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Abstract

We propose a formal language that allows for transposing biological information precisely and rigorously into machine-
readable information. This language, which we call Zsyntax (where Z stands for the Greek word fvǵ, life), is grounded on a
particular type of non-classical logic, and it can be used to write algorithms and computer programs. We present it as a first
step towards a comprehensive formal language for molecular biology in which any biological process can be written and
analyzed as a sort of logical ‘‘deduction’’. Moreover, we illustrate the potential value of this language, both in the field of
text mining and in that of biological prediction.
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Introduction

It is often claimed that biology needs to be formalized (see for

instance the Special issue of Science, Mathematics in Biology, of Feb

6th 2004 available at http://www.sciencemag.org/content/

vol303/issue5659/index.dtl). In principle, there are many advan-

tages that might be drawn from the implementation of a formal

biological language, since formalization ensures non-ambiguity

and a degree of precision that cannot be achieved by ordinary

language. Indeed, there are numerous excellent examples of the

application of mathematics to describe biological systems: take, for

instance, the theory of graphs and, in particular, the progress

made in the field of scale-free networks [1,2,3,4], or the wide-

spread use of the theory of differential equations to describe

biological kinetics and dynamics, as any text-book of mathematical

biology illustrates [5,6,7]. However, each of these applications is

limited to the particular system it aims to describe. That is,

fragments of mathematical knowledge are applied in function of

the given biological situations to be analyzed.

The modeling of biochemical systems has also been addressed

drawing on formal methods from computer science, by exploiting

the analogy between biochemical reactions and computational

processes. For example, intensive research has been carried out on

extensions and adaptations of the p-calculus, a formalism

originally developed for the specification of concurrent processes

[8,9,10,11,12,13] that can be used to model biochemical networks

as mobile communication systems. Other groups have focused on

developing software environments by means of a rule-based syntax

that can be interpreted in terms of several reaction models, making

use of techniques from (classical) temporal logic to formalize their

properties and query the models [14,15]. Moreover, important

effort has been devoted to treat the well-known phenomenon of

combinatorial explosion, i.e., the fact that the number of distinct states

of protein complexes grows exponentially with the number of

binding domains and interaction surfaces present in proteins, by

introducing macrostates, i.e., quantitative indicators of cumulative

properties of the system such as levels of occupancy or degrees of

phosphorylation [16] or introducing approximation techniques,

such as the layer-based approach [17].

These efforts have greatly improved our ability of modeling

biochemical reactions by means of rigorous mathematical tools,

leading to formalisms that are amenable to computer implemen-

tation. On the other hand, the formal and mathematical

techniques involved, although biologically meaningful, may – in

some cases – prove too difficult to grasp (and to implement) for the

working biologist. For example, while arguing in favor of the

Kappa-calculus, an extension of the p-calculus, Fontana admits

that ‘‘the reduction of concepts from concurrency to biological

practice is neither simple to implement nor easy for biologists to

grasp. It deals with unfamiliar concepts, whose clarification took a

long time even within their domain of origin’’ [9]. While we fully

recognize the significant advances made in all these research areas,

we argue – in this paper – for a logical approach to biochemical

processes, by exploiting the analogy between such processes and

logical deductions. We recognize that such an endeavor might meet

with the same difficulties encountered by other formalizations, in

terms of acceptance and usage by working biologists. For this

reason we have attempted to construct and to propose our

formalism in the most biologist-centered way. Since our main

objective is to attract the attention of the working biologist, the

present exposition aims at providing an informal account of the

main ideas underlying the project, while a more detailed formal
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account, to the benefit of the logician and of the computer

scientist, will be provided in a subsequent work.

In proposing our approach, we acknowledge the interesting

previous efforts to develop a logical language for biology, based on

classical logic [18,19,20]. We feel, however, that classical logic is

unsuited to develop a heuristically useful language for biology, in

particular for molecular biology. This latter field conceals a latent

non-classical logic underlying theoretical and experimental reasoning

that can be brought to light by focusing on the analogy between

biochemical processes and logical deductions. From this point of

view, logic is not just an auxiliary tool for analyzing biological

models based on some external formalism, but becomes the core of

a research program in which biological processes are the intended

semantical interpretation of a non-classical logical system. The

goal of our present quest has been exactly to draw out such logic

and make it explicit. To this purpose, we have developed a basic

formal language for molecular biology, which we call Zsyntax

(where Z stands for the Greek word fvǵ, life). This language is

grounded on a particular type of non-classical logic and should be

seen as the first step towards the full specification of a real-scale

formal language that can be used to write algorithms and

computer programs. Once fully developed, such a real-scale

language will allow us to exploit the expertise that has been

accumulated in the last few decades in the field of automated

theorem-proving, in order to develop, in the future, new and more

efficient predictive tools than those currently available. In this

paper, we restrict ourselves to the basic notions, indicating a

‘‘roadmap for the future’’ that is different from that suggested by

other formal approaches.

In addition to biological prediction, we believe that the power of

a logical approach can be applied to other fields of great relevance

to biology, in particular to text mining. The explosive growth in

data availability has confronted text mining with major hurdles in

the retrieval, extraction, and compaction of relevant information

[21]. There is, therefore, great interest in the development of

efficient computable tools. By and large, text-mining strategies are

focused on processing natural language, which is the means by

which most molecular biology papers are written. We propose a

different starting basis for text mining: if biological processes could

be universally transposed into a formal, unambiguous logical

language, text mining would benefit from the added precision,

non-ambiguity and amenability to computer processing that the

latter would provide, compared to natural language.

In this paper, we introduce Zsyntax and show some important

features it possesses, in particular:

N It provides a mathematically rigorous representation of

molecular biology processes. The formalism we employ, which

can account also for reaction stoichiometry, represents

aggregates of molecules as logical formulae. These formulae

are assembled into chains, in accordance with rigorous logical

rules (i.e. through logical inferences), to represent chains of

biological reactions, so that the latter are treated as logical

deductions.

N It can be used to focus in a concise way on the core of most

molecular biology papers, namely on the description of

biological processes. This may offer a good basis to text

miners for the construction of tools to retrieve, extract and

compact biological information.

N It is heuristic (in the sense that it fosters discovery), as it allows

us to structure prediction problems as problems of ‘‘filling the

gaps’’ in an incomplete deduction, i.e. when we know the end

point of a biological process, but need to work out some

missing data in the start. In logical literature this is known as

‘‘abduction’’, a process that has been investigated thoroughly

from the computational viewpoint.

N It is computer-implementable, which means that it may allow

researchers to capitalize on the growing body of research

carried out in the field of automated deduction, which aims to

create computer programs to demonstrate theorems.

Results and Discussion

Defining the Formal Language Zsyntax
Biological processes are usually described in terms of their

participant molecules (simple ones, such as glucose, or more

complex ones such as enzymes, or genes). If two types of

molecules, A and B, are able to interact in some way, we denote

the outcome of this interaction as A*B, where by the ‘‘star’’ sign *

we indicate the operator between A and B that we call Z-interaction.

In this case we have a binary operation that is defined only for

pairs of types of molecules A and B that interact. In general, the

operation * is not associative, since it may happen that the reaction

(A*B) *C is different from the reaction A* (B*C). For, although A

interacts with B, and the resulting product A*B interacts with C, it

may not be true that B interacts with C, and so neither B*C nor A*

(B*C) exist. This is a common situation in enzymology and in gene

regulation. For example, in the case of the Trp Operator of E. coli,

the Trp-repressor does not bind to the Operator if it is not bound

to Tryptophan. In other words, (Tryptophan*Trp-repressor)

*Operator ? Tryptophan* (Trp-repressor*Operator), the latter

being a condition that does not exist.

