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Abstract

In this paper, we prove some splitting results for manifolds supporting a non-constant
infinity harmonic function which has at most linear growth on one side. Manifolds with
non-negative Ricci or sectional curvature are considered. In dimension 2, we extend Savin’s
theorem on Lipschitz infinity harmonic functions in the plane to every surface with non-
negative sectional curvature.

1 Introduction

The present paper regards the interplay between the geometry of a Riemannian manifold and
the qualitative properties of ∞-harmonic functions, i.e., solutions to

Δ∞u ≐ ∇2u(∇u,∇u) = 0 on M

in the viscosity sense. The ∞-Laplace operator and its normalized counterpart

ΔN
∞u ≐ ∇2u

(
∇u

|∇u| ,
∇u

|∇u|
)

gained increasing importance in the field of fully-nonlinear PDEs over the past 60 years, see
[6, 15] for a thorough account of the theory, with historical insights and a detailed set of ref-
erences. The investigation herein is a natural continuation of [3, 34, 35], where the geodesic
completeness of a boundaryless Riemannian (or Finsler) manifold was characterized in terms
of suitable Liouville properties of viscosity solutions to

ΔN
∞u ≥ g(u).
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It is known that u solves Δ∞u ≥ 0 (= 0, ≤ 0) if and only if it solves ΔN
∞u ≥ 0 (= 0, ≤

0). Therefore, for the purpose of the present paper we will only consider Δ∞. Among the
various equivalent conditions, by [3, Theorem 1.1] (cf. also [34, Theorem 8.1]) a connected
Riemannian manifold M without boundary is shown to be complete if and only if all solutions
to Δ∞u ≤ 0 whose negative part u− satisfies

u−(x) = o
(
r(x)

)
as x → ∞ (1)

are constant1. Here, r(x) denotes the distance to a fixed origin. The result extends the known
Liouville theorem for positive ∞-superharmonic functions on ℝ

m proved by Lindqvist and
Manfredi in [31, 32], see also [15, p.113], and we stress that the if part is its main novelty. The
lack of curvature or volume growth requirements on M in order for the aforementioned Liou-
ville property to hold makes the theory of slowly growing ∞-harmonic functions considerably
different from that developed for other operators like the Laplacian [12, 43], the p-Laplacian
[42] and in recent years the minimal hypersurface operator [14, 17, 39]. In these latter cases,
Ric ≥ 0 is the weakest known condition to guarantee that positive solutions to  [u] = 0

are constant. For solutions satisfying the more general (1), in the minimal hypersurface case
further technical conditions on M are needed as of yet, see [13, 18].

Hereafter, M will always denote a complete, connected Riemannian manifold without
boundary. A natural problem is then to see what happens to ∞-harmonic functions that grow
at most linearly on one side, namely, that satisfy

lim sup
r(q)→∞

u(q)

r(q)
< ∞. (2)

Especially, we shall look for geometric conditions to force a rigidity of M or u, in the sense
that M splits as a (possibly warped) product and u only depends on split-off variables. The
next example shows that a constraint on the geometry of M is necessary in this case.

Example 1.1. On a Cartan-Hadamard manifold, that is, a simply connected manifold with non-
positive sectional curvature Sec, given a ray  ∶ [0,∞) → M one can consider the Busemann
function

b ∶ M → ℝ, b (x) = lim
t→∞

(
d(x, (t)) − t

)
.

It is known by [26] that b ∈ C2(M) and |∇b | = 1 on M , so differentiating we get that b
is a globally Lipschitz solution to Δ∞b = 0 on M . However, in general M does not split off
any line.

Remark 1.2. It is known, see Lemma 2.2 below, that for solutions to Δ∞u ≥ 0 the following
identity holds (possibly with infinite values):

lim sup
r(q)→∞

u(q)

r(q)
= Lip(u,M),

with Lip(u,M) the Lipschitz constant of u on M . Therefore, non-constant globally Lipschitz
solutions to Δ∞u = 0 are precisely those for which the limsup in (2) is a positive real number.
By scaling u, in our main results we shall assume this number to be one.

Based on the theory of harmonic functions with linear growth developed in [10, 28, 33]
and the corresponding results for minimal graphs which appeared in recent years [13, 18, 19],
the assumptions

Ric ≥ 0 or Sec ≥ 0

1The implication is (1) ⇔ (2) in [3, Theorem 1.1], once we observe that v = −u solves Δ∞v ≥ 0 (hence ΔN
∞v ≥ 0)

with v+ = o(r).
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seem to be appropriate. For Euclidean space, Aronsson in [5, Section 7] proved that any so-
lution of class C2 on ℝ

2 is affine, see also [20] for the case of dimension m ≥ 3. Examples
therein show that this fails for viscosity solutions which are not C2, unless one assumes a priori
growth of u. On the other hand, Savin’s remarkable theorem [40] states that

Δ∞u = 0 on ℝ
2, u Lipschitz ⟹ u is affine.

As of today, its extension to ℝ
m for m ≥ 3 has not been established. In higher dimensions, we

are only aware of the next half-space theorem showed by Crandall, Evans and Gariepy [16]:

Δ∞u ≤ 0, u(x) ≥ a + ⟨p, x⟩ on ℝ
m

⟹ u = u(0) + ⟨p, x⟩,
and the recent work of Hong and Zhao [25], who proved that u is affine by assuming (2) and

lim
r(p)→∞

|Du(p)| = Lip(u,ℝm).

The methods herein are much inspired by those in [16, 25]. As a matter of fact, we show that
elaborating on their arguments in a manifold setting, and employing some basic facts of metric
geometry, we are able to obtain results with nontrivial geometric content. Let M be complete,
connected and without boundary, and assume that u is a nonconstant ∞-harmonic function
satisfying (2), so by Remark 1.2 we can assume

lim sup
r(q)→∞

u(q)

r(q)
= 1.

We prove:

(i) Theorem 3.1. If Ric ≥ 0, then any blowdown M∞ of M splits as ℝ ×N∞. Moreover,
the blowdown of u only depends on the arclength t of the ℝ factor, and it is affine in t.

(ii) Proposition 3.4. In the assumptions of (i), M itself may not split off lines: there exists a
manifold M with Ric > 0 carrying a linearly growing ∞-harmonic function. However,
by the tangency principle in Proposition 3.5, if the graph of u touches that of a (possibly
translated and dilated) Busemann function from above or below, then M splits and u is
an affine function of the split direction only.

(iii) If Sec ≥ 0, general theory gives a way to split M itself as ℝ×N . We prove in Theorem
4.3. that the blowdown of u is unique and that, writing (x, y) ∈ ℝ ×N and orienting ℝ

appropriately, it holds

lim
x→+∞

u(x, y) − u(−x, y)

2x
= 1 for each fixed y ∈ N.

In the assumptions of (iii), whether the function u only depends on x is an open problem
even in ℝ

m, whose solution would allow to extend Savin’s result to higher dimensions. As
pointed out in [15, 16], a positive answer is likely to give new insights on the C1,� regularity
property of ∞-harmonic functions. In dimension m ≥ 3, we have the following sufficient
condition:

(iv) Assume Sec ≥ 0, and that there exist a ray  and a constant C for which either

u
(
(t)

) ≥ t − C or u
(
(t)

) ≤ −t + C

holds for all t ∈ ℝ
+. Then, referring to the splitting in (iii), we have u(x, y) = x + C2

for some constant C2.
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On the other hand, (iii) strengthens in dimension 2 and gives rise to a full extension of
Savin’s theorem to any complete surface with non-negative sectional curvature. We get

Theorem 1.3. Let M be a complete connected surface with Sec ≥ 0, and let u ∈ C(M) be a

non-constant ∞-harmonic function such that

lim sup
r(q)→∞

u(q)

r(q)
< ∞, (3)

where r is the distance from a fixed origin. Then, M = ℝ
2 or M = ℝ × S

1. Furthermore, u

only depends on the arclength x of a split ℝ factor, and it is affine in x.

