clonogenic assays
Clonogenic assay or colony formation assay is an in vitro cell survival assay based on the ability of single cell to grow an colony. The colony is defined to consist of at least 50 cells. The assay essentially tests every cell in the population for its ability to undergo "unlimited" division. Clonogenic assay is the method of choice to determine cell reproductive death after treatment with ionizing radiation, but can also be used to determined effectiveness of other cytotoxic agents. Only a fraction of seeded cell retains the capacity to product colonies.

MCF-7 and HCT-15 cells/well were seeded in 6-well tissue culture plates at a density of 500-700 cells/well according to the morphology and growth patterns of each cell line and were allowed adhere for 24 hours before treatment. The cells were treated with different concentration of iPA and KR for 12 days. Triplicate samples were used for each treatment. Medium containing the treatment was replaced with a drug-free medium after the indicated time points. Plates were rinsed in PBS and colonies were methanol-fixed and stained with 10% Giemsa and Clones were counted under a light microscope.

4.11 DNA titration experiments
The absorbance at 260 and 280 nm was recorded, in order to check the protein content of DNA solution. DNA (5 mg/ml) was dissolved in distilled water (pH 7) at 4°C for 24 h with occasional stirring to ensure the formation of a homogeneous solution. The final concentration of the DNA solution was determined spectrophotometrically at 260 nm using molar extinction coefficient $\varepsilon_{260} = 6600 \text{ cm}^{-1} \text{ M}^{-1}$ (expressed as molarity of phosphate groups). The UV absorbance at 260 nm of a diluted solution (1/187.5) of DNA used in our experiments was 0.666 and the final concentration of the DNA solution was 12.5 mM in DNA. The appropriate amounts of iPA and KR (0.05–12.5 mM) were prepared in distilled water and added dropwise to DNA solution in order to attain the desired ligand/DNA molar ratios (r) of 1/40, 1/20, 1/10, 1/5, 1/2 and 1 with a final DNA concentration of 6.25 mM. The pH of the solutions was adjusted at 7.0 ± 0.2 using NaOH solution.

4.12 BSA binding experiments
BSA stock solution 2.5 x 10^-5 molL^-1 (MW= 68000 g/mol) was prepared in working solution 0.05 molL^-1 Tris-HCl buffer Ph=7.4 containing 0.1 mol L^-1 NaCl then stored at 4° C. The solutions of drugs 1.5 x 10^{-5} - 25 x 10^{-5} molL^{-1} were prepared by dissolving the drug in working solution 0.05 molL^-1 Tris-HCl buffer pH=7.4 containing 0.1 mol L^-1 NaCl. In the final step, drug solution was added dropwise to the protein solution with constant stirring to ensure the formation of homogeneous solution and to attain the desired drug. The pH of the solution was adjusted to 6.8-7.4 by the addition of NaOH/NaOD or HCl/DCl (0.1 M).
5. RESULTS

5.1 Antiproliferation evaluation
5.1.1 Inhibition growth of iPA against MCF-7
Antiproliferation activity of iPA against human breast cancer MCF-7 cells was investigated by SRB assay and results showed that iPA inhibits the growth of MCF-7 in a dose dependent manner with an IC$_{50}$ value of 12.2 μmol/L. In the presence of different concentrations of iPA, the cells were inhibited ranging from 10% to 90% of viable cells (Figure 5.1A). iPA inhibited the proliferation of MCF-7 cells in a concentration and time-dependent manner. iPA caused dose dependent cell death in MCF-7. From these two data we have calculated an IC$_{50}$ of 12.2 μmol/L (Figure 5.1B).

![Graph A: Effects of iPA on the proliferation of MCF-7](image)

![Graph B: % Inhibition growth vs Concentration](image)

Figure 5.1. (A) Effects of iPA on the proliferation of MCF-7. Dose of compound required to inhibit cell growth by 50% compared to untreated cell controls. All experiments were carried out in triplicate wells and each
experiment was repeated twice. (B) \textit{Inhibition growth of of iPA on MCF-7.}
The percentage of growth inhibition was calculated by using the equation: \((1 - A_t/A_c) \times 100\), where \(A_t\) and \(A_c\) represent the absorbance in treated and control cultures, respectively. \(IC_{50}\) was determined by interpolation from dose–response curves.