We can also describe an aggregate of n molecules of types A1,

…, An. In this case, the aggregate can be denoted by introducing

the operator called the Z-conjunction and graphically indicated by

the ampersand, &. In this case the aggregate becomes A1 & … &

An. It is important to note that molecules in an aggregate do not

necessarily react. However, if A and B are types of interacting

molecules, any aggregate of type A & B will yield a compound

molecule of type A*B, under suitable bio-physical conditions, and

given enough time. As before, we may regard ‘‘&’’ as a binary

operation between types of molecules.

It should be noted that there is an important formal difference

between the Z-conjunction, as herein defined, and the classical

conjunction. While classically – where we are concerned with

propositions – the conjunction between the proposition A and A

itself has the same content as the proposition A, in Zsyntax –

which deals with types of molecules, that is, with physical resources

– the type A & A is by no means the same as the type A, since it

refers to aggregates of two molecules of type A. Hence, Z-

conjunction is not idempotent. Note that this property of the Z-

conjunction allows Zsyntax to take into account the stoichiometry

of a reaction, since it permits to consider the exact number of

molecules of a certain type needed in that reaction. This is

connected with the fact that an aggregate A1& … &An does not

represent a set, but a multiset of formulae (sometimes called a

‘‘bag’’). This means that each member within the set can occur

several times. For example, the multiset containing two occur-

rences of A, three occurrences of B and one occurrence of C is

represented as A&A&B&B&B&C, not as A&B&C. In this way we

can take into account the number of times a type of molecule

occurs, in order to formalize reaction stoichiometry correctly.

Finally note that, unlike *, & is fully associative and, therefore,

does not require parentheses, so both A&(B&C) and (A&B)&C can

be written as A&B&C.

The third and final operator that we use in Zsyntax is the Z-

conditional, denoted by the sign R (that we call ‘‘arrow’’). To grasp
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its meaning let us consider an initial aggregate of molecules A&C

and a final aggregate B. In this case, we say that all aggregates of

type C are also of type A R B (A ‘‘arrow’’ B), in that they map any

aggregate of type A into an aggregate of type B. That is, there is a

transition, or a path, from A to B if there is C allowing it (this is the

reason why we say that R is a Z-conditional).

At this point we can claim that Zsyntax consists of the set of

formulae built out of the atomic, i.e. non-reducible or elementary,

formulae by means of the operators &, *, R Note that while the Z-

interaction is defined only between types of (single) molecules, the

Z-conjunction and the Z-conditional are defined between

arbitrary types, including types of aggregates of molecules.

Having defined the basics of the language, now it is necessary to

introduce the notion of validity, which allows us to affirm that a

given formula is a valid one. We claim that a formula A R B is

valid if the empty aggregate (namely the aggregate consisting of

zero molecules), denoted by 1, allows the path from A to B; that

is, if 1&A R B. An example may be helpful to clarify the

underlying idea. Consider the case of the tumor suppressor TP53

[22]. We know that TP53 can bind the MDM2 gene, to activate its

transcription, the ultimate consequence being that the MDM2

protein is produced in the cell [23]. In this case there is an

intermediate product, that is, MDM2*TP53. Then, by definition of

the Z-conditional, the ‘‘empty aggregate’’, 1, is of type

MDM2&TP53 R MDM2; since from any aggregate of type 1
& MDM2&TP53 = MDM2&TP53 we can arrive at some

aggregate of type MDM2. Under these circumstances we say that

the formula MDM2&TP53 R MDM2 is valid.

Thanks to the notion of ‘valid formula’ just given, we can claim

that Zsyntax is constructed from two basic kinds of valid formulae:

1. Empirically valid formulae (EVF). These represent

reactions, and their validity depends only on empirical information

acquired in the laboratory. So the processes that EVFs represent have

been empirically corroborated. Examples of basic EVFs include (i)

two molecules that interact (e.g. MDM2&TP53 R MDM2*TP53);

(ii) two molecules that interact to deliver biochemical products

(e.g. D-Glucose-6-phosphate*Glucose-6-phosphate isomerase R
D-Fructose-6-phosphate), or to deliver the products of gene

expression (e.g. MDM2*TP53 R MDM2). The validity of these

formulae is content-dependent: this means that if the molecules in a

valid formula are changed, the formula will not necessarily

remain valid. Note that empirically valid formulae are to be

considered as the non-logical axioms of a molecular biology

theory.

2. Logically valid formulae (LVF). These formulae give the

rules of logic that govern the transition from one EVF to the next.

Only LVFs are formally valid, and their validity depends only on

the definitions of the logical operators used within Zsyntax,

regardless of the molecules involved. In this sense, their validity is

content-independent, so it is preserved under uniform substitution of

data-types with arbitrary variables. A LVF in our language is the

equivalent of a tautology in classical logic, that is, a formula which is

derivable from the ‘‘empty set of assumptions’’. LVFs are to be

thought of as the logical axioms of a molecular biology theory.

Some basic LVFs can be presented in terms of ‘‘inference rules’’

that regulate the application of the operators and the transition

from one formula to the next when describing a biological process,

as discussed in the next section.

At this point we have, on the one hand, biological processes

and, on the other, a formal language by means of which we can

precisely and rigorously encode information concerning biological

reactions in a set of EVFs. We can also move from one EVF to

another, by means of inferences (i.e., deductions) justified on the

grounds of LVFs.

A logical language of this kind allows us to write biological

processes in a format that is precise, rigorous and comprehensible.

Moreover, and more importantly, the symbols &, * and R obey

general laws that are formally analogous to logical laws, as will be shown in

the next section. This allows us to represent biological processes as

logical processes. In logic, we start with a premise and, by

deduction, we reach a conclusion. Analogously in Zsyntax we start

with reactants and, by using empirically and logically valid rules,

we reach the product of the reaction, i.e. we have deductions

where the premises represent the reactants (the initial aggregate)

and the conclusion represents the (aggregate of the) products.

As already noticed when commenting on the definition of the Z-

conjunction operator, the underlying logic governing the behavior

of the above operators is not classical, but belongs to a family of

non-classical resource-aware systems, called ‘‘substructural logics’’,

which have received a good deal of attention in the field of

computational logic [24,25]. Therefore, the intensive research that

has been carried out in this area – as far as the development of

efficient automated deduction algorithms is concerned – can be

exploited to provide new methods of information processing for

biological applications.

Biological Reactions as Logical Inferences
In the previous section we briefly introduced the analogy

between biological reactions and logical deductions. This section

serves to explain the parallels between the two in greater detail. In

particular, we can say that an initial aggregate (IA) A1& …&An

implies a final aggregate B, if the latter is derivable from the former

by means of an inferential process (i.e. a deduction) whose steps

are allowed by EVFs and by LVFs. We can write this as:

A1& . . . &An ‘ B

where ‘‘w’’ (that can be read ‘implies’) is what we call the derivability

relation which indicates that B is derivable from A1 & …& An, that is,

that there is a path from A1 & … & An to B. Importantly, this

derivability relation satisfies the two fundamental properties of

reflexivity and transitivity, which are widely recognized as sufficient

conditions for the relation w to represent a logical system [26]. Note

that the derivability relation is clearly transitive, in that from A1 &

…& An w B1 & …& Bm and B1 & …& Bm w C1 & …& Cr, it follows

that A1 & …& An w C1 & …& Cr (for all A1, …, An, B1, …, Bm, C1,

…, Cr). Moreover, it can be assumed that w is reflexive, so that A1 &

…& An w A1 & …& An (for all A1, …, An). Furthermore, it also

satisfies the analogue of the so-called ‘‘deduction theorem’’ for the

Z-conditional operator (R), which is valid in many logical systems,

that is, given any aggregates A, B, C:

if A&B ‘ C thenA ‘ B ? C:

The definitions of the logical operators R and & justify a set of

basic LVFs that can thought of as ‘‘logical axioms’’. These can be

presented in the form of intuitive rules that explain how these

operators can be eliminated or introduced in a deductive

inference. Such rules can be considered as rules of a non-standard

system of natural deduction [27]:

1. Elimination of the Z-conditional (that we indicate by
RE). If ARB can be derived from C and A can be derived

from D, then B can be derived from C&D.