Most of the arguments in the present paper extend, almost directly, to RCD spaces, for
which we refer to the survey [1] and the references therein. An exception might be the ap-
proximation procedure we carried over to prove Theorem 4.3, see Section 5. As a side remark,
to approximate we have chosen to use the p-Laplacian instead of the inhomogeneous operator
proposed in [22]. In another direction, Finsler manifolds proved to be a quite natural setting
for the techniques developed to investigate the ∞-Laplacian, see [3]. However, in such a gen-
erality the topological/geometric conclusions that can be achieved from splitting theorems are
weaker, apart from the subclass of Berwald metrics, [37]. For these reasons, we decided to
stick to the smooth, Riemannian setting to avoid technicalities.

Acknowledgements. D.J.A. is partially supported by CNPq-Brazil, grant 311138/2019-5, and
Paraíba State Research Foundation (FAPESQ), grant 2019/0014. D.J.A. and L.P. thank the Ab-
dus Salam International Centre for Theoretical Physics (ICTP). M.M. is partially supported by
CNPq-Brazil, Grant 401233/2022-7. L.P. is partially supported by Alexander von Humboldt
Foundation, Capes-Brazil (Finance Code 001), and by CNPq-Brazil, Grant 306738/2019-8 and
is grateful to Professor Alexander Grigor’yan and the Faculty of Mathematics at the Univer-
sität Bielefeld for their warm hospitality. L.M. is supported by the PRIN project 20225J97H5
“Differential-geometric aspects of manifolds via Global Analysis”.

2 Preliminaries

Busemann functions and convergence

We here collect some basic facts on metric geometry, mostly to fix notation. We refer to [38]
for more details. Hereafter, a segment  ∶ [0, T ] → M will be a unit speed geodesic which is
minimizing between its endpoints. A unit speed geodesic  will be called:

- a ray if  is defined on [0,∞) and is a segment between any pair of its points;

- a line if  is defined on ℝ and is a segment between any pair of its points.

Therefore, a line is characterized by the identity

d((t), (s)) = |t − s| ∀ s, t ∈ ℝ.

Given a ray  , the Busemann function b ∶ M → ℝ is defined as the limit

b (x) = lim
t→∞

(
d(x, (t)) − t

)
.

Such a limit exists since the family of functions b,t(x) = d(x, (t)) − t is monotone decreasing
and bounded as t ↑ ∞, see [38, Sec. 7.3.2]. Given a point p ∈ M , an asymptote of  issuing
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from x is a sequential limit ̃ of a sequence of segments ̃j joining x to (tj) for some tj → ∞.
Notice that ̃ is a ray from x. By [38, Prop. 7.3.8], it holds

b (x) ≤ b (p) + b̃ (x)

with equality at p, namely, b (p) + b̃ is a support function from above for b at p.
Next, we denote with � = {�j} a sequence with �j → ∞. For each j, we let M�

j
be the

manifold M with metric gj = �−2
j
g, distance dj = �−1

j
d and induced volume form dVj =

�−m
j

dV . Also, let Bj

R
be geodesic balls in M�

j
centered at a fixed origin o. A pointed measured

Gromov-Hausdorff limit

(M, dj , dVj , o) ⟶ (M�
∞
, d∞,m∞, o∞), (4)

see [1, Section 6] for its definition, will be written as M�
j
→ M�

∞ and named a tangent cone at
infinity (or a blowdown) of M at o. Henceforth, given u ∶ M → ℝ, Lip(u, U ) will denote the
Lipschitz constant of u on a subset U ⊂ M . Assume that u is globally Lipschitz. Defining

u�
j
∶ M�

j
→ R, u�

j
(x) =

u(x) − u(o)

�j
,

we have Lip(u�
j
,M�

j
) = Lip(u,M) for each j and therefore, up to a subsequence, u�

j
converges

pointwise in the Gromov-Hausdorffsense (see [38, Lem. 11.1.9]) to a function v� ∶ M�
∞ → ℝ,

meaning that, for each xj ∈ M�
j

, x∞ ∈ M�
∞,

qj → q∞ ⟹ u�
j
(qj) → v�(q∞).

Comparison with cones and its consequences

We recall some well-known properties of ∞-subharmonic functions, which can be found in
the surveys [6, 15, 41]. Despite the references being set in Euclidean space, the proof of the
lemmata below carry over verbatim to any complete Riemannian manifold. For more general
metric spaces, we refer to [9].

Let Ω be an open domain of M and let u ∈ C(Ω). It is known that Δ∞u ≥ 0 is equivalent
to u enjoying comparison with cones

Cx(y) = a + b d(x, y), a, b ∈ ℝ

from above, meaning that if u ≤ Cx in )Ω ∪ {x}, then u ≤ Cx in Ω, see [16, Section 3] and
[9, 15]. As a consequence, if Δ∞u ≥ 0 then

u(y) ≤ u(x) +

(
max
)BR(x)

u(y) − u(x)

R

)
d(x, y) ∀x ∈ Ω, y ∈ BR(x) ⋐ Ω.

Even more, by [16, Lem. 2.4] the function

R ↦ S+
u,R

(x) = max
z∈)BR(x)

u(z) − u(x)

R
(5)

is non-decreasing for R < d(x, )Ω), and therefore the limits

S+
u
(x) = lim

R→0
S+
u,R

(x) and S+
u,∞(x) = lim

R→∞
S+
u,R

(x)

(the latter, if Ω = M) are well defined. As a direct consequence, u ∈ Liploc(Ω), see [16, Lem.
2.5]. The following proposition collects some of the properties in [15, Lemm. 4.2 and 4.3].

5



Proposition 2.1. Let Ω ⊂ M be an open subset and u ∈ C(Ω) satisfy Δ∞u ≥ 0. Then, for

each x ∈ Ω

S+
u
(x) = lim

r→0
Lip(u, Br(x)) = lim

r→0
‖∇u‖L∞(Br(x))

.

Moreover, if u is differentiable at x, the three quantities equal |∇u(x)|.
We next state a simple yet very useful consequence of comparison with cones, essentially

contained in [15, Prop. 7.1] [25, Prop. 1.1]. We include a proof for the sake of completeness.

Lemma 2.2. If u ∈ C(M) satisfies Δ∞u ≥ 0, and let r be the distance from a fixed origin o.

Then,

Lip(u,M) = S+
u,∞(x) = lim sup

r(q)→∞

u(q)

r(q)
,

for any x ∈ M , possibly with infinite values.

Proof. We prove the first equality. From the monotonicity ofS+
u,R

(x)we deduce thatS+
u,R

(x) =

maxz∈B̄R(x)
u(z)−u(x)

R
. Therefore, for each w ∈ M we get

S+
u,R

(x) ≤ max
B̄R+d(w,x)(w)

u(z) − u(x)

R

= max
)BR+d(w,x)(w)

(
u(z) − u(w)

R + d(w, x)

)
R + d(w, x)

R
+

u(w) − u(x)

R

≤ R + d(w, x)

R
S+
u,R

(w) +
u(w) − u(x)

R
.

Letting R → ∞ we may conclude S+
u,∞(x) ≤ S+

u,∞(w). Since x and w are arbitrary, equality
holds and the limit l = S+

u,∞(x) (possibly infinite) does not depend on the point x. We now
show that l = Lip(u,M). It is clear that S+

u,R
(x) ≤ Lip(u,M), thus l ≤ Lip(u,M). Assume

by contradiction that there exists C ∈ (l,Lip(u,M)) and pick z,w ∈ M such that u(z) ≥
u(w) + Cd(w, z). Then,

l = S+
u,∞(w) ≥ u(z) − u(w)

d(w, z)
≥ C,

contradiction. The second equality follows from S+
u,∞(x) = S+

u,∞(o) and the definition of
S+
u,∞(o).

As we shall see, Lemma 2.2 guarantees the non-constancy of any blowdown of u. Thus, it
plays the same important role as that of the relation

lim
R→∞⨏BR

|∇u|2 = sup
M

|∇u|2 (6)

in the theory of harmonic functions [10, 33] and minimal graphs [13]. However, we emphasize
that the proof of (6) in the above references is considerably subtler than that of Lemma 2.2.

Tightness and the anti-peeling Lemma

We next present two key lemmata which will be often used in the arguments below. The first
one adapts [16, Lem. 4.2].
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Lemma 2.3. Let (N, dN) be a metric space and let v be a 1-Lipschitz function on the product

space ℝ ×N such that, for some y0 ∈ N ,

v(x, y0) = x ∀x ∈ ℝ.

