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OPTIMAL DISTRIBUTED CONTROL FOR A

CAHN–HILLIARD–DARCY SYSTEM WITH MASS SOURCES,

UNMATCHED VISCOSITIES AND SINGULAR POTENTIAL

Marco Abatangelo1, Cecilia Cavaterra1,2, Maurizio Grasselli3

and Hao Wu4,*

Abstract. We study a Cahn–Hilliard–Darcy system with mass sources, which can be considered as
a basic, though simplified, diffuse interface model for the evolution of tumor growth. This system is
equipped with an impermeability condition for the (volume) averaged velocity u as well as homogeneous
Neumann boundary conditions for the phase function φ and the chemical potential µ. The source term
in the convective Cahn–Hilliard equation contains a control R that can be thought, for instance, as a
drug or a nutrient in applications. Our goal is to study a distributed optimal control problem in the
two dimensional setting with a cost functional of tracking-type. In the physically relevant case with
unmatched viscosities for the binary fluid mixtures and a singular potential, we first prove the existence
and uniqueness of a global strong solution with φ being strictly separated from the pure phases ±1.
This well-posedness result enables us to characterize the control-to-state mapping S : R 7→ φ. Then we
obtain the existence of an optimal control, the Fréchet differentiability of S and first-order necessary
optimality conditions expressed through a suitable variational inequality for the adjoint variables.
Finally, we prove the differentiability of the control-to-costate operator and establish a second-order
sufficient condition for the strict local optimality.
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1. Introduction

Consider a mixture of two immiscible and incompressible fluids contained between two flat parallel plates
that are separated by a narrow gap, i.e., a Hele–Shaw cell. The motion of such a binary fluid flow is driven
by the pressure and by the capillary forces acting on the free interface separating the two components. A
reasonable model for this phenomenon is based on the diffuse-interface approach (see [1, 2] and references
therein). For a schematic illustration in two dimensions, we refer to Figure 1. In this framework, the relative
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concentration difference of the two fluids, say the phase field variable φ, is governed by an advective Cahn–
Hilliard equation, while the (volume) averaged fluid velocity u satisfies Darcy’s law that also contains the
Korteweg force accounting for capillary effects. More precisely, assuming that the mixture density is a constant
everywhere (set to be one for simplicity) except in the gravitational term, we have the following coupled system:

ν(φ)u = −∇P + µ∇φ+ ρ(φ)g,

divu = 0,

φt + div (φu) = ∆µ,

µ = −∆φ+Ψ′(φ),

in Ω× (0, T ). (1.1)

Here, Ω ⊂ R2 is assumed to be a bounded domain with smooth boundary ∂Ω, and T ∈ (0,+∞) is a given final
time. Besides, ν = ν(φ) is the kinematic viscosity that may depend on the composition of the mixture and ρ(φ)g
denotes the gravity force. Other physical constants in the system (1.1) have been set equal to one for the sake
of simplicity. We denote by µ the chemical potential, which is the Fréchet derivative of the Ginzburg–Landau
free energy functional

E(φ) =
∫
Ω

(1
2
|∇φ|2 +Ψ(φ)

)
dx.

The nonlinear function Ψ represents the physically relevant Flory–Huggins potential

Ψ(s) =
Θ

2

[
(1 + s) ln(1 + s) + (1− s) ln(1− s)

]
− Θ0

2
s2, s ∈ (−1, 1), (1.2)

where Θ > 0 denotes the absolute temperature of the binary mixture and Θ0 > Θ is the critical temperature.
We recall that the singular potential Ψ accounts for the competition between the Gibbs–Boltzmann convex
mixing entropy (i.e., the logarithmic terms) and demixing (anti-convex) effects, that is, the essence of phase
separation phenomena. Indeed, when 0 < Θ < Θ0, Ψ has a double well structure with two minima between the
pure phases −1 and 1.

System (1.1), known as the Boussinesq–Hele–Shaw–Cahn-Hilliard system, can also be obtained as an approx-
imation of the Navier–Stokes–Cahn–Hilliard system for binary fluids, when the viscous forces dominate the
advective-inertial forces (see, for instance, [1, 3] and references therein). The standard boundary and initial
conditions for (1.1) are the following{

u · n = ∂nµ = ∂nφ = 0, on ∂Ω× (0, T ),

φ|t=0 = φ0, in Ω.
(1.3)

Here, n = n(x) is the unit outward normal vector to the boundary ∂Ω and we denote by ∂n the outward normal
derivative on ∂Ω.

Neglecting the gravity force ρ(φ)g, system (1.1) subject to (1.3) has recently been analyzed in [4], where a
nice introduction to the model as well as a detailed story of the related theoretical results can be found (see also
[5–7] and references therein and [8, 9] for nonlocal models). First of all, the existence of a global weak solution
can be obtained by suitably modifying the argument used in [5] (see [4], Thm. 3.2). Then, in dimension two, the
author proved a conditional uniqueness for weak solutions as well as the existence and uniqueness of a global
strong solution, while in dimension three he showed that the initial boundary value problem admits a unique
local strong solution (or global if the initial datum is small enough). This is the state-of-the-art of this problem
without further simplifications like, e.g., constant kinematic viscosity or a smooth (polynomial) approximation
of Ψ (see, e.g., [6, 7, 10]). We recall that in the latter case, uniqueness of global weak solutions in two dimensions
has been obtained in [4], Theorem 4.3. On the other hand, it is worth mentioning that a smooth polynomial
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Figure 1. A diffuse-interface description of two-phase flows in a bounded domain Ω ⊂ R2.

approximation of Ψ cannot guarantee that the phase function φ takes its values in the physical range [−1, 1]
throughout the evolution.

System (1.1) serves as an efficient, simplified model for incompressible binary fluids moving through a porous
medium. The variable viscosity is physically interesting as it is closely related to the well-known Saffman–Taylor
instability phenomenon. When suitable mass sources are taken into account, the system (1.1) can be interpreted
as a simplified model of avascular, vascular and metastasis stages of solid tumour growth (see, e.g., [11–13]).
In this context, the phase function φ stands for the difference in volume fractions, where φ = 1 represents the
tumor phase and φ = −1 represents the healthy tissue phase. More precisely, we have the following system
(neglecting w.l.o.g. the gravitational force)

ν(φ)u = −∇P + µ∇φ,
divu = S,

φt + div (φu) = ∆µ+ S +R,

µ = −∆φ+Ψ′(φ),

in Ω× (0, T ). (1.4)

Here, the source terms S and S̃ := S + R represent possible inter-component mass exchanges as well as gains
due to proliferation of cells and loss due to cell death. This system, also known as the Cahn–Hilliard–Darcy
system in the literature, was analyzed in [14] in the easier case that ν is a positive constant, Ψ is a double-
well polynomial potential, R = 0 and S is a given source depending on space and time. Some well-posedness
results were obtained and, in dimension two, the long-time behavior of the global solutions was investigated
(i.e., the existence of a minimal pullback attractor and the convergence to a single equilibrium as time goes
to infinity). More recently, under the same assumptions on ν and Ψ, an optimal control problem with respect
to the mass source R in dimension two has been studied in [15]. The quantity R has been taken as a control
variable representing an external mass source (e.g., a drug or a nutrient) that can be supplied to the system
to monitor φ (the size of the tumor). Given a final time T > 0, the goal of [15] was to analyze the following
distributed optimal control problem

Minimize J (φ,R) ≜
α1

2
∥φ(T )− φΩ∥2L2(Ω) +

α2

2
∥φ− φQ∥2L2(Q) +

β

2
∥R∥2L2(Q)

subject to the state system (1.3)–(1.4), where R belongs to a suitable set Uad of admissible controls. Here,
Q = Ω× (0, T ), α1, α2 and β are nonnegative constants (not all identically zero), φΩ, φQ denote some prescribed
target functions defined in Ω and Q, respectively. The ratios between the parameters α1, α2 and β indicate
the importance of the individual targets. In [15], the authors first proved that the optimal control problem
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admits a solution. Then they showed that the control-to-state operator S : R 7→ φ is Fréchet differentiable
between suitable Banach spaces and derived the first-order necessary optimality conditions in terms of the
adjoint variables. However, second-order sufficient optimality conditions have not been derived.

In this study, our aim is to generalize the results of [15] on the optimal control problem to the physically
relevant case of a variable viscosity depending on φ and a singular potential like (1.2). More precisely, we
establish the following results:

(1) The existence of an optimal control (see Thm. 4.3);

(2) The Fréchet differentiability of the control-to-state operator S (see Prop. 5.4) and the first-order necessary
optimality conditions expressed through a variational inequality for the adjoint variables (see Thm. 5.9);

(3) Differentiability of the control-to-costate operator T (see Prop. 6.3) and a second-order sufficient condition
for the strict local optimality (see Thm. 6.5).

In order to achieve our goal, a fundamental step is to prove the existence and uniqueness of a global strong
solution (u, P, φ, µ) with φ being strictly separated from the pure phases ±1 (see Thm. 3.5). The validity of the
strict separation property enables us to deal with the singular potential Ψ and its derivatives, which leads to
further regularity properties on the phase function φ (cf. [5, 16] and references therein). These will be crucial
to obtain differentiability properties of the associated control-to-state operator S and the control-to-costate
operator T . We note that the second-order analysis is challenging from the mathematical point of view as it
requires that the solution mapping is twice continuously differentiable between suitable Banach spaces.

We conclude the Introduction by mentioning that different choices of the mass source have appeared in recent
years in the study of material science, image processing and biological applications [17, 18]. In particular, the
Cahn–Hilliard–Darcy system (1.4) with source terms depending on φ, suitable boundary conditions and constant
viscosity, has recently been studied in [19, 20] (see also [21, 22] for multi-species models). A future goal could be
the analysis of suitable optimal control problems with sources depending on φ (cf. [23, 24] for a Brinkman version
with nutrient) as well as to extend our analysis to nonlocal variants of the system (1.4). Another interesting
issue would be the analysis of sparse optimal control problems (see, e.g., [25, 26] and references therein).

Plan of the paper. In Section 2, we introduce the functional settings and some analytic tools. In Section 3, we
define the control-to-state operator S and the set of admissible controls. In particular, we state the existence and
uniqueness of a strong (and strictly separated) solution, and then derive a continuous dependence estimate for
S. The existence of an optimal control is obtained in Section 4. In Section 5, we establish first-order optimality
necessary conditions, while in Section 6 we prove a second-order sufficient optimal condition for strict local
optimality. Appendix A is an appendix that provides the proof for the existence and uniqueness of a strong
solution.

2. Preliminaries

Let X be a real Banach or Hilbert space. Its dual space is indicated by X ′, and the duality pairing between
X and X ′ is denoted by ⟨·, ·⟩X′,X . Given an interval I of R+, we introduce the function space Lp(I;X) with
p ∈ [1,+∞], which consists of Bochner measurable p-integrable functions with values in X. The boldface letter
X denotes the space for vector (or matrix) valued functions. For the standard Sobolev spaces, we use the
notation W k,p := W k,p(Ω) for any p ∈ [1,+∞], k ∈ N, equipped with the norm ∥ · ∥Wk,p(Ω). When k = 0, we
denote W 0,p(Ω) by Lp(Ω), while for p = 2, we denote Wm,2(Ω) by Hm(Ω). For convenience, we set

H2
N (Ω) = {u ∈ H2(Ω) : ∂nu = 0 a.e. on ∂Ω}.

For every f ∈ (H1(Ω))′, we denote by f its generalized mean value over Ω such that

f = |Ω|−1⟨f, 1⟩(H1)′,H1 .
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If f ∈ L1(Ω), then we simply have f = |Ω|−1
∫
Ω
f dx. The Poincaré-Wirtinger inequality gives

∥f − f∥L2(Ω) ≤ CP ∥∇f∥L2(Ω), ∀ f ∈ H1(Ω), (2.1)

where CP is a positive constant depending only on the spatial dimension and Ω. Then we introduce the linear
spaces

L2
0(Ω) = {u ∈ L2(Ω) : u = 0}, V0 = {u ∈ H1(Ω) : u = 0}, V ′

0 = {u ∈ (H1(Ω))′ : u = 0},

and the linear operator A ∈ L(H1(Ω), (H1(Ω))′) defined by

⟨Au, v⟩ =
∫
Ω

∇u · ∇v dx, ∀u, v ∈ H1(Ω).

It follows that the restriction of A from V0 onto V ′
0 is an isomorphism. In particular, A is positively defined on V0

and self-adjoint. We denote its inverse map by N = A−1 : V ′
0 → V0. Note that, for every f ∈ V ′

0 , u = N f ∈ V0
is the unique weak solution to the Neumann problem{

−∆u = f, in Ω,

∂nu = 0, on ∂Ω.

For any f ∈ V ′
0 , we set ∥f∥V ′

0
= ∥∇N f∥L2(Ω).