2. Introduction of the Z-conditional (that we indicate by
RI). If B can be derived from C&A, then A R B can be

A Formal Language for Mol Biol
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derived from C alone. In the logical jargon one says that the

‘‘assumption’’ A is ‘‘discharged’’ by the application of such a

rule, which in our context means that the availability of an

aggregate of type A is incorporated as a (sufficient) condition in

the antecedent of A R B. Hence, the derivability of (an

aggregate of type) A R B no longer depends on the availability

of (an aggregate of type) A.

3. Elimination of Z-conjunction (that we indicate by
&E). If the Z-conjunction of A and B (A&B) can be derived

from C, then both A and B individually can be derived from C.

4. Introduction of Z-conjunction (that we indicate by
&I). If A can be derived from C, and B can be derived from D,

then the conjunction of A and B can be derived from C&D.

There are no purely logical rules for the Z-interaction *. The

reason is that * is not a purely logical operator, since its behavior

depends on empirical information acquired in the laboratory.

Therefore, * cannot be governed by formal rules, but rather, it can

be introduced and eliminated only via EVFs of the form

A&BRA*B (indicating that we obtain a compound from initially

separate molecules) or A*BRC&D (indicating that we obtain two

products from the division of an initial compound). Empirically

valid formulas, however, can be fruitfully replaced by ‘‘empirically

valid rules’’ whenever the context requires a more precise

representation of additional information. See the next section for

a brief discussion of this point.

A derivation, in this natural deduction system for biological

reasoning, is simply a sequence of formulas that are either EVFs or

result from the application of the above rules in order to logically

represent an entire biological process. However, there is one

important restriction that must be respected: any formula

occurring in a line cannot be used more than once. This is

because Zsyntax describes biological processes, or paths, in which

reactants are ‘‘consumed’’, or otherwise engaged, following a

precise stoichiometry. Once they have been accounted for in a

process or path, these particular molecules are no longer available,

and if more are necessary, then new identical reactants must be

introduced, or obtained again.

Combining in a correct way EVFs with the logical rules allows

us to represent biological processes as deductions that establish

theorems of the form A1& … &An w B. Below, in Table 1, we

provide a comparison of the standard linguistic interpretation of

the theorem A1& … &An w B with our non-standard biological

interpretation.

An example of how this is achieved is illustrated in Table 2 and

Table 3, where the reactions of the glycolytic pathway leading

from D-Glucose to Fructose-1,6-bisphosphate are depicted in

Zsyntax. In Table 2, the reactions are written in a strictly formal

way, integrating EVFs with logical rules. The same pathway is

presented in Table 3 in a simplified form that contains only the

essential sequence of EVFs extracted from the detailed version.

Table 2 and Table 3 also illustrate how simply Zsyntax can

accommodate the fact that some of the reactants, in particular

enzymes, are not ‘‘consumed’’ in the reaction; as a consequence,

when these molecules are invoked in an EVF, they appear both in

the reactants and in the metabolites.

Additional examples are provided in Table 4, Table 5, Table 6

and Table 7, to illustrate more fully how Zsyntax can accurately

depict stoichiometries, as well as complex biological interplays,

such as regulatory or feed-forward loops.

When biological processes are described in this way, they can, to

all intents and purposes, be treated as theorems, with a set of initial

assumptions C and a conclusion B. We can therefore prove the

validity of any biological ‘‘theorem’’ C w B by detailing the logical

path leading from C to B, in much the same way as we prove the

validity of a mathematical theorem. Of course, the examples we

have provided are meant to illustrate the potential of Zsyntax, and

they are, therefore, extremely simple. The real power of Zsyntax

will be fully appreciable when it is applied to the design of a

computer program that can deal with much more complex

pathways and processes.

Analysis

Can Zsyntax Grasp the Complexity of Molecular Biology
It is not immediately intuitive that a language encompassing

only three operators (&, *, R) can render the intricacy of

molecular biology. While we do not claim, in principle, that all of

molecular biology can be described through Zsyntax, our language

is versatile enough to address several issues of biological

complexity, as exemplified by the followings:

1. Context dependence. Strictly speaking, this is not a topic

directly dealing with biological complexity, but rather with the

ambiguity regarding its representation. However, we find it useful

to deal with it at first, since it provides the paradigm of

how Zsyntax addresses the complexity issue by means of

contextualization. For instance, Zsyntax can reclaim issues

connected to synonymy (many names for the same molecule)

and homonymy (many molecules for the same name). This is

resolved by the fact that any Zsyntax theorem refers to a molecular

context in which the ambiguity is dissolved. Also in the case in

which the same molecule has different functions in different

molecular or cellular contexts, Zsyntax can disambiguate the

situation since any theorem refers to a specific molecular context.

From its demonstration, therefore, we can infer the proximal

function of that particular molecule. Of course the longer is the

chain of reactions in the theorem the more we know also about the

less proximal functions of the same molecule. Finally, as we will

show below, by contextualizing the Zsyntax operators (point 4), or

its derivability relation (point 5), or also its formulas (point 6), a

number of relevant biological features can be represented and/or

disambiguated.

2. Post-translational modifications. This is a frequent

occurrence in molecular biology, with significant impact on

biological processes. Zsyntax can incorporate these instances. As

an example, we will consider a situation already analyzed, that of

Table 1. The linguistic and the biological interpretations of the theorems.

LINGUISTIC CASE BIOLOGICAL CASE (ZSYNTAX)

From PREMISES (hypotheses) Conjunction of statements Aggregate of molecules

Through Inferential process Classical logical rules and non-logical axioms Non-standard logical rules and EVFs

To CONCLUSION (thesis) Statement Aggregate of molecules

doi:10.1371/journal.pone.0009511.t001
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the interaction between MDM2 and TP53. Phosphorylation of

either one of the molecules can impair their interaction. For the

sake of simplicity let us consider only the case in which TP53 is

phosphorylated (see for instance [31]). This reaction can be written

in Zsyntax as can be seen in Table 8.

Note that in this reaction, the actual kinase is unknown and it is

therefore indicated with the general term ‘‘kinase’’. In addition, it

is not known the exact hierarchy of the binding of ATP and TP53

to the kinase (in other words, TP53 might bind before ATP, or

vice versa). For the practical purpose of this demonstration,

however, these gaps in knowledge are irrelevant. Note also that

Zsyntax can accommodate an even higher level of resolution than

what is depicted here. For instance, it is known that the

phosphorylation event in question is on Ser18 of TP53. This

can be expressed easily in Zsyntax, by further disambiguating the

entity TP53-P in the theorem with the notation TP53-PS18.