Then,

v(x, y) = x ∀ (x, y) ∈ ℝ ×N.

Proof. Let us fix � ∈ ℝ. Since v is 1-Lipschitz

|v(x, y) − �|2 = |v(x, y) − v(�, y0)|2 ≤ |x − �|2 + dN (y, y0)
2. (7)

Expanding the squares on both sides and simplifying we get

v(x, y)2 − 2�v(x, y) ≤ x2 − 2�x + dN (y, y0)
2. (8)

Dividing by � > 0 and letting � → +∞ we obtain v(x, y) ≥ x. Likewise, dividing by � < 0

and letting � → −∞ we conclude that v(x, y) ≤ x, whence v(x, y) = x.

The second Lemma follows from [15, Prop. 6.2]. We borrowed the name “anti-peeling
Lemma" because of its analogy with [7, Thm. 3.2], which is a key result in the theory of the
prescribed Lorentzian mean curvature equation.

Lemma 2.4. [Anti-peeling Lemma] Let M be a complete Riemannian manifold, Ω ⊂ M an

open subset, and let u∶ Ω → ℝ satisfy, for some x ∈ Ω,

Δ∞u ≥ 0 on Ω, S+
u
(x) = ‖∇u‖L∞(Ω) = 1.

Then, there exists a segment  ∶ [0, b) → Ω issuing from x such that

u((t)) − u((s)) = t − s (9)

for each 0 < s < t < b. Moreover, u is differentiable at each point of ((0, b)) with gradient

∇u((t)) =  ′(t), and if b < ∞ it holds

lim
t→b

(t) ∈ )Ω.

In particular, the existence of such  occurs if ‖∇u‖L∞(Ω) = 1 and there exists a geodesic

̄ ∶ [0, b′) → M issuing from x where (9) holds for 0 < s < t < b′, and in this case  extends

̄ .

Proof. By Proposition 2.1, S+
u
(x) coincides with limr→0 Lip(u, Br(x)). It was proved in [15,

Prop. 6.2] that there exists a Lipschitz curve  ∶ [0, b) → Ω of velocity | ′| ≤ 1 issuing from
x and satisfying, among other properties,

u((t)) ≥ u(x) + tS+
u
(x) = u(x) + t, lim

t→b
(t) ∈ )Ω if b is finite.

Since u is 1-Lipschitz, u((t)) = u(x) + t on [0, b) and therefore

|t − s| = |u(̄(t)) − u(̄(s))| ≤ d((t), (s)) ≤ |t − s|,
whence  is a segment. By [41, Lem. 3.5], if the domain of a 1-Lipschitz function u contains a
segment  where u has slope 1, then u is differentiable at any interior point of  . Moreover, its
gradient is ± ′(t) according to whether u grows or decreases along  . This concludes the first
part of the proof. Next, let ̄ ∶ [0, b′) → Ω be a geodesic from x satisfying (9). Using again
[41, Lem. 3.5] and Proposition 2.1 we get S+

u
(y) = 1 and ∇u(y) = ̄ ′(t) at every interior point

y = ̄(t) of ̄ . Applying the first part of the proof, there exists a curve  issuing from y where u
has slope 1. Since u is differentiable at y, 1 = (u◦)′(0) = ⟨∇u(y),  ′(0)⟩ ≤ 1, whence ̄ ′ =  ′

at y and  extends ̄ .
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3 Manifolds with Ric ≥ 0

We begin by investigating manifolds with Ric ≥ 0. First, we analyse their blowdowns by
adapting an argument in [15, Prop. 7.1], see also Lemma 7.1 therein and [25, Prop. 1].

Theorem 3.1. Let Mm be a complete manifold with Ric ≥ 0, and let u ∈ C(M) be an ∞-

harmonic function such that

lim sup
r(q)→∞

u(q)

r(q)
= 1, (10)

where r is the distance from a fixed origin. Then, every tangent cone at infinity of M splits as

ℝ×N∞ for some N∞ ∈ RCD(0, m−1). Furthermore, the blowdown of u only depends on the

arclength � of the ℝ-factor, and it is affine in � .

Proof. By Lemma 2.2, Lip(u,M) = 1. Let M�
j
→ M�

∞ be a tangent cone at infinity centered

at o ∈ M , and let u�
j
→ v� be the associated blowdown of u. We hereafter omit the superscript

�. Fix R > 0, and for each j consider a point z+
j
∈ )B�jR

(o) ⊂ M which realizes S+
�jR

(o). By

Lemma 2.2,

uj (z
+
j
)

R
=

u(z+
j
) − u(o)

�jR
→ 1 as j → ∞. (11)

Likewise, we can consider z−
j
∈ )B�jR

(o) ⊂ M which realizes S−
�jR

(o) and obtain

uj(z
−
j
)

R
=

u(z−
j
) − u(o)

�jR
→ −1 as j → ∞.

From z±
j
∈ )B

j

R
(o) passing to limits as j → ∞ and using the local uniform convergence of uj ,

up to subsequences

z±
j
→ z±

R
∈ )B∞

R
(o∞), v(z+

R
) = R = −v(z−

R
). (12)

Having set +
R
∶ [0, R] → M∞ (respectively −

R
∶ [0, R] → M∞) a segment from o to z+

R
(resp.

from o to z−
R

), we can define R ∶ [−R,R] → M∞ as

R(t) =

⎧⎪⎨⎪⎩

−
R
(−t) for t ∈ [−R, 0],

+
R
(t) for t ∈ [0, R].

(13)

From (12) we deduce d∞(z+
R
, z−

R
) ≥ u(z+

R
) − u(z−

R
) = 2R, so by the triangle inequality

d∞(z+
R
, z−

R
) = 2R. It follows that R is a segment from z−

R
to z+

R
, and by (12) andLip(v,M∞) ≤

1 we deduce
v(R(t)) = t for each t ∈ [−R,R]. (14)

LettingR → ∞, R converges to a line ∞ inM∞. Cheeger-Colding’ssplitting Theorem in [11,
Thm. 6.64] guarantees that M∞ splits as ℝ ×N∞. Moreover, as shown by Gigli’s nonsmooth
splitting Theorem [23], (N∞, d′) ∈ RCD(0, m − 1). Let (�, y) ∈ ℝ × N∞, with o = (0, o′).
Since v(�, o′) = � for each � ∈ ℝ, the conclusion v(�, y) = � on ℝ × N∞ then follows from
Lemma 2.3.
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Remark 3.2. Notice that the identity v(x, y) = x for (x, y) ∈ ℝ × N∞, together with (14),
imply that each R is the curve (t, o′) for t ∈ [−R,R]. Hence, ∞ is indeed the extension of
each R to the entire real line.

As mentioned above, Theorem 3.1 is not enough to guarantee that M itself splits off a line.
The following counterexample describes a manifold with Ric > 0 (hence, not splitting off
lines) and carrying a linearly growing ∞-harmonic function. Even more, the example points
out that assumption Sec ≥ 0 cannot be weakened to the non-negativity of any of the following
partial Ricci curvature functions Ric(l) for l ≥ 2:

Definition 3.3. Let M be a manifold of dimension m ≥ 2. For l ∈ {1,… , m − 1}, the l-th

(normalized) Ricci curvature is the function

v ∈ TxM ⟼ Ric(l)(v) ≐ inf ≤ v⟂

dim = l

(
1

l

l∑
j=1

Sec(v ∧ ej)

)
,

where {ej} is an orthonormal basis of  .

We recall that Ric(l) interpolates between the sectional and Ricci curvatures, obtained re-
spectively for l = 1 and (up to a normalization constant) for l = m − 1. In particular, with
our chosen normalization the following implications are immediate:

Sec ≥ � ⟹ Ric(l−1) ≥ � ⟹ Ric(l) ≥ � ⟹ Ric ≥ (m − 1)�.

Proposition 3.4. For m ≥ 4, there exists a complete manifold M with

Ric(2) ≥ 0, Ric > 0, and |Sec| ≤ �̄2

for some constant �̄ > 0, which carries a non-constant linearly growing∞-harmonic function.

