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Moduli of uniform convexity for convex sets
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Abstract. Let C be a proper, closed subset with nonempty interior in a
normed space X. We define four variants of modulus of convexity for C
and prove that they all coincide. This result, which is classical and well-
known for C = BX (the unit ball of X), requires a less easy proof than
the particular case of BX . We also show that if the modulus of convexity
of C is not identically null, then C is bounded. This extends a result by
M.V. Balashov and D. Repovš.
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1. Introduction. The notion of a uniformly convex norm was introduced by
Clarkson [3] in 1936, and soon it became one of the basic concepts in geome-
try of Banach spaces. Among what is known, let us just recall that: uniform
convexity of a complete norm implies reflexivity and is equivalent to uniform
Fréchet differentiability of the dual norm (see, e.g., [7]); and a Banach space
admits an equivalent uniformly convex norm if and only if it is superreflexive
(Enflo [5]).

A mean for measuring uniform convexity of the norm ‖ · ‖ of a normed
space X is its modulus of convexity

δ‖·‖(ε) = inf
{

1 −
∥∥∥∥x + y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
, ε ∈ [0, 2]. (1)

Then ‖ · ‖ is uniformly convex if and only if δ‖·‖(ε) > 0 for each ε ∈ (0, 2]
(equivalently, for each sufficiently small ε > 0). A useful, relatively easy fact
is that:
(∗) the value of δ‖·‖(ε) does not change if we write ‖x‖ ≤ 1, ‖y‖ ≤ 1, and/or

‖x − y‖ = ε in (1) (see, e.g., [7, p. 60]).
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It is clear that uniform convexity of a norm ‖ · ‖ is a property of the
corresponding closed unit ball B‖·‖. In some situations, it turns out to be
useful to extend the notion of uniform convexity to general convex bodies. (By
a convex body in a normed space X we mean a proper closed convex subset
of X with nonempty interior.)

It is natural to define the modulus of convexity of a convex body C in a
normed space X as

δC(ε) = inf
{

dist
(

x + y

2
, ∂C

)
: x, y ∈ ∂C, ‖x − y‖ ≥ ε

}
, 0 ≤ ε < diam(C).

(2)

Then it is clear that the classical modulus of convexity δ‖·‖ of the norm of X
coincides with δB‖·‖ as defined in (2). The modulus from (2), while natural,
turns out to be not so comfortable to work with. More convenient is its variant

δ̃C(ε) = inf
{

dist
(

x + y

2
, ∂C

)
: x, y ∈ C, ‖x − y‖ ≥ ε

}
, 0 ≤ ε < diam(C),

(3)

defined by Balashov and Repovš [1]. (Actually, they used ‖x − y‖ = ε in their
definition, but it is easily seen to give the same value of δ̃C(ε); see Observa-
tion 3.3(a).) They proved some interesting properties of δ̃C , among which the
following boundedness result. If X is a Banach space and C is uniformly con-
vex in the sense that δ̃C(ε) > 0 whenever 0 < ε < diam(C), then C is bounded
and there exists a constant kC > 0 such that δ̃C(ε) ≤ kCε2 for each ε.

It is natural to ask about relations between the two moduli from (2) and
(3). The definitions give immediately the inequality δ̃C ≤ δC . Thanks to (∗),
in the particular case of C = B‖·‖, we have δB‖·‖ ≡ δ‖·‖ ≡ δ̃B‖·‖ . However,
the proof of (∗) cannot be easily modified to get the equality in the general
case. Roughly speaking, the difficulty consists in the fact that the distances
are measured by the norm ‖ ·‖, and the shape of its unit ball B‖·‖ can be quite
different from the shape of C.

A first partial answer to the question about the relation between δC and δ̃C

was given in our paper [4] dedicated to extendability of uniformly continuous
quasiconvex functions from uniformly convex bodies. Therein, we have given
a simple proof that the two moduli generate the same notion of a uniformly
convex body.