Next, we introduce the Hilbert space for the solenoidal vector field u

Hσ = {u ∈ L2(Ω) : divu = 0 a.e. in Ω, u · n = 0 a.e. on ∂Ω},

endowed with the usual norm ∥ · ∥L2 . Let Π be the orthogonal Leray projection from L2(Ω) onto Hσ. It is well
known that every u ∈ L2(Ω) can be uniquely represented as u = v + ∇P with v = Πu ∈ Hσ and P ∈ V0.
We recall that Π is a bounded operator from Wk,p(Ω) (1 < p < ∞, k ≥ 0) into itself. Besides, the following
inequality holds (see e.g., [27], Thm. 3.8)

∥u∥H1(Ω) ≤ C
(
∥curlu∥L2(Ω) + ∥u∥L2(Ω)

)
, ∀u ∈ H1(Ω) ∩Hσ, (2.2)

for some positive constant C independent of u.
In order to handle the mass source term S, we recall the following result on Bogovski’s operator (see e.g.,

[28], Lem. 2.1.1):

Lemma 2.1. Let Ω ⊂ R2 be a bounded Lipschitz domain, p ∈ (1,+∞). For any g ∈ Lp(Ω) with
∫
Ω
g dx = 0,

there exists at least one vector v ∈ W1,p(Ω) satisfying

div v = g a.e. in Ω, v = 0 a.e. on ∂Ω.

Moreover, it holds ∥∇v∥Lp(Ω) ≤ C∥g∥Lp(Ω), where C is a positive constant only depending on Ω and p.

To estimate the pressure term in Darcy’s equation, we shall use the following lemma on the homogeneous
Neumann problem with a non-constant coefficient (see [4], Thm. 2.1).

Lemma 2.2. Let Ω ∈ R2 be a bounded domain with smooth boundary ∂Ω. Assume that K ∈ C1(R) satisfies
0 < K ≤ K(s) ≤ K for all s ∈ R, where K and K are given positive constants. Consider the boundary value
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problem {
−div (K(θ)∇u) = f, in Ω,

∂nu = 0, on ∂Ω.
(2.3)

Then we have

(1) Let θ be a measurable function. For every f ∈ V ′
0 , there exists a unique weak solution u ∈ V0 to (2.3) such

that

(K(θ)∇u,∇v) = ⟨f, v⟩V ′
0 ,V0

, ∀ v ∈ V0.

(2) Let θ ∈ W 1,p(Ω), with p > 2 and f ∈ L2
0(Ω). Then, u ∈ H2(Ω) and ∂nu = 0 almost everywhere on ∂Ω.

Moreover, there exists a positive constant C such that

∥u∥H2(Ω) ≤ C
(
1 + ∥θ∥2W 1,4(Ω)

)
∥f∥L2(Ω).

Throughout the paper, we denote by C a generic positive constant depending only on Ω and on structural
quantities. The constant C may vary from line to line and even within the same line. Specific dependence will
be explicitly pointed out if necessary. Besides, for the sake of convenience, we set

Q = Ω× (0, T ), Σ = ∂Ω× (0, T ),

and

Qt = Ω× (0, t), Σt = ∂Ω× (0, t), for any t ∈ (0, T ).

3. The control-to-state operator

The goal of this section is to define the control-to-state operator. To this end, we prove the existence and
uniqueness of a strictly separated solution and its continuous dependence on the control.

Let us first introduce some basic assumptions on the structure of the state problem (1.3)–(1.4).

(A1) The free energy density Ψ can be decomposed into the form

Ψ(s) = F (s)− Θ0

2
s2, ∀ s ∈ [−1, 1], (3.1)

where the function F : [−1, 1] 7→ R satisfies F ∈ C([−1, 1]) ∩ C2(−1, 1),

lim
s→−1+

F ′(s) = −∞, lim
s→1−

F ′(s) = +∞,

F ′′(s) ≥ Θ > 0, ∀ s ∈ (−1, 1),

with the constants Θ0, Θ fulfilling α := Θ0 − Θ > 0. In addition, there exists κ ∈ (0, 1) such that F ′′

is non-decreasing in [1− κ, 1) and non-increasing in (−1,−1 + κ]. Without loss of generality, we assume
F (0) = F ′(0) = 0. Moreover, we extend F (s) = +∞ for all |s| > 1.

(A2) The viscosity coefficient ν = ν(s) belongs to C3(R) and satisfies

0 < ν∗ ≤ ν(s), ν′(s), ν′′(s), ν(3)(s) ≤ ν∗, ∀ s ∈ R,

where ν∗ and ν∗ are two given positive constants.
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(A3) The external mass source terms satisfy

S ∈ L2(0, T ;V0) ∩H1(0, T ;L2(Ω)), R ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′).

Remark 3.1. The assumption (A1) is fulfilled in the physically relevant case (1.2) with

F (s) =
Θ

2
[(1 + s) ln(1 + s) + (1− s) ln(1− s)] , ∀ s ∈ [−1, 1]. (3.2)

Note that the case Θ0 −Θ ≤ 0 is easier, because the potential Ψ is now convex and we can simply consider Ψ
without the decomposition (3.1). However, no phase separation takes place in this case.

3.1. Weak and strong solutions

We first state a preliminary result on the existence of a global weak solutions to problem (1.3)–(1.4), which
also holds in dimension three.

Proposition 3.2 (Weak solutions in dimension two and three). Let Ω ⊂ Rd (d ∈ {2, 3}) be a bounded domain
with smooth boundary ∂Ω and T > 0. Assume that (A1)–(A2) are satisfied. For any initial datum φ0 ∈ H1(Ω)
with F (φ0) ∈ L1(Ω), |φ0| < 1, and any mass source terms S ∈ L2(0, T ;L2

0(Ω)), R ∈ L∞(0, T ;L2(Ω)) with the
following constraint ∣∣∣∣φ0 +

∫ t

0

R(τ) dτ

∣∣∣∣ ≤ 1− δ0, ∀ t ∈ [0, T ], (3.3)

for some δ0 ∈ (0, 1), problem (1.3)–(1.4) admits at least one weak solution (u, P, φ, µ) on [0, T ] in the following
sense:

(1) The solution (u, P, φ, µ) fulfills the regularity properties

u ∈ L2(0, T ;L2(Ω)) ∩ Ls(0, T ;H1(Ω)),

P ∈ Lq1(0, T ;V0) ∩ Lq2(0, T ;H2(Ω)),

φ ∈ C([0, T ];H1(Ω)) ∩ L4(0, T ;H2(Ω)) ∩ L2(0, T ;W 2,p(Ω)) ∩H1(0, T ; (H1(Ω))′),

φ ∈ L∞(Ω× (0, T )) with |φ(x, t)| < 1 a.e. in Ω× (0, T ),

µ ∈ L2(0, T ;H1(Ω)), Ψ′(φ) ∈ L2(0, T ;Lp(Ω)),

where (s, q1, q2, p) = (6/5, 8/5, 8/7, 6) if d = 3, (s, q1, q2, p) ∈ [1, 4/3)× [1, 2)× [1, 6/5)× [2,+∞) if d = 2.

(2) The solution (u, P, φ, µ) satisfies

ν(φ)u = −∇P + µ∇φ, a.e. in Q,

divu = S, a.e. in Q,

⟨φt, ψ⟩(H1)′,H1 − (φu,∇ψ) + (∇µ,∇ψ) = (S +R,ψ), ∀ψ ∈ H1(Ω), for a.a. t ∈ (0, T ),

µ = −∆φ+Ψ′(φ), a.e. in Q.

Moreover, u · n = ∂nφ = 0 almost everywhere on Σ and φ(·, 0) = φ0 almost everywhere in Ω.

(3) The solution (u, P, φ, µ) satisfies the energy identity

d

dt
E(φ) + ∥

√
ν(φ)u∥2L2(Ω) + ∥∇µ∥2L2(Ω) =

∫
Ω

S[P + (1− φ)µ] dx+

∫
Ω

Rµdx,

for almost all t ∈ (0, T ).
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Remark 3.3. Proposition 3.2 can be proved by combining the arguments in [4, 5, 14, 29] and we omit the details
here. When S = R = 0, the authors of [5] established the existence of global weak solutions in both two and three
dimensions for the case with a constant viscosity and a singular potential like in (A1). In the later contribution
[4], the result was extended to the case with a variable viscosity satisfying (A2). On the other hand, in [14] the
authors analyzed problem (1.3)–(1.4) with a constant viscosity, a regular potential Ψ(s) = (1/4)(s2 − 1)2 and
external mass sources S ̸= 0, R = 0. Recently, the author of [29] further considered the case with a constant
viscosity and a singular potential Ψ satisfying (A1) as well as nonzero mass sources like in Proposition 3.2.

Unfortunately, the regularity of weak solutions is not enough to study the optimal control problem (in
particular, the differentiability of the state-to-control operator etc). Moreover, because of the variable viscosity,
uniqueness of weak solutions obtained in Proposition 3.2 remains an open problem even in two dimensions (cf.
[4], Sect. 4). On the other hand, due to difficulties from Darcy’s equation, the existence and uniqueness of a
global strong solution to problem (1.3)–(1.4) for arbitrary regular initial data are still out of reach in three
dimensions (cf. [4, 5, 7]).

Hence, we confine ourselves to the two dimensional setting so that we are able to establish the strong well-
posedness of problem (1.3)–(1.4). For this purpose, we impose the following additional assumptions on the
singular potential Ψ (cf. [4, 5]):

(A1)′ The function F : [−1, 1] 7→ R satisfies F ∈ C([−1, 1]) ∩ C5(−1, 1) and there exists κ ∈ (0, 1) such that

F (3)(s)s ≥ 0, F (4)(s) > 0, ∀ s ∈ (−1,−1 + κ] ∪ [1− κ, 1).

Besides, it holds

|F ′′(s)| ≤ CeC|F ′(s)|, ∀ s ∈ (−1, 1), (3.4)

where C is a positive constant independent of s.

Remark 3.4. For simplicity, we take the parameter κ in (A1) and (A1)′ to be the same. It is easy to verify
that the Gibbs–Boltzmann mixing entropy (3.2) also satisfies (A1)′.

We can prove the following strong well-posedness result.

Theorem 3.5 (Strong solutions in dimension two). Let Ω ⊂ R2 be a bounded domain with smooth boundary
∂Ω and T > 0. Assume that (A1), (A1)′ and (A2) are satisfied. If φ0 ∈ H2

N (Ω) is such that φ0 ∈ (−1, 1),
µ̃0 = −∆φ0 + F ′(φ0) ∈ H1(Ω), and the mass sources satisfy (A3) with the constraint (3.3), then problem
(1.3)–(1.4) admits a unique strong solution (u, P, φ, µ) on [0, T ] such that

u ∈ L∞(0, T ;H1(Ω)),

P ∈ L∞(0, T ;H2(Ω) ∩ L2
0(Ω)),

φ ∈ C([0, T ];H3(Ω)) ∩ L2(0, T ;H5(Ω)) ∩H1(0, T ;H1(Ω)),

µ ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ; (H1(Ω))′),

Ψ′′(φ) ∈ L∞(0, T ;Lp(Ω)),

for any p ∈ [2,+∞). The strong solution satisfies the system (1.4) almost everywhere in Q, while u ·n = ∂nµ =
∂nφ = 0 a.e. on Σ and φ(·, 0) = φ0 in Ω. Moreover, there exists some constant δ1 ∈ (0, 1) such that

∥φ(t)∥C(Ω) ≤ 1− δ1, ∀ t ∈ [0, T ]. (3.5)
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Remark 3.6. The strict separation property (3.5) is crucial, since it yields that the phase function φ stays
away from the pure phases ±1 in the whole interval [0, T ]. As a direct consequence, the potential Ψ is no longer
singular along the evolution for strong solutions and max0≤j≤5

∥∥Ψ(j)(φ)
∥∥
C(Q)

is bounded.

Remark 3.7. The growth condition (3.4) allows us to derive a nonlinear estimate involving eC|F ′(φ)| and
then apply the Trudinger–Moser inequality (in two dimensions) to show the validity of the instantaneous strict
separation property (3.5), see Lemma A.1 below, cf. also [5, 30]. Concerning the single Cahn–Hilliard equation,
the same strict separation property for φ was established in [16], with a more direct proof, for a larger class of
singular potentials satisfying the growth condition

|F ′′(s)| ≤ CeC|F ′(s)|σ , ∀ s ∈ (−1, 1), σ ∈ [1, 2), (3.6)

where C is a positive constant independent of s. Further progress in this direction was made in the recent work
[31], where the authors proposed a weaker assumption such that, as δ → 0+,

1

F ′(1− 2δ)
= O

(
1

| ln(δ)|σ

)
,

1

F ′(−1 + 2δ)
= O

(
1

| ln(δ)|σ

)
, for some σ > 1/2. (3.7)

The new condition (3.7) relaxes previous assumptions on the entropy function, since it only concerns asymptotic
behavior of its first derivative F ′ near the endpoints ±1, but does not involve any pointwise relations between
F ′ and F ′′ as in (3.4) and (3.6). Then the strict separation property for φ was obtained by a different method
based on De Giorgi’s iteration scheme applied to the elliptic equation µ = −∆φ+Ψ′(φ), see [31], Theorem 3.1
for details. It is easy to check that the assumption (3.7) is satisfied by the logarithmic entropy (3.2) and indeed
accommodates entropy densities with milder singularities. Exploiting the argument for [31], Theorem 3.1, we
can replace the assumption (3.4) in Theorem 3.5 by (3.7) and recover the strict separation property (3.5). As
a consequence, all results obtained in this paper are valid under the weaker assumption (3.7) as well. We leave
the details to interested readers.