Proof. We consider the example in [29, p. 913], along with the observations made in [13]. Fix
�, � ∈ (0, 1) such that m − 1 − � > 2 + �, and let 0 < �1, �2 ∈ C∞(ℝ+) satisfy

�1(t) =

{
t if t ∈ (0, 1]

t−1−� if t ∈ [2,∞),
�2(t) = ∫

∞

t

�1(s)ds.

Then, for b, c ∈ ℝ
+, define

�(r) =
1

2
r +

1

2�2(0) ∫
r

0

�2(s)ds, f (r) = (b + r2)
�+3−m

2 + c.

We consider M ≐ ℝ × ℝ
+ × S

m−2 with coordinates (t, r, �) and metric

g = f (r)2dt2 + dr2 + �(r)2d�2,

where d�2 is the round metric on S
m−2. Notice that the choice of � implies that g extends

smoothly at r = 0 and that M is complete. It was shown in [13, Section 9] that |Sec| is
bounded on M , and that Ric(2) ≥ 0, Ric > 0 on M if b, c are chosen large enough. Given a
function u ∶ M → ℝ of the coordinate t alone, it holds

|∇u| = )tu

f
, Δ∞u =

()2
t
u)()tu)

2

f 4
.

Hence, any affine function u(t) = at + k gives rise to an ∞-harmonic function. Also, |∇u| =
a∕f is bounded on M since f is bounded below by a positive constant, thus u has at most
linear growth.
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Despite, in general,Ric ≥ 0 does not guarantee the splitting ofM when the latter supports a
non-constant, linearly growing ∞-harmonic function, this happens in some special cases. The
next result is a tangency principle between ∞-harmonic functions and (rescaled, translated)
Busemann functions.

Proposition 3.5. [tangency principle] Let M be a complete manifold with Ric ≥ 0, and let

u ∈ C(M) satisfy Δ∞u ≥ 0 on M . Let c > 0 and assume that there exists a ray  such that

u − cb has a global maximum point. Then,

(i) M splits as ℝ ×N , for some complete manifold N with RicN ≥ 0;

(ii) choosing a suitable arclength parameter x of the ℝ-factor, it holds u(x, y) = cx for each

(x, y) ∈ ℝ ×N;

(iii)  is a half-line of the type (−∞, a] × {y0}. In particular, u − cb is constant on M .

Proof. First, observe that for any fixed o ∈ M

u(x) ≤ cb (x) + max
M

(u − cb ) ≤ c(b (x0) + d(x, o)) + max
M

(u − cb ),

whence by Lemma 2.2 u is c-Lipschitz. Let p be a global maximum point of u− cb . Defining

ū =
1

c

(
u − u(p) + cb (p)

)

then ū is 1-Lipschitz and ū ≤ b on M , with equality in p. We consider an asymptote ̃ for 
at p. Then, b (p) + b̃ is a support function for b from above at p, which gives

ū(̃(t)) ≤ b (p) + b̃ (̃(t)) = b (p) − t

for t ≥ 0, with equality at t = 0. Since ū is 1-Lipschitz, necessarily

ū(̃(t)) = b (p) − t

whence ū is linear with slope 1 on ̃ . Since Δū ≥ 0, by the anti-peeling Lemma 2.4 ̃ can be
continued to a line ̃ ∶ ℝ → M where ū has slope 1. The splitting theorem guarantees that M
splits as ℝ ×N with the product metric d�2 + gN , p = (0, y0) ∈ ℝ ×N and ℝ × {y0} is the
line ̃ . This shows (i). Then,

ū(�, y0) = b (p) + �,

thus by Lemma 2.3 we infer ū(�, y) = b (p) + � on M . Up to choosing x = � + ℎ for suitable
constant ℎ and recalling the definition of ū, we get u(x, y) = cx on M , which proves (ii). To
conclude, observe that since ̃ is an asymptote of  , then necessarily  is of the type (−∞, a] ×

{y1} for some y1. Direct computation of b shows that b (�, y) = � − a and thus ū− b , hence
u − cb , is constant.

Remark 3.6. Note that the completeness assumption on M is crucial. Indeed, on ℝ
m∖{0} the

function −|x| is ∞-harmonic and −|x|+ x1 attains infinitely many maximum points (see also
[15, Exercise 2.9]).
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4 Manifolds with Sec ≥ 0

Let u ∈ C(M) satisfy Δ∞u = 0 and

lim sup
r(q)→∞

u(q)

r(q)
= 1. (15)

By general theory, if Sec ≥ 0 then blowdowns at any fixed point o are unique (see [24, Lemma
3.4]), so we denote by M∞ the blowdown and write M�

j
→ M∞. By Theorem 3.1, � induces a

splittingM∞ = ℝ×N∞ along a line �∞ for which the blowdown v� of u writes as v�(x, y) = x,
o∞ = (0, o′∞) and �∞(t) = (t, o′∞). It is well-known that a splitting of M∞ induces, if Sec ≥ 0,
a splitting of M itself (see [2, Thm. 4.6] for a proof). For our purposes, it is convenient to
include the proof in the following lemma, which regards the behaviour of u along the split off
line of M .

Lemma 4.1. If Sec ≥ 0, the line �∞(t) = (t, o′∞) ∈ M∞ = ℝ × N∞ induces a unique line

� ∶ ℝ → M passing through an origin o ∈ M whose blowdown is �∞. Moreover,

u(�(�jR)) − u(�(−�jR))

2�jR
→ 1 as j → ∞. (16)

Proof. As we work for fixed �, we omit its writing. Fix R > 0. We refer to the proof of
Theorem 3.1 for the construction of ∞ and for notation, so let z±

j
∈ Mj realize S±

�jR
(o), let

z±
R
∈ M∞ be their limits on M∞ and let R ∶ [−R,R] → M∞ be the segment built therein to

join z−
R

to z+
R

. By Remark 3.2, z±
R
= R(±R) = ∞(±R). It follows that

Mj ∋ z±
j
⟶ ∞(±R) as j → ∞, (17)

We select segments ±
j

∶ [0, �jR] → M joining o to z±
j

. Up to subsequence, ±
j

→ ± for
some rays ± ∶ [0,∞) → M . The concatenation

j ∶= −−
j
∗ +

j
=

{
−
j
(−t) for t ∈ [−�jR, 0),

+
j
(t) for t ∈ [0, �jR],

locally uniformly converges to  = −− ∗ + ∶ ℝ → M . We prove that  is a line, so fix
S > 0 and s ≤ S. Then, by Toponogov’s Theorem,

d(j(−s), j(s)) ≥ d(z−
j
, z+

j
)

s

�jR
.

However, d(z−
j
, z+

j
) = �jdj(z

−
j
, z+

j
) = 2�jR(1 + oj (1)), whence

d(j(−s), j(s)) ≥ 2s(1 + oj(1)).

Therefore, the excess

0 ≤ d(j(−s), o) + d(j(s), o) − d(j(−s), j(s)) ≤ 2soj(1) ≤ 2Soj(1)

converges to zero uniformly for s ∈ [0, S], which proves that  is a line. We next point out
that the blowdown of  is exactly ∞. Applying the cosine law to the hinge (o, , j) and using
that the angle

∢(̇±
j
(0), ̇±(0)) → 0 as j → ∞,

11



we deduce

d((±�jR), z
±
j
)2 ≤ 2(�jR)

2 − 2(�jR)
2 cos∢(̇±

j
(0), ̇±(0)) = oj(�

2
j
R2). (18)

Rescaling, we get
dj((±�jR), z

±
j
) → 0 as j → ∞,

and by the triangle inequality and (17) we deduce

(±�jR) ⊂ M�
j
→ ∞(±R).

Therefore, the blowdown of  (which is clearly a line in M�
∞) restricted to [−R,R] is a segment

joining ∞(−R) to ∞(R). Since ∞ is the only such segment, we conclude from the arbitrari-
ness of R that  blows down to ∞. If there were a line � ≠  with �(0) = o whose blowdown
is ∞, writing

�(s) = (b1s, �̄(s)) ∈ ℝ ×N with |b1| < 1,

the curve �̄ ∶ ℝ → N would be a line in N . Since N has non-negative sectional curvature,
the splitting theorem would guarantee that

M = ℝ × ℝ ×N ′, with
{

(t) = (t, 0, o′′),

�(s) = (b1s, b2s, �̂(s))

for some o′′ ∈ N ′, b2 ∈ (0, 1) and line �̂ in N ′, which is incompatible with the assumption
that � blows down to ∞.