The main aim of the present paper is to provide a proof that, indeed, the
two moduli δC and δ̃C always coincide. More precisely, we define four variants
of modulus of convexity of C and then prove that they all coincide. This is
done in Theorem 3.6.

Our secondary aim is to show that the reasoning in [1] (by Balashov and
Repovš) can be modified to generalize their aforementioned boundedness result
from uniformly convex bodies in Banach spaces to convex bodies whose mod-
ulus of convexity is not identically null, in normed spaces (see Theorem 4.5).
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As a simple corollary, we obtain a general upper estimate for δC , depending
only on the diameter of the convex body C.

Finally, let us remark that we formulate our results for (nontrivial) convex
sets C that are not necessarily closed. This approach, which is only formally
different, is due to our previous paper [4] where we dealt mostly with open
convex sets.

2. Notation and preliminaries. By a normed space we mean a real normed
linear space of dimension at least two. If not specified otherwise, X denotes
such a space, BX is its closed unit ball, SX := ∂BX is its unit sphere, and X∗

is its dual Banach space.
The closed segment with endpoints x, y ∈ X is denoted by [x, y], and we

also define [x, y) := [x, y]\{y}, (x, y) := [x, y]\{x, y}.
The distance of two sets B,C ⊂ X is defined as

d(B,C) := inf{‖b − c‖ : b ∈ B, c ∈ C}

with the usual convention that inf ∅ := ∞. We also put d(x,B) := d({x}, B),
x ∈ X. By diam(B) we denote the diameter of B; by span(B), aff(B), and
conv(B) we mean the linear, affine, and convex hull of B, respectively.

Given a set E, a function f : E → R, and α ∈ R, we shall use a simplified
notation like [f > α] := {x ∈ E : f(x) > α}, [f = α] := {x ∈ E : f(x) = α},
and similar.

For a convex set C ⊂ X, we shall use the following terminology. We shall
say that:

• C is nontrivial if C contains at least two points and C �= X;
• C is strictly convex if x+y

2 ∈ intC whenever x, y ∈ ∂C and x �= y.

Observation 2.1. The following properties are easy observations.

(a) C is nontrivial if and only if card(C) > 1 and ∂C �= ∅. Moreover, in this
case diam(C) = diam(∂C).

(b) If C is nontrivial and ∂C contains no line, then C contains no line either.
(c) If C is nontrivial and strictly convex, then it has nonempty interior, and

moreover, x+y
2 ∈ int C whenever x, y ∈ C, x �= y.

(d) If C is nontrivial, then the distance-function d(·, ∂C) is concave on C.
(e) If C is nontrivial, then either ∂C is connected or ∂C consists of two

parallel closed hyperplanes.

3. Four moduli of convexity, and their equality.

Definition 3.1 (The four moduli of convexity). Let C be a nontrivial convex
set in a normed space X. For any 0 ≤ ε < diam(C), let us define:
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δC(ε) := inf
{

d

(
x + y

2
, ∂C

)
: x, y ∈ ∂C, ‖x − y‖ ≥ ε

}
,

δ′
C(ε) := inf

{
d

(
x + y

2
, ∂C

)
: x, y ∈ ∂C, ‖x − y‖ = ε

}
,

δ̃C(ε) := inf
{

d

(
x + y

2
, ∂C

)
: x, y ∈ C, ‖x − y‖ ≥ ε

}
,

δ̃′
C(ε) := inf

{
d

(
x + y

2
, ∂C

)
: x, y ∈ C, ‖x − y‖ = ε

}
.

Each of these four functions is a kind of modulus of convexity of C.

Remark 3.2. As already remarked in the introduction, it is well known (see
[7]) that the four moduli coincide for C := BX . Moreover, it is clear that we
can restrict ourselves to the case of nontrivial convex sets which are closed.