5.1.2 Inhibition growth of iPA against HCT-15
Treatment with iPA inhibits the growth of human colon cancer HCT-15 cells in a dose dependent manner with an \(IC_{50}\) value of 2.5 \(\mu\)mol/L. In the presence of different concentrations of iPA, the cells were inhibited ranging from 10\% to 90\% of viable cells (Figure 5.2A). iPA caused dose dependent cell death in HCT-15. From these two data we have calculated as \(IC_{50}\) of 2.5 \(\mu\)mol/L (Figure 5.2B).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{5.2. (A) Effects of iPA on the proliferation of HCT-15. Dose of compound required to inhibit cell growth by 50\% compared to untreated cell controls. All experiments were carried out in triplicate wells and each experiment was repeated twice. (B) Inhibition growth of of iPA on HCT-15. The percentage of growth inhibition was calculated by using the equation: \((1-\)
A_t/A_c \times 100, where A_t and A_c represent the absorbance in treated and control cultures, respectively. IC_{50} was determined by interpolation from dose–response curves.

5.1.3 Inhibition growth of KR against MCF-7

KR was evaluated for its growth inhibitory effect on MCF-7 breast cancer cell line. Therefore the cells were treated with KR at different concentrations, ranging from 1 µM to 500 µM for 4 days (Figure 5.3.). The results from Figure 5.3. show that activity of KR started before first day since there is distance between points in first day, since we expected that points should be close to each others at first day, so decided to reaped the experiment again and read absorbances after hours, not after days. So the cells were treated with KR at different concentrations, ranging from 1 µM to 100 µM for 86 hours (Figure 5.4) and absorbances at 540 nm were read after 6, 12, 28, 52 and 86 hours.

Figure 5.3. Antiproliferative effect of KR on MCF-7. Proliferation index was evaluated by the SRB assay in cancer cell lines with ranging from 1µM to 500 µM for 4 days. The values are the mean of three independent experiments.
Results

Figure 5.4. Antiproliferative effect of KR on MCF-7. Proliferation index was evaluated by the SRB assay in cancer cell lines with ranging from 1µM to 100 µM for 86 hours. absorbances at 540 nm were read after 6, 12, 28, 52, 86 hours. The values are the mean of three independent experiments.

The compound concentration causing a 50% cell growth inhibition (IC$_{50}$) was determined by interpolation from dose–response curves. The percentage growth inhibition was calculated by comparison of the absorbance of treated versus control cells. The antiproliferative effects mediated by KR on the growth of MCF-7 cell lines, was monitored for a total of four days. From these two data we have calculated as IC$_{50}$ of 15 µmol/L (Figure 5.5).
Figure 5.5. Inhibition growth of KR on MCF-7. The percentage of growth inhibition was calculated by using the equation: \((1 - A_t/A_c) \times 100 \), where \(A_t \) and \(A_c \) represent the absorbance in treated and control cultures, respectively. IC\textsubscript{50} was determined by interpolation from dose–response curves.

5.1.4 Inhibition growth of KR against HCT-15
Kinetin riboside was evaluated for its growth inhibitory effect on HCT-15 colon cancer cell line. Therefore the cells were treated with KR at different concentrations, ranging from 1 µM to 500 µM for 4 days (Figure 5.6).

Figure 5.6. Antiproliferative effect of KR on HCT-15. Proliferation index was evaluated by the SRB assay in cancer cell lines with ranging from 1 µM to 500 µM for 4 days. The values are the mean of three independent experiments.

In the presence of different concentrations of KR, the cells were inhibited ranging from 10% to 90% of viable cells (Figure 5.7). KR inhibited the proliferation of HCT-15 cells in a concentration and time-dependent manner. KR caused dose dependent cell death in HCT-15. From these two data we have calculated as IC\textsubscript{50} of 2.5 µmol/L (Figure 5.7).
Results

5.7 Inhibition growth of KR on HCT-15. The percentage of growth inhibition was calculated by using the equation: \((1 - \frac{A_t}{A_c}) \times 100\), where \(A_t\) and \(A_c\) represent the absorbance in treated and control cultures, respectively. IC\(_{50}\) was determined by interpolation from dose–response curves.

5.2 Cell shape and morphology study

Cell death occurs frequently in complex, multicellular, organisms to maintain tissue homeostasis. For example, cells die during embryonic development. Also, the killing of infected cells by cytolytic effector cells of the immune system is an example of cell death in tissue maintenance. It is now generally accepted that cell death is an important phenomenon, reflected by the appearance of numerous publications on the subject every year. For more than 150 years, morphological features played the leading role in the description of cell death. However, during the past three decades cell death has been characterized on the molecular level, which markedly increased our understanding of the morphology.