To prove (16), observe that by definition of z±
j

,

uj (z
±
j
)

R
=

u(z±
j
) − u(o)

�jR
→ ±1 as j → +∞. (19)

We consider

0 ≤ 1 −
u((�jR)) − u((−�jR))

2�jR
= 1 −

u(z+
j
) − u(z−

j
)

2�jR
+ A+ − A− (20)

where

A± =
u((±�jR)) − u(z±

j
)

2�jR
.

Using Lip(u,M) = 1 and (18) we get

|A±| ≤
d((±�jR), z

±
j
)

2�jR
→ 0 as j → ∞,

whence letting j → ∞ in (20) and using (19) we conclude (16).

We first study the 2-dimensional case, where Theorem 3.1 and Savin’s result [40] are
enough to give a full classification.

Proof of Theorem 1.3. By Theorem 3.1 and Lemma 4.1, M = ℝ×N for some 1-dimensional
complete manifold N , which is therefore either ℝ or S1. If M = ℝ

2, since u ∈ Lip(M) we
can apply Savin’s result to deduce that u is affine. If M = ℝ × S

1, we consider the universal
covering � ∶ ℝ × ℝ → ℝ × S

1 and the preimage ū = u◦�, which is ∞-harmonic. Savin’s
result guarantees that ū is affine on ℝ

2, so ū(x, y) = ax+ by+ c. By construction, ū is bounded
in the y-coordinate for any fixed x, thus b = 0 and ū(x, y) = ax + c only depends on the first
factor.
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In dimension m ≥ 3, we are going to show uniqueness of the blowdown of u. This depends
on refined one-sided gradient estimates for solutions to approximate problems which were
obtained, in Euclidean setting, by Evans and Smart [22]. We closely follow the approach
therein but with a different approximation, as we use solutions up to the p-Laplace equation

{
Δpup = 0 on Ω ⋐ M,

up = u on )Ω

in the limit p → ∞. The main properties of up are put off to the next section as not to interrupt
the flow of the discourse. We begin with the following

Lemma 4.2. Let M = ℝ ×ℝ ×N ′ be a complete manifold and let x1, x2, � ∶ M → ℝ be the

natural projections onto the three factors. Consider a smooth function u∶ M → ℝ satisfying

max
BT

|u − b1x
1 − b2x

2| < �T ,

for some �, T > 0, where BT is a geodesic ball centered at o = (0, 0, õ). Then, there exists an

interior point q0 ∈ BT such that

|)xiu(q0) − bi| ≤ 4�, for i = 1, 2, (21)

|∇N ′
u(q0)| ≤ 4�. (22)

Proof. Consider the auxiliary function

w = b1x
1 + b2x

2 − 2
�

T
�2, �(q) ≐ dM (q, o).

We observe that (u − w)(o) < �T and (u − w)(q) ≥ �T for any q ∈ )BT . Therefore there
exists an interior minimum point q0 ∈ BT . If � is smooth around q0, the desired conclusion
follows from ∇(u −w)(q0) = 0. Otherwise, we use Calabi’s trick by considering a unit speed
minimizing geodesic  from o to q0 and the function �" with �"(q) = " + dM (("), q). From
�" ≥ � on M with equality at q0, and since �" is smooth near q0 as shown in [38, end of Lemma
7.1.9], the conclusion follows as above by replacing � with �".

With the above preparation, we are ready to prove the main result of this section, which
generalizes [25, Proposition 2].

Theorem 4.3. Let M be a complete manifold with Sec ≥ 0, and let u ∈ C(M) be an ∞-

harmonic function such that

lim sup
r(q)→∞

u(q)

r(q)
= 1, (23)

where r is the distance from a fixed origin. Then, for each o ∈ M the blowdown v∞ of u at o

does not depend on the chosen sequence, and there exists a splitting M = (ℝ ×N, dx2 + gN )

for some complete manifold (N, gN ) such that

lim
x→+∞

u(x, y) − u(−x, y)

2x
→ 1 ∀ y ∈ N. (24)

Moreover, in the splitting M∞ = ℝ ×N∞ induced by M = ℝ ×N , it holds v∞(x, y) = x.
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Proof. We already know by Lemma 2.2 that Lip(u,M) = 1. We introduce some notation.
Let M�

j
→ M∞ be a tangent cone with associated blowdown u�

j
→ v�, and let ℝ ×N be the

splitting of M induced by the line �. Write o = (0, o′) ∈ ℝ ×N . Notice that, by Lemma 4.1,
N∞ is the tangent cone of N at o′. Also, (16) guarantees that (24) holds with y = o′ provided
that the blowdown v� does not depend on �. Once (24) is shown for y = o′, its validity for any
fixed y immediately follows from the triangle inequality, since

|||u(x, y) − u(−x, y) −
(
u(x, o′) − u(−x, o′)

)||| ≤ 2dN(y, o′).

To conclude the proof we assume, by contradiction, the existence of a sequence� = {�k} → ∞

such that the blowdown u
�

k
→ v� associated to the tangent cone M�

k
→ M∞ satisfies v� ≠ v�.

Consider the line 
�
∞ in M∞ induced by �. From v�(

�
∞(s)) = s and v� ≠ v�, we deduce


�
∞ ≠ �∞ and therefore, in the splitting ℝ ×N∞ induced by �∞, we can write

�∞(s) = (b1s, �
�
∞(s)), b2

1
+ |�̇�∞|2 = 1.

Since �
�
∞ is a line as well, it induces a splitting N∞ = ℝ × Ñ∞ and, by Lemma 4.1, a corre-

sponding splitting N = ℝ × Ñ . Summarizing, we can write

M∞ = ℝ × ℝ × Ñ∞, o∞ = (0, 0, õ∞)

with induced projections (x1∞, x2∞, �∞) ∶ M∞ → ℝ ×ℝ × Ñ∞, and in these coordinates

�∞(t) = (t, 0, õ∞), �∞(s) = (b1s, b2s, õ∞), with b2
1
+ b2

2
= 1, b2 ≠ 0.

Accordingly,
M = ℝ × ℝ × Ñ, o = (0, 0, õ)

with projections (x1, x2, �), and

�(t) = (t, 0, õ), �(s) = (b1s, b2s, õ), with b2
1
+ b2

2
= 1, b2 ≠ 0.

In these coordinates
v� = x1∞, v� = b1x

1
∞ + b2x

2
∞,

whence
u�
j
→ x1∞, u

�

k
→ b1x

1
∞ + b2x

2
∞

pointwise in the Gromov-Hausdorff sense. Also, associated to the tangent cone M�
j
→ M∞

we define coordinates

x1
�,j

=
x1

�j
, x2

�,j
=

x2

�j
,

which are 1-Lipschitz onM�
j

. By construction, xi
�,j

→ xi∞ pointwise in the Gromov-Hausdorff
sense for each i ∈ {1, 2}. Likewise, the coordinates

x1
�,k

=
x1

�k
and x2

�,k
=

x2

�k
on M

�

k

satisfy xi
�,k

→ xi∞. It easily follows that, for each l > 0, there exists j0(l) such that

max
q∈B�j

|u(q) − x1(q)| < l�j for j ≥ j0(l). (25)
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Indeed, otherwise, there exist l > 0 and points qj ∈ B�j
⊂ M such that

l ≤ |u�
j
(qj) − x1

�,j
(qj)|.

Up to a subsequence, qj ∈ B
j

1
⊂ M�

j
converges to q∞ ∈ B∞

1
and therefore

l ≤ |u�
j
(qj) − x1

�,j
(qj)| ≤ |u�

j
(qj) − x1∞(q∞)| + |x1∞(q∞) − x1

�,j
(qj)|

→ 0 as j → ∞,

contradiction. Similarly to (25), for the tangent cone M�

k
→ M∞ and for � > 0 we obtain

max
q∈B�k

|u(q) − b1x
1(q) − b2x

2(q)| < ��k for k ≥ k0(�). (26)

Consider for each p > 2 and j the solution up,j to

⎧
⎪⎨⎪⎩

Δpup,j = 0 on B2�j
,

up,j = u on )B2�j
.