At this point, it is rather self evident that, being TP53 and

TP53-P two distinct entities, their interaction (or lack thereof) with

MDM2 can be described by two separate expressions:

i) MDM2 & TP53 ‘ MDM2 � TP53

ii) MDM2 & TP53-P ‘=MDM2 � TP53{P

where by w/ we mean that the antecedent (in this case, MDM2 &

TP53-P) does not imply the consequent (in this case, MDM2 *

TP53-P).

In a similar way, Zsyntax can describe situations in which post-

translational modifications (e.g. phosphorylation) affect the activity

of a protein (e.g. by inactivating an enzyme). Let us assume that

the enzyme E catalyzes the reaction (where A and B are substrate

and product, respectively):

E&A?E&B

Let us also assume that the phosphorylated enzyme, E-P, is

catalytically inactive. Again, being E and E-P two distinct entities, the

reaction (or lack thereof) can be described by two separate expressions:

i) E& A ‘ E & B

ii) E{P& A =E{P& B

where, in ii), as above, the antecedent (E-P & A) does not imply the

consequent (E-P & B).

Table 3. Simplified version of the theorem.

Theorem

Glc&HK&GPI&PFK&ATP&ATP w F1,6P

Demonstration

1. Glc & HK R Glc*HK

2. (Glc*HK) & ATP R (Glc*HK) *ATP

3. (Glc*HK) *ATP R G6P & HK & ADP

4. G6P & GPI R G6P*GPI

5. G6P*GPI R F6P & GPI

6. F6P & PFK R F6P*PFK

7. (F6P*PFK) & ATP R (F6P*PFK) *ATP

8. (F6P*PFK) *ATP R F1,6P & PFK & ADP

In Zsyntax, deductions can be written in a simpler way than that presented in
Table 2. Here, the emphasis is on the main steps of the inferential process, while
inferential rules remain hidden. These rules must however be considered to be
implicitly applied, in spite of the fact that they are not explicitly mentioned.
Abbreviations are as in Table 2.
doi:10.1371/journal.pone.0009511.t003

Table 2. Theorem representing the reactions of the glycolytic
pathway leading from D-Glucose to Fructose-1,6-bisphosphate:
Glc&HK&GPI&PFK&ATP&ATP w F1,6P.

1. Glc & HK & GPI & PFK & ATP & ATP IA

2. Glc & HK From 1 by &E

3. GPI From 1 by &E

4. PFK From 1 by &E

5. ATP From 1 by &E

6. ATP From 1 by &E

7. Glc & HK R Glc*HK EVF

8. Glc*HK From 2,7 by RE

9. (Glc*HK) & ATP From 5,8 by &I

10. (Glc*HK) & ATP R (Glc*HK) *ATP EVF

11. (Glc*HK) *ATP From 9,10 by RE

12. (Glc*HK) *ATP R G6P & HK & ADP EVF

13. G6P & HK & ADP From 11,12 by RE

14. G6P From 13 by &E

15. HK From 13 by &E

16. ADP From 13 by &E

17. G6P & GPI From 3,14 by &I

18. G6P & GPI R G6P*GPI EVF

19. G6P*GPI From 17,18 by RE

20. G6P*GPI R F6P & GPI EVF

21. F6P & GPI From 19,20 by RE

22. F6P From 21 by &E

23. GPI From 21 by &E

24. F6P & PFK From 4,22 by &I

25. F6P & PFK R F6P*PFK EVF

26. F6P*PFK From 24,25 by RE

27. (F6P*PFK) & ATP From 6,26 by &I

28. (F6P*PFK) & ATP R (F6P*PFK) *ATP EVF

29. (F6P*PFK) *ATP From 27,28 by RE

30. (F6P*PFK) *ATP R F1,6P & PFK & ADP EVF

31. F1,6P & PFK & ADP From 29,30 by RE

32. F1,6P From 31 by &E

33. (Glc & HK & GPI & PFK & ATP & ATP) R F1,6P From 1–32 by RI

The reactions of the pathway are illustrated in all their detail. In each line we
write the conclusion of a rule application, together with its justification, without
keeping track of the initial aggregates (IA) on which it may depend. All the lines
in this example depend on the IA of line 1, except for the EVFs, which do not
depend on any IA, and the final theorem reported on line 33. Here, the IA of line
1 is ‘‘discharged’’ by the application of rule RI, as indicated to the right of line
33 (From 1–32 by RI), with the consequence that the final theorem does not
depend on any IA. Abbreviations: D-Glucose, Glc; D-Glucose-6-phosphate,
G6PPP; Hexokinase [EC 2.7.1.1], HK; Glucose-6-phosphate isomerase [EC 5.3.1.9],
GPI; 6-Phosphofructokinase [EC 2.7.1.11], PFK; Fructose-6-phosphate, F6PP;
Fructose-1,6-bisphosphate, F1,6PP. Note that no formula is used more than
once in the derivation process.
doi:10.1371/journal.pone.0009511.t002
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3. Allosteric configurations. Another instance in which

disambiguation may be required concerns allosteric configurations.

But even this case is grasped easily by Zsyntax. For, anytime we

have an allosteric situation regarding n possible different

configurations of the same protein, we have n different theorems –

characterized by n different initial aggregates and by n different final

aggregates – representing the n different situations. (It should be

clear at this point that by appropriately disambiguating entities in

the initial or final aggregates, virtually all instances can be reclaimed

by Zsyntax. For instance, one could account for species (e.g., H.

sapiens, M. musculus) by appropriately labeling the relevant molecules,

for gene variation (SNPs), for splice variants and so on).

4. Type of interaction. A frequently encountered problem

concerns the type of methodology used experimentally to demon-

strate an interaction between two molecules. This can be done in

the wet lab through a series of methodologies, such as in vitro binding

(with purified proteins or with one purified protein challenged with

a cellular lysate), yeast two-hybrid, co-immunoprecipitation in vivo,

FRET in vivo, and so on. The problem is relevant to the degree of

confidence with which we claim that an interaction really occurs in

physiological conditions, since there is a hierarchy (albeit not

absolute) of reliability of the various methodologies. This

particularly useful piece of information can be easily incorporated

in Zsyntax by labeling the Z-interaction to disambiguate which

particular interaction we are referring to:

A&B?A�IB

where I is an index running on the different classes of interaction. Of

course, softwares for text mining and for predictions (see below) can

be engineered to take into account the different classes of interaction

only upon request.

5. Subcellular localization. More or less in the same way,

the issue of compartmentalization can be solved by Zsyntax. For, if

we want to emphasize that a particular chain of reactions happens

in a particular compartment, it is sufficient that we label suitably

the derivability relation representing that process. That is, we

could write:

A1, . . . ,Anð Þ ‘ CB

where C is an index running over the possible compartmentalization.

Similarly, by contextualizing the appropriate entities, or opera-

tors, or derivability relations, virtually every instance involving space

constraints (recruitment to a particular subcellular localization,

dynamic processes such as nucleo-cytoplasmic shuttling, progression

through intracellular compartments such as during endocytosis and

degradation) can be accounted for in Zsyntax, if the appropriate

chain of molecular reactions is known.

6. Quantitative aspects and the role of time. One aspect

that might be apparently neglected by Zsyntax is the quantitative

dimension of molecular interactions. This is especially true since

Zsyntax is a logic, and one usually thinks of logic as a qualitative

tool for formalization. However, as discussed above, Zsyntax is

grounded into a particular kind of non-classical logic, well suited to

retain and describe basic quantitative information. We have

already explained how Zsyntax can account for reaction

stoichiometries. In practice, this might be applied to many

situation of interest for the molecular biologist. Let us imagine a

situation in which two molecules A and B interact and we have

Table 4. Theorem representing the regulatory loop involving
MDM2, MDM2 and TP53 and leading to TP53 degradation:
TP53& TP53& MDM2& U& P w d(TP53).

