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Sharp pinching theorems for complete
submanifolds in the sphere

By Marco Magliaro at Como, Luciano Mari at Milano, Fernanda Roing at Torino
and Andreas Savas-Halilaj at Ioannina

Abstract. For every complete and minimally immersed submanifold f WM n ! SnCp

whose second fundamental form satisfies jAj2 � np=.2p � 1/, we prove that it is either totally
geodesic, or (a covering of) a Clifford torus or a Veronese surface in S4, thereby extending
the well-known results by Simons, Lawson and Chern, do Carmo & Kobayashi from com-
pact to complete M n. We also obtain the corresponding result for complete hypersurfaces
with non-vanishing constant mean curvature, due to Alencar & do Carmo in the compact case,
under the optimal bound on the umbilicity tensor. In dimension n � 6, a pinching theorem for
complete higher-codimensional submanifolds with non-vanishing parallel mean curvature is
proved, partly generalizing previous work by Santos. Our approach is inspired by the conformal
method of Fischer-Colbrie, Shen & Ye and Catino, Mastrolia & Roncoroni.

1. Introduction

Throughout this work, SnCp denotes the .nC p/-dimensional unit sphere, SnCp.r/ that
of radius r , and SnCpc that of sectional curvature c.

Let f WM n ! SnCp, n � 2, be an immersed submanifold without boundary. According
to a seminal result due to Simons [28], ifM n is compact, minimal, and its second fundamental
form A satisfies

jAj2 �
np

2p � 1
;

then either jAj � 0 or jAj2 � np
2p�1

. If jAj � 0, thenM n is a great sphere, and if jAj2 � np
2p�1

,
a characterization was given by Lawson [17] (in codimension p D 1) and by Chern, do Carmo
& Kobayashi [9]: either M n is a (Riemannian) covering of the Clifford torus given by the
natural embedding

T n;k D Sk.
p
k=n/ � Sn�k

�p
.n � k/=n

�
,! SnC1; k 2 ¹1; : : : ; n � 1º;
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or a covering of a Veronese surface in S4. The latter is the embedding of the projective plane
S2.
p
3/=Z2 ! S4 induced by the restriction to S2.

p
3/ � R3 of the map

F WR3 ! R5; F .x; y; z/ D
� yz
p
3
;
zx
p
3
;
xy
p
3
;
x2 � y2

2
p
3
;
x2 C y2 � 2z2

6

�
;

taking the quotient by the antipodal map of S2.
p
3/. We remark that the characterization of the

case jAj2 � np
2p�1

is local. For compact submanifolds with non-zero, parallel mean curvature,
an analogous problem was addressed by Alencar & do Carmo [1] in codimension 1, and by
Santos [23] if p � 2.

The goal of the present paper is to extend the above results to complete, possibly non-
compact submanifolds. To introduce our theorems and to explain the main issues to over-
come, we first examine the case of hypersurfaces more closely. Let f WM n ! SnC1 be a com-
pact immersed hypersurface with (normalized) constant mean curvature H � 0. For short,
we call such objects CMC hypersurfaces. Denote by g the Riemannian metric on M n and
by ˆ D A �H g the traceless part of the second fundamental form of the hypersurface, and
suppose that jˆj2 � b2.n;H/, where b.n;H/ is the positive root of the polynomial

(1.1) P.n;H/.x/ D x
2
C

n.n � 2/p
n.n � 1/

Hx � n.H 2
C 1/:

Then, Alencar & do Carmo [1] proved that either jˆj � 0 andM n is a sphere or jˆj � b.n;H/
and M n covers a minimal Clifford torus or a torus of the form

Sn�1.r/ � S1.
p

1 � r2/ ,! SnC1;

of appropriate radius r 2 .0; 1/. This particular example is calledH.r/-torus. IfH D 0, notice
that the conclusions recover those in [9, 17, 28] for p D 1.

All the proofs of the above-mentioned theorems rely on the strong maximum principle
applied to jˆj2, which in codimension 1 satisfies the inequality

(1.2) �jˆj2 � �2jˆj2P.n;H/.jˆj/C 2jrˆj
2;

where P.n;H/ is the polynomial given in (1.1); see [1, page 1226]. Indeed, the assumption
jˆj � b.n;H/ implies that P.n;H/.jˆj/ � 0, and therefore �jˆj2 � 0. Since M n is compact,
jˆj2 must be constant, and thus rˆ � 0. The conclusion follows from a careful analysis of
hypersurfaces with rˆ � 0.