We postpone the proof of Theorem 3.5 to Appendix A. Next, we report a result on the continuous dependence
of strong solutions with respective to the control R. This will play a crucial role in the study of our optimal
control problem.

Proposition 3.8 (Continuous dependence in dimension two). Let (ui, Pi, φi, µi), i = 1, 2, be two different
strong solutions to problem (1.3)–(1.4) associated with the initial datum φ0 and the mass sources S, Ri (i =
1, 2) satisfying the assumptions of Theorem 3.5. Then there exists a constant C > 0, which depends only on
∥φ0∥H2(Ω), ∥µ̃0∥H1 , Ω, T , ∥S∥L2(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) and ∥Ri∥L2(0,T ;H1(Ω))∩H1(0,T ;(H1(Ω))′), such that the
following estimate holds:

∥φ1 − φ2∥H1(0,t;L2(Ω))∩C([0,t];H2(Ω))∩L2(0,t;H4(Ω)) + ∥µ1 − µ2∥L2(0,t;H2(Ω))

+ ∥u1 − u2∥L2(0,t;L4(Ω)) + ∥P1 − P2∥L2(0,t;W 2,4/3(Ω))

≤ C∥R1 −R2∥L2(0,t;L2(Ω)), ∀ t ∈ (0, T ]. (3.8)

Proof. Based on Theorem 3.5 and Remark 3.6, we can prove Proposition 3.8 by applying an argument similar
to that in [15], Lemma 2.3. Below we sketch the main steps and present necessary modifications due to the
variable viscosity in (1.4). Define

R = R1 −R2, φ = φ1 − φ2, µ = µ1 − µ2, u = u1 − u2, P = P1 − P2.
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It follows that the above differences satisfy

ν(φ1)u = −∇P + µ∇φ1 + µ2 ∇φ− (ν(φ1)− ν(φ2))u2, a. e. in Q, (3.9)

divu = 0, a. e. in Q, (3.10)

∂tφ−∆µ = R− Sφ− u · ∇φ1 − u2 · ∇φ, a. e. in Q, (3.11)

µ = −∆φ+Ψ′(φ1)−Ψ′(φ2), a. e. in Q, (3.12)

∂nφ = ∂nµ = u · n = 0, a. e. on Σ, (3.13)

φ|t=0 = 0, a. e. in Ω. (3.14)

Moreover, we have

−∆P = ν′(φ1)∇φ1 · u+ (ν(φ1)− ν(φ2))S +∇(ν(φ1)− ν(φ2)) · u2

− div(µ∇φ1)− div(µ2 ∇φ), a. e. in Q, (3.15)

with the boundary condition ∂nP = 0 almost everywhere on Σ and P (t) = 0 for almost all t ∈ (0, T ).
For any t ∈ (0, T ], following the arguments for [15],(2.21), and (2.26) and using (A2), we easily get∫ t

0

∥µ(s)∥2H1(Ω) ds ≤ C1

∫ t

0

(∥∇µ(s)∥2L2(Ω) + ∥φ(s)∥2L2(Ω)) ds, (3.16)

and

1

2
∥φ(t)∥2L2(Ω) + (1− γ)

∫ t

0

∥∆φ(s)∥2L2(Ω) ds

≤ ν∗
8

∫ t

0

∥u(s)∥2L2(Ω) ds + C

∫ t

0

∥R(s)∥2L2(Ω) ds

+ C (1 + γ−1)

∫ t

0

(
1 + ∥u2(s)∥L4(Ω) + ∥S(s)∥L2(Ω)

)
∥φ(s)∥2H1(Ω) ds,

for any γ ∈ (0, 1). Next, multiplying (3.11) by µ and (3.9) by u, adding the two resulting identities and integrating
over Qt, we obtain

1

2
∥∇φ(t)∥2L2(Ω) +

∫ t

0

∥∇µ∥2L2(Ω) ds +

∫ t

0

ν(φ1)|u|2 dxds

=

∫ t

0

Rµdxds +

∫
Qt

µ2 (u · ∇φ) dxds−
∫
Qt

µ(S φ + u2 · ∇φ) dx ds

−
∫
Qt

(Ψ′(φ1)−Ψ′(φ2)) ∂tφdx ds−
∫
Qt

(ν(φ1)− ν(φ2))u2 · udx ds. (3.17)

Thanks to (A2), the fifth term on the right-hand side of (3.17) can be estimated as follows∣∣∣∣∫
Qt

(ν(φ1)− ν(φ2))u2 · udx ds

∣∣∣∣
≤

∫
Qt

∣∣∣∣∫ 1

0

ν′(τφ1 + (1− τ)φ2)φdτ

∣∣∣∣ |u2||u|dx ds
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≤ ν∗
∫ t

0

∥φ(s)∥L4(Ω)∥u2(s)∥L4(Ω)∥u(s)∥L2(Ω) ds

≤ ν∗
8

∫ t

0

∥u(s)∥2L2(Ω) ds+ C

∫ t

0

∥u2(s)∥2L4(Ω)∥φ(s)∥
2
H1(Ω) ds.

The other four terms can be treated similarly as in [15], (2.28)–(2.36) by using the strict separation property
(3.5) and Remark 3.6. Combining these estimates and (3.16)–(3.17), taking γ ∈ (0, 1) to be sufficiently small,
we arrive at

1

2
∥φ(t)∥2H1(Ω) +

ν∗
4

∫ t

0

∥u∥2L2(Ω) ds+
1

2

∫ t

0

∥∆φ∥2L2(Ω) ds+
1

2

∫ t

0

∥∇µ∥2L2(Ω) ds

≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds + C

∫ t

0

G1(s) ∥φ(s)∥2H1(Ω) ds,

where

G1(·) = 1 + ∥u2(·)∥2L4(Ω) + ∥µ2(·)∥2H1(Ω) + ∥S(·)∥2L2(Ω) ∈ L1(0, T ).

Using standard elliptic estimates and (3.16), we deduce from Gronwall’s lemma that for any t ∈ [0, T ], it holds

∥φ∥2C([0,t];H1(Ω))∩L2(0,t;H2(Ω)) + ∥µ∥2L2(0,t;H1(Ω)) + ∥u∥2L2(0,t;L2(Ω))

≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds. (3.18)

Next, from the Sobolev embedding theorem, (3.15) and the elliptic estimate for the Neumann problem, we
further have

∥∇P∥L2(0,t;L4(Ω)) ≤ C ∥P∥L2(0,t;W 2,4/3(Ω))

≤ C∥ν′(φ1)∇φ1 · u∥L2(0,t;L4/3(Ω)) + C∥(ν(φ1)− ν(φ2))S∥L2(0,t;L4/3(Ω))

+ C∥∇(ν(φ1)− ν(φ2)) · u2∥L2(0,t;L4/3(Ω))

+ C ∥∇µ · ∇φ1 + µ2∆φ∥L2(0,t;L4/3(Ω))

+ C ∥∇µ · ∇φ1 + µ2∆φ∥L2(0,t;L4/3(Ω)). (3.19)

The last two terms on the right-hand side of (3.19) can be estimated as in [15], (2.39) and (2.40), that is,

∫ t

0

(
∥∇µ · ∇φ1 + µ2∆φ∥2L4/3(Ω) + ∥∇µ · ∇φ1 + µ2∆φ∥2L4/3(Ω)

)
ds ≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds.

Besides, from (3.18) we can deduce that

∫ t

0

∥ν′(φ1)∇φ1 · u∥2L4/3(Ω) ds ≤ ν∗
∫ t

0

∥∇φ1∥2L4∥u∥2 ds ≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds,
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∫ t

0

∥(ν(φ1)− ν(φ2))S∥2L4/3(Ω) ds

≤ ∥S∥2C([0,t];L2(Ω))

∫ t

0

∥∥∥∥∫ 1

0

ν′(τφ1 + (1− τ)φ2)φdτ

∥∥∥∥2
L4(Ω)

ds

≤ C

∫ t

0

∥φ(s)∥2L4(Ω) ds ≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds,

and ∫ t

0

∥∇(ν(φ1)− ν(φ2)) · u2∥2L4/3(Ω) ds

≤ ∥u2∥2L∞(0,t;L4(Ω))

∫ t

0

∥ν′(ϕ1)∇φ∥2L2(Ω) ds

+ ∥u2∥2L∞(0,t;L4(Ω))

∫ t

0

∥∥∥∥∫ 1

0

ν′′(τφ1 + (1− τ)φ2)φdτ∇φ2

∥∥∥∥2
L2(Ω)

ds

≤ C

∫ t

0

∥φ(s)∥2H1(Ω) ds ≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds.

Collecting the above estimates, we find∫ t

0

∥P (s)∥2W 2,4/3(Ω) ds ≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds,

which combined with (A2), (3.9) and (3.18) yields

∫ t

0

∥u(s)∥2L4(Ω) ds ≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds.

Finally, using the same argument as in [15], pp. 502–503, we can derive the following inequality

1

2
∥∆φ(t)∥2L2(Ω) +

1

2

∫ t

0

∥∆2φ(s)∥2L2(Ω) ds

≤ C

∫ t

0

G2(s)∥∆φ(s)∥2L2(Ω) ds+ C

∫ t

0

∥R(s)∥2L2(Ω) ds,

where

G2(·) = 1 + ∥S(·)∥2L2(Ω) + ∥u2(·)∥2L4(Ω) ∈ L1(0, T ).

An application of Gronwall’s lemma yields

∥∆φ∥2C([0,t];L2(Ω)) + ∥∆2φ∥2L2(0,t;L2(Ω)) ≤ C

∫ t

0

∥R(s)∥2L2(Ω) ds, ∀ t ∈ [0, T ].

The remaining part of (3.8) follows from the same arguments as for [15], (2.46)–(2.48).
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3.2. Admissible controls and the control-to-state operator

On account of Theorem 3.5, we can specify the settings for the optimal control problem.

(S1) The potential function Ψ satisfies (A1) and (A1)′.

(S2) The viscosity coefficient ν satisfies (A2), the external mass source S satisfies (A3).

(S3) The initial datum φ0 satisfies φ0 ∈ H2
N (Ω) and µ̃0 = −∆φ0 + F ′(φ0) ∈ H1(Ω).

Remark 3.9. When the spatial dimension is two, we infer from (S3) and Lemma A.1 (see Appendix) that

φ0 ∈ H3(Ω) and ∥φ0∥L∞ ≤ 1− δ̃ for some δ̃ ∈ (0, 1) depending on ∥µ̃0∥H1 , Ω and F . As a consequence, it holds

|φ0| ≤ 1− δ̃ < 1.

Let us introduce the space

U =
{
R(x, t) : R ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′)

}
,

whose (equivalent) norm is given by

∥R∥U = ∥R∥L2(0,T ;H1(Ω)) + ∥∂tR∥L2(0,T ;(H1(Ω))′).

Thanks to Remark 3.9, for any given initial datum φ0 satisfying (S3), we can fix some positive constant

δ0 ∈
(
0,

1

2
(1− |φ0|)

)
and set

r0 =
(
1− 2δ0 − |φ0|

)
|Ω| > 0, r̃0 = r0 + δ0|Ω| > 0. (3.20)

Then the set of admissible controls is defined as follows:

Definition 3.10. Let φ0 be an initial datum satisfying (S3). The set

Uad =
{
R ∈ U ∩ L∞(Q) : ∥R∥U ≤ r1, ∥R∥L1(Q) ≤ r0, Rmin ≤ R ≤ Rmax a.e. in Q

}
is referred to as the set of admissible controls for problem (1.3)–(1.4), where r1 ∈ (0,+∞) and r0 is given
by (3.20). Here, Rmin, Rmax ∈ L∞(Q) are two given functions with Rmin ≤ Rmax almost everywhere in Q.

Obviously, Uad is a bounded, convex and closed subset of the Banach space U ⊂ L2(Q). Throughout the
paper, we assume that Uad is nonempty. Moreover, in order to derive optimality conditions for the control
problem, we need to properly enlarge Uad and consider the open set

Ũ =
{
R ∈ U ∩ L∞(Q) : ∥R∥U < 2r1, ∥R∥L1(Q) < r̃0

}
such that Uad ⊂ Ũ .

Thanks to Theorem 3.5 and Proposition 3.8, we find that problem (1.3)–(1.4) admits a unique strong solution

(u, P, φ, µ) for every R ∈ Ũ (not only for admissible controls). This enables us to define the control-to-state
operator that maps the control function R to its associated state (u, P, φ, µ). Set the function spaces

X := C([0, T ];H3(Ω)) ∩ L2(0, T ;H5(Ω)) ∩H1(0, T ;H1(Ω)),

Y := C([0, T ];H2(Ω)) ∩ L2(0, T ;H4(Ω)) ∩H1(0, T ;L2(Ω)).

Then we have
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Proposition 3.11. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω and T > 0. Let the
assumptions (S1)–(S3) be satisfied.

(1) For any function R ∈ Ũ , the control-to-state operator given by

S : Ũ → X , R 7→ S(R) = φ, (3.21)

is well defined, where φ is the unique global strong solution to the state system (1.3)–(1.4) on [0, T ].