Cell shape and morphology of treated and untreated (control) cells were viewed using an inverted phase-contrast microscope model Zeiss and photographed using a Nikon camera attached to the microscope. Bellows figures show the incubation of the cells with different concentrations of iPA and KR after 72 hours treatment. Control group showed regular polygonal shape and cell antennas were short. The cell morphology of treated cells was affected by iPA and KR treatment and loss of adhesion, rounding, cell shrinkage and detachment from the substratum (Figure 5.8, 5.9, 5.10, 5.11).
Figure 5.8. Changes in cell morphology and iPA treatment of MCF-7 cells

Figure 5.9. Changes in cell morphology and iPA treatment of HCT-15 cells
Figure 5.10. Changes in cell morphology and KR treatment of HCT-15 cells

Figure 5.11. Changes in cell morphology and KR treatment of MCF-7 cells
5.3 Cell Cycle Analysis

5.3.1 Cell Cycle

The cell cycle, or cell-division cycle, is the series of events that takes place in a cell leading to its division and duplication (replication). In cells without a nucleus (prokaryotic), the cell cycle occurs via a process termed binary fission. In cells with a nucleus (eukaryotes), the cell cycle can be divided in two brief periods: interphase—during which the cell grows, accumulating nutrients needed for mitosis and duplicating its DNA—and the mitosis (M) phase, during which the cell splits itself into two distinct cells, often called "daughter cells". The cell-division cycle is a vital process by which a single-celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. The cell cycle consists of four distinct phases: G₁ phase, S phase (synthesis), G₂ phase (collectively known as interphase) and M phase (mitosis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's chromosomes are divided between the two daughter cells, and cytokinesis, in which the cell's cytoplasm divides in half forming distinct cells. Activation of each phase is dependent on the proper progression and completion of the previous one. Cells that have temporarily or reversibly stopped dividing are said to have entered a state of quiescence called G₀ phase (Figure 5.12).

Figure 5.12. The eukaryotic cell cycle is divided into four distinct phases (G₁, S, G₂, M), each of which is regulated by a series of proteins that are attractive targets for small molecule cell-cycle inhibitors.
5.3.2 Flow cytometry (FCM)

FCM is a technique for counting and examining microscopic particles, such as cells and chromosomes, by suspending them in a stream of fluid and passing them by an electronic detection apparatus. It allows simultaneous multiparametric analysis of the physical and/or chemical characteristics of up to thousands of particles per second. FCM is routinely used in the diagnosis of health disorders, especially blood cancers, but has many other applications in both research and clinical practice. Fluorescence-activated cell sorting (FACS) is a specialized type of flow cytometry. It provides a method for sorting a heterogeneous mixture of biological cells into two or more containers, one cell at a time, based upon the specific light scattering and fluorescent characteristics of each cell. Two of the most popular flow cytometric applications are the measurement of cellular DNA content and the analysis of the cell cycle.

5.3.3 Measurement of cellular DNA content and cell cycle by FACS

The nuclear DNA content of a cell can be quantitatively measured at high speed by flow cytometry. Initially, a fluorescent dye that binds stoichiometrically to the DNA is added to a suspension of permeabilized single cells or nuclei. The principle is that the stained material has incorporated an amount of dye proportional to the amount of DNA. The stained material is then measured in the flow cytometer and the emitted fluorescent signal yields an electronic pulse with a height (amplitude) proportional to the total fluorescence emission from the cell. Thereafter, such fluorescence data are considered a measurement of the cellular DNA content. Samples should be analyzed at rates below 1000 cells per second in order to yield a good signal of discrimination between singlets or doublets. Since the data obtained is not a direct measure of cellular DNA content, reference cells with various amounts of DNA should be included in order to identify the position of the cells with the normal diploid amount of DNA. Some of the common reference cells often used for DNA measurements are human leukocytes or red blood cells from chicken and trout. Commonly DNA measurements are expressed as a DNA index of the ratio of sample DNA peak channel to reference DNA peak channel. In addition to determining the relative cellular DNA content, flow cytometry also enables the identification of the cell distribution during the various phases of the cell cycle. Four distinct phases could be recognized in a proliferating cell population: the \(G_1 \), S (DNA synthesis phase), \(G_2 \) and M-phase (mitosis). However, \(G_2 \) and M-phase, which both have an identical DNA content could not be discriminated based on their differences in DNA content. Diverse software containing mathematical models that fit the DNA histogram of a singlet have been developed in order to calculate the percentages of cells occupying the different phases of the cell cycle.
5.3.4 Apoptosis
Apoptosis is the process of programmed cell death through a tightly controlled program that plays important roles in many normal processes, ranging from fetal development to adult tissue homeostasis [120]. During apoptosis, the nucleus and cytoplasm condense to produce membrane-bound apoptotic bodies that are phagocytosed by macrophages or adjacent cells. A tumor is a disease state characterized by uncontrolled proliferation and a loss of apoptosis. Compounds that block or suppress the proliferation of tumor cells by inducing apoptosis are considered to have potential as antitumor agents [121].