The aim of the present section, and our main result, is to show that the four
moduli coincide for each nontrivial convex set. Before proving the theorem, we
need some preparation.

Observation 3.3 (First properties). Let C ⊂ X be a nontrivial convex set.

(a) δ̃′
C(ε) = δ̃C(ε) ≤ δC(ε) ≤ δ′

C(ε) ≤ ε/2 for each ε ∈ [0,diam(C)).
(b) At ε = 0, all four moduli are null and right-continuous.
(c) δC and δ̃C ≡ δ̃′

C are nondecreasing on [0,diam(C)).
(d) If ∂C contains a segment of length 0 < � < diam(C), then δ′

C(ε) = 0 for
each ε ∈ [0, �].

Proof. The equality in (a) follows easily: indeed, if x, y ∈ C and ‖x − y‖ ≥ ε,
then the segment [x, y] contains two points x′, y′ such that ‖x′ − y′‖ = ε

and x′+y′

2 = x+y
2 . To see the last inequality in (a), consider x, y ∈ ∂C with

‖x − y‖ = ε, and observe that d(x+y
2 , ∂C) ≤ ‖x+y

2 − y‖ = ε/2. The rest of (a)
is obvious. The remaining parts of the statement are quite easy. �

The following lemma is a relative of [1, Lemma 2.2].

Lemma 3.4. Assume that X is a normed space, C ⊂ X is a closed, nontrivial
convex set, and 0 < ε < diam(C). Let x, y ∈ ∂C and x∗, y∗ ∈ SX∗ be such that
‖x − y‖ = ε, x∗(x) = max x∗(C), and y∗(y) = max y∗(C). Then

‖x∗ − y∗‖ ≥ 4δ′
C(ε)
ε

.

Proof. For simplicity, denote δ := δ′
C(ε). Since x+y

2 + δBX ⊂ C, we have that
x∗(x+y

2 ) + δ ≤ x∗(x) and y∗(x+y
2 ) + δ ≤ y∗(y). These two inequalities can be

rewritten as x∗(x − y) ≥ 2δ and y∗(y − x) ≥ 2δ. Summing them up, we obtain
(x∗ − y∗)(x − y) ≥ 4δ. Consequently, 4δ ≤ ‖x∗ − y∗‖ε, and we are done. �

Let us first prove the following two-dimensional boundedness result about
the modulus δ′

C .

Lemma 3.5. Let Y be a two-dimensional normed space, let D ⊂ Y be a closed,
nontrivial convex set, and let 0 < ε < diam(D) be such that δ′

D(ε) > 0. Then
D is bounded.
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Proof. Proceeding by contradiction, let us assume that D is unbounded. Since
D is finite-dimensional, it is well known that then D contains a closed half-line,
say d+R+v for some d ∈ D and v �= 0 (where R+ := [0,∞)). We know that ∂D
cannot contain line segments of length ε or more, hence it does not contain any
half-line. Thus ∂D is an “unbounded simple curve” which is homeomorphic
to the real line. Fix an arbitrary a ∈ ∂D; it divides ∂D into two unbounded
branches. Let Γ be one of these two branches and let a ∈ Γ. Fix an onto
homeomorphism ϕ : R+ → Γ. By an elementary continuity argument, there
exists an increasing sequence {tn}n ⊂ R+ such that ‖ϕ(tn+1) − ϕ(tn)‖ = ε for
each n. For each n, choose some x∗

n ∈ SX∗ such that

〈x∗
n, ϕ(tn)〉 = max

y∈D
〈x∗

n, y〉.

Since x∗
n is upper bounded on D, we must have x∗

n(v) ≤ 0. Now, the closed
half-sphere T := {y∗ ∈ SY ∗ : y∗(v) ≤ 0} is homeomorphic to [0, 1], and this
homeomorphism generates a natural ordering on T. By convexity of D, it is
clear that the sequence {x∗

n}n ⊂ T is monotone in this ordering, and hence
converging. But by Lemma 3.4, this sequence also satisfies ‖x∗

n+1 − x∗
n‖ ≥ 4δ

ε ,
which is clearly impossible (since it would imply that T has infinite length).
This contradiction completes the proof. �

Now we are ready for our main result.