(2) There exist constants K1,K2 > 0 and δ̃1 ∈ (0, 1) that depend on Ω, T , ν∗, ν
∗, ∥φ0∥H2 , ∥µ̃0∥H1 , |φ0|, δ0,

∥S∥L2(0,T :H1(Ω))∩H1(0,T ;L2(Ω)), r1 and on the other parameters of the system, but not on the choice of R ∈ Ũ ,
such that

∥φ∥C([0,T ];H3(Ω))∩L2(0,T ;H5(Ω))∩H1(0,T ;H1(Ω)) + ∥u∥L∞(0,T ;H1(Ω)) + ∥P∥L∞(0,T ;H2(Ω))

+ ∥µ∥C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′) ≤ K1, (3.22)

∥φ∥C(Q) ≤ 1− δ̃1 and max
0≤j≤5

∥∥Ψ(j)(φ)
∥∥
C(Q)

≤ K2. (3.23)

(3) The control-to-state operator S is locally Lipschitz continuous as a mapping from Ũ into X equipped with
weaker topologies induced by L2(Q) and Y, respectively.

4. Existence of a globally optimal control

Assume in addition,

(S4) the target functions satisfy φΩ ∈ H1(Ω), φQ ∈ L2(Q);

(S5) the coefficients α1, α2 and β are nonnegative constants (not all equal to zero).

Let us consider the following optimal control problem:

Minimize J (φ,R) ≜
α1

2
∥φ(T )− φΩ∥2L2(Ω) +

α2

2
∥φ− φQ∥2L2(Q) +

β

2
∥R∥2L2(Q) (4.1)

subject to the following conditions:

� R is an admissible control, that is, R ∈ Uad;

� φ is the unique strong solution to problem (1.3)–(1.4) corresponding to R.

Then we introduce the following

Definition 4.1. Let R∗ ∈ Uad.
(1) R∗ is called a globally optimal control for problem (4.1), if J (S(R∗), R∗) ≤ J (S(R), R) for all R ∈ Uad.
(2) R∗ is called a locally optimal control for problem (4.1) in the sense of U , if there exists some λ > 0

such that J (S(R∗), R∗) ≤ J (S(R), R) for all R ∈ Uad with ∥R−R∗∥U ≤ λ.
Here, φ∗ = S(R∗) is called the associated globally (or locally) optimal state for R∗.

Remark 4.2. Proposition 3.11 states that the control-to-state operator S is well defined for every R ∈ Ũ .
Hence, we can reformulate the optimal control problem (4.1) and minimize the reduced cost functional

Ĵ (R) := J (S(R), R) over Uad, (4.2)
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and subject to the state system (1.3)–(1.4). For a given optimal control R∗, we also call the corresponding
unique strong solution (u∗, P ∗, φ∗, µ∗) to problem (1.3)–(1.4) the associated optimal state.

We begin the study of the optimal control problem (4.1) by showing the existence of a globally optimal
control.

Theorem 4.3. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω and T > 0. Let the
assumptions (S1)–(S5) be satisfied. The optimal control problem (4.1) admits at least one globally optimal
control R∗.

Proof. The conclusion can be proved by the direct method of calculus of variations. We work with the reduced
cost functional Ĵ (R). From the fact that Ĵ (R) ≥ 0 on Uad, we infer that its infimum J∗ := infR∈Uad

Ĵ (R)
exists. Besides, there exists a minimizing sequence {Rn}n∈N such that

lim
n→+∞

Ĵ (Rn) = J∗.

Since the set Uad is weakly (star) compact, we can find some R∗ ∈ Uad and a convergent subsequence {Rn}n∈N
(not relabelled for simplicity) such that Rn → R∗ weakly star in U . Denote the strong solutions of problem
(1.3)–(1.4) with the mass source term Rn by (un, Pn, φn, µn). Using the uniform bounds in Proposition 3.11
and standard compactness arguments, we can conclude that there exists (u∗, P ∗, φ∗, µ∗) satisfying

u∗ ∈ L∞(0, T ;H1(Ω)), P ∗ ∈ L∞(0, T ;H2(Ω) ∩ L2
0(Ω)),

φ∗ ∈ C([0, T ];H3(Ω)) ∩ L2(0, T ;H5(Ω)) ∩H1(0, T ;H1(Ω)),

µ∗ ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ; (H1(Ω))′),

such that up to a subsequence (again not relabelled for simplicity),

un → u∗ weakly star in L∞(0, T ;H1(Ω)),

Pn → P ∗ weakly star in L∞(0, T ;H2(Ω) ∩ L2
0(Ω)),

φn → φ∗ weakly in L2(0, T ;H5(Ω)) ∩H1(0, T ;H1(Ω)),

µn → µ∗ weakly in L2(0, T ;H3(Ω)) ∩H1(0, T ; (H1(Ω))′),

φn → φ∗ strongly in C([0, T ];H3−ϵ(Ω)) ∩ L2(0, T ;H5−ϵ(Ω)),

µn → µ∗ strongly in C([0, T ];H1−ϵ(Ω)) ∩ L2(0, T ;H3−ϵ(Ω)),

for any ϵ ∈ (0, 1/2). The above convergence results enable us to conclude that the limit (u∗, P ∗, φ∗, µ∗) is
indeed a strong solution to problem (1.3)–(1.4) with the mass source term R∗ (see [15], Thm. 4.1). As a result,
φ∗ = S(R∗) and (R∗,S(R∗)) ∈ Uad ×X is an admissible control-state pair. Thanks to the lower semi-continuity

of the reduced cost function Ĵ , it holds

J∗ ≤ Ĵ (R∗) ≤ lim inf
n→+∞

Ĵ (Rn) = lim
n→+∞

Ĵ (Rn) = J∗.

This implies Ĵ (R∗) = J∗ so that R∗ is a globally optimal control.

5. First-order necessary optimality conditions

Although the cost functional J (φ,R) is convex with respect to its components φ and R, our optimal control
problem (4.1) is not a convex one. This is due to the nonlinear feature of the state system (1.3)–(1.4) (or the
nonlinear control-to-state operator S).
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The optimal control problem (4.1) may admit several optimal controls (global or local). In this section, we
aim to derive first-order necessary optimality conditions for a locally optimal control.

5.1. Differentiability of the control-to-state operator

Our first task is to prove the Fréchet differentiability of the control-to-state operator S between suitable
Banach spaces.

Let R∗ ∈ Ũ be a given control. We denote by (u∗, P ∗, φ∗, µ∗) the unique strong solution corresponding to
the control R∗ (recall Prop. 3.11) such that φ∗ = S(R∗). Consider the following linear initial boundary value
problem:

ν(φ∗)v = −∇q + η∇φ∗ + µ∗∇ξ − ν′(φ∗)ξu∗ + f1, in Q, (5.1)

div v = 0, in Q, (5.2)

∂tξ + div (φ∗v) + div (ξ u∗) = ∆η + f2, in Q, (5.3)

η = −∆ξ +Ψ′′(φ∗)ξ + f3, in Q, (5.4)

∂nξ = ∂nη = v · n = 0, on Σ, (5.5)

ξ|t=0 = 0, in Ω, (5.6)

where f1, f2 and f3 are some vector or scalar functions with f1 ·n = 0 on Σ. We note that the pressure variable
q = q(t) (formally) solves for almost all t ∈ (0, T ) the elliptic boundary value problem:

−∆q = −div (η∇φ∗)− div (µ∗∇ξ) + div (ν(φ∗)v) + div (ν′(φ∗)ξu∗)− div f1, in Ω, (5.7)

∂nq = 0, on Γ. (5.8)

Due to the homogeneous Neumann boundary condition, q is uniquely determined up to a constant. Thus, we
simply require that q(t) = 0 for almost all t ∈ (0, T ).

Remark 5.1. Setting f1 = 0, f2 = h and f3 = 0 in (5.1)–(5.4), we arrive at the linearized system of the state
system (1.3)–(1.4) at (u∗, P ∗, φ∗, µ∗). For the convenience of later analysis, here we treat the linearized system
(5.1)–(5.4) that has a slightly more general form.

Lemma 5.2. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the assumptions
(S1)–(S3) are satisfied. Let R∗ ∈ Ũ be given with its associated state denoted by (u∗, P ∗, φ∗, µ∗). Then, for
every

f1 ∈ L2(0, T ;L4(Ω)) satisfying div f1 ∈ L2(0, T ;L4/3(Ω)), f1 · n = 0 a.e. on Σ,

f2 ∈ L2(Q), f3 ∈ L2(0, T ;H2
N (Ω)),

the linear problem (5.1)–(5.6) admits a unique strong solution (v, q, ξ, η) such that

v ∈ L2(0, T ;L4(Ω) ∩Hσ),

q ∈ L2(0, T ;W 2,4/3(Ω)),

ξ ∈ C([0, T ];H2(Ω)) ∩ L2(0, T ;H4(Ω)) ∩H1(0, T ;L2(Ω)),

η ∈ L2(0, T ;H2(Ω)),
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with q(t) = 0 for almost all t ∈ (0, T ). The equations (5.1)–(5.4) are satisfied almost everywhere in Q. Besides,
the boundary conditions ∂nξ = ∂nη = v · n = ∂nq = 0 hold almost everywhere on Σ and the initial condition
ξ|t=0 = 0 is satisfied almost everywhere in Ω. Moreover, the following estimate holds

∥ξ∥2C([0,T ];H2(Ω))∩L2(0,T ;H4(Ω))∩H1(0,T ;L2(Ω)) + ∥η∥2L2(0,T ;H2(Ω)) + ∥v∥2L2(0,T ;L4(Ω))

+ ∥q∥2L2(0,T ;W 2,4/3(Ω))

≤ C∥f1∥2L2(0,T ;L4(Ω)) + C∥div f1∥2L2(0,T ;L4/3(Ω)) + C∥f2∥2L2(Q) + C∥f3∥2L2(0,T ;H2(Ω)). (5.9)

In addition, if f3 ∈ L∞(0, T ;L2(Ω)), then it holds η ∈ L∞(0, T ;L2(Ω)).

Proof. The proof of existence follows from a standard Faedo–Galerkin scheme, see e.g., [15], Lemma 3.2. Different
from the problem studied therein, extra efforts have to be made to handle the nonconstant viscosity (see (5.1)
and (5.7)). Below we only perform a priori estimates for the solutions, which can be justified rigorously within
the Galerkin approximation.

Let us keep in mind that (u∗, P ∗, φ∗, µ∗) satisfy the estimates (3.22)–(3.23). First, from (5.4)–(5.5) and the
Poincaré-Wirtinger inequality, we obtain

∫ t

0

∥η(s)∥2H1(Ω)ds ≤ C

∫ t

0

∥∇η(s)∥2L2(Ω)ds+ C

∫ t

0

|η(s)|2ds

≤ C

∫ t

0

(
∥∇η(s)∥2L2(Ω) + ∥ξ(s)∥2L2(Ω) + ∥f3(s)∥2L2(Ω)

)
ds, ∀ t ∈ (0, T ]. (5.10)

Lower order estimate for ξ. Multiplying (5.3) by ξ, integrating over Qt, arguing as to get [15], (3.30), we
find

∥ξ(t)∥2L2(Ω) +

∫ t

0

∥∆ξ(s)∥2L2(Ω)ds

≤
∫ t

0

∥h1(s)∥2L2(Ω)ds+
ν∗
6K2

∫ t

0

∥v(s)∥2L2(Ω)ds+ C

∫ t

0

∥ξ(s)∥2H1(Ω)ds

+ C

∫ t

0

∥f2(s)∥2L2(Ω) ds, (5.11)

where C > 0 depends on K1, K2 and coefficients of the system. Next, multiplying (5.1) by v and (5.3) by η,
respectively, integrating over Qt and after an integration by parts, we get

1

2
∥∇ξ(t)∥2L2(Ω) +

∫ t

0

∥∇η(s)∥2L2(Ω)ds+

∫ t

0

ν(φ∗)∥v(s)∥2L2(Ω)ds

=

∫
Qt

η (f2 −∇ξ · u∗ − Sξ) dxds+

∫
Qt

µ∗ ∇ξ · v dxds

+

∫
Qt

(f1 − ν′(φ∗)ξu∗) · v dxds−
∫
Qt

Ψ′′(φ∗) ξ ∂tξ dxds

=:

4∑
j=1

Jj . (5.12)
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The terms J1 can be estimated as in [15] by using (3.22) and (5.10), namely,

J1 ≤ 1

2

∫ t

0

∥∇η(s)∥2L2(Ω) ds+ C

∫ t

0

∥ξ(s)∥2H1(Ω) ds+ C

∫ t

0

∥f2(s)∥2L2(Ω) ds.

For J2 and J3, we infer from (S2), (3.22) and Young’s inequality that

J2 ≤ C

∫ t

0

∥v(s)∥L2(Ω)∥µ∗(s)∥L4(Ω)∥∇ξ(s)∥
1
2

L2(Ω)∥∇ξ(s)∥
1
2

H1(Ω) ds

≤ ν∗
6

∫ t

0

∥v(s)∥2L2(Ω)ds+
K2

2

∫ t

0

∥∆ξ(s)∥2L2(Ω) ds+ C

∫ t

0

∥ξ(s)∥2H1(Ω) ds,

and

J3 ≤ ν∗
∫ t

0

∥v(s)∥L2(Ω)

(
∥f1(s)∥L2(Ω) + ∥u∗(s)∥L4(Ω)∥ξ(s)∥L4(Ω)

)
ds

≤ ν∗
6

∫ t

0

∥v(s)∥2L2(Ω)ds+ C

∫ t

0

∥ξ(s)∥2H1(Ω) ds+ C

∫ t

0

∥f1(s)∥2L2(Ω) ds.