1. TP53 & TP53 & MDM2 & U & P IA

2. TP53 From 1 by &E

3. TP53 From 1 by &E

4. MDM2 From 1 by &E

5. U From 1 by &E

6. P From 1 by &E

7. TP53 & MDM2 From 2,4 by &I

8. TP53 & MDM2 R TP53*MDM2 EVF

9. TP53*MDM2 From 7,8 by RE

10. TP53*MDM2 R MDM2 EVF

11. MDM2 From 9,10 by RE

12. MDM2 & TP53 From 3,11 by &I

13. MDM2 & TP53 R MDM2*TP53 EVF

14. MDM2*TP53 From 12,13 by RE

15. (MDM2*TP53) & U From 5,14 by &I

16. (MDM2*TP53) & U R (MDM2*TP53) *U EVF

17. (MDM2*TP53) *U From 15,16 by RE

18. (MDM2*TP53) *U R MDM2 & (TP53*U) EVF

19. MDM2 & (TP53*U) From 17,18 by RE

20. TP53*U From 19 by &E

21. (TP53*U) & P From 6,20 by &I

22. (TP53*U) & P R (TP53*U) *P EVF

23. (TP53*U) *P From 21,22 by RE

24. (TP53*U) *P R d(TP53) & U & P EVF

25. d(TP53) & U & P From 23,24 by RE

26. d(TP53) From 25 by &E

27. (TP53 & TP53 & MDM2 & U & P) R d(TP53) From 1–26 by RI

It is known that TP53, the well-known tumor suppressor [22] binds to the MDM2
gene and activates its transcription, ultimately leading synthesis of the MDM2
protein [23,28]. But if TP53 binds the protein MDM2, this latter acts as a
ubiquitin ligase, leading to TP53 ubiquitination and ultimately to its
proteasomal degradation [29], an event that we indicate by d(TP53). Thus, a
complex regulatory loop exists involving TP53, the MDM2 gene and the MDM2
protein. The reactions of this pathway are illustrated, in Zsyntax language, in
the detailed form. In this form, the theorem is reported on line 27, the
antecedent (IA, initial aggregate) is the multiset reported on line 1 and is
‘‘discharged’’ by the application of RI. Abbreviations: U, ubiquitin;
P, proteasome. The reader can check that no formula (resource) is used more
than once in the derivation process.
doi:10.1371/journal.pone.0009511.t004

Table 5. Simplified version of the theorem representing the
regulatory loop.

Theorem

TP53& TP53& MDM2& U& P w d(TP53)

Demonstration

1. TP53 & MDM2 R TP53*MDM2

2. TP53 * MDM2 R MDM2

3. MDM2 & TP53 R MDM2*TP53

4. (MDM2 *TP53) & U R (MDM2*TP53) *U

5. (MDM2*TP53) *U R MDM2 & (TP53*U)

6. (TP53*U) & P R (TP53*U) *P

7. (TP53*U) *P R d(TP53) & U & P

doi:10.1371/journal.pone.0009511.t005
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also experimentally determined the stoichiometry of their

interaction, be it 5%. The theorem could then be written as

follows:

100 A & 100 B ‘ 5 A � B & 95 A & 95 B:

There are more complex ways, however, in which Zsyntax

can incorporate quantitative aspects. For example, since it is a

language specifically designed to take into account the strong

empirical nature of molecular biology, and empirical information

does frequently contain a temporal dimension embedded in it, we

need to envision ways of incorporating a temporal dimension in

Zsyntax-based theorems.

Before facing this aspect, we wish to mention the possibility of

greatly enhancing the expressive power of Zsyntax by shifting from

plain formulas, such as A, B, C, etc., to labeled formulas, such as A:a,

B:b, C:c, etc. (where a, b, c are labeling strings, specifying the

values of suitable parameters and ‘:’ is the sign indicating that the

formula – e.g., A – is followed by its label – e.g., a). In this way, the

labels allow us to specify any kind of additional information

concerning the entities to which the formulas refer. Note that this

manner of enriching the formal language is well-grounded in

contemporary logic, where the so-called Labeled Deductive Systems is

an active and innovative research area (see [32,33])

Moreover the Z-interactions, which we have so far expressed by

means of empirically valid formulas, could be more precisely

written by means of labeled rules, telling us what is really happening.

For instance, the elimination rule for the Z-conditional discussed

above (RE: given ARB and A, then we can derive B; that is, the

usual modus ponens), could be generalized as follows:

A?B : a A : b

B : f a,bð Þ

where a, b are strings of expressions denoting the values of suitable

parameters, and f is a suitable function of the chosen parameters.

Table 6. Theorem representing the feed forward loop: A & A
& B & C & RA& RA& RB w C.

1. A & A & B & C & RA & RA & RB IA

2. A From 1 by &E

3. A From 1 by &E

4. B From 1 by &E

5. C From 1 by &E

6. RA From 1 by &E

7. RA From 1 by &E

8. RB From 1 by &E

9. A &RA From 2,6 by RI

10. A & RA R A*RA EVF

11. A*RA From 9,10 by RE

12. A*RA R A EVF

13. A From 11,12 by R E

14. A & RB From 8,13 by &I

15. A & RB R A*RB EVF

16. A*RB From 14,15 by RE

17. (A*RB) & B From 4,16 by &I

18. (A*RB) & B R (A*RB) *B EVF

19. (A*RB) *B From 17,18 by RE

20. (A*RB) *B R B EVF

21. B From 19,20 by RE

22. A & RA From 3,7 by &I

23. A & RA R A*RA EVF

24. A*RA From 22,23 by RE

25. A*RA R A EVF

26. A From 24,25 by RE

27. A & B From 21,26 by &I

28. A & B R A*B EVF

29. A*B From 27,28 by RE

30. (A*B) & C From 5,29 by &I

31. (A*B) & C R (A*B) *C EVF

32. (A * B) *C From 30,31 by RE

33. (A * B) *C R C EVF

34. C From 32,33 by RE

35. (A & A & B & C & RA & RA & RB) R C From 1–34 by RI

A feed forward loop [30] is illustrated in the detailed form. In this form, the
theorem is reported on line 35, the antecedent (IA, initial aggregate) is the
multiset reported on line 1 and is ‘‘discharged’’ by the application of RI. The
theorem illustrates the abstract case of a feed forward loop composed of three
genes A, B, C, their encoded proteins (A, B, C), and two regulatory proteins RA
and RB, such that (i) A is regulated by RA; (ii) B by RB and the protein A; (iii) C by
the protein complex A*B. The reader can check that each formula (resource) is
used at most once.
doi:10.1371/journal.pone.0009511.t006

Table 7. Simplified version of the theorem representing the
feed forward loop.

Theorem

A & A & B & C & RA& RA& RB w C

Demonstration

1. A & RA R A*RA

2. A * RA R A

3. A & RB R A*RB

4. (A*RB) & B R A*RB*B

5. (A*RB) *B R B

6. A & RA R A*RA

7. A*RA R A

8. A & B R A*B

9. (A*B) & C R (A*B) *C

10. (A*B) *C R C

doi:10.1371/journal.pone.0009511.t007

Table 8. Theorem concerning the phosphorylation of TP53.