Theorem 3.6. Let C be a nontrivial convex set in a normed space X. Then

δC(ε) = δ′
C(ε) = δ̃C(ε) = δ̃′

C(ε) for each 0 ≤ ε < diam(C).

Proof. Assume that C is closed (Remark 3.2). By Observation 3.3(a),(b), it
suffices to show that δ′

C(ε) ≤ δ̃′
C(ε) whenever 0 < ε < diam C. This is obvious

when either δ′
C(ε) = 0 or δ̃′

C(ε) = ε/2. So let us assume that

0 < ε < diam C, δ′
C(ε) > 0, δ̃′

C(ε) < ε/2.

Notice that the second condition implies that ∂C cannot contain line segments
of length ε or greater.

Fix an arbitrary 0 < η < (ε/2) − δ̃′
C(ε). There exist points x, y ∈ C such

that ‖x − y‖ = ε and d(x+y
2 , ∂C) < δ̃′

C(ε) + η. By Observation 2.1(d), we can
shift the segment [x, y] along the line aff{x, y} in one of the two directions till
the boundary in such a way that the new segment [x̂, ŷ] satisfies d( x̂+ŷ

2 , ∂C) ≤
d(x+y

2 , ∂C). Hence we can (and do) assume that x ∈ ∂C. If also y ∈ ∂C, then
we immediately get that δ′

C(ε) ≤ δ̃′
C(ε) + η; so let us assume that y ∈ intC.

By translation, we can also assume that x+y
2 = 0. There exists a ∈ ∂C such

that ‖a‖ = ‖a − x+y
2 ‖ < δ̃′

C(ε) + η < ε/2. It is clear that a does not belong to
aff{x, y} = span{x}, and hence Y := span{a, x} is a two-dimensional subspace
of X.

Now, let us consider the closed, nontrivial convex set D := C ∩ Y in the
normed space Y. We claim that D is bounded. Indeed, otherwise we would have
ε < ∞ = diam(D) and δ′

D(ε) ≥ δ′
C(ε) > 0 and this leads to a contradiction by

Lemma 3.5. So, our claim is proved.
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Notice that r := dY (0, ∂D) ≤ ‖a‖ < δ̃′
C(ε) + η < ε/2. By compactness,

there exists b ∈ ∂D such that ‖b‖ = r. Like a, the point b cannot belong
to span{x}. Fix some f ∈ Y ∗\{0} such that f(x) = 0 and f(b) > 0, and
denote s := max f(D). The set D ∩ [f = s] is a (possibly degenerate) line
segment contained in ∂D, and hence of length less than ε. On the other hand,
the segment D ∩ [f = 0] = D ∩ span{x} is of length greater than ε. By
continuity, there exists α ∈ (0, s) such that the segment D∩ [f = α] has length
exactly ε. Let us denote its endpoints by x′, y′ so that x′ − y′ = x − y, and let
z′ := x′+y′

2 . Since x′ /∈ span{x}, there exists g ∈ Y ∗\{0} such that g(z′) = 0
and g(x) = β > 0. Notice that

x′ = x + z′, y′ = y + z′, g(x′) = g(x) = β, g(y′) = g(y) = −β.

The parallelogram

conv{x, y, x′, y′} = [0 ≤ f ≤ α] ∩ [|g| ≤ β]

is contained in D and its vertices x′, y′ belong to ∂D. This implies that the set
[f > α]∩ [|g| > β] is disjoint from D, and hence the set E := [f ≥ α]∩ [|g| ≥ β]
is disjoint from intD. We claim that the point b′ := b + z′ cannot belong to
int D.