For J4, using (5.3) and integration by parts in time, we have

J4 = −1

2

∫
Ω

ξ2(t)Ψ′′(φ∗(t)) dx+
1

2

∫
Qt

ξ2 Ψ(3)(φ∗) ∂tφ
∗ dxds =: J5 + J6.

Then it follows from (3.22) and (3.23) that

J5 ≤ K2

2
∥ξ(t)∥2L2(Ω),

and

J6 ≤ C

∫ t

0

∥ξ(s)∥2L4(Ω) ∥∂tφ
∗(s)∥L2(Ω) ds ≤ C

∫ t

0

∥ξ(s)∥2H1(Ω) ds.

Combining the above estimates with (5.10)–(5.11), we can deduce that, for all t ∈ (0, T ], it holds (see [15],
(3.37)):

1

2
∥ξ(t)∥2L2(Ω) +

1

2K2
∥∇ξ(t)∥2L2(Ω) +

1

2K2

∫ t

0

∥∇η(s)∥2L2(Ω) ds

+
1

2

∫ t

0

∥∆ξ(s)∥2L2(Ω) ds+
ν∗
2K2

∫ t

0

∥v(s)∥2L2(Ω) ds

≤ C

∫ t

0

∥ξ(s)∥2H1(Ω) ds+ C

∫ t

0

∥f1(s)∥2L2(Ω) ds+ C

∫ t

0

∥f2(s)∥2L2(Ω) ds,

where the constant C > 0 depends on K1, K2, and coefficients of the system. Hence, it follows from Gronwall’s
lemma and (5.10) that

∥ξ∥2L∞(0,t;H1(Ω))∩L2(0,t;H2(Ω)) + ∥η∥2L2(0,t;H1(Ω)) + ∥v∥2L2(0,t;L2(Ω))

≤ C

∫ T

0

∥f1(s)∥2L2(Ω) ds+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds, ∀ t ∈ (0, T ]. (5.13)
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Moreover, from (3.23), (5.4), (5.13) and the elliptic estimate, we find

∥ξ∥2L2(0,t;H3(Ω)) ≤ C

∫ T

0

∥f1(s)∥2L2(Ω) ds+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds

+ C

∫ T

0

∥f3(s)∥2H1(Ω) ds, ∀ t ∈ (0, T ]. (5.14)

Estimates for v and q. Using (5.13)–(5.14) and arguing as in [15], we obtain

∫ t

0

∥div (η(s)∇φ∗(s)) + div (µ∗(s)∇ξ(s))∥2L4/3(Ω) ds+

∫ t

0

∥η(s)∇φ∗(s) + µ∗(s)∇ξ(s)∥2L4(Ω) ds

≤ C

∫ T

0

∥f1(s)∥2L2(Ω) ds+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds+ C

∫ T

0

∥f3(s)∥2H1(Ω) ds, (5.15)

for all t ∈ (0, T ]. Besides, using Minkowski’s inequality, Hölder’s inequality and (3.22), (5.13), we find

∫ t

0

∥div (ν(φ∗(s))v(s)) + div (ν′(φ∗(s))ξ(s)u∗(s))∥2L4/3(Ω) ds

≤ C

∫ t

0

∥∇φ∗(s)∥2L4(Ω)∥v(s)∥
2
L2(Ω) ds+ C

∫ t

0

∥∇φ∗(s)∥2L4(Ω)∥ξ(s)∥
2
L4(Ω)∥u

∗(s)∥2L4(Ω) ds

+ C

∫ t

0

∥∇ξ(s)∥2L2(Ω)∥u
∗(s)∥2L4(Ω) ds+ C

∫ t

0

∥ξ(s)∥2L4(Ω)∥∇u∗(s)∥2L2(Ω) ds

≤ C

∫ T

0

∥f1(s)∥2L2(Ω) ds+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds, ∀ t ∈ (0, T ]. (5.16)

It follows from (5.15)–(5.16) and the elliptic estimate for (5.7) that

∥q∥2L2(0,t;W 2,4/3(Ω)) ≤ C

∫ T

0

∥f1(s)∥2L2(Ω) ds+ C

∫ T

0

∥div f1(s)∥2L4/3(Ω) ds

+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds+ C

∫ T

0

∥f3(s)∥2H1(Ω) ds, ∀ t ∈ (0, T ]. (5.17)

Then we infer from (5.1), (5.17) and the continuous embedding W 1,4/3(Ω) ↪→ L4(Ω) that

∥v∥2L2(0,t;L4(Ω)) ≤ C

∫ t

0

∥∇q(s)∥2L4(Ω) ds+

∫ t

0

∥η(s)∇φ∗(s) + µ∗(s)∇ξ(s)∥2L4(Ω) ds

+ C

∫ t

0

∥ξ(s)∥L8(Ω)∥u∗(s)∥2L8(Ω) ds+ C

∫ T

0

∥f1(s)∥2L4(Ω) ds

≤ C

∫ T

0

∥f1(s)∥2L4(Ω) ds+ C

∫ T

0

∥div f1(s)∥2L4/3(Ω) ds

+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds+ C

∫ T

0

∥f3(s)∥2H1(Ω) ds, ∀ t ∈ (0, T ]. (5.18)
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Higher order estimates for ξ and η. Similar to [15], (3.48), using (3.22), we get

∥∆ξ(t)∥2L2(Ω) +

∫ t

0

∥∆2ξ(s)∥2L2(Ω) ds

≤ C

∫ t

0

∥∆ξ(s)∥2L2(Ω) ds+ C

∫ T

0

∥f1(s)∥2L4(Ω) ds+ C

∫ T

0

∥div f1(s)∥2L4/3(Ω) ds

+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds+ C

∫ T

0

∥f3(s)∥2H2(Ω) ds.

By Gronwall’s lemma, (3.23), (5.13) and the elliptic estimate for (5.4), we deduce that

∥ξ∥2L∞(0,t;H2(Ω))∩L2(0,t;H4(Ω)) + ∥η∥2L2(0,t;H2(Ω))

≤ C

∫ T

0

∥f1(s)∥2L4(Ω) ds+ C

∫ T

0

∥div f1(s)∥2L4/3(Ω) ds

+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds+ C

∫ T

0

∥f3(s)∥2H2(Ω) ds, ∀ t ∈ (0, T ]. (5.19)

Hence, by comparison in (5.3), we conclude

∥∂tξ∥2L2(0,t;L2(Ω)) ≤ C

∫ T

0

∥f1(s)∥2L4(Ω) ds+ C

∫ T

0

∥div f1(s)∥2L4/3(Ω) ds

+ C

∫ T

0

∥f2(s)∥2L2(Ω) ds+ C

∫ T

0

∥f3(s)∥2H2(Ω) ds, ∀ t ∈ (0, T ]. (5.20)

Finally, from (5.4) and (5.19), we have η ∈ L∞(0, T ;L2(Ω)), provided that f3 ∈ L∞(0, T ;L2(Ω)).
Collecting the estimates (5.17)–(5.20), we easily arrive at the conclusion (5.9). Next, we observe that if

(v, q, ξ, η) solves problem (5.1)–(5.6) with f1 = 0, f2 = f3 = 0, then (5.17), (5.18) and (5.19) imply (v, q, ξ, η) =
(0, 0, 0, 0). This yields the uniqueness of solution due to the linear feature of the system.

Remark 5.3. Concerning the special case with f1 = 0, f2 = h and f3 = 0, by virtue of the weak sequential
lower semicontinuity of norms, we can conclude from the estimates (5.19) and (5.20) that the linear mapping
h 7→ ξ is continuous from L2(Q) into Y.

With the aid of Lemma 5.2, we can show the Fréchet differentiability of the control-to-state operator S.

Proposition 5.4. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the assump-
tions (S1)–(S3) are satisfied. For any given R∗ ∈ Ũ , let (u∗, P ∗, φ∗, µ∗) be the unique strong solution to problem
(1.3)–(1.4) corresponding to R∗.

(1) The control-to-state operator S : U → X ⊂ Y defined in (3.21) is Fréchet differentiable at R∗ as a mapping
from U into Y. The Fréchet derivative DS(R∗) ∈ L(U ,Y) can be determined as follows. For any h ∈ U ⊂ L2(Q),
it holds

DS(R∗)h = ξh,

where (vh, qh, ξh, ηh) is the unique solution to the linear problem (5.1)–(5.6) at (u∗, P ∗, φ∗, µ∗) with f1 = 0,
f2 = h, f3 = 0, subject to the constraint q(t) = 0 for almost all t ∈ (0, T ).
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(2) The Fréchet derivative of the control-to-state operator S is Lipschitz continuous in Ũ , that is, for any

R∗, R♯ ∈ Ũ , it holds

∥DS(R∗)−DS(R♯)∥L(U,Y) ≤ C∥R∗ −R♯∥L2(Q), (5.21)

where C > 0 may depend on K1, K2, r1 and on the parameters of the system.

Proof. Since R∗ ∈ Ũ , there is some λ > 0 sufficiently small such that R∗ +h ∈ Ũ whenever h ∈ U and ∥h∥U < λ.
In the following, we shall only consider such small perturbations h. We denote by (uh, Ph, φh, µh) the associated
state corresponding to R∗ + h, that is the unique strong solution to problem (1.3)–(1.4). Next, we define the
differences

yh = φh − φ∗ − ξh, zh = µh − µ∗ − ηh, θh = uh − u∗ − vh, rh = Ph − P ∗ − qh.

From Proposition 3.11 and Lemma 5.2, we have, for all admissible perturbations h, the following regularity
properties for (yh, zh,θh, rh):

yh ∈ Y, zh ∈ L2(0, T ;H2(Ω)), θh ∈ L2(0, T ;L4(Ω)), rh ∈ L2(0, T ;W 2,4/3(Ω)).

Moreover, estimates (3.22)–(3.23) hold for both (u∗, P ∗, φ∗, µ∗) and (uh, Ph, φh, µh). Observe also that estimate
(3.8) yields

∥φh − φ∗∥H1(0,T ;L2(Ω))∩C([0,T ];H2(Ω))∩L2(0,T ;H4(Ω)) + ∥µh − µ∗∥L2(0,T ;H2(Ω))

+ ∥uh − u∗∥L2(0,T ;L4(Ω)) + ∥Ph − P ∗∥L2(0,T ;W 2,4/3(Ω))

≤ C∥h∥L2(Q), (5.22)

for some C > 0 independent of h.
Using Taylor’s formula, we have

Ψ′(φh) = Ψ′(φ∗) + Ψ′′(φ∗)(φh − φ∗) +
1

2

∫ 1

0

∫ 1

0

Ψ(3)(szφh + (1− sz)φ∗)(φh − φ∗)2dsdz,

ν(φh) = ν(φ∗) + ν′(φ∗)(φh − φ∗) +
1

2

∫ 1

0

∫ 1

0

ν′′(szφh + (1− sz)φ∗)(φh − φ∗)2dsdz.

Then, by definition, (yh, zh,θh, rh) is a strong solution to the following problem:

ν(φ∗)θh = −∇rh + zh∇φ∗ + µ∗∇yh − ν′(φ∗)yhu∗ + f1, in Q,

div θh = 0, in Q,

∂ty
h + div (φ∗θh) + div (yhu∗) = ∆zh + f2, in Q,

zh = −∆yh +Ψ′′(φ∗)yh + f3, in Q,

θh · n = ∂nr
h = ∂ny

h = ∂nz
h = 0, on Σ,

yh|t=0 = 0, in Ω,
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with

f1 = (µh − µ∗)∇(φh − φ∗)− (uh − u∗)

∫ 1

0

ν′(sφh + (1− s)φ∗)(φh − φ∗) ds

− 1

2
u∗

∫ 1

0

∫ 1

0

ν′′(szφh + (1− sz)φ∗)(φh − φ∗)2 dsdz,

f2 = −(uh − u∗) · ∇(φh − φ∗),

f3 =
1

2

∫ 1

0

∫ 1

0

Ψ(3)(szφh + (1− sz)φ∗)(φh − φ∗)2 dsdz.

Recalling the estimates (3.22)–(3.23) for (u∗, P ∗, φ∗, µ∗), (uh, Ph, φh, µh) and also (5.22), using the Sobolev
embedding theorem in two dimensions, we obtain (see [32], Sect. 5 for details):

∥f1∥2L2(0,T ;L4(Ω)) + ∥div f1∥2L2(0,T ;L4/3(Ω)) + ∥f2∥2L2(Q) + ∥f3∥2L2(0,T ;H2(Ω)) ≤ C∥h∥4L2(Q).