Seeking to obtain the same results under the weaker assumption that M n is complete,
first observe that a computation due to Leung [18] shows that the Ricci curvature of g satisfies

Ric � �
n � 1

n
P.n;H/.jˆj/ g :

Consequently, under our assumption, it follows that Ric � 0 on .M n; g/. In dimension n D 2,
Bishop–Gromov’s theorem implies that M 2 has quadratic area growth and is therefore para-
bolic; see [14,16]. Hence, from (1.2), we again obtain thatM 2 is either a sphere or (a covering
of) a torus. However, in higher dimensions, Ric � 0 is not enough to guarantee the parabolicity
of M n, and attempts were made to achieve the goal via the Omori–Yau maximum principle at
infinity (see [3,22] for a thorough investigation of the principle and its geometric applications).
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Although there are partial results, the problem remains still open. As a matter of fact, one
can easily show from (1.2) that M n is a sphere whenever supjˆj < b.n;H/; see for instance
[29, 35]. Also, if jˆ.x0/j D b.n;H/ for some x0, then the strong maximum principle implies
jˆj � b.n;H/, and the classification in [1] follows. Consequently, the main difficulty is to
characterize the complete CMC hypersurfaces of the unit sphere with

jˆj < b.n;H/ and supjˆj D b.n;H/:

In such a case, finding differential inequalities for which the Omori–Yau principle yields useful
information seems a hard task.

For this reason, we here pursue a different strategy, inspired by the works of Fischer-
Colbrie [13], Shen & Ye [25] and Catino, Mastrolia & Roncoroni [6]. The idea is to conformally
change the metric of M n by a suitable power of the function

u D b2.n;H/ � jˆj2 > 0;

to show that M n is compact, from which it readily follows that M n is a sphere. We obtain the
following.

Theorem 1.1. Let f WM n ! SnC1 be a complete immersed hypersurface with con-
stant mean curvature H � 0. Suppose that the square norm jˆj2 of the traceless part of the
second fundamental form of M n satisfies jˆj2 � b2.n;H/, where b.n;H/ is the positive root
of the polynomial (1.1) (in particular, b.n; 0/ D

p
n). Then either jˆj � 0 (andM n is a totally

umbilic sphere) or jˆj � b.n;H/. Furthermore, jˆj � b.n;H/ if and only if

(i) H D 0 and M n covers a Clifford torus T n;k for some k 2 ¹1; : : : ; n � 1º;

(ii) H > 0, n � 3 and M n covers an H.r/-torus with r2 < .n � 1/=n;

(iii) H > 0, n D 2 and M n covers an H.r/-torus with r2 ¤ .n � 1/=n.

Remark 1.2. Let us make some comments.

(1) In Theorem 1.1, we are implicitly assuming that M n is 2-sided if H ¤ 0. On the other
hand, if H D 0, then M n is not assumed to be 2-sided.

(2) As discussed in [1], according to the chosen orientation, the mean curvature of an H.r/-
torus is given by either

H D
.n � 1/ � nr2

nr
p
1 � r2

or H D
nr2 � .n � 1/

nr
p
1 � r2

:

The choice leading to positive H is the first one if r2 < .n � 1/=n, and by direct com-
putation, these H.r/-tori satisfy jˆj � b.n;H/. On the other hand, if r2 > .n � 1/=n,
the choice is the second one, but for n � 3, a computation gives jˆj > b.n;H/. Hence,
tori with such r do not satisfy the assumptions in our theorem. The different behaviour is
due to the linear term in P.n;H/ and does not occur if n D 2, motivating the presence of
H.r/-tori with any r2 ¤ .n � 1/=n in the classification.

(3) To our knowledge, the use of conformal deformations to get compactness/rigidity prop-
erties as outlined above first appeared in works by Schoen and Yau [24], Fischer-Colbrie
[13], and Shen & Ye [25]. The method was also exploited to investigate CMC hyper-
surfaces by Shen & Zhu [27], Cheng [8] and Elbert, Nelli & Rosenberg [12]. It is worth
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mentioning that, in all these latter results, it is required that the manifold M n has dimen-
sion 3, 4 or 5. The absence of a dimensional constraint in our theorem was somehow
unexpected to us.

(4) In the unpublished [26], Shen & Ye obtained general Bonnet–Myers type results based
on the conformal method; see also the recent improvement [7] by Catino & Roncoroni.
Once the crucial estimates have been obtained, the final part of our argument can be seen
within their framework. However, some details depart from those in [7,26], so we provide
full proofs.

(5) The constant b.n;H/ in the theorem is sharp. For example, the complete minimal hyper-
surfaces constructed by Otsuki [20] and do Carmo & Dajczer [11] have bounded squared
norm of the second fundamental form lying in a range containing n, namely

n.n � 1/a20

1 � a20
� jAj2 �

n.n � 1/a21

1 � a21
;

where a0 and a1 are constants such that

0 < a0 <
1
p
n
< a1 < 1I

for more details, see [20, Section 4 & Remark 2, p. 162]. Similar results for the norm
of the second fundamental form of a CMC hypersurface with two distinct principal
curvatures can be found in [2, 21].

(6) For examples of complete CMC hypersurfaces in the sphere SnC1 obtained by gluing
techniques, we refer to the paper of Butscher [5].

(7) There are several sphere-type theorems in the literature for complete submanifolds in
space forms under various pinching conditions on the second fundamental form; see for
example [4, 10, 15, 30–34]. With the notable exception of [15], the compactness either is
assumed or it directly follows from the assumptions, the Gauss equation, and the Bonnet–
Myers theorem.