Proceeding by contradiction, let b′ ∈ int D. If |g(b′)| < β, then since g(b) =
g(b′), there exists a unique v ∈ (x, y) such that b ∈ (v, b′). But this is impossible
since otherwise b ∈ int D. So we must have |g(b)| = |g(b′)| ≥ β. Then f(b′) =
f(b) + α > α which implies that b′ ∈ E which is impossible.

So we have proved our claim that b′ /∈ int D. Since z′ ∈ int D, the segment
[z′, b′] contains a point of ∂D. Therefore

δ′
C(ε) ≤ δ′

D(ε) ≤ dist(z′, ∂D) ≤ ‖z′ − b′‖ = ‖b‖ < δ̃′
C(ε) + η.

Since we have δ′
C(ε) < δ̃′

C(ε)+ η for each sufficiently small η > 0, we are done.
�

Remark 3.7. Let us remark that the proof of Theorem 3.6 works also for the
directional moduli of convexity (in which, roughly speaking, the points x, y are
taken so that x − y is a multiple of a certain fixed v �= 0).

4. A general boundedness result.

Notation 4.1. As we have seen in the previous section, all four variants of
moduli of convexity from Definition 3.1 coincide, and thus there is actually a
unique modulus of convexity of a nontrivial convex set C ⊂ X. In what follows,
we shall denote it by δC .

Let us recall that a nontrivial convex set C ⊂ X is called uniformly convex if
δC(ε) > 0 for each ε ∈ (0,diam(C)). In [1, Theorem 2.1], Balashov and Repovš
proved that every uniformly convex set C in a Banach space is bounded. In
the present section, we show that the ideas from [1] can be modified to prove
a more general result: if C is a nontrivial convex set in a normed space and
δC(ε) > 0 for some ε ∈ (0,diam(C)), then C is bounded. In this setting, an
element of X∗ which is bounded above on C does not necessarily attain its
maximum over C, and this represents certain difficulty.
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As already remarked, there is no loss of generality in assuming that C is
closed. The following lemma is just a simple modification of [1, Lemma 2.1],
and we give its proof for sake of completeness. It is well known for C = BX

(see [7, Lemma 1.e.8]).

Lemma 4.2. Let C be a nontrivial closed convex set in a normed space X. Then
the function ε �→ δC(ε)

ε is nondecreasing on (0,diam(C)).

Proof. Let 0 < ε1 < ε2 < diam(C), and fix an arbitrary η > 0. Let x, y ∈ C
be such that ‖x − y‖ = ε2 and d(x+y

2 , ∂C) < δC(ε2) + η. There exists a ∈ ∂C

with ‖x+y
2 − a‖ < δC(ε2) + η. Then the points x′ := (1 − ε1

ε2
)a + ε1

ε2
x and

y′ := (1− ε1
ε2

)a+ ε1
ε2

y belong to C and satisfy ‖x′ − y′‖ = ε1 and ‖x′+y′

2 −a‖ =
ε1
ε2

‖x+y
2 −a‖. Thus δC(ε1) ≤ ε1

ε2
‖x+y

2 −a‖ < ε1
ε2

[δC(ε2)+η]. By letting η → 0+,

we conclude that δC(ε1)
ε1

≤ δC(ε2)
ε2

. �
For simplicity, let us introduce the following notation. Given a closed, non-

trivial convex set C ⊂ X, we define

Ω(C) := {f ∈ X∗ : sup f(C) < ∞},

Sη(f, C) := {x ∈ ∂C : f(x) ≥ sup f(C) − η}, f ∈ Ω(C), η ≥ 0.

It is easy to see that Ω(C) is a convex cone (with vertex at 0) which does not
reduce to a single point. Moreover, the cone Ω(C) is one-dimensional if and
only if C is one of the following three types of sets: a half-space, a hyperplane,
a strip between two parallel hyperplanes.