Then from Lemma 5.2 and (5.9) we get

∥yh∥2C([0,T ];H2(Ω))∩L2(0,T ;H4(Ω))∩H1(0,T ;L2(Ω)) + ∥zh∥2L2(0,T ;H2(Ω)) + ∥θh∥2L2(0,T ;L4(Ω))

+ ∥rh∥2L2(0,T ;W 2,4/3(Ω))

≤ C
(
∥f1∥2L2(0,T ;L4(Ω)) + ∥div f1∥2L2(0,T ;L4/3(Ω)) + ∥f2∥2L2(Q) + ∥f3∥2L2(0,T ;H2(Ω))

)
≤ C∥h∥4L2(Q), (5.23)

for any h ∈ U ⊂ L2(Q) with ∥h∥U < λ. As a consequence, we can verify that

∥S(R∗ + h)− S(R∗)− ξh∥Y
∥h∥U

=
∥yh∥Y
∥h∥U

≤ C∥h∥U → 0 as ∥h∥U → 0.

This completes the proof of the assertion (1).

We are left to prove the Lipschitz continuity of the Fréchet derivative of S (i.e., assertion (2)).

Let R∗, R♯ ∈ Ũ be two given controls. We denote by (u∗, P ∗, φ∗, µ∗), (u♯, P ♯, φ♯, µ♯) their associate states, and
by (v∗, q∗, ξ∗, η∗), (v♯, q♯, ξ♯, η♯) the corresponding solutions to the linear system (5.1)–(5.6) at (u∗, P ∗, φ∗, µ∗)
and (u♯, P ♯, φ♯, µ♯) with f1 = 0, f2 = h, f3 = 0, respectively. Then we have

DS(R∗)h = ξ∗, DS(R♯)h = ξ♯.

Setting

v = v∗ − v♯, q = q∗ − q♯, ξ = ξ∗ − ξ♯, η = η∗ − η♯,

it is easy to realize that the differences (v, q, ξ, η) is a solution to the following problem

ν(φ∗)v = −∇q + η∇φ∗ + µ∗∇ξ − ν′(φ∗)ξu∗ + f1, in Q,

div v = 0, in Q,

∂tξ + div (φ∗v) + div (ξ u∗) = ∆η + f2, in Q,



OPTIMAL DISTRIBUTED CONTROL FOR A CAHN–HILLIARD–DARCY SYSTEM 23

η = −∆ξ +Ψ′′(φ∗)ξ + f3, in Q,

v · n = ∂nq = ∂nξ = ∂nη = 0, on Σ,

ξ|t=0 = 0, in Ω,

with

f1 = −v♯

∫ 1

0

ν′(sφ∗ + (1− s)φ♯)(φ− φ♯) ds

+ η♯∇(φ∗ − φ♯) + (µ∗ − µ♯)∇ξ♯ − ν′(φ∗)(u∗ − u♯)ξ♯

− ξ♯u♯

∫ 1

0

ν′′(φ∗)(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds,

f2 = −div ((φ∗ − φ♯)v♯)− div (ξ♯(u∗ − u♯)),

f3 = ξ♯
∫ 1

0

Ψ(3)(sφ∗ + (1− s)φ♯)(φ− φ♯) ds.

Using estimate (5.9) for (v∗, q∗, ξ∗, η∗), (v♯, q♯, ξ♯, η♯), the facts that η∗, η♯ ∈ L∞(0, T ;L2(Ω)) and the continuous
dependence estimate (3.8), we obtain (see [32], Sect. 5 for details)

∥f1∥2L2(0,T ;L4(Ω)) + ∥div f1∥2L2(0,T ;L4/3(Ω)) + ∥f2∥2L2(Q) + ∥f3∥2L2(0,T ;H2(Ω))

≤ C∥R∗ −R♯∥2L2(Q)∥h∥
2
L2(Q).

Applying Lemma 5.2 again, we infer from the above estimates and (5.9) that

∥ξ∥2C([0,T ];H2(Ω))∩L2(0,T ;H4(Ω))∩H1(0,T ;L2(Ω)) + ∥η∥2L2(0,T ;H2(Ω))

+ ∥v∥2L2(0,T ;L4(Ω)) + ∥q∥2L2(0,T ;W 2,4/3(Ω))

≤ C∥R∗ −R♯∥2L2(Q)∥h∥
2
L2(Q), (5.24)

which yields the desired conclusion, i.e., (5.21).

5.2. First-order necessary optimality conditions

Thanks to the Fréchet differentiability of S in Ũ , the Fréchet differentiability of the cost functional J easily
follows by chain rule. This enables us to establish first-order necessary optimality conditions for the optimal
control problem (4.1).

Theorem 5.5. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the assumptions
(S1)–(S5) are satisfied. Let R∗ ∈ Uad be a locally optimal control of problem (4.1) with the associated state
φ∗ = S(R∗). Then the following variational inequality holds

α1

∫
Ω

(φ∗(T )− φΩ) ξ(T ) dx+ α2

∫
Q

(φ∗ − φQ) ξ dxdt+ β

∫
Q

R∗(R−R∗) dxdt ≥ 0, (5.25)

for all R ∈ Uad, where ξ is the unique strong solution to the linear problem (5.1)–(5.6) with f1 = 0, f2 = R−R∗

and f3 = 0.
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Proof. Recalling the definition of the reduced cost functional J̃ (see (4.2)) and invoking the convexity of Uad,
we obtain (cf. [33], Lem. 2.21) (

J̃ ′(R∗), R−R∗) ≥ 0, ∀R ∈ Uad.

On the other hand, we infer from the chain rule that

J̃ ′(R) = J ′
S(R)(S(R), R) ◦DS(R) + J ′

R(S(R), R),

where for every fixed R ∈ U , J ′
φ(φ,R) is the Fréchet derivative of J (φ,R) with respect to φ at φ ∈ Y, and

for every fixed φ ∈ Y, J ′
R(φ,R) is the Fréchet derivative with respect to R at R ∈ U . By a straightforward

computation and using the fact DS(R∗)(R−R∗) = ξ (see Prop. 5.4), we obtain (5.25).

Our next aim is to simplify the variational inequality (5.25) by introducing an adjoint state.

Let R∗ ∈ Ũ be a control with its associated state denoted by (u∗, P ∗, φ∗, µ∗). We consider the following
adjoint system:

ν(φ∗)w = ∇π − ρ∇φ∗, in Q, (5.26)

divw = 0, in Q, (5.27)

− ∂tρ− u∗ · ∇ρ+∆ζ −Ψ′′(φ∗) ζ +w · ∇µ∗

+ ν′(φ∗)u∗ ·w = α2(φ
∗ − φQ), in Q, (5.28)

ζ = ∆ρ+w · ∇φ∗, in Q, (5.29)

subject to the boundary and endpoint conditions:

∂nρ = ∂nζ = w · n = 0, on Σ, (5.30)

ρ|t=T = α1 (φ
∗(T )− φΩ), in Ω. (5.31)

Besides, we see from (5.26)–(5.30) that π (formally) satisfies the elliptic problem

∆π = div (ρ∇φ∗) + ν′(φ∗)∇φ∗ ·w, in Q, (5.32)

∂nπ = 0, on Σ. (5.33)

Like before, in order to uniquely determine π, we require π(t) = 0 for almost all t ∈ (0, T ).

Remark 5.6. The adjoint system (5.26)–(5.33) can be derived by using the formal Lagrangian method (see
[33]). Its solution, if exists, is called the adjoint state or costate associated with R∗.

For the convenience of later analysis, we study a slightly more general linearized system.

Lemma 5.7. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the assumptions
(S1)–(S3) are satisfied. Let R∗ ∈ Ũ be any control with its associated state denoted by (u∗, P ∗, φ∗, µ∗). Then,
for every

g1 ∈ L2(0, T ;H1(Ω)) with g1 · n = 0 a.e. on Σ,

g2 ∈ L2(0, T ;L4/3(Ω)), g3 ∈ L2(0, T ;H1(Ω)), g4 ∈ H1(Ω),
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there exists a unique quadruple (w, π, ρ, ζ) with the following regularity

ρ ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ; (H1(Ω))′), (5.34)

ζ ∈ L2(0, T ;H1(Ω)), w ∈ L2(0, T ;H1(Ω) ∩Hσ), π ∈ L2(0, T ;H2(Ω) ∩ L2
0(Ω)), (5.35)

such that it satisfies

ν(φ∗)w = ∇π − ρ∇φ∗ + g1, a.e in Q, (5.36)

divw = 0, a.e in Q, (5.37)

∆π = div (ρ∇φ∗) + ν′(φ∗)∇φ∗ ·w − div g1, a.e in Q, (5.38)

ζ = ∆ρ+w · ∇φ∗ + g3, a.e in Q, (5.39)

∂nρ = w · n = ∂nπ = 0, a.e on Σ, (5.40)

ρ|t=T = g4, a.e in Ω, (5.41)

and

− ⟨∂tρ, ψ⟩(H1)′,H1 −
∫
Ω

(u∗ · ∇ρ)ψ dx−
∫
Ω

∇ζ · ∇ψ dx−
∫
Ω

Ψ′′(φ∗)ζψ dx

+

∫
Ω

(w · ∇µ∗)ψ dx+

∫
Ω

(ν′(φ∗)u∗ ·w)ψ dx =

∫
Ω

g2ψ dx, (5.42)

for almost all t ∈ (0, T ) and all ψ ∈ H1(Ω). Moreover, the following estimate holds

∥ρ∥2C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′) + ∥ζ∥2L2(0,T ;H1(Ω))

+ ∥w∥2L2(0,T ;H1(Ω)) + ∥π∥2L2(0,T ;H2(Ω))

≤ C
(
∥g1∥2L2(0,T ;H1(Ω)) + ∥g2∥2L2(0,T ;L4/3(Ω)) + ∥g3∥2L2(0,T ;H1(Ω)) + ∥g4∥2H1(Ω)

)
. (5.43)

In addition, if g1 ∈ L∞(0, T ;L2(Ω)), then w ∈ L∞(0, T ;L2(Ω)); if g1 ∈ L4(0, T ;L2(Ω)) and curl g1 ∈
L4(0, T ;L2(Ω)), then w ∈ L4(0, T ;H1(Ω)).

Proof. The existence result again follows from a standard Faedo–Galerkin method. Therefore, we omit the
implementation of the approximation scheme and just perform necessary a priori estimates.

First estimate. Multiplying (5.36) by w, integrating over Ω, using (5.37) and Hölder’s inequality, we get

ν∗∥w∥2L2(Ω) ≤ C
(
∥ρ∥L2(Ω)∥∇φ∗∥L∞(Ω) + ∥g1∥L2(Ω)

)
∥w∥L2(Ω),

which implies

∥w∥L2(Ω) ≤ C∥ρ∥L2(Ω) + C∥g1∥L2(Ω). (5.44)
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Testing (5.42) with ρ, we obtain

− 1

2

d

dt
∥ρ∥2L2(Ω) + ∥∆ρ∥2L2(Ω)

= −
∫
Ω

(w · ∇φ∗)∆ρdx+

∫
Ω

[
Ψ′′(φ∗)∆ρ+ u∗ · ∇ρ

]
ρ dx

+

∫
Ω

Ψ′′(φ∗)(w · ∇φ∗)ρdx−
∫
Ω

(w · ∇µ∗)ρdx−
∫
Ω

(ν′(φ∗)u∗ ·w)ρ dx

+

∫
Ω

[Ψ′′(φ∗)g3 + g2]ρdx−
∫
Ω

g3∆ρdx

=:

7∑
j=1

Ij . (5.45)

Keeping in mind that the estimates (3.22)–(3.23) hold for (u∗, P ∗, φ∗, µ∗), we handle terms on the right-hand
side of (5.45). I2 and I4 can be estimated as in [15], (4.19) and (4.21) such that

I2 ≤ 1

12
∥∆ρ∥2L2(Ω) + C(1 + ∥S∥2L2(Ω))∥ρ∥

2
L2(Ω),

I4 ≤ ∥w∥L2(Ω)∥∇µ∗∥L4(Ω)∥ρ∥L4(Ω)

≤ C∥∇µ∗∥L4(Ω)

(
∥ρ∥L2(Ω) + C∥g1∥L2(Ω)

)
∥ρ∥H1(Ω)

≤ 1

12
∥∆ρ∥2L2(Ω) + C(1 + ∥∇µ∗∥2L4(Ω))∥ρ∥

2
L2(Ω) + C∥g1∥2L2(Ω).

For the remaining terms, we have

I1 ≤ ∥w∥L2(Ω)∥∇φ∗∥L∞(Ω)∥∆ρ∥L2(Ω)

≤ 1

12
∥∆ρ∥2L2(Ω) + C∥ρ∥2L2(Ω) + C∥g1∥2L2(Ω),

I3 ≤ ∥Ψ′′(φ∗)∥L∞(Ω)∥w∥L2(Ω)∥∇φ∗∥L∞(Ω)∥ρ∥L2(Ω)

≤ C∥ρ∥2L2(Ω) + C∥g1∥2L2(Ω),

I5 ≤ ∥ν′(φ∗)∥L∞(Ω)∥u∗∥L4(Ω)∥w∥L2(Ω)∥ρ∥L4(Ω)

≤ 1

12
∥∆ρ∥2L2(Ω) + C∥ρ∥2L2(Ω) + C∥g1∥2L2(Ω),

I6 ≤ ∥Ψ′′(φ∗)∥L∞(Ω)∥g3∥L2(Ω)∥ρ∥L2(Ω) + ∥g2∥L4/3(Ω)∥ρ∥L4(Ω)

≤ 1

12
∥∆ρ∥2L2(Ω) + C∥ρ∥2L2(Ω) + C∥g2∥2L4/3(Ω) + C∥g3∥2L2(Ω),

I7 ≤ ∥g3∥L2(Ω)∥∆ρ∥L2(Ω) ≤
1

12
∥∆ρ∥2L2(Ω) + C∥g3∥2L2(Ω).
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As a consequence, we deduce from (5.45) and (A3) that

− 1

2

d

dt
∥ρ∥2L2(Ω) +

1

2
∥∆ρ∥2L2(Ω)

≤ C
(
1 + ∥∇µ∗∥2L4(Ω)

)
∥ρ∥2L2(Ω) + C∥g1∥2L2(Ω) + C∥g2∥2L4/3(Ω) + C∥g3∥2L2(Ω).