Theorem

TP53 & ATP& Kinase w TP53-P

Demonstration

1. Kinase & ATP R Kinase*ATP

2. (Kinase*ATP) & TP53 R (Kinase*ATP) *TP53

3. (Kinase*ATP) *TP53 R TP53-P & Kinase & ADP

doi:10.1371/journal.pone.0009511.t008
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Here, the purely logical mechanism of the modus ponens is

integrated with a labeling module specifying the way in which the

values of the parameters should be propagated by the application

of the rule and, therefore, has an empirical content. The

advantage of this approach is that the logical backbone of the

process (expressed by the formulas) is separated from the

additional empirical information that is required for a more

accurate representation (expressed by the labels). In this way the

basic structure of the process is maintained simple while providing

a basis for increasingly accurate representations, depending on the

amount of details that is captured by the labeling module.

Coming back to the temporal dimension, the Z-interaction that

we have so far expressed by means of an empirically valid formula

(A&B R A*B), could be written, for instance, in a more detailed

and expressive way by means of the following labeled rule

A : c,t0½ � B : c,t0½ �
A � B : c,t0½ �

where, for example, c could represent the concentration, t0 the

initial time of the reaction and t‘ a time sufficiently long to reach

equilibrium. By the way, this rule would represent the Zsyntax

equivalent of the equation of equilibrium binding, from which

some kinetics parameters, including KD, could easily be derived.

Of course in this way we would only depict temporal snapshot,

i.e. a static representation of the situation. On the other hand, if

we wanted also the dynamics we should use differential equations.

Although we have not explored this aspect, we suspect that this is

exactly the point in which a logical language representing static

situations of the system, such as Zsyntax, can be fused with a

language (differential equations, be them ordinary – ODEs – or

partial – PDEs) representing the dynamics of the system, in an

attempt to allow also for the representation of the variations of the

quantities involved.

The relationship between Zsyntax, ODEs and PDEs deserves

further comments, as it could be argued that a Zsyntax reaction is

a symbolic description that is very similar in structure to an ODE,

or a PDE. However, there is a deep difference between the two

approaches. To better illustrate such a difference, a brief

digression into physics will be useful. Roughly speaking any

physical theory has four formal levels: i) the level of the geometry

in which the physical systems lie; ii) the level of the logic coding the

allowed inferences among physical statements and therefore

permitting the demonstrations of the theorems; iii) the level of

the tools (sets of ordinary and partial differential equations –

ODEs and PDEs) describing the dynamics of the involved systems;

iv) the (meta)level of the language ‘‘enveloping’’ the first three

levels. This four-layered structure can be grasped by looking at the

Table 9.

As it should be evident, logic is the (more or less latent)

inferential backbone of any physical theory, while the sets of ODEs

or PDEs are the ‘‘muscles’’ permitting the representation of the

evolution in time, in the ordinary 3-dimensional space, or in other

spaces (as the phase space, or any other abstract n-dimensional

space) of the systems.

What is the situation in molecular biology? Here, we do not

have any ‘‘enveloping’’ mathematics (and it is unknown whether

this will ever be possible); geometry needs not to be made explicit

(as it is implicitly assumed that the space in which the molecules

lie is Euclidean). Sometimes we use sets of ODEs or PDEs to

model particular dynamics, as it happens, for example, in the

case of gene regulatory networks [34]. But there is something

more that should not be neglected, especially from a formal

perspective: i.e. that molecular biologists do make inferences.

Zsyntax is exactly a language that tries to capture and formalize

this inferential backbone. Once fixed this backbone, analogously

to what happens in the physical domain, the ‘‘attached’’ sets

of ODEs or PDEs permit to represent the dynamics. Differently

said, Zsyntax and ODEs/PDEs belong to two different ‘‘levels’’

(as from Table 9), those of Logic and of Dynamics, respectively.

Needless to say, the way in which an a-temporal language (as

Zsyntax is) and a temporal language (as usually ODEs and PDEs

allow) could be linked has to be developed in depth. Here we

simply envisage this possibility that, if achieved, should give us a

more complete formal representation of what happens in the

molecular biology domain.

This brings us to one final consideration concerning logic and

ODEs or PDEs. Clearly, any time we integrate a set of ODEs or

PDEs (that is, we solve it), there is an underlying logic that allows

us to move from one step of the solution to another, and that the

logic is the classical (Fregean) one. But, whenever we insert the

group of statements concerning such a set of ODEs or PDEs and

its integration into a scientific representation (be it a physical

representation or a biological one permitted, for instance, by

Zsyntax), the logic underlying the group has to be linked to the

logic of the backbone of the representation. This is a very subtle

question concerning the logical foundations of the scientific

representations and its discussion would be beyond the scope of

this paper. However, this is particularly evident in Quantum

Mechanics where there are two different kinds of logic at work: the

classic and the quantum one, which is non-classical. Classic logic is

underlying any move from one statement to another, particularly

when they belong to the demonstration of a theorem; but

whenever the statements concern the non-distributive algebra of

the quantum operators we have to set it aside and use quantum

logic. The same would happen, more or less, with Zsyntax, which

is based on a non-classical logic. Since we have claimed that

Zsyntax might represent a logic backbone for the formal

representation of molecular biology, this implies that, if also sets

of ODEs and PDEs enter the representation, we would have to

work with two different logics: the Fregean (classical) one

underlying such sets and their integration, and the non-classical

one allowing the backbone and the demonstrations of the

theorems.

Table 9. The four levels of mathematics into physics.

‘‘Enveloping’’ mathematics Geometry Logic Dynamics (ODEs PDEs)

Classical Mechanics Vectorial calculus Euclidean geometry Classic logic Newton laws

General Relativity Differential topology Riemannian geometry Classic logic Einstein equations

Quantum mechanics Complex functions and Hilbert spaces Euclidean geometry Classic logic plus Quantum logic Schrödinger equation

doi:10.1371/journal.pone.0009511.t009
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Possible Applications of Zsyntax: Text Mining
The transposition of biological processes into a formal, logical

language would allow text miners to use tools that have a number

of advantages over the current ones available. There is overall

agreement [21] that text mining involves: 1) information retrieval

(finding the necessary information in available repositories); 2)

named entity recognition (focusing in on relevant notions); 3)

information extraction, i.e. drawing out the (relations among the)

notions that we are looking for; 4) a question/answer task (having

the possibility of asking for specific data, or data correlation, and

the having the possibility of obtaining correct answers); 5) text

synthesis (compacting the retrieved information). The use of

logical tools for all these tasks has recently been advocated in the

fast growing field of so-called description logics [35].

We can envision now what would happen if publications

relating to biological processes had, not only the traditional

abstract, but also the simplified version of the logical deduction,

i.e., the theorems, representing these processes. The core

information of any paper would then already be written in a

way that could easily be handled by informaticians working in the

field of information storage. This would lead relatively rapidly to

the creation of a unique database containing information (written

in a formal language) on biological reactions and on the molecules

participating in these reactions, from which text miners could

extract relevant information.

As an example let us consider again the complex series of

interplays between MDM2 (both the gene and the protein) and

TP53. Through the usage of classical Boolean operators in a

PubMed search, one would retrieve more than 3,000 references

for the query ‘‘p53 AND mdm2’’ (ignoring possible permutations

with less used terms such as TP53 or hdm2) and more than 500

references for the query ‘‘p53 AND mdm2 AND interaction’’. The

derivations of even the simple theorems described herein would

require many hours of work, sifting through largely irrelevant (for

the purpose of the search) literature.