Also notice that if f ∈ Ω(C) and η > 0, then Sη(f, S) is a closed slice
of C with nonempty interior relative to C. Furthermore, for f ∈ Ω(C)\{0},
S0(f, C) is nonempty if and only if f attains its supremum over C.

The following lemma is a version of [1, Lemma 2.2] and Lemma 3.4 above,
with approximate attaining instead of exact attaining.

Lemma 4.3. Let C ⊂ X be a nontrivial closed convex set. Let η ≥ 0, f, g ∈
Ω(C) ∩ SX∗ , x ∈ Sη(f, C), y ∈ Sη(g, C), and η < δC(‖x − y‖). Then

[f − g](x − y) ≥ 4[δC(‖x − y‖) − η] (4)

and hence ‖f − g‖ ≥ 4
‖x−y‖ [δC(‖x − y‖) − η].

Proof. Since δ := δC(‖x − y‖) > 0, C has nonempty interior and x �= y. Since
x+y

2 +δBX ⊂ C and f has norm one, we have f(x+y
2 )+δ ≤ sup f(C) ≤ f(x)+η,

from which it follows that f(x−y) ≥ 2(δ−η). Symmetrically, g(y−x) ≥ 2(δ−η).
Now, (4) follows by summing up the last two inequalities. The rest is obvious.

�
Corollary 4.4. Let C ⊂ X be a nontrivial closed convex set, and let 0 < ε <
diam(C) be such that δC(ε) > 0. Let f, g ∈ Ω(C)∩SX∗ , λ ∈ (0, 1), η := λδC(ε),
x ∈ Sη(f, C), and y ∈ Sη(g, C). If ‖f −g‖ < 4(1−λ)δC(ε)/ε, then ‖x−y‖ < ε.

Proof. Under the assumptions of the statement, assume that ‖x−y‖ ≥ ε. Then
δC(‖x − y‖) ≥ δC(ε) > η. Using Lemmas 4.2 and 4.3, we obtain ‖f − g‖ ≥

4
‖x−y‖ [δC(‖x−y‖)−λδC(ε)] ≥ 4(1−λ)δC(‖x−y‖)

‖x−y‖ ≥ 4(1−λ)δC(ε)
ε , and we are done.

�
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As already mentioned in the introduction, the following Theorem 4.5 is
obtained by an easy modification of the proof of [1, Theorem 2.1] by Balashov
and Repovš.

Theorem 4.5. Let C be a nontrivial convex set in a normed space X, and let
ε ∈ (0,diam(C)) be such that δC(ε) > 0. Then

diam(C) ≤ ε

([
ε

δC(ε)

]
+ 1

)

where [·] denotes the lower integer part. In particular, C is bounded.

Proof. By Remark 3.2, we can (and do) assume that C is closed. Consider
arbitrary x, y ∈ ∂C such that ε ≤ ‖x − y‖ < diam(C). Our assumptions imply
that C cannot contain any line and has nonempty interior. By the Hahn–
Banach theorem, there exist f, g ∈ SX∗ such that x ∈ S0(f, C) and y ∈
S0(g, C). Then f �= g by Lemma 4.3 applied with η = 0.

Notice that the cone Ω(C) has dimension at least two and contains f, g.
Thus there exists a two-dimensional subspace Z ⊂ X∗ containing f, g and such
that the convex cone K := Z ∩ Ω(C) is two-dimensional. The unit sphere SZ

of Z is a (symmetric) Jordan curve in Z containing f, g, and the length of SZ

is known to be at most 8 ([9, Theorem 4.2]; see also [6, Theorem 11.9]). Then
it is clear that SZ ∩ K contains an arc γ with endpoints f, g and of length at
most 4. Let γ be oriented from f to g.