Next, we move to higher-codimensional submanifolds f WM n ! SnCp. In the minimal
case, we are able to obtain a neat extension of the result in [9, 17, 28] for M n complete.

Theorem 1.3. Let p � 1 and let f WM n ! SnCp be a complete minimal immersion. If
the norm of the second fundamental form A of M n satisfies

(1.3) jAj2 �
np

2p � 1
;

then either jAj � 0 and M n is a totally geodesic sphere, or jAj � np
2p�1

. In this latter case,
one of the following occurs:

(i) p D 1 and M n covers a minimal Clifford torus T n;k for some k 2 ¹1; : : : ; n � 1º;

(ii) n D p D 2 and M 2 covers a Veronese surface in S4.

We also consider submanifolds with non-zero, parallel mean curvature vector. In the com-
pact case, the optimal pinching theorem is due to Santos [23], and extending it to complete
submanifolds reveals to be particularly subtle. We refer to Section 3 for precise statements and
more detailed comments.
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2. Proof of Theorem 1.1

We preface the following well-known algebraic lemma. We include a proof for the sake
of completeness.

Lemma 2.1. Let ˆWRn �Rn ! Rp be a vector valued symmetric bilinear form with
components ˆ˛ij , 1 � i; j � n, 1 � ˛ � p. Assume that

P
k ˆ

˛
kk
D 0 for each ˛. Then the

norm
jˆj2

:
D

X
˛;i;j

.ˆ˛ij /
2

satisfies

jˆj2 �
n

n � 1

X
˛

nX
jD1

.ˆ˛1j /
2
�

n

n � 1

X
˛

.ˆ˛11/
2:

Proof. By the Cauchy–Schwarz inequality, in our assumptions,

.ˆ˛11/
2
D �

� nX
iD2

ˆ˛ii

�2
� .n � 1/

nX
iD2

.ˆ˛ii /
2
I

hence,

jˆj2 �
X
˛

nX
iD1

.ˆ˛ii /
2
C 2

X
˛

nX
jD2

.ˆ˛1j /
2
�

n

n � 1

X
˛

.ˆ˛11/
2
C 2

X
˛

nX
jD2

.ˆ˛1j /
2

�
n

n � 1

X
˛

nX
jD1

.ˆ˛1j /
2
�

n

n � 1

X
˛

.ˆ˛11/
2;

as claimed.

Let f WM n ! SnC1 be a complete immersed hypersurface with jˆj � b.n;H/. Let us
denote by b� < 0 < bC D b.n;H/ the two roots of P.n;H/ given in (1.1), namely

b˙ D ˙

s
n2.n � 2/2H 2

4n.n � 1/
C n.H 2 C 1/ �

n.n � 2/H

2
p
n.n � 1/

:

From jb�j > bC, we deduce that, for x 2 Œ0; bC�,

(2.1) P.n;H/.x/ D .x � bC/.x � b�/ � .x � bC/.x C bC/ D x
2
� b2C;

whence (1.2) can be written in the form

�jˆj2 � 2.b2 � jˆj2/jˆj2 C 2jrˆj2 � 0;

where, hereafter, b D bC D b.n;H/. As a consequence, the function u :
D b2 � jˆj2 satisfies

(2.2) u � 0 and �u � �2jˆj2u on M n:

We distinguish two cases.
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Case 1. If u.x0/ D 0 for some x0 2M n, by the strong maximum principle, u � 0,
whence

jˆj2 � b2 and jrˆj � 0:

The conclusion follows from [1, pp. 1227–1228] or [17, Theorem 4]. More precisely, it is
shown that the hypersurface has two distinct principal curvatures, both constants, and that
every x 2M n has a neighbourhood U for which f .U / is a piece of either a Clifford torus
T n;k or anH.r/-torus (with r in the range stated in the theorem), according to the value ofH .
We show that f .M n/ is a single such torus. Indeed, any Clifford or H.r/-torus is the zero set
of an appropriate real analytic function on SnC1; see for instance [19, Example 3, p. 194]. Fix
x 2M n and U as above and let ‰WSnC1 ! R be a real analytic function that vanishes on the
torus containing f .U /. Since M n and f are real analytic as well, then ‰ ı f is real analytic
and vanishes on U ; thus it vanishes on the entire M n. This shows that f .M n/ is contained
in a single torus †n. As f WM n ! †n is a local isometry and M n is complete, Ambrose’s
Theorem guarantees that f is onto and a Riemannian covering, which proves our claim.

Case 2. Assume now that u > 0 on M n. Our goal is to prove that M n must be a totally
umbilic sphere. To reach the goal, inspired by [6,13], we endowM n with the metric g D u2ˇ g,
where

(2.3) ˇ D

´
any number in .0; 1/ if n D 2; 3;
1
n�2

if n � 4:

Consider a curve  W Œ0; a�!M n parametrized by g-arclength s, and denote by s the g-arc-
length of  . From 𝜕s D u�ˇ𝜕s and ds D uˇ ds, the length of  in the metric g is

`g./ D

Z a

0

uˇ ds:

We split the proof into three claims.