5.3.5 MCF-7 cell cycle analysing in treatment with iPA
To study the mechanism of antiproliferative activity by iPA in detail, we analyzed the effects of Ipa treatment on cell cycle distributions of MCF-7 cells. Cells were treated with various concentration of iPA for 72 h and subject to FACS analysis after PI staining of the chromosomal DNA.

Figure 5.13. Flow cytometric analysis of MCF-7 cells. Values are expressed as percentage of the cell population in the G₁, S, and G₂/M phase of cell cycle.
In histograms of FACS analysis, untreated proliferative MCF-7 cells showed cell cycle distributions of 25.99% in G1/G0, 11.14% in S, 52.38% in G2/M, and 12.27% in sub G1/G0 phase. At all concentrations, iPA leads to decrease in the percentage of cells in G2/M phase, which increase percentage of cells in sub G1/G0 phase. At 10µM of iPA, these populations reached 23.95% for G2/M and 40.66 µM for sub G1/G0 phase (Figure. 5.13 and 5.14). These data indicates that iPA has an activity to arrest MCF-7 cell growth in G2/M.

In addition, cell cycle analysis was performed, and it was found that the drug addition did not good change the duration of the cell cycle in S and G0/G1 phases but as shown in Figure. 5.13 and 5.14 in treatment of MCF-7 cells to 10µM of iPA was found to induce apoptosis approximately 40.66 %.

![Cell cycle analysis of MCF-7 cells treated with 0, 1, 5, 10µM of iPA.](image)

Figure 5.14. Cell cycle analysis of MCF-7 cells treated with 0, 1, 5, 10µM of iPA.

5.3.6 HCT-15 cell cycle analysing in treatment with KR
To study the mechanism of antiproliferative activity by KR in detail, we analyzed the effects of Ipa treatment on cell cycle distributions of HCT-15 cells. Cells were treated with various concentration of KR for 72 h and subject to FACS analysis after PI staining of the chromosomal DNA. In histograms of FACS analysis, untreated proliferative HCT-15 cells showed cell cycle distributions of 68.25% in G1/G0, 8.68% in S, 14.54% in G2/M, and 4.11% in sub G1/G0 phase. At the concentration of 5 µM, KR leads to decrease in the percentage of cells in G0/G1 phase, which increase percentage of cells in S and G2/M phase. At 5µM of KR, these populations reached 33.3% for G2/M and 16.65% for S phase and 47.78% for 33.3% for G0/G1(Figure. 5.15. and 5.16.). These data indicates that KR has an activity to arrest HCT-15 cell growth in G2/M and G0/G1. In addition, cell cycle analysis was performed, and it was found that the drug addition did not change the duration of the cell cycle in sub G1/G0 phase as shown in Figure. 5.15 and 5.16.
Results

Figure 5.15. Flow cytometric analysis of HCT-15 cells. Values are expressed as percentage of the cell population in the G₁, S, and G₁/M phase of cell cycle.

Figure 5.16. Cell cycle analysis of HCT-15 cells treated with 5 µM of KR.