As recalled in Section 5, up,j → u uniformly on B2�j
as p → ∞. Moreover, by (25) we get

l ≥ �−1
j
‖up,j − x1‖L∞(B�j

) for p ≥ pj large. (27)

Therefore, since Sec ≥ 0 and u is 1-Lipschitz, Theorems 5.1 and 5.3 with p ≥ l−1 guarantee
the existence of a constant C = C(m, u(o)) such that

|∇up,j| ≤ C, |∇up,j|2 ≤ )1up,j + Cl
1

8 (1 + l)
5

4 on B�j∕2
.

We now choose l, �. First, define

� = 1 − b1 ∈ (0, 1),

and let l, � > 0 small enough to satisfy

Cl
1

8 (1 + l)
5

4 <
�

4
, � <

3�

4 ⋅ 28
.

Therefore,

|∇up,j|2 ≤ )1up,j +
�

4
∀ j ≥ j0(l). (28)

For k0 = k0(�) as in (26), choose j1 = j1(�) such that �j1 ≥ 2�k0 and let

j2(l, �) = max{j0(l), j1(�)}.

We choose j = j2 and write up = up,j2
for ease of notation. From B�k0

⊂ B�j2
∕2 and the

uniform convergence up → u as p → ∞, and from (25), (26), we infer the existence of p1 =

p1(l, �) for which

max
q∈B�k0

|up(q) − b1x
1(q) − b2x

2(q)| < ��k0
for p ≥ p1. (29)
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Using Lemma 4.1, we get the existence of q0 ∈ B�k0
such that

|)1up(q0)| ≤ b1 + 4�,

|∇up(q0)| ≥ 1 − |(b1 − )1up))x1 + (b2 − )2up))x2 − ∇N ′
up(q0)| ≥ 1 − 12�.

On the other hand, (28) and B�k0
⊂ B�j2

∕2 give |∇up(q0)|2 ≤ )1up(q0) + �∕4. Putting together
the estimates we conclude

1 − 24� ≤ (1 − 12�)2 ≤ |∇up(q0)|2 ≤ b1 + 4� +
�

4
= 1 −

3�

4
+ 4�,

contradicting our choice for �.

We conclude this section with a sufficient condition for the function u in Theorem 4.3 to
depend only on the variable x. The result below is inspired by the proof of the “Half-space
theorem" in [16, Thm. 4.1], which guarantees that a solution to Δ∞u ≥ 0 on ℝ

m is affine
provided that it lies below an affine function. However, our statement is significantly different:
on the one hand, it only applies to ∞-harmonic functions, while on the other hand the extra
condition we require is only localised on a single ray.

Theorem 4.4. Let M be a complete manifold with Sec ≥ 0, and let u ∈ C(M) be an ∞-

harmonic function such that

lim sup
r(q)→∞

u(q)

r(q)
= 1, (30)

where r is the distance from a fixed origin. Assume that there exist a ray  and a constant C

such that either

u
(
(t)

) ≥ t − C or u
(
(t)

) ≤ −t + C

for each t ∈ ℝ
+. Then, there exists a splitting M = (ℝ × N, dx2 + gN ) for some complete

manifold (N, gN ) such that u(x, y) = x for each (x, y) ∈ ℝ ×N .

Proof. In our assumptions, we know that Lip(u,M) = 1. Define o = (0). By Theorem 4.3,
M splits as ℝ×N with metric dx2+ gN in such a way that (24) is satisfied. In particular, (30)
holds both for u and for −u. Up to changing the sign of u, we can therefore assume that

u
(
(t)

) ≤ −t + C ∀ t ∈ ℝ
+. (31)

We first claim that in coordinates (x, y) we have (t) = (−t, o′). Indeed, let M∞ = ℝ × N∞

be the blow-down of M at o, o∞ = (0, o′∞) its reference point and u∞, ∞ the associated
blowdowns of u and  . We know by Theorem 3.1 that u∞(x, y) = x, with x the arclength of
the ℝ-factor properly oriented. Blowing down (31) and using that u, hence u∞, is 1-Lipschitz
we deduce u∞(∞(t)) = −t for each t ∈ ℝ

+. Writing ∞(t) = (b1t, �∞(t)) ∈ ℝ × N∞ with
b2
1
+ |�′∞|2 = 1 we get ∞(t) = (−t, o′∞). Our claim follows by the uniqueness part in Lemma

4.1. We therefore proved that

u(x, o′) − x ≤ C ∀x ∈ (−∞, 0]. (32)

Since Lip(u,M) = 1, the function x ↦ �(x, y) ≐ u(x, y)−x is non-increasing on ℝ (thus, (32)
holds for each x ∈ ℝ). Let us call �(−∞, y) its limit as x → −∞. By assumption, �(−∞, y0)

is finite. We prove that �(−∞, y) does not depend on y. First, since u is 1-Lipschitz we have

|�(x, y) − �(x, y0)| = |u(x, y) − u(x, y0)| ≤ dN (y, y0) ∀x ∈ ℝ,
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whence �(−∞, y) is finite for each y. Again since u is 1-Lipschitz,

|x + �(x, y) − � − �(�, y0)|2 = |u(x, y) − u(�, y0)|2

≤ (x − �)2 + dN (y, y0)
2.

Expanding the squares and rearranging,

[
�(x, y) − �(�, y0)

]2
+ 2(x − �)(�(x, y) − �(�, y0)) ≤ dN (y, y0)

2.

Discarding the first term on the left hand side, putting x = 2� < 0, dividing by � and letting
� → −∞ gives �(−∞, y) − �(−∞, y0) ≥ 0. On the other hand, letting x = �∕2 < 0, dividing
by � and letting � → −∞ gives �(−∞, y) − �(−∞, y0) ≤ 0. Hence, �(−∞, y) = �(−∞, y0).

Up to translating u, we can therefore assume

�(−∞, y) = 0 for each y ∈ N

so that
u(x, y) ≤ x ∀ (x, y) ∈ M, and lim

x→−∞
(x − u(x, y)) = 0.

By contradiction, we assume that u(x0, y0) < x0 for some (x0, y0) ∈ M . Defining v(x, y) ≐
u(x + x0, y) − x0, we observe that v is an ∞-harmonic function satisfying

lim
x→−∞

(x − v(x, y)) = 0 and v(x, y) ≤ x, with v(0, y0) < 0. (33)

Fix � > 0 such that v(0, y0) ≤ −�. Since |∇v| ≤ 1 a.e. in M , we get

v(x, y) ≤
√

|x|2 + dN (y, y0)
2 − �. (34)

Next, for R > r we consider the sphere and ball of radius R in ℝ ×N centered at (−r, y0):

SR =

{
(x, y) ∶

√
|x + r|2 + dN (y, y0)

2 = R

}
,

and

BR =

{
(x, y) ∶

√
|x + r|2 + dN (y, y0)

2 ≤ R

}
.

In order to obtain an upper bound for v(x, y) on SR, on the one hand v(x, y) ≤ x, while on the
other hand, by (34),

v(x, y) ≤ −� +
√|x|2 + dN (y, y0)

2

= −� +
√
(x + r)2 − 2rx − r2 + dN (y, y0)

2

= −� +
√
R2 − 2rx − r2 on SR.

(35)

Whence, for each (x, y) ∈ SR we have

v(x, y) ≤ max
x∈[−R−r,R−r]

min
{
x,−� +

√
R2 − 2rx − r2

}
.

Since the function
√
R2 − 2rx − r2 is decreasing in x, the maximum is attained when

x ∈ [−R − r, R − r] solves x = −� +
√
R2 − 2rx − r2,
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that is, x = −� − r +
√
R2 + 2�r. Concluding,

v(x, y) ≤ √
R2 + 2�r − � − r = −r +

√
R2 + 2�r − �

R

√
|x + r|2 + dN (y, y0)

2 on SR.