Of course many efforts are directed at the creation of more

rationale, and user-friendly, databases, for example of biological

interactions. These are based either on text mining algorithms

(frequently based on natural language) that scan the literature (in

general, titles an abstracts) and create bio-networks based on co-

citation, or on manually-curated databases, or on a combination of

the two. These databases are extremely useful, as they are also

frequently linked to a large body of relevant information

concerning taxonomy, biological function, publication, annota-

tion, cross-reference, or even intellectual property. They address,

however, a different need with respect to that would be addressed

by a hypothetical Zsyntax-based database. As a case in point,

we submitted the query ‘‘TP53, Mdm2’’ to two widely used

databases, PubGene (www.pubgene.com) and BOND (bond.

unleashedinformatics.com).

In PubGene the interaction between Mdm2 and p53 was

promptly evidenced. By restricting the search to ‘‘based on co-

occurrence with protein interaction keyword in the sentence’’, we

obtained 386 and 1219 entries (corresponding to papers), in H.

sapiens and All Organisms, respectively. Entries were annotated

with ‘‘interaction terms’’, such as activates, interacts, downregu-

lates, degrades and so on. This is a step forward with respect to a

PubMed search, but would still require many hours of work to

obtain the desired information.

In BOND, the search returned 107 ‘‘interactions’’. The

‘‘interactions’’ (labeled with several useful qualifiers, such as

experimental evidence, taxonomy, molecule labels and identifiers)

contained many entries irrelevant for our quest (for instance of

interactions of either TP53 or MDM2 with other molecules), but

also some higher level of definition of relevant interactions. For

instance, the complexes between TP53 and MDM2, and those

between TP53 and the MDM2 gene promoter were clearly

distinguishable. We did not manage however to intuitively derive

information on the regulation of the TP53:MDM2 complex by

phosphorylation.

In a hypothetical Zsyntax-based database, on the other hand,

the simple search with the keywords ‘‘TP53 & MDM2’’ (where &

is our non-Boolean Z-conjunction) in the initial aggregate would

return all of the theorems involving these two molecules in their

exact molecular context. The integration of the Zsyntax language

into high-resolution databases, such as BOND, would appear

therefore as a decisive step forward.

Possible Applications of Zsyntax: The Prediction of
Biological Data and Reactions

We have shown how complex biological processes can be

described in terms of logical deductions, which lead, from an initial

aggregate (the premise) to a final aggregate (the conclusion of the

deduction). Since, as previously mentioned, all the logical

processes we have described are amenable to computer processing,

it will be possible to automate the demonstration of theorems with

the aid of suitable software programmed to work with Zsyntax. In

its direct application, this means that it will be possible to develop

an automated proof engine which takes as input an initial

aggregate A1&…&An together with the conclusion B that we

intend to reach, plus suitable heuristics. The output will be either

the demonstration of the theorem or its rejection.

In case of rejection we can move backwards by reversing this

process and find good indications on the reason why the search for

a proof did not succeed. Implementing this reverse process means

thinking abductively (hence, from the conclusion, we work backwards

to re-construct the most likely pathway leading to this conclusion).

This is what molecular biologists ‘‘intuitively’’ do routinely in the

laboratory, and the method is extremely relevant to the scientific

process, since backward reasoning: (a) is goal-oriented and (b)

allows researchers to make predictions for new data and new

reactions when deduction fails. Zsyntax can help goal-oriented

theorem proving, in which researchers start from a conclusion, B,

to look for the possible premises from which B can be derived. By

applying the inference rules in the reverse order and by reiterating

this inverse process, it will be possible to logically reconstruct

several possible paths that lead to B. The initial node in each

reconstructed path will be an aggregate from which the conclusion

could be obtained, even though this might not match the

experimental initial aggregate. Researchers can sift through all

possible paths in the search tree (and using suitable heuristics can

prune the wrong paths), to narrow down the choice until they

finally arrive at a node that consists of the experimentally designed

input aggregate. If the search fails, something is obviously missing

from the logical reconstruction. However, even a failed search

process usually contains enough information to provide a number

of possible working hypotheses that can solve the initial problem,

either by adjusting the premises, or by considering additional

EVFs, something that automated theorem provers are able to do.

In either case, the process may lead to new knowledge, because

the relevance of the additional information may not have

been previously perceived. To better grasp this point, let us

consider an initial aggregate C = A1& …&An. Up to now, we

have applied our rules forward, starting from C and going

towards the conclusion B, to show that Cw B. Suppose, however,

that this is not true, that is, that C does not lead to B. This

might happen because: (i) the initial aggregate C is not sufficient,

and we must add new resources An+1& …&An+k, so that with
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C’ = A1& …&An& An+1& …&An+k, we have C’ w B; (ii) there are

additional EVFs that we have not taken into consideration. In the

former case, finding the missing An+1& …&An+k means finding

new data; in the latter case, it means finding new reactions. These

missing items can be found by using our logical rules backwards,

that is, we could ‘‘abduce’’ (predict) them by taking advantage of

the available empirical information (i.e., the EVFs) and of the

logical rules. Ultimately, this leads to the generation of hypotheses

that can be tested in the ‘‘wet’’ lab.

A simple example of how this can work in practice is the

following one. We know the degradation path of TP53 from the

literature [22]. In this pathway, a ubiquitin ligase, MDM2,

interacts with TP53, leading to its ubiquitination, which in turn,

destines ubiquitinated TP53 for proteasomal degradation [22,29].

This pathway can be summarized in a theorem (where U stands

for ubiquitin, and P for proteasome), whose thesis is the following:

TP53&MDM2&U&P w d(TP53), as depicted in Table 10 in the

simplified form of Zsyntax (note that this theorem represents a

‘‘sub-routine’’ of the general theorem of the regulatory loop of

TP53 depicted in Table 4 and Table 5).

We also know from the literature that another protein, NUMB,

interacts with MDM2 [36]. This interaction can been described

using an EVF: MDM2&NUMBR MDM2*NUMB. Although

MDM2 is a common denominator in this pathway and in that of

TP53 degradation depicted above, until recently there were no

connections between them. In the absence of experimental

evidence, which only came in 2008 [37], but in the presence of

an automated prover based on Zsyntax, would it have been

possible to generate deductive paths (to be tested in the wet lab)

linking an initial aggregate, TP53&MDM2&NUMB&U&P to the

degradation of TP53? Assuming the existence of an appropriate

database containing information about the path leading from

TP53&MDM2&U&P to d(TP53), and about the reaction

MDM2&NUMB R MDM2*NUMB, we could ask the automated

prover to generate possible solutions to our problem. Given the

initial aggregate, (TP53&MDM2&NUMB&U&P), there is a path

from one of its subsets (TP53&MDM2&U&P), to d(TP53). This

means that either 1) there is no role for the NUMB-MDM2

interaction, so no deductive path can be constructed in which all

the items of the initial aggregate (TP53&MDM2&NUMB&U&P)

are used, or that 2) NUMB might play a role in a situation of

regulative loop. The solution of this problem requires a

preliminary experimental step to assess whether there is a

mechanistic connection between the levels of NUMB and those

of TP53. This can be achieved, for instance, by modulating the

levels of NUMB, by RNA interference and/or overexpression

experiments, and checking the levels of TP53. We have

demonstrated that is indeed the case [37], but these results do

not per se suggest the molecular wiring of this putative loop. At

this point the theorem-prover could check all possible interactions

between the molecule MDM2*NUMB and the other molecules.