Claim 1. Assume that  is a g-geodesic with non-negative second variation of g-arc-
length. Then there exist constants t0 > 1, c0 > 0 depending on n; ˇ such that

(2.4) c0

Z a

0

uˇ 2 ds � �2t0

Z a

0

uˇ  ss ds for all  2 C 20 .Œ0; a�/;

where C 20 .Œ0; a�/ is the set of functions  2 C 2.Œ0; a�/ such that  .0/ D  .a/ D 0.

Proof of Claim 1. From the second variation formula, along  , we haveZ s.a/

0

¹.n � 1/.'s/
2
� '2Ric.s; s/º ds � 0 for all ' 2 C 20 .Œ0; a�/;

or, equivalently,

(2.5)
Z a

0

¹.n � 1/.'s/
2
� '2Ric.s; s/ºu�ˇ ds � 0 for all ' 2 C 20 .Œ0; a�/:

As shown in [12, appendix, equation (14)], along  , the following identity holds:

Ric.s; s/ D Ric.s; s/ � ˇ.n � 2/.lnu/ss � ˇ� lnu:
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From (2.2),
� lnu � �2jˆj2 � jr lnuj2 � �2jˆj2 � ¹.lnu/sº2;

whence

(2.6) Ric.s; s/ � Ric.s; s/C 2ˇjˆj2 � ˇ.n � 2/.lnu/ss C ˇ¹.lnu/sº2:

Let ¹e1 D s; e2; : : : ; enº be a g-orthonormal frame along  . From the Gauss equation, we have
that the components of the Riemann curvature tensor are given by

Rij ij D 1 � ıij C hi ihjj � h
2
ij ; i; j 2 ¹1; : : : ; nº;

where hij are the components of the second fundamental form of M n. The identity can equiv-
alently be written in the form

Rij ij D 1 � ıij C .ˆi i CH/. ĵj CH/ � .ˆij CHıij /
2; i; j 2 ¹1; : : : ; nº:

Using the fact that ˆ is traceless, we get

Ric.s; s/ D .n � 1/ �ˆ211 C .n � 2/Hˆ11 C .n � 1/H
2
�

nX
jD2

ˆ21j :

By Lemma 2.1, we have

(2.7) jˆj2 �
n

n � 1

nX
jD1

ˆ21j �
n

n � 1
ˆ211:

Fix � 2 .0; 1� and " > 0. Let us estimate the term Hˆ11 by means of Young inequality and
(2.7) as follows:

Hˆ11 D H.1 � �/ˆ11 C �Hˆ11

� �H.1 � �/jˆj

r
n � 1

n
�
�H 2

2"
�
�"ˆ211
2

:

(2.8)

Therefore,

Ric.s; s/ � .n � 1/ � .n � 2/

r
n � 1

n
.1 � �/jˆjH C

�
n � 1 �

.n � 2/�

2"

�
H 2

�

�
1C

.n � 2/�"

2

�
ˆ211 �

nX
jD2

ˆ21j :

Since P.n;H/.b/ D 0 and jˆj � b, we have

.n � 2/

r
n � 1

n
H jˆj � .n � 1/.H 2

C 1/ �
n � 1

n
jˆj2:

Hence,

Ric.s; s/ � �.n � 1/C �
�
n � 1 �

n � 2

2"

�
H 2
C .1 � �/

n � 1

n
jˆj2

�

�
1C

.n � 2/�"

2

�
ˆ211 �

nX
jD2

ˆ21j ;
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and we conclude that

Ric.s; s/ � �.n � 1/C �
�
n � 1 �

n � 2

2"

�
H 2

C

�
2ˇ C .1 � �/

n � 1

n

�
jˆj2 �

�
1C

.n � 2/�"

2

� nX
jD1

ˆ21j

� ˇ.n � 2/.lnu/ss C ˇ¹.lnu/sº2:

(2.9)

By (2.7), �
2ˇ C .1 � �/

n � 1

n

�
jˆj2 �

�
1C

.n � 2/�"

2

� nX
jD1

ˆ21j

�

� 2nˇ
n � 1

� � �
.n � 2/�"

2

� nX
jD1

ˆ21j :

We shall specify � and " so that8̂<̂
:

n � 1 �
n � 2

2"
� 0;

2nˇ

n � 1
� � �

.n � 2/�"

2
� 0:

Indeed, it is enough to choose

" D

´
1 if n D 2;
n�2
2.n�1/

if n � 3;
and � small enough:

For such a choice, setting c0 D �.n � 1/ > 0, inequality (2.9) yields

(2.10) Ric.s; s/ � c0 � ˇ.n � 2/.lnu/ss C ˇ¹.lnu/sº2:

Replacing (2.10) in (2.5), we obtain

.n � 1/

Z a

0

.'s/
2u�ˇ ds

�

Z a

0

'2u�ˇ
�
c0 � ˇ.n � 2/.lnu/ss C ˇ¹.lnu/sº2

�
ds:

(2.11)