The (backward) Gronwall’s inequality yields

∥ρ(t)∥2L2(Ω) +

∫ T

t

∥∆ρ(s)∥2L2(Ω) ds

≤ C
(
∥g4∥2L2(Ω) + ∥g1∥2L2(Q) + ∥g2∥2L2(0,T ;L4/3(Ω)) + ∥g3∥2L2(Q)

)
, ∀ t ∈ [0, T ]. (5.46)

Then it follows from (5.44) that

∥w∥2L2(Q) ≤ C
(
∥g4∥2L2(Ω) + ∥g1∥2L2(Q) + ∥g2∥2L2(0,T ;L4/3(Ω)) + ∥g3∥2L2(Q)

)
, (5.47)

and, due to (5.39), it holds

∥ζ∥2L2(Q) ≤ C
(
∥g4∥2L2(Ω) + ∥g1∥2L2(Q) + ∥g2∥2L2(0,T ;L4/3(Ω)) + ∥g3∥2L2(Q)

)
. (5.48)

From (5.44) and (5.46), we have w ∈ L∞(0, T ;L2(Ω)), provided that g1 ∈ L∞(0, T ;L2(Ω)).

Second estimate. From (5.38), (5.47), the assumption π = 0 and the elliptic estimate, we obtain

∥π∥H2(Ω) ≤ C∥div (ρ∇φ∗)∥L2(Ω) + C∥ν′(φ∗)∇φ∗ ·w∥L2(Ω) + C∥div g1∥L2(Ω)

≤ C∥ρ∥H1(Ω) + C∥w∥L2(Ω) + C∥div g1∥L2(Ω)

≤ C
(
∥ρ∥H1(Ω) + ∥div g1∥L2(Ω) + ∥g1∥L2(Ω)

)
.

This together with (5.46) implies

∥π∥2L2(0,T ;H2(Ω))

≤ C
(
∥g4∥2L2(Ω) + ∥g1∥2L2(Q) + ∥div g1∥2L2(Q) + ∥g2∥2L2(0,T ;L4/3(Ω)) + ∥g3∥2L2(Q)

)
. (5.49)

On the other hand, using the identity

ν(φ∗)curlw + ν′(φ∗)∇φ∗ ·w⊥ = ∇φ∗ · (∇ρ)⊥,

where v⊥ = (v2,−v1)T for any vector v = (v1, v2)
T , we infer from (5.36) that

∥curlw∥L2(Ω) ≤ C∥ν′(φ∗)∇φ∗∥L∞(Ω)∥w⊥∥L2(Ω) + C∥∇φ∗∥L∞(Ω)∥(∇ρ)⊥∥L2(Ω)

+ C∥curl g1∥L2(Ω)

≤ C
(
∥w∥L2(Ω) + ∥ρ∥H1(Ω) + ∥curl g1∥L2(Ω)

)
. (5.50)
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Thus, it follows from (2.2) and (5.46)–(5.47) that

∥w∥2L2(0,T ;H1(Ω))

≤ C∥w∥2L2(Q) + C∥ρ∥2L2(0,T ;H1(Ω)) + C∥curl g1∥2L2(Q)

≤ C
(
∥g4∥2L2(Ω) + ∥g1∥2L2(Q) + ∥curl g1∥2L2(Q) + ∥g2∥2L2(0,T ;L4/3(Ω)) + ∥g3∥2L2(Q)

)
. (5.51)

Third estimate. Testing (5.42) with −∆ρ gives

− 1

2

d

dt
∥∇ρ∥2L2(Ω) + ∥∇∆ρ∥2L2(Ω)

= −
∫
Ω

(u∗ · ∇ρ)∆ρdx−
∫
Ω

∇(w · ∇φ∗) · ∇∆ρ dx

−
∫
Ω

Ψ′′(φ∗)(∆ρ+w · ∇φ∗ + g3)∆ρdx+

∫
Ω

(w · ∇µ∗)∆ρdx

+

∫
Ω

(ν′(φ∗)u∗ ·w)∆ρ dx−
∫
Ω

∇g3 · ∇∆ρdx−
∫
Ω

g2∆ρ dx

=:

14∑
j=8

Ij . (5.52)

The terms on the right-hand side of (5.52) can be estimated as follows

I8 ≤ ∥u∗∥L4(Ω)∥∇ρ∥L4(Ω)∥∆ρ∥L2(Ω)

≤ C∥∇ρ∥
1
2

L2(Ω)∥ρ∥
3
2

H2(Ω)

≤ 1

12
∥∇∆ρ∥2L2(Ω) + C∥∇ρ∥2L2(Ω) + C∥ρ∥2L2(Ω),

I9 ≤ ∥∇(w · ∇φ∗)∥L2(Ω)∥∇∆ρ∥L2(Ω)

≤ C∥w∥L4(Ω)∥∆φ∗∥L4(Ω)∥∇∆ρ∥L2(Ω) + C∥∇w∥L2(Ω)∥∇φ∗∥L∞(Ω)∥∇∆ρ∥L2(Ω)

≤ 1

12
∥∇∆ρ∥2L2(Ω) + C∥w∥2H1(Ω),

I10 ≤ ∥Ψ′′(φ∗)∥L∞(Ω)

(
∥∆ρ∥L2(Ω) + ∥w∥L2(Ω)∥∇φ∗∥L∞(Ω) + ∥g3∥L2(Ω)

)
∥∆ρ∥L2(Ω)

≤ 1

12
∥∇∆ρ∥2L2(Ω) + C∥∇ρ∥2L2(Ω) + C∥w∥2L2(Ω) + C∥g3∥2L2(Ω),

I11 = −
∫
Ω

µ∗(w · ∇∆ρ) dx

≤ ∥µ∗∥L4(Ω)∥w∥L4(Ω)∥∇∆ρ∥L2(Ω)

≤ 1

12
∥∇∆ρ∥2L2(Ω) + C∥w∥2L4(Ω),
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I12 ≤ ∥ν′(φ∗)∥L∞(Ω)∥u∗∥L4(Ω)∥w∥L4(Ω)∥∆ρ∥L2(Ω)

≤ 1

12
∥∇∆ρ∥2L2(Ω) + C∥∇ρ∥2L2(Ω) + C∥w∥2L4(Ω),

I13 + I14 ≤ ∥∇g3∥L2(Ω)∥∇∆ρ∥L2(Ω) + ∥g2∥L4/3(Ω)∥∆ρ∥L4(Ω)

≤ 1

12
∥∇∆ρ∥2L2(Ω) + C∥∇ρ∥2L2(Ω) + C∥∇g3∥2L2(Ω) + C∥g2∥2L4/3(Ω).

Hence, we can deduce from (5.52) that

− 1

2

d

dt
∥∇ρ∥2L2(Ω) +

1

2
∥∇∆ρ∥2L2(Ω)

≤ C∥∇ρ∥2L2(Ω) + C∥ρ∥2L2(Ω) + C∥w∥2H1(Ω) + C∥g2∥2L4/3(Ω) + C∥g3∥H1(Ω).

The (backward) Gronwall’s lemma together with (5.46) and (5.51) yield

∥∇ρ(t)∥2L2(Ω) +

∫ T

t

∥∇∆ρ(s)∥2L2(Ω) ds

≤ C∥g4∥2H1(Ω) + C∥g1∥2L2(Q) + C∥curl g1∥2L2(Q) + C∥g2∥2L2(0,T ;L4/3(Ω))

+ C∥g3∥2L2(0,T ;H1(Ω)), ∀ t ∈ [0, T ], (5.53)

which combined with (5.39), (5.51) and (5.53) implies

∥ζ∥2L2(0,T ;H1(Ω)) ≤ C∥g4∥2H1(Ω) + C∥g1∥2L2(Q) + C∥curl g1∥2L2(Q)

+ C∥g2∥2L2(0,T ;L4/3(Ω)) + C∥g3∥2L2(0,T ;H1(Ω)). (5.54)

Next, we infer from (5.42) that

∥∂tρ∥(H1(Ω))′ ≤ C∥u∗ · ∇ρ∥L4/3(Ω) + C∥∇ζ∥L2(Ω) + C∥Ψ′′(φ∗)∥L∞(Ω)∥ζ∥L2(Ω)

+ C∥w · ∇µ∗∥L4/3(Ω) + C∥ν′(φ∗)∥L∞(Ω)∥u∗ ·w∥L4/3(Ω) + C∥g2∥L4/3(Ω)

≤ C∥u∗∥L4(Ω)∥∇ρ∥L2(Ω) + C∥ζ∥H1(Ω) + C∥w∥L4(Ω)∥∇µ∗∥L2(Ω)

+ C∥u∗∥L4(Ω)∥w∥L2(Ω) + C∥g2∥L4/3(Ω)

≤ C
(
∥ρ∥H1(Ω) + ∥ζ∥H1(Ω) + ∥w∥L4(Ω) + ∥g2∥L4/3(Ω)

)
.

Thus, we get

∥∂tρ∥2L2(0,T ;(H1(Ω))′) ≤ C∥g4∥2H1(Ω) + C∥g1∥2L2(Q) + C∥curl g1∥2L2(Q)

+ C∥g2∥2L2(0,T ;L4/3(Ω)) + C∥g3∥2L2(0,T ;H1(Ω)). (5.55)

Finally, from (5.50), (5.53), we can deduce w ∈ L4(0, T ;H1(Ω)), provided that g1 ∈ L∞(0, T ;L2(Ω)) and
curl g1 ∈ L4(0, T ;L2(Ω)).

Collecting the estimates (5.49), (5.51) and (5.53)–(5.55), we arrive at the conclusion (5.43). Next, we observe
that if (w, π, ρ, ζ) solves problem (5.34)–(5.42) with g1 = 0, g2 = g3 = g4 = 0, then it follows from (5.43) that
(w, π, ρ, ζ) = (0, 0, 0, 0). This yields the uniqueness of solution due to linearity of the system.
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We are ready to show that the adjoint system is uniquely solvable.

Proposition 5.8. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the assump-
tions (S1)–(S5) are satisfied. Let R∗ ∈ Ũ be any control with its associated state denoted by (u∗, P ∗, φ∗, µ∗). The
adjoint system (5.26)–(5.33) admits a weak solution (w∗, π∗, ρ∗, ζ∗) satisfying (5.34), (5.35) and the following
estimate

∥ρ∗∥2C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′) + ∥ζ∗∥2L2(0,T ;H1(Ω))

+ ∥w∗∥2L4(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) + ∥π∗∥2L2(0,T ;H2(Ω))

≤ C∥α2(φ
∗ − φQ)∥2L2(Q) + C∥α1 (φ

∗(T )− φΩ)∥2H1(Ω). (5.56)

Proof. Take

g1 = 0, g2 = α2(φ
∗ − φQ), g3 = 0, g4 = α1 (φ

∗(T )− φΩ).

From the regularity of φ∗, we easily verify that g2 ∈ L2(Q) and g4 ∈ H1(Ω). Then the conclusion is a direct
consequence of Lemma 5.7.

Now we are able to eliminate the function ξ from the variational inequality (5.25) and, alternatively, establish
a first-order necessary optimality condition via the adjoint state.

Theorem 5.9. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the assumptions
(S1)–(S5) are satisfied. Let R∗ ∈ Uad be a locally optimal control of problem (4.1) with the associated state
(u∗, P ∗, φ∗, µ∗) and the adjoint state (w∗, π∗, ρ∗, ζ∗). Then R∗ satisfies the following variational inequality∫

Q

(ρ∗ + βR∗) (R−R∗) dxdt ≥ 0, ∀R ∈ Uad. (5.57)

Proof. The proof follows a similar argument for [15], Corollary 4.4 with minor modifications. Taking (v, q, ξ, η)
that is the unique solution to the linearized system (5.1)–(5.6) (with f1 = 0, f2 = R − R∗ and f3 = 0) as test
functions in the adjoint system (5.26)–(5.31), adding the results together and using integration by parts, we
have

α1

∫
Ω

(φ∗(T )− φΩ) ξ(T ) dx+ α2

∫
Q

(φ∗ − φQ) ξ dxdt

=

∫ T

0

d

dt

(∫
Ω

ρ∗ξ dx

)
dt−

∫ T

0

⟨∂tρ∗, ξ⟩(H1(Ω))′,H1(Ω) dt−
∫
Q

∇ζ∗ · ∇ξ dxdt

−
∫
Q

[
u∗ · ∇ρ∗ +Ψ′′(φ∗) ζ∗ −w∗ · ∇µ∗ − ν′(φ∗)u∗ ·w∗

]
ξ dxdt

+

∫
Q

(
ζ∗ −∆ρ∗ −w∗ · ∇φ∗)η dxdt− ∫

Q

(divw∗)q dxdt

+

∫
Q

[
ν(φ∗)w∗ −∇π∗ + ρ∗∇φ∗

]
· v dxdt

=

∫
Q

[
∂tξ + div (φ∗v) + div (ξu∗)−∆η

]
ρ∗ dxdt

+

∫
Q

[
η +∆ξ −Ψ′′(φ∗)ξ

]
ζ∗ dxdt+

∫
Q

(div v)π∗ dxdt

+

∫
Q

[
ν(φ∗)v +∇q − η∇φ∗ − µ∗∇ξ + ν′(φ∗)ξu∗

]
·w∗ dxdt

=

∫
Q

(R−R∗) ρ∗ dxdt. (5.58)
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Substitution of the identity (5.58) into (5.25) yields the conclusion (5.57).