The same inequality is also satisfied at the vertex (−r, y0). Therefore, by the comparison with
cone property,

v(x, y) ≤ −r +

√
R2 + 2�r − �

R

√
|x + r|2 + dN (y, y0)

2 on BR.

To conclude the proof, for 0 ≤ s < r we choose x = −s and y = y0 to deduce

u(−s, y0) − (−s) ≤
(
−1 +

√
R2 + 2�r − �

R

)
(r − s).

Taking R = 2r and letting r → ∞, we infer

u(−s, y0) − (−s) ≤ −
�

4
< 0,

which implies by letting s → ∞ that �(−∞, y0) ≤ −�∕4, a contradiction.

5 On the approximation via p-harmonic functions

Let u ∈ C(M) solve Δ∞u = 0 on M . In this section, we prove the relevant gradient and
one-side gradient estimates for p-harmonic approximations of u that are used in the proof of
Theorem 4.3. In Euclidean setting, the result is due to Evans and Smart [22], where it is used
to infer the uniqueness of the blowup of u at a given point and, consequently, the everywhere
differentiability of u. Therein, for " > 0 the authors choose to approximate Δ∞ with the
operator

Δ∞,"� = "e
−

|∇�|2
2" div

(
e
|∇�|2
2" ∇�

)
= Δ∞� + "Δ�

and, for each R > 0, the function u with the solution u" to the problem
{

Δ∞,"u" = 0 on BR,

u" = u on )BR.

While their arguments can be adapted to the manifold setting, we prefer to approximate via
the p-Laplace operator, in the hope that its peculiar features (notably its homogeneity) may be
further exploited to get even sharper estimates in the direction of those required in [21].

Fix a smooth, relatively compact set Ω, and for p ∈ (1,∞) consider the solution up to
{

Δpup ≐ div
(|∇up|p−2∇up

)
= 0 on Ω,

up = u on )Ω.
(36)

It is known by [8] and the uniqueness result in [4, 27] that up → u uniformly on Ω as p → ∞.
Moreover, up ∈ C1,�(Ω) and it is C∞ on the open set {|∇up| > 0}. In a manifold setting, a
sharp local gradient estimate for p-harmonic functions was obtained by Kotschwar and Ni in
[30, Thm. 1.1], see also [42]. While they were interested in the limit p → 1, in our setting
their estimate implies the following simpler one, which is enough for our purposes.
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Theorem 5.1. Assume that up is p-harmonic on a ball B2R(o) ⋐ Mm, and that Sec ≥ −�2 on

B2R(o). Then,

sup
BR(o)

|∇ log up|2 ≤ Cm

(p − 1)2

(
p2

R2
+

p�

R
+ �2

)
,

where Cm only depends on m.

As a consequence, if R ≥ 1 and up solves (36) on Ω = B2R(o), then for p ≥ R we have

|∇up(x)| ≤ Cm (1 + �)
u(x)

R
∀x ∈ BR(o).

Theorem 5.1 is obtained by a careful application of the improved version of Cheng-Yau’s tech-
nique to a suitable Bochner formula for the p-Laplacian, which we now recall. Formally dif-
ferentiating the p-Laplacian at up we get the linearized operator

� ⟼
d

dt

||||t=0Δp(up + t�) = div
(
A(∇up)∇�

)

where, for a nonzero vector X ∈ TxM , A(X) ∶ TxM → TxM is the endomorphism

A(X) = |X|p−2
(
(p − 2)⟨ X

|X| , ⋅⟩
X

|X| + id

)
.

Notice that A(X) has eigenvalues (p − 1)|X|p−2 in direction X and |X|p−2 on X⟂. For each
x ∈ {|∇up| > 0} we consider a local orthonormal frame {�, ej} with � = ∇up∕|∇up| and {ej},
2 ≤ j ≤ m tangent to the level sets of up. Then the following Bochner formula in [36, Prop.
2.14] holds:

1

2
div

(
A(∇up)∇|∇up|2

)
=

= |∇up|p−2
{
(p − 1)u2

��
+ p

∑
j

u2
�j
+
∑
i,j

u2
ij
+ Ric(∇up,∇up)

}
,

(37)

where u�� , u�j , uij are the components of ∇2up. For convenience, we also consider the normal-
ized linearization

ℒp� =
d

dt

||||t=0
Δp(up + t�)

|∇(up + t�)|p−2 = |∇up|2−p div
(
A(∇up)∇�

)
.

So that the above Bochner formula simplifies to

1

2
ℒp|∇up|2 = (p − 1)u2

��
+ p

∑
j

u2
�j
+
∑
i,j

u2
ij
+ Ric(∇up,∇up)

= (p − 2)|∇2up(�)|2 + |∇2up|2 + Ric(∇up,∇up)

≥ (p − 1)|∇2up(�)|2 + Ric(∇up,∇up).

(38)

We shall rewrite ℒp in trace form. Let {ea}, 1 ≤ a, b ≤ m be the dual coframe of {ea}. The
components of A(∇up) satisfy

Aa
b
= |∇u|p−2

[
�a
b
+ (p − 2)

uaub

|∇u|2
]
,
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and expanding Δpup = 0 we get
Δu = −(p − 2)u�� .

Therefore, a computation gives

[div A(∇up)]be
b = Aa

b,a
eb = 2(p − 2)|∇u|p−3u�jej .

It follows that in components

ℒp� = |∇u|2−p (Aa
b
�b

)
a
= |∇u|2−pAa

b
�b
a
+ 2(p − 2)|∇u|−1u�j�j

=

[
�a
b
+ (p − 2)

uaub

|∇u|2
]
�b
a
+ 2(p − 2)|∇u|−1u�j�j .

(39)

Assume that M splits as ℝ×N with coordinates (x, y) and metric dx2 + gN , and consider the
function )xup = ⟨∇up, )x⟩. Since )x is a Killing field,

ℒp()xup) = 0 on {|∇up| > 0}. (40)

Furthermore, by using (39) we get

|ℒpx| ≤ 2|p − 2||∇u|−1|∇2u(�)|. (41)

We next estimate ℒp'
2 when ' is a cut-off depending on the distance from a fixed point.

Lemma 5.2. Assume that Sec ≥ −�2 in a ball B2R ⋐ M , for some � ∈ ℝ
+
0

. Then, there exists

a function ' ∈ Lipc(B2R) such that 0 ≤ ' ≤ 1, ' ≡ 1 on BR and, for p ≥ m,

|∇'| ≤ C

R
, ℒp'

2 ≥ −Cp'
(R +R−1|∇u|−1|∇2u(�)|)

in the barrier sense, where C is an absolute constant and R ≐ R−2(1 + �R).

Proof. Let � ∈ C∞
c
([0, 2)) satisfy

0 ≤ � ≤ 1, � ≡ 1 on [0, 1], �′ ≤ 0, |�′| + |�′′| ≤ C,

and let '(x) = �(r(x)∕R) where r is the distance from the center of the ball. Setting

tn� (t) =

{
� coth(�t) if � > 0,

1∕t if � = 0,

by the Hessian comparison theorem

∇2r ≤ tn�(r)
(
⟨ , ⟩ − dr2

)

in the barrier (i.e. support) sense, see [38, Lem. 12.2.4]. Noting that �′ = 0 on [0, 1], we have

∇2' = �′′R−2dr2 + �′R−1∇2r ≥ −CR−2dr2 + �′R−1tn�(R)
(⟨ , ⟩ − dr2

)

≥ −CR−2(1 + Rtn�(R))⟨ , ⟩ ≥ −CR⟨ , ⟩
(42)
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for suitable C , where we used that Rtn�(R) ≤ 1 + �R. Whence, using (39) and for p ≥ m,

ℒp' =

[
�a
b
+ (p − 2)

uaub

|∇u|2
]
'b
a
+ 2(p − 2)|∇u|−1u�j'j

= (p − 1)'�� + 'jj + 2(p − 2)|∇u|−1u�j'j

≥ −CRp − 2(p − 2)|∇u|−1|∇2u(�)||∇'|
≥ −Cp

(R +R−1|∇u|−1|∇2u(�)|)

(43)

and
ℒp'

2 ≥ 2'ℒp', (44)

from which the thesis follows.

We now prove the one-side gradient estimate.