5.4 DNA binding study iPA by UV spectroscopy
The UV spectra have been recorded for a constant DNA concentration in different [DNA]/[compound] mixing ratios (r). UV spectra of DNA in the presence of a complex derived for diverse (r) values are shown representatively for iPA in Figure 5.17. The intrinsic binding constants, K, of the compounds with DNA have been determined using the UV spectra of the compounds recorded for a constant concentration in the absence or presence of DNA for diverse (r) values. The intensity at $\lambda_{max}=259$ nm remains almost stable and is accompanied by a red-shift of the λ_{max} up to 269 nm for all complexes (Figure 5.17A).
The observed red-shift of 10 nm from $\lambda_{\text{max}} = 258$ nm up to 269 nm is an evidence of the stabilization of the DNA duplex [122,123]. The absorption intensity at 258 nm is increased due to the fact that the purine and pyrimidine DNA–bases are exposed because of the binding of the compound to DNA. These characteristics can be attributed to an interaction [124] having caused the changes of the conformation of DNA [125], while the existence of the intercalative binding mode may not be ruled out [126,127]. The observed hyperchromic effect suggests binding to DNA attributed either to external contact (electrostatic or groove binding) or to the fact that iPA could uncoil the helix structure of DNA resulting in a destabilization of the DNA duplex [128]. Any interaction between each compound and FS-DNA could perturb the intraligand centred spectral transition bands of the compound [129]. High significant changes are observed in the position of the n-n* transition bands of
the iPA upon addition of DNA. Our data show that \(1/[\text{complexed ligand}]\) almost proportionally increases as a function of \(1/[\text{free ligand}]\) (Figure 5.17B.). Therefore, an overall binding constant \(K_{iPA-DNA} = 4.4 \times 10^3\text{ M}^{-1}\) can be estimated for iPA–DNA.

5.5 BSA binding study iPA by UV spectroscopy

To explore the structural change of BSA by addition of iPA, we measured UV–vis spectra (Figure 5.18) of BSA with various amounts of iPA. BSA free has strong absorbance with a peak at about 278 nm and According to literature [130] the absorption peak at 278 nm appears due to phonyl group of tryptophan residues (Trp) and tyrosines. It can be seen that all the peaks in different iPA concentrations do show considerable shift, however, the intensity is strongly dependant on the iPA concentrations.

![UV–vis absorption spectra of BSA in the presence of iPA](image)

Figure 5.18. UV–vis absorption spectra of BSA in the presence of 5 at range of 240 nm to 360 nm. The plot of \(1/(A-A_0)\) vs \(1/L\) for BSA-protein and 5 complexes where \(A_0\) is the initial protein absorption band (278 nm) and A is the recorded absorption at different drug concentrations (L).
The UV–vis spectra of BSA at different contents of iPA show that in the visible region, the absorption peaks of these solutions showed moderate shifts towards longer wavelength with red shift indicating that with the addition of iPA, the peptide strands of BSA molecules extended more and the hydrophobicity was increased [131]. The spectroscopic results showed that iPA is located along the polypeptide chains with overall affinity constant of $K_{iPA}=4.9 \times 10^4$ M$^{-1}$ and these spectral changes were caused by compound–BSA complex formation, in which compound iPA was strongly bound at the hydrophobic positions of the BSA supported by the hydrophobic interaction. It was obvious that hydrophobic substituents of compound iPA proved to be a key structural unit for their binding abilities to BSA, which might provide some suggestions on the understanding of their exclusive antitumor selectivity against HCT-15 and MCF-7 cell lines.

5.6 Binding Constant study of 5 with DNA and BSA
The ligand–Macromolecules (DNA& BSA) binding constants were determined using UV absorption spectroscopy [132,133]. The calculation of the overall binding constants was carried out on the basis of UV absorption as reported [134]. The equilibrium for ligands and Macromolecules complex can be described as follows:

$$\begin{align*}
[\text{Macromolecules + Ligand}] & \leftrightarrow [\text{Macromolecules - Ligand}]K_{\text{ligand}} \\
K_{\text{ligand}} &= [\text{Macromolecules - Ligand}]/ [\text{Macromolecules}][\text{Ligand}]
\end{align*}$$

The double reciprocal plot of $1/[A - A_0]$ vs $1/[\text{ligand}]$ is linear and the association binding constant (K) is calculated from the ratio of the intercept on the vertical coordinate axis to the slope [135,136]. Our data of $1/[\text{ligand complexed}]$ almost proportionally increased as a function of $1/[\text{free ligand}]$ and thus the overall binding constants are estimated to be $K_{iPA}=4.9 \times 10^4$ M$^{-1}$ for iPA–BSA and $K_{iPA-DNA}=4.4 \times 10^3$ M$^{-1}$ for iPA–DNA (Figure 5.17B and Figure 5.18B).
6. Conclusions