Integration by parts gives

�ˇ

Z a

0

'2.lnu/ssu�ˇ ds D �
Z a

0

'2.lnuˇ /ssu�ˇ ds

D 2ˇ

Z a

0

''s.lnu/su�ˇ ds � ˇ2
Z a

0

'2¹.lnu/sº2u�ˇ ds;

and plugging into (2.11) yields

.n � 1/

Z a

0

.'s/
2u�ˇ ds � c0

Z a

0

'2u�ˇ ds C 2ˇ.n � 2/
Z a

0

''su
�ˇ�1us ds

C ˇ
�
1 � ˇ.n � 2/

� Z a

0

'2u�ˇ�2.us/
2 ds:

(2.12)
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We follow ideas in [6] to treat the integral inequality (2.12). Set

(2.13) ' D uˇ ; with  2 C 20 .Œ0; a�/:

Then (2.12) becomes

.n � 1/

Z a

0

. s/
2uˇ ds � c0

Z a

0

 2uˇ ds C ˇ.1 � ˇ/
Z a

0

uˇ�2.us/
2 2 ds

� 2ˇ

Z a

0

uˇ�1us  s ds:

(2.14)

Define

I
:
D ˇ

Z a

0

uˇ�1us  s ds D
1

2

Z a

0

.uˇ /s. 
2/s:

Integration by parts gives

I D �
1

2

Z a

0

uˇ . 2/ss ds D �
Z ˇ

0

uˇ . s/
2 ds �

Z a

0

uˇ  ss ds:

For every t > 1 and every " > 0, from Young’s inequality, we obtain

2I D 2tI C 2.1 � t /I

D �2t

Z a

0

uˇ . s/
2 ds � 2t

Z a

0

uˇ  ss ds C 2ˇ.1 � t /
Z a

0

uˇ�1us  s ds

� �2t

Z a

0

uˇ . s/
2 ds � 2t

Z a

0

  ssu
ˇ ds

C ˇ.t � 1/"

Z a

0

uˇ�2.us/
2 2 ds C

ˇ.t � 1/

"

Z a

0

uˇ . s/
2 ds:

Choosing

" D
1 � ˇ

t � 1
;

we obtain

2I � �2t

Z a

0

uˇ  ss ds C ˇ.1 � ˇ/
Z a

0

 2uˇ�2.us/
2 ds

C
ˇ.t � 1/2 � 2t.1 � ˇ/

1 � ˇ

Z a

0

uˇ . s/
2 ds:

(2.15)

Inserting (2.15) into (2.14), we arrive at

(2.16)
Z a

0

uˇ ¹c0 
2
� p.n; t; ˇ/. s/

2
C 2t  ssº ds � 0;

where

p.n; t; ˇ/ D
ˇ.t � 1/2

1 � ˇ
� 2.t � 1/C .n � 3/:

With our choice of ˇ, we get

p.n; t0; ˇ/ � 0; where t0 D

´
1C 21�ˇ

ˇ
if n 2 ¹2; 3º;

n � 2 if n � 4:

Notice that t0 > 1, whence it is admissible. Then (2.16) becomes (2.4).
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Claim 2. The manifold M n is compact.

Proof of Claim 2. Assume by contradiction that M n is non-compact. We follow [13]
and construct the “smallest divergent curve” in .M n; g/ issuing from a fixed point. For the sake
of completeness, we include a simplified and a bit more general statement.

Lemma 2.2. Suppose that .M n; g/ is a non-compact Riemannian manifold. Then, for
each o 2M n, there exists a divergent curve  W Œ0; T /!M n issuing from o which is a g-geo-
desic, minimizes the g-length on any compact subinterval of Œ0; T / and satisfies the following
property:

g is complete ” T D1:

Proof. The implication) is obvious since we know that, for a complete Riemannian
metric g, every divergent g-geodesic is defined on the entire Œ0;1/. To prove the converse, we
shall construct such a geodesic  . Consider an exhaustion ofM n by relatively compact, smooth
open sets�j containing o. Since�j is a smooth compact manifold with boundary, there exists
a g-minimizing rectifiable curve j W Œ0; Tj �! �j joining o to 𝜕�j , which we parametrize by
g-arclength. Because j is a g-geodesic, j .Œ0; Tj // � �j , and since �j � �jC1, we have
that ¹Tj º is a strictly increasing sequence. Then, up to a subsequence, j !  W Œ0; T /!M n,
smoothly on compact sets as j !1. Since each j minimizes g-length between any pair of
its points, it follows that  is a g-geodesic that minimizes g-length between any pair of its
points as well. Moreover, let � W Œ0; T� /!M n be any other divergent curve, parametrized by
g-arclength. Then, for each natural j , let tj be the first time for which �.tj / 2 𝜕�j . By the
minimality of j , and having fixed S > 0, we have for large enough j that

T� D `g.�/ � `g.�jŒ0;tj �
/ � `g.j / � `g..j /Œ0;S�/

j!1
����! `g.jŒ0;S�/

S!1
����! `g./ D1:

Whence T� D1, and thus the Riemannian metric g is complete.