Theorem 5.3. Let Mm = ℝ ×N be a complete manifold with metric dx2 + gN , and assume

that N has Sec ≥ −�2. Let up ∈ C1(B2R) solve Δpup = 0 on B2R. Then, for

l ≥ R−1‖u − x‖L∞(B2R)
, A ≥ 1 + ‖∇up‖L∞(B2R)

,

and p ≥ 2 there exists an absolute constant C such that

|∇up|2 ≤ )xup + CmA2l
1

8 (l + 1)
5

4

[
1 + �R +

1

lp

]
on BR.

Proof. Let ' be a cut-off function. For convenience, we suppress the subscript p and simply
write u. We consider

Φ = |∇u|2 − )xu.

Because of (38), (40) and our assumptions on the sectional curvature, on the set {Φ > 0}

and setting � = ∇u∕|∇u| it holds

ℒpΦ
2 ≥ 2ΦℒpΦ ≥ 4(p − 1)Φ|∇2u(�)|2 − 4(m − 1)�2Φ|∇u|2.

We compute on {Φ > 0} the following expression:

ℒp('
2Φ2) ≥ '2ℒpΦ

2 + Φ2ℒp'
2 + 2(p − 2)⟨�,∇'2⟩⟨�,∇Φ2⟩ + 2⟨∇'2,∇Φ2⟩

≥ 4(p − 1)'2Φ|∇2u(�)|2 − 4(m − 1)�2'2Φ|∇u|2 + Φ2ℒp'
2

−8(p − 1)Φ'|∇'||⟨�,∇Φ⟩| − 8Φ'|∇'||∇Φ|.
Notice that ∇Φ = 2∇2u(∇u) − ∇2u(e1), whence

|⟨�,∇Φ⟩| ≤ 2|∇2u(�)|(1 + |∇u|), |∇Φ| ≤ 2|∇2u|(1 + |∇u|).
Inserting into the above we get

ℒp('
2Φ2) ≥ 4(p − 1)'2Φ|∇2u(�)|2 − 4(m− 1)�2'2Φ|∇u|2 + Φ2ℒp'

2

−16(p − 1)Φ'|∇'||∇2u(�)|(1 + |∇u|) − 16Φ'|∇'||∇2u|(1 + |∇u|).
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On the other hand, we compute

ℒp(u − x)2 ≥ 2(u − x)ℒp(u − x) + 2(p − 1)⟨�,∇(u− x)⟩2

≥ −2|u − x||ℒpx| + 2(p − 1)|∇u|−2 (|∇u|2 − )xu
)2

≥ −4|p − 2||u− x||∇u|−1|∇2u(�)| + 2(p − 1)|∇u|−2Φ2.

Let us define
w ≐ '2Φ2 + �R−2(u − x)2 + l|∇u|2,

for some � > 0 to be determined later. Notice that �,l are invariant under the natural scaling
⟨ , ⟩′ = R−2⟨ , ⟩ and u′ = u∕R. Let us assume that w attains its maximum at an interior point
p0. If Φ(p0) > 0, then

0 ≥ ℒpw = ℒp('
2Φ2) + �R−2ℒp(u − x)2 + lℒp|∇u|2

≥ 4(p − 1)'2Φ|∇2u(�)|2 − 4(m − 1)�2'2Φ|∇u|2 + Φ2ℒp'
2

− 16(p − 1)Φ'|∇'||∇2u(�)|(1 + |∇u|) − 16Φ'|∇'||∇2u|(1 + |∇u|)
− 4|p − 2|�R−2|u − x||∇u|−1|∇2u(�)| + 2(p − 1)�R−2|∇u|−2Φ2

+ 2(p − 2)l|∇2u(�)|2 + 2l|∇2u|2 − 2(m− 1)�2l|∇u|2.
Using that

16Φ'|∇'||∇2u(�)|(1 + |∇u|) ≤ 2'2Φ|∇2u(�)|2 + 32Φ|∇'|2(1 + |∇u|)2,
16Φ'|∇'||∇2u|(1 + |∇u|) ≤ 2l|∇2u|2 + 32l−1Φ2'2|∇'|2(1 + |∇u|)2,
4�R−2|u − x||∇u|−1|∇2u(�)| ≤ 2l|∇2u(�)|2 + 2�2R−4l−1(u − x)2|∇u|−2,

and the definition of Φ we get

0 ≥ 2(p − 1)'2Φ|∇2u(�)|2 − 4(m − 1)�2'2Φ|∇u|2 + Φ2ℒp'
2

− 32(p − 1)Φ|∇'|2(1 + |∇u|)2 − 32l−1Φ2'2|∇'|2(1 + |∇u|)2

− 2�2R−4l−1(u − x)2|∇u|−2 + 2(p − 1)�R−2|∇u|−2Φ2

− 2(m − 1)�2l|∇u|2.
We hereafter denote with C1, C2,… absolute constants. Define ' as in Lemma 5.2, so that
|∇'|2 ≤ CR−2 and, since p ≥ 2,

ℒp'
2 ≥ −Cp'R − Cp'R−1|∇u|−1|∇2u(�)|

≥ −Cp'R − 2(p − 1)'2Φ−1|∇2u(�)|2 − C1pΦR−2|∇u|−2.
Inserting into the above and multiplying by |∇u|2 we infer

0 ≥ − 4(m − 1)�2'2Φ|∇u|4 − Cp'Φ2R|∇u|2 − C1pΦ
3R−2

− 32(p − 1)Φ|∇'|2(1 + |∇u|)2||∇u|2 − 32l−1Φ2'2|∇'|2(1 + |∇u|)2|∇u|2

− 2�2R−4l−1(u − x)2 + 2(p − 1)�R−2Φ2 − 2(m − 1)�2l|∇u|4.
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Using |'| ≤ 1, |∇'| ≤ C2∕R, |u − x| ≤ lR, |∇u| ≤ A together with the inequality Φ3 ≤
A2Φ2, and rearranging, we obtain

0 ≥ − 4(m− 1)�2ΦA4 − CpΦ2RA2 − C1pA
2Φ2R−2

− 32(p− 1)ΦC2
2
R−2A4 − 32l−1Φ2C2

2
R−2A4

− 2�2R−2l + 2(p − 1)�R−2Φ2 − 2(m − 1)�2lA4

= (EΦ2 − BΦ − F )R−2,

where we set

E ≐ 2(p − 1)� − CpR2RA2 − C1pA
2 − 32l−1C2

2
A4

B ≐ 4(m − 1)�2R2A4 + 32(p − 1)C2
2
A4,

F ≐ 2�2l + 2(m − 1)�2lA4R2.

Whence,
EΦ2 ≤ BΦ + F ≤ BA2 + F at p0.

It follows that, at p0,
w ≤ Φ2 + �R−2(u − x)2 + l|∇u|2

≤ E−1(BA2 + F ) + �l2 + lA2.

Therefore, for each x ∈ BR,

Φ2(x) ≤ w(x) ≤ w(p0) ≤ E−1(BA2 + F ) + l(�l + A2). (45)

By the definition of R
E ≥ p� − C3pA

2

[
1 + �R +

A2

lp

]
≥ p�

2
,

where in the latter inequality we have chosen

� = 2C3

(
l + 1

l

) 1

4

A4
[
1 + �R + l−1p−1

]
.

Estimating B, F for such a choice of � we obtain:

B ≤ C5mpA
4(1 + �2R2), F ≤ C6m

√
l(l + 1)(1 + �2R2 + l−2p−2)A8,

which gives

Φ2(x) ≤ C7mA
4l

1

4 (l + 1)
3

4 (1 + �R + l−1p−1)

≤ C7mA
4l

1

4 (l + 1)
5

2 (1 + �R + l−1p−1)

and the conclusion follows by taking square roots. If p0 ∈ )B2R we have for each x ∈ BR

Φ2(x) ≤ w(x) ≤ w(p0) =
(
�R−2(u − x)2 + l|∇u|2) (p0) ≤ �l2 + lA2

≤ C8A
4l

7

4 (l + 1)
3

4
[
1 + �R + l−1p−1

]

≤ C8A
4l

1

4 (l + 1)
5

2
[
1 + �R + l−1p−1

]
,

from which the desired inequality follows as well.
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