Antiproliferation activity of iPA and KR against human breast cancer MCF-7 and colon cancer HCT-15 cells were investigated by SRB assay and our results showed that the cytotoxic effect of iPA and KR on cancer cells. iPA and KR caused dose dependent cell death in MCF-7 and HCT-15. We have calculated an IC_{50} of 12.2 μmol/L for iPA against MCF-7 and IC_{50} of 15 μmol/L for KR against MCF-7. Cell shape and morphology of treated and untreated (control) cells were viewed using an inverted phase-contrast microscope model Zeiss and photographed using a Nikon camera attached to the microscope. Control group showed regular polygonal shape and cell antennas were short. The cell morphology of treated cells was affected by iPA and KR treatment and loss of adhesion, rounding, cell shrinkage and detachment from the substratum. The MCF-7 cell cycle analysis by flow cytometry showed that there was a prominent increase in the amount of sub-G_{1}/G_{0} phase by iPA treatment. In histograms of FACS analysis, untreated proliferative MCF-7 cells showed cell cycle distributions of 25.99% in G_{1}/G_{0}, 11.14% in S, 52.38% in G_{2}/M, and 12.27% in sub G_{1}/G_{0} phase. At all concentrations, iPA leads to decrease in the percentage of cells in G_{2}/M phase, which and increase percentage of cells in sub G_{1}/G_{0} phase. At 10μM of iPA, these populations reached 23.95% for G_{2}/M and 40.66 μM for sub G_{1}/G_{0} phase. These data indicates that iPA has an activity to arrest MCF-7 cell growth in G_{2}/M and this increase of hypoploid DNA is an indication of the inhibition of cell growth through a mechanism of apoptosis that has been suggested also for other cell lines. Also untreated proliferative HCT-15 cells showed cell cycle distributions of 68.25% in G_{1}/G_{0}, 8.68% in S, 14.54% in G_{2}/M, and 4.11% in sub G_{1}/G_{0} phase. At the concentration of 5 μM, KR leads to decrease in the percentage of cells in G_{0}/G_{1} phase, which and increase percentage of cells in S and G_{2}/M phase. At 5μM of KR, these populations reached 33.3% for G_{2}/M and 16.65% for S phase and 47.78% for 33.3% for G_{0}/G_{1}. These data indicates that KR has an activity to arrest HCT-15 cell growth in G_{2}/M and G_{0}/G_{1}. On the other hand, the connection between DNA damage and apoptosis is supported by a large body of literature [110,111]. At present, no clear evidence of iPA-induced DNA damage has been demonstrated, except the DNA-fragmentation reported by Laezza et al, that is related to iPA treatment of DLD1 colon cancer cells [46,47]. Our result from structural analysis showed interaction of iPA with DNA and the binding constant value (K_{iPA–DNA}=4.4 \times 10^{3} \text{ M}^{-1}) together with the shift of UV-vis absorbance suggest that iPA interacts at DNA surface [137]. Further research is required in order to demonstrate that this surface-binding effect may be related to DNA damage in MCF-7 cells. Additionally, we present results obtained from the interaction of iPA and BSA since protein–drug binding greatly influences absorption, distribution, metabolism, and excretion properties of typical drugs, studies on the protein–drug binding are important for the elucidation of the reaction mechanisms, providing a pathway to the
pharmacokinetics and pharmacodynamic mechanisms of these substances in various tissues. The spectroscopic results showed that iPA is located along the polypeptide chains with overall affinity constant of $K_{\text{iPA-BSA}} = 4.9 \times 10^4 \text{ M}^{-1}$ and these spectral changes were caused by compound–BSA complex formation, in which compound iPA was strongly bound at the hydrophobic positions of the BSA supported by the hydrophobic interaction. It was obvious that hydrophobic substituents of compound iPA proved to be a key structural unit for their binding abilities to BSA, which might provide some suggestions on the understanding of their exclusive antitumor selectivity against HCT-15 and MCF-7 cell lines.
7. References

56. Engbring JA, Hoffman MP, Karmand AJ, Kleinman HK. The B16F10 cell receptor for a metastasis-promoting site on laminin-1 is a heparan

86. Kanakis CD, Tarantilis PA, Pappas C, Bariyanga J, Tajmir-Riahi HA, Polissiou MG: An overview of structural features of DNA and RNA

115. Robins MJ, Hall RH, Thedford R. N6-(Δ2-Isopentenyl)adenosine, a component of the transfer ribonucleic acid of yeast and of mammalian