Pick a smallest divergent curve  in .M n; g/ issuing from a fixed origin. Since .M n; g/
is complete, reparametrizing  by g-arclength s, it turns out that  is defined for s 2 Œ0;1/.
Whence, because of Claim 1 and since  is g-minimizing between any pair of its points,
along  , it holds

c0

Z a

0

uˇ 2 ds � �2t0

Z a

0

uˇ  ss ds for all a > 0 and  2 C 20 .Œ0; a�/:

Choosing as test function
 .s/ D sin

��s
a

�
2 C 20 .Œ0; a�/;

we get �
c0 �

2t0�
2

a2

� Z a

0

sin2
��s
a

�
uˇ ..s//ds � 0;

which gives a contradiction if

a > �

s
2t0

c0
:

This completes the proof of Claim 2.
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Claim 3. The Riemannian manifold .M n; g/ is a totally umbilic sphere.

Proof of Claim 3. Since M n is compact and �jˆj2 � 0, we deduce that jˆj2 is con-
stant. The inequality u > 0 implies jˆj2 < b2. Thus, again from (1.2), we get

.b2 � jˆj2/jˆj2 � 0;

whence jˆj2 � 0 and M n is a sphere.

This completes the proof of the theorem.

Remark 2.3. We point out that Claim 1 can be split into the following two steps.

(i) The algebraic estimate

RicC2ˇjˆj2 g � c0 g for some c0 2 RC;

which in our setting holds for every choice of ˇ > 0. This allows to deduce inequality
(2.10) from (2.6).

(ii) The inequality

(2.17) c0

Z a

0

uˇ 2 ds � �2t0

Z a

0

uˇ  ssds for all  2 C 20 .Œ0; a�/;

along a minimizing g-geodesic. We prove it when ˇ is defined as in (2.3).

3. The higher-codimensional case

Let f WM n ! SnCp be a complete submanifold. We denote by A the vector valued
second fundamental form of f . Consider a local orthonormal frame ¹e1; : : : ; enCpº, with
¹e1; : : : ; enº tangent to M n, and dual coframe ¹�1; : : : ; �nCpº. Using the index convention

i; j; : : : 2 ¹1; : : : ; nº; ˛; ˇ; : : : 2 ¹nC 1; : : : ; nC pº;

A writes in components as A D h˛ij �
i ˝ �j ˝ e˛. The mean curvature vector is thus defined

as
H D

1

n
h˛kke˛;

and the traceless second fundamental form as

ˆ D A �H g D
�
h˛ij �

1

n
h˛kkıij

�
� i ˝ �j ˝ e˛ D ˆ

˛
ij �

i
˝ �j ˝ e˛:

We will denote by H the norm of H. Observe that, under the assumption that M n has parallel
mean curvature, namely that r?H D 0, thenH turns out to be constant. If � is a normal vector
field, we denote by ˆ� the bilinear form ˆ� D hˆ; �i D ˆ

˛
ij�

˛� i ˝ �j . A submanifold M n

will be called pseudo-umbilical if H ¤ 0 and ˆH D 0, i.e. the mean curvature vector lies in an
umbilical direction.

We are ready to prove our extension of the results by Simons and Chern, do Carmo &
Kobayashi.
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Proof of Theorem 1.3. As in [9], we can estimate

1

2
�jAj2 �

X
˛

jrAe˛ j
2
� jAj2

°�
2 �

1

p

�
jAj2 � n

±
:

Thus, the non-negative function

u D
np

2p � 1
� jAj2 satisfies �u � �2

2p � 1

p
jAj2u � �2jAj2u on M:

If u.x0/ D 0 for some x0 2M n, by the strong maximum principle u � 0, whence

jAj2 �
np

2p � 1
;

and the claim follows from [9]. Although such result is local, Clifford tori and the Veronese
surface are connected components of the zero set of some polynomials restricted to the ambi-
ent sphere. Hence, the global result follows from the same analyticity argument used in the
previous section.

If instead u > 0 on M n, then we set g D u2ˇ g for some suitable constant ˇ. To show
that M n is actually compact, recalling Remark 2.3, it is enough to show the following claim.

Claim 4. For each ˇ > 0, it holds

RicC2ˇjAj2 g � c0 g

for some c0 D c0.ˇ; n; p/ > 0.

Proof of Claim 4. Let X be a unit vector, and choose the frame so that e1 D X . From
the Gauss equation and minimality, Rik D .n � 1/ıik � h˛ijh

˛
jk

; thus Lemma 2.1 implies

R11 D n � 1 �
X
˛

nX
jD1

.h˛1j /
2
� n � 1 �

n � 1

n
jAj2:

Using (1.3),

n � 1 �
n � 1

n

�
2 �

1

p

�
jAj2I

hence, for � 2 .0; 1�, we have

R11 � �.n � 1/C .1 � �/
n � 1

n

�
2 �

1

p

�
jAj2 �

n � 1

n
jAj2;

which gives

R11 C 2ˇjAj
2
� �.n � 1/C

°
2ˇ C

n � 1

n

h
.1 � �/

�
2 �

1

p

�
� 1

i±
jAj2

� �.n � 1/;

where the last inequality holds for small enough � > 0 depending on ˇ, n and p.
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Next, we consider submanifolds with codimension p � 2 and non-vanishing, parallel
mean curvature, where some subtle difficulties arise. In [23], Santos treated the problem for
compact submanifolds, obtaining an optimal pinching theorem under the condition that the
umbilicity tensor satisfies

(3.1)
�
2 �

1

p � 1

�
jˆj2 C

n.n � 2/p
n.n � 1/

jˆHj � n.1CH
2/ � 0:

Apparently, this is not a condition of the type jˆj2 � b2, so the construction of a conformal
factor u, if possible, is not evident. To remedy, in the next theorem, we slightly strengthen (3.1)
by replacing it with conditions (3.2) and (3.3). However, in this case, we are able to reach the
desired conclusions, which rephrase those in [23], only in dimension n � 6.