Consider an integer N > ε
δC(ε) , and notice that N > ε

ε/2 = 2 by Observa-
tion 3.3(a). Let λ ∈ (0, 1) be such that N > ε

(1−λ)δC(ε) . Let {f0, f1, . . . , fN} be
the partition of γ into N sub-arcs γi (i = 1, . . . , N) of equal length such that
f0 := f, fN = g, and the indexing is increasing when moving along γ from f
to g. Then, for each integer 1 ≤ i ≤ N, we have

‖fi − fi−1‖ ≤ �(γi) = �(γ)/N ≤ 4/N < 4(1 − λ)δC(ε)/ε.

Put η := λδC(ε), define x0 := x and xN := y, and notice that xi ∈ S0(fi, C) ⊂
intCSη(fi, C) for i ∈ {0, N}. For each integer 1 ≤ i < N, choose some xi ∈
intCSη(fi, C), being careful to assure that ‖xi − xi−1‖ < diam(C) for all
i = 0, . . . , N. (This is clearly possible.) By Corollary 4.4, we obtain

‖x − y‖ ≤
N∑

i=1

‖xi − xi−1‖ < Nε.

This shows that diam(C) ≤ Nε for each integer N > ε/δC(ε). Since the
smallest such integer is N =

[
ε/δC(ε)

]
+ 1, we are done. �

Let us conclude with an easy corollary.

Corollary 4.6. Let C be a nontrivial convex set in a normed space. Then

δC(ε) ≤ 3ε2

2diam(C)
for each 0 ≤ ε < diam(C), (5)

which for an unbounded C is intended as δC(ε) ≡ 0.
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Proof. If C is unbounded, then δC ≡ 0 by Theorem 4.5. For ε = 0 or δC(ε) =
0, (5) is obvious. Let ε > 0 and δC(ε) > 0. By Theorem 4.5, diam(C) ≤
ε
(

ε
δC(ε) + 1

)
, which can be rewritten as δC(ε) ≤ ε2

diam(C)−ε . Thus, taking into
account that also δC(ε) ≤ ε/2 by Observation 3.3(a), we obtain

δC(ε)
ε2

≤ min
{

1
diam(C) − ε

,
1
2ε

}
≤ 3

2diam(C)
.

�

Remark 4.7. (a) Let us remark that one can obtain a finer estimate if the
quantity ΔC := limε→diam(C)− δC(ε) = supε∈(0,diam(C)) δC(ε) is known.
By Lemma 4.2, δC(ε) ≤ εΔC

diam(C) . Using this instead of δC(ε) ≤ ε/2 in the

above proof, one obtains that δC(ε) ≤ ΔC+diam(C)
[diam(C)]2 ε2. However, usefulness

of this estimate is somewhat doubtful.
(b) Let us also remark that Nordlander [8] proved that one always has

δBX
(ε) ≤ δBH

(ε) = 1 − √
1 − (ε2/4) where BH is the unit ball of any

Hilbert space of dimension at least 2 (see also [2]). This easily implies
that δBX

(ε) ≤ 1
4ε2 = ε2

2diam(BX) for each ε ∈ [0, 2), and the constant 1
4 is

the best possible. Thus our estimate from Corollary 4.6 is not the best
possible for C = BX .
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[4] De Bernardi, C.A., Veselý, L.: On extension of uniformly continuous quasiconvex

functions. Proc. Amer. Math. Soc. 151, 1705–1716 (2023)

[5] Enflo, P.: Banach spaces which can be given an equivalent uniformly convex norm.

Israel J. Math. 13, 281–288 (1972)

[6] Leichtweiß, K.: Konvexe Mengen. Springer, Berlin (1980)

[7] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Function Spaces. II.

Ergebnisse der Mathematik und ihrer Grenzgebiete, 97. Springer, Berlin-New

York (1979)

[8] Nordlander, G.: The modulus of convexity in normed linear spaces. Ark. Mat. 4,

15–17 (1960)

[9] Scha̋ffer, J.J.: Inner diameter, perimeter, and girth of spheres. Math. Ann. 173,

59–79 (1967)

Carlo Alberto De Bernardi
Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali
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