The main problem lies in understanding which path should be

coupled with the known MDM2/TP53/NUMB pathway in order

to identify the correct regulatory loop. The theorem-prover can

indicate all the logically possible paths, that is, the theorems

representing hypothetical empirical paths. By means of suitable

heuristics, the program prunes those that we already know to be

biologically impossible (or unlikely). In this way, we are left with

only a few hypotheses (see Table 11) that can be validated or

disproved in the laboratory.

What we have presented here is, obviously, an a posteriori case,

in which the results of the final ‘‘wet’’ experiment are already

known; indeed we have recently shown that the correct path is

depicted by hypothesis 1 of the above Table 11 [37]. In this

circuitry, the formation of a MDM2/NUMB/TP53 tricomplex

inhibits the ubiquitin-ligase activity of MDM2, thereby preventing

the ubiquitination of TP53 and its degradation. Of course, had the

empirical test been negative, this would have meant that at least

one item of data (a molecule), or possibly additional EVFs, were

missing in the initial aggregate. In this case, the theorem prover

might have provided some good indications on the type of

molecule or EFV to look for. Although the simple example above

is meant to exemplify the potential of Zsyntax as heuristic tool, it

naturally does not illustrate its full computational power.

Zsyntax and Other Languages
In the Introduction, we have already commented on the

increasing efforts, especially in the field of bioinformatics, aimed at

offering new languages and algorithms. In this section we would

like to make some additional comments focused on specific

projects. A comprehensive review is, of course, outside of the scope

of this paper, but some points are worthy of mention.

Without any pretense of exhaustiveness, we can broadly identify

two types of approaches: one aimed at the creation and the

proposition of codes to standardize the collection, the storage and

the retrieval of biological data, another concerned with the

construction of biological networks to represent sets of inter-

correlated data.

By the former we mean efforts such as the MIAME (Minimum

Information About a Microarray Experiment) [38] or the MIAPE

(Minimum Information About a Proteomics Experiment) [39],

which are aimed the identification of standards to perform high-

throughput experiments and to communicate the results. In the

same category, we can include efforts to construct common

platforms to exchange data on biological pathways (for example,

Table 10. Simplified version of the theorem concerning the
degradation path of TP53.

Theorem

TP53&MDM2& U& P w d(TP53)

Demonstration

1. MDM2 & TP53 R MDM2*TP53

2. (MDM2 *TP53) & U R (MDM2*TP53) *U

3. (MDM2*TP53) *U R MDM2 & (TP53*U)

4. (TP53*U) & P R (TP53*U) *P

5. (TP53*U) *P R d(TP53) & U & P

doi:10.1371/journal.pone.0009511.t010

Table 11. The eight hypothetical theorems for the NUMB,
TP53, MDM2 regulatory loop.

1 TP53&MDM2&NUMB&U&P w ((MDM2*NUMB) *TP53) &U&P

2 TP53&MDM2&NUMB&U&P w (MDM2*NUMB) &U& P& TP53

3 TP53&MDM2&NUMB&U&P w ((MDM2*NUMB) *U)&TP53&P

4 TP53&MDM2&NUMB&U&P w ((MDM2*NUMB) *P)&TP53&U

5 TP53&MDM2&NUMB&U&P w (MDM2*NUMB)&(TP53*U)& P

6 TP53&MDM2&NUMB&U&P w (MDM2*NUMB)&(TP53*P)& U

7 TP53&MDM2&NUMB&U&P w (MDM2*NUMB)&(U*P)&TP53

8 TP53&MDM2&NUMB&U&P w (MDM2*NUMB)&((TP53*P)*U)

doi:10.1371/journal.pone.0009511.t011
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BioPAX [40] see also www.biopax.org), and efforts, in the field of

bio-ontology, to offer standards for biological information by

HUPO (www.hupo.org) or HUGO (www.genenames.org).

Zsyntax does not belong to this category of biological

rationalizations, even if, needless to say, on the one hand, it

should use standard nomenclatures and, on the other hand, it

could be considered as a coding tool for chains of biological

reactions. This latter outcome does not represent, however, the

objective of Zsyntax, but rather an obvious side product, since the

adoption of any formal language implies standardization.

Different considerations apply to the case of network represen-

tations. In the last few years, increasing effort has been directed at

the identification and representation of biological networks of

protein-protein interaction, gene regulation, gene expression,

metabolism, signal transduction, and so on. Notwithstanding the

prima facie intuitiveness of the approach, it is becoming increasingly

apparent that network representations suffer important semantic

limitations. In particular, in many contexts the graph-based

representations turn out to be rather unclear, and many iconic and

pictorial representations (cartoons, arrows of different colors and

shapes, added tables, etc.) [41] must be introduced to help the

reader. Bioinformaticians are obviously conscious of this problem

[42,43] and actively working on possible solutions. In this

framework, Kitano and coworkers have proposed a possible

solution [44]. Their idea consists in realizing a codification of

network representations that could be transferred into a machine-

readable language apt for computational analysis. In particular,

they proposed what is called the SBML (System Biology Markup

Language), which should allow an unambiguous codification of the

different situations that can be found in different kinds of

biological networks. Such a language should also allow the

exchange of information among different network representations

(see www.sbml.org). The relevance of this approach lies in

particular in the fact that it is already supported by a well-

developed software that implements the proposed codification.

Zsyntax shares many features with this kind of approach,

although there are substantial differences. The major one resides

in the fact that network representation approaches are bottom-up.

For, they start from already existing biological databases and try to

represent them either pictorially or, in a more sophisticated way,

by means of suitable software. Instead, Zsyntax proposes a top-

down approach based on the concept of drawing out the logic

implicit in molecular biology (both theoretically and experimen-

tally) and, as an inevitable consequence, it allows also to deal with

biological networks. However, Zsyntax is first and foremost a logic,

that is a well-formulated (in a technical sense) language which is

computable. Through Zsyntax, one can attain the same

computational goals reached by bottom-up approaches, such as

that of Kitano et al., by starting from a more theoretical point of

view. The uniqueness of Zsyntax consists, however, in the ability

to put together empirical information (in the EVFs) and formal

rules (in the LVFs), in order to obtain a language that allows the

representation of molecular biology reactions as theorems. This, in

turn, permits to envision molecular biology as a collection of

theorems, that is, as a branch of science writable in a deductive

way (of course ‘‘deductive’’ should be taken in the sense explained

above).

Conclusions
We have shown that molecular biology processes can be

thought of, and written as, logical deductions in the Zsyntax

language, paving the way for their computational treatment. We

foresee text mining as the prime field of application of Zsyntax. As

Rzhetsky et al. [21] emphasize, ‘‘The current format of scientific

journals follows a model established long before the era of

computers, cheap electronic storage space, and digital publishing’’.

By circumventing the problems connected with the use of

natural language, Zsyntax offers a ‘‘ready-to-use’’ formalization

of biological reactions that may greatly aid text mining. In

addition, the implementation of Zsyntax-based theorem provers

may allow for the development of formal tools for biological

prediction. This latter effort will obviously be challenging. On the

on one hand, the development of Zsyntax-based dynamic tools can

exploit the vast repertoire of knowledge that has been developed in

the area of automated reasoning, and in particular in the fields of

substructural logics and labeled deductive systems. On the other,

the development of such a toolbox might run into problems

common to other approaches, such as the combinatorial explosion,

mentioned in the Introduction. Perhaps, similarly to what we

discussed concerning the relationships between Zsyntax and

ODEs/PDEs, this might represent another instance in which

Zsyntax can be combined with other languages suitably developed

to circumvent the problem [16,17].
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