Theorem 3.1. Let p � 2 and let f WM n ! SnCp be a complete, immersed submani-
fold of dimension n � 6 with parallel, non-zero mean curvature. Assume that the norm of the
umbilicity tensor ˆ of M n satisfies

(3.2) jˆHj � �H jˆj

for some constant � 2 Œ0; 1�, and

(3.3) jˆj2 � b2;

where b D b.n; p;H; �/ is the positive root of the polynomial

Pn;p;H;� .x/ D
�
2 �

1

p � 1

�
x2 C

n.n � 2/p
n.n � 1/

�Hx � n.1CH 2/:

Then either jˆj � 0 and M n is a totally umbilic sphere, or jˆj � b. In this latter case, one of
the following occurs:

(i) � 2 .0; 1/, p D 2 and M n covers a .�H/-torus

Sn�1.r1/ � S1.r2/ � SnC1
1C.1��2/H2 � SnC2

with r1, r2 uniquely determined by

.n � 1/r22 � r
2
1

nr1r2

q
1C .1 � �2/H 2 D �H; r21 C r

2
2 D

�
1C .1 � �2/H 2

��1
I

(ii) � D 0, p D 2, M n is pseudo-umbilical and covers a minimal Clifford torus in a hyper-
sphere

Sk
�s

k

n.1CH 2/

�
� Sn�k

�s
n � k

n.1CH 2/

�
� SnC1

1CH2 � SnC2

for some k 2 ¹1; : : : ; n � 1º;

(iii) � D 0, n D 2, p D 3,M 2 is pseudo-umbilical and covers a Veronese surface in a hyper-
sphere S4

1CH2 � S5.
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Proof. We can choose a local orthonormal frame in such a way that enC1 D H�1H.
Following the computations in [23, pp. 407–410], we have

1

2
�jˆj2 �

X
˛

jrˆe˛ j
2
� jˆj2

°�
2 �

1

p � 1

�
jˆj2 C

n.n � 2/p
n.n � 1/

jˆHj � n.1CH
2/jˆj2

±
C

�
1 �

1

p � 1

�
jˆenC1

j
2.2jˆj2 � jˆenC1

j
2/:

Using (3.2) and the fact that�
1 �

1

p � 1

�
jˆenC1

j
2.2jˆj2 � jˆenC1

j
2/ � 0;

we get

�jˆj2 � �2jˆj2
°�
2 �

1

p � 1

�
jˆj2 C

n.n � 2/p
n.n � 1/

�H jˆj � n.1CH 2/
±
:

Let b be the positive root of Pn;p;H;� , namely

b D
p � 1

2p � 3

�s
n.n � 2/2

4.n � 1/
�2H 2 C

.2p � 3/n

p � 1
.1CH 2/ �

n.n � 2/

2
p
n.n � 1/

�H

�
:

Then, under the assumption jˆj2 � b2, reasoning as in (2.1), we get

(3.4) �jˆj2 � �2jˆj2Pn;p;H;� .jˆj/ � 2
�
2 �

1

p � 1

�
jˆj2.b2 � jˆj2/ � 0:

As in the previous section, let us define the function u :
D b2 � jˆj2 and observe that it satisfies

u � 0 and �u � �2jˆj2u on M:

If u.x0/ D 0 for some x0 2M n, by the strong maximum principle, u � 0, whence jˆj2 � b2.
This implies that all inequalities involved in obtaining (3.4) are actually equalities in this case.
In particular, jˆenC1

j D � jˆj. Moreover,�
2 �

1

p � 1

�
jˆj2 D n.1CH 2/ �

n.n � 2/p
n.n � 1/

H jˆenC1
j

and �
1 �

1

p � 1

�
jˆenC1

j
2.2jˆj2 � jˆenC1

j
2/ D 0;

which implies that either p D 2 or jˆenC1
j � 0 (equivalently, � D 0). Let us consider the case

jˆenC1
j � 0 first. In this case, M n is pseudo-umbilical and (3.3) reduces to

jˆj2 �
n.1CH 2/

2 � 1
p�1

:

The claim now follows in this case from [23, Proposition 3.1 (ii)].
Let us now assume p D 2. In this case, since enC1 is parallel, so is enC2; hence the

normal bundle has zero curvature. As in the proof of [23, Proposition 3.3], we can therefore
find parallel normal vector fields �1 and �2 such that �2 is an umbilic direction, i.e. ˆ�2 D 0.
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The immersion f can thus be split into the composition f D g1 ı g2, with g1WSnC1c ! SnC2

totally umbilic and g2WM n ! SnC1c . We have that

jˆj2 D jˆ�1 j
2
C jˆ�2 j

2
D jˆ�1 j

2:

Moreover, setting Hi D hH; �i i, we have that jˆHj D jH1jjˆj, so

jH1j D �H and H 2
D H 2

1 CH
2
2 :

By the Gauss equation applied to the immersion g1, we find that c D 1CH 2
2 , so jˆ�1 j satisfies

jˆ�1 j
2
C

n.n � 2/p
n.n � 1/

�H jˆ�1 j � n.c C �
2H 2/ D 0:

Item (ii) of [1, Theorem 1.5] can be applied: M n is thus locally a .�H/-torus in SnC11CH2
2

, with
H 2
2 D .1 � �

2/H 2.
Again, we point out that such rigidity results are based on [1, 9] and are therefore local.

Nevertheless, Clifford tori, H -tori and the Veronese surface are connected components of the
zero set of some polynomials restricted to the sphere, so the global result follows as in the
previous sections.

If instead u > 0 on M n, we show that .M n; g/ with g D u2ˇ g is compact for some
suitable constant ˇ. We prove the following claim.

Claim 5. For each ˇ � n=8, it holds

(3.5) RicC2ˇjˆj2 g � .n � 1/ g :

Proof of Claim 5. Having fixed a unit vector X , choose the frame so that e1 D X . The
Gauss equation implies

Rij D .n � 1/ıij C h
˛
kk

�
ˆ˛ij C

1

n
h˛l lıij

�
�

�
ˆ˛ik C

1

n
h˛l lıik

��
ˆ˛kj C

1

n
h˛l lıkj

�
I

thus

(3.6) R11 D n � 1C .n � 2/
1

n
h˛kkˆ

˛
11 C .n � 1/H

2
�

X
˛

nX
jD1

.ˆ˛1j /
2:

For " > 0, Young’s inequality allows to write

(3.7)
1

n
h˛kkˆ

˛
11 � �

H 2

2"
�
"

2

X
˛

.ˆ˛11/
2:

Plugging this into (3.6) and using Lemma 2.1, we obtain

R11 � n � 1C
�
n � 1 �

n � 2

2"

�
H 2
�

�
1C

.n � 2/"

2

�X
˛

nX
jD1

.ˆ˛1j /
2

� n � 1C
�
n � 1 �

n � 2

2"

�
H 2
�

�
1C

.n � 2/"

2

�n � 1
n
jˆj2:
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Hence, R11 C 2ˇjˆj2 � n � 1 follows once we solve8̂<̂
:

n � 1 �
n � 2

2"
� 0;

2ˇn

n � 1
� 1 �

.n � 2/"

2
� 0;

which amounts to
n � 2

2.n � 1/
� " �

� 2ˇn
n � 1

� 1
� 2

n � 2
:

These two conditions are compatible if and only if

n � 2

2.n � 1/
�

� 2ˇn
n � 1

� 1
� 2

n � 2
;

which is equivalent to imposing ˇ � n=8, as claimed.

Next, following Remark 2.3, we can couple (3.5) with inequality (2.17) (that holds for ˇ
satisfying (2.3)) to infer the compactness of M n whenever

n

8
�

1

n � 2
.with < if n D 3/;

which entails n � 4. To reach the conclusion for each n � 6, we observe that the weight uˇ

in each integral of (2.17) plays no role in the argument leading to the compactness of M n,
described in Claim 2 in the proof of Theorem 1.1. In other words, one may choose

' D u
ˇC�
2  ; � 2 R;

as test function in (2.13) to get an inequality like (2.17) with u� in place of uˇ , provided that ˇ
belongs to a suitable interval J� . Notice that  is still a g-geodesic with g D u2ˇ g. As a matter
of fact, the choice � D 0 was already considered in [7,26], see also (4) in Remark 1.2. In view
of Claim 5, we may apply [26, Corollary 1] or [7, Theorem 1.1] to conclude thatM n is compact
provided

ˇ <
4

n � 1
if n � 4:

The inequality n
8
< 4
n�1

holds if and only if n � 6, concluding the proof. It turns out that one
of the values of � which maximize supJ� is precisely � D 0.

Remark 3.2. The proof of (3.5) differs from the corresponding ones in Theorems 1.1
and 1.3. More precisely, unlike (2.8) and due to the presence of the parameter � , in deriving
(3.7), we implicitly set � D 1. In dimension n � 7, this choice is indeed optimal for the range
of ˇ (and thus leads to no admissible ˇ for any � 2 .0; 1�) unless � is larger than some value
depending on n, an assumption that we would rather avoid. Note that, by setting � D 1, we
make no use of the polynomial Pn;p;H;� . In other words, the inequality jˆj2 � b2 only appears
in the construction of the conformal factor u, while it plays no role in getting (3.5). This was
quite unexpected to us.
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