Recalling that Uad is a nonempty, closed convex subset of L2(Q), in the case β > 0 the necessary condition
(5.57) is equivalent to the following projection formula (cf. [33]):

Corollary 5.10. When β > 0, the locally optimal control R∗ is the L2(Q)-orthogonal projection of −β−1ρ∗

onto Uad:

R∗(x, t) = max
{
Rmin(x, t), min{−β−1ρ∗(x, t), Rmax(x, t)}

}
, for a.a. (x, t) ∈ Q.

6. A second-order sufficient condition for strict local
optimality

Since our optimal control problem is not convex, the first-order necessary optimality conditions are not
sufficient. The aim of this section is to establish a second-order sufficient condition for strict local optimality.

6.1. Differentiability of the control-to-costate operator

In view of Proposition 5.8, we are able to define the control-to-costate operator that maps any control R ∈ Ũ
onto its corresponding adjoint state.

Definition 6.1. Let the assumptions of Proposition 5.8 be satisfied. Set

Z := C([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ; (H1(Ω))′).

We define the control-to-costate operator

T : Ũ → Z, R 7→ T (R) = ρ, (6.1)

where (w, π, ρ, ζ) is the unique weak solution to the adjoint system (5.26)–(5.33) corresponding to the given

control function R ∈ Ũ .

First, we establish the Lipschitz continuity of the control-to-costate operator.

Proposition 6.2. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the
assumptions (S1)–(S5) are satisfied. For any given controls R∗, R♯ ∈ Ũ , we denote their adjoint states by
(w∗, π∗, ρ∗, ζ∗), (w♯, π♯, ρ♯, ζ♯), respectively. Then it holds

∥ρ∗ − ρ♯∥C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′) + ∥ζ∗ − ζ♯∥L2(0,T ;H1(Ω))

+ ∥w∗ −w♯∥L∞(0,T ;L2(Ω))∩L4(0,T ;H1(Ω)) + ∥π∗ − π♯∥L2(0,T ;H2(Ω))

≤ C∥R∗ −R♯∥L2(Q), (6.2)

where C > 0 may depend on K1, K2, r1 and on the parameters of the system.

Proof. Let us set

w = w∗ −w♯, π = π∗ − π♯, ρ = ρ∗ − ρ♯, ζ = ζ∗ − ζ♯.

Besides, we denote by (u∗, P ∗, φ∗, µ∗), (u♯, P ♯, φ♯, µ♯) the associated states corresponding to R∗, R♯, respectively.
Then (w, π, ρ, ζ) satisfies the following problem

ν(φ∗)w = ∇π − ρ∇φ∗ + g1, a.e. in Q,
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divw = 0, a.e. in Q,

∆π = div (ρ∇φ∗) + ν′(φ∗)∇φ∗ ·w − div g1, a.e. in Q,

ζ = ∆ρ+w · ∇φ1 + g3, a.e. in Q,

∂nρ = w · n = ∂nπ = 0, a.e. on Σ,

ρ|t=T = g4, a.e. in Ω,

and

− ⟨∂tρ, ψ⟩(H1)′,H1 −
∫
Ω

(u∗ · ∇ρ)ψ dx−
∫
Ω

∇ζ · ∇ψ dx−
∫
Ω

Ψ′′(φ∗)ζψ dx

+

∫
Ω

(w · ∇µ∗)ψ dx+

∫
Ω

(ν′(φ∗)u1 ·w)ψ dx =

∫
Ω

g2ψ dx,

for almost all t ∈ (0, T ) and all ψ ∈ H1(Ω). Here,

g1 = −w♯

∫ 1

0

ν′(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds− ρ♯∇(φ∗ − φ♯),

g2 = (u∗ − u♯) · ∇ρ♯ + ζ♯
∫ 1

0

Ψ(3)(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds

−w♯ · ∇(µ∗ − µ♯)− ν′(φ∗)w♯ · (u∗ − u♯)

− (u♯ ·w♯)

∫ 1

0

ν′′(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds+ α2(φ
∗ − φ♯),

g3 = w♯ · ∇(φ∗ − φ♯), g4 = α1(φ
∗(T )− φ♯(T )).

Then using estimates (3.8), (3.22), (3.23) and (5.56), we obtain (see [32], Sect. 6 for details)

∥g1∥2L2(0,T ;H1(Ω)) + ∥g1∥2L∞(0,T ;L2(Ω)) + ∥curl g1∥2L4(0,T ;L2(Ω)) + ∥g2∥2L2(0,T ;L4/3(Ω))

+ ∥g3∥2L2(0,T ;H1(Ω)) + ∥g4∥2H1(Ω)

≤ C∥R∗ −R♯∥2L2(Q).

We infer from Lemma 5.7 and the above estimates that

∥ρ∥2C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′) + ∥ζ∥2L2(0,T ;H1(Ω))

+ ∥w∥2L∞(0,T ;L2(Ω))∩L4(0,T ;H1(Ω)) + ∥π∥2L2(0,T ;H2(Ω))

≤ C∥g1∥2L2(0,T ;H1(Ω)) + C∥g1∥2L∞(0,T ;L2(Ω)) + C∥curl g1∥2L4(0,T ;L2(Ω))

+ C∥g2∥2L2(0,T ;L4/3(Ω)) + C∥g3∥2L2(0,T ;H1(Ω)) + C∥g4∥2H1(Ω)

≤ C∥R∗ −R♯∥2L2(Q),

which yields the required estimate (6.2).

Next, we show the Fréchet differentiability of the control-to-costate operator.

Proposition 6.3. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and the
assumptions (S1)–(S5) are satisfied.
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(1) For any R∗ ∈ Ũ , the control-to-costate operator T : Ũ → Z defined in (6.1) is Fréchet differentiable
at R∗ as a mapping from U into Z. The Fréchet derivative DT (R∗) ∈ L(U ,Z) can be determined as follows.

Given R∗ ∈ Ũ , we denote by (u∗, P ∗, φ∗, µ∗) its associated state and by (w∗, π∗, ρ∗, ζ∗) its adjoint state. Besides,
for any h ∈ U , we denote by (vh, qh, ξh, ηh) the unique solution to problem (5.1)–(5.6) at (u∗, P ∗, φ∗, µ∗) with
f1 = 0, f2 = h, f3 = 0. Then, it holds

DT (R∗)h = ρ̃h, (6.3)

where (w̃h, π̃h, ρ̃h, ζ̃h) with the regularity

ρ̃h ∈ Z, ζ̃h ∈ L2(0, T ;H1(Ω)),

w̃h ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω) ∩Hσ),

π̃h ∈ L2(0, T ;H2(Ω) ∩ L2
0(Ω)),

is a weak solution to the following linear system

ν(φ∗)w̃ = ∇π̃ − ρ̃∇φ∗ + g1, a.e. in Q, (6.4)

div w̃ = 0, a.e. in Q, (6.5)

ζ̃ = ∆ρ̃+ w̃ · ∇φ∗ + g3, a.e. in Q, (6.6)

∂nρ̃ = w̃ · n = ∂nπ̃ = 0, a.e. on Σ, (6.7)

ρ̃|t=T = g4, a.e. in Ω, (6.8)

and

− ⟨∂tρ̃, ψ⟩(H1)′,H1 −
∫
Ω

(u∗ · ∇ρ̃)ψ dx−
∫
Ω

∇ζ̃ · ∇ψ dx−
∫
Ω

Ψ′′(φ∗)ζ̃ψ dx

+

∫
Ω

(w̃ · ∇µ∗)ψ dx+

∫
Ω

(ν′(φ∗)u∗ · w̃)ψ dx =

∫
Ω

g2ψ dx, (6.9)

for almost all t ∈ (0, T ) and all ψ ∈ H1(Ω). Here,

g1 = −ν′(φ∗)ξhw∗ − ρ∗∇ξh, (6.10)

g2 = vh · ∇ρ∗ +Ψ(3)(φ∗)ξhζ∗ −w∗ · ∇ηh − ν′′(φ∗)ξhu∗ ·w∗

− ν′(φ∗)vh ·w∗ + α2ξ
h, (6.11)

g3 = w∗ · ∇ξh, (6.12)

g4 = α1ξ
h(T ). (6.13)

(2) The Fréchet derivative of the control-to-costate operator T is Lipschitz continuous in Ũ , i.e., for any

R∗, R♯ ∈ Ũ , it holds

∥DT (R∗)−DT (R♯)∥L(U,Z) ≤ C∥R∗ −R♯∥L2(Q), (6.14)

where C > 0 may depend on K1, K2, r1 and on the parameters of the system.
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Proof. By definition, for the given control function R∗, (u∗, P ∗, φ∗, µ∗) is the unique strong solution to problem
(1.3)–(1.4), while (w∗, π∗, ρ∗, ζ∗) is the unique weak solution to the adjoint system (5.26)–(5.33) with g1 = 0,
g2 = α2(φ

∗ − φQ), g3 = 0 and g4 = α1 (φ
∗(T )− φΩ) therein.

Let us first establish the solvability of problem (6.4)–(6.13). Thanks to Lemma 5.2, we easily find g4 =
α1ξ

h(T ) ∈ H1(Ω). Besides, it is straightforward to check that g1 · n = 0 on Σ. Using the regularity properties
of (u∗, P ∗, φ∗, µ∗), (w∗, π∗, ρ∗, ζ∗) and (vh, qh, ξh, ηh), we can verify that (see [32], Sect. 6 for details){

g1 ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), curl g1 ∈ L4(0, T ;L2(Ω)),

g2 ∈ L2(0, T ;L4/3(Ω)), g3 ∈ L2(0, T ;H1(Ω)),

with the following estimate

∥g1∥2L2(0,T ;H1(Ω)) + ∥g1∥2L∞(0,T ;L2(Ω)) + ∥curl g1∥2L4(0,T ;L2(Ω)) + ∥g2∥2L2(0,T ;L4/3(Ω)))

+ ∥g3∥2L2(0,T ;H1(Ω)) ≤ C∥h∥2L2(Q).

Then we are able to apply Lemma 5.7 and conclude that the linear problem (6.4)–(6.13) admits a unique weak

solution (w̃h, π̃h, ρ̃h, ζ̃h) satisfying the desired regularity and

∥ρ̃h∥2C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′) + ∥ζ̃h∥2L2(0,T ;H1(Ω))

+ ∥w̃h∥2L∞(0,T ;L2(Ω))∩L4(0,T ;H1(Ω)) + ∥π̃h∥2L2(0,T ;H2(Ω))

≤ C∥g1∥2L2(0,T ;H1(Ω)) + ∥g1∥2L∞(0,T ;L2(Ω)) + ∥curl g1∥2L4(0,T ;L2(Ω))

+ C∥g2∥2L2(0,T ;L4/3(Ω)) + C∥g3∥2L2(0,T ;H1(Ω)) + C∥g4∥2H1(Ω)

≤ C∥h∥2L2(Q). (6.15)

Next, we show that (w̃h, π̃h, ρ̃h, ζ̃h) gives the Fréchet derivative of T . Similar to the proof of Proposition 5.4,

since R∗ ∈ Ũ , there is some λ > 0 sufficiently small such that R∗ +h ∈ Ũ , whenever h ∈ U and ∥h∥U < λ. Below
we shall only consider such small perturbations h. For R∗ + h, we denote by (uh, Ph, φh, µh) its associated state
and by (wh, πh, ρh, ζh) its associated adjoint state. Define the differences

ŷh = ρh − ρ∗ − ρ̃h, ẑh = ζh − ζ∗ − ζ̃h, ah = wh −w∗ − w̃h, bh = πh − π∗ − π̃h.

For all admissible perturbations h, we can check that

ŷh ∈ Z, ẑh ∈ L2(0, T ;H1(Ω)),

ah ∈ L2(0, T ;H1(Ω) ∩Hσ), bh ∈ L2(0, T ;H2(Ω) ∩ L2
0(Ω)).

Then (ah, bh, yh, zh) is a weak solution to the following problem:

ν(φ∗)ah = ∇bh − ŷh∇φ∗ + ĝ1, a.e. in Q, (6.16)

divah = 0, a.e. in Q, (6.17)

ẑh = ∆ŷh + ah · ∇φ∗ + ĝ3, a.e. in Q, (6.18)

∂nŷ
h = ah · n = 0, a.e. on Σ, (6.19)

ŷh|t=T = ĝ4, a.e. in Ω, (6.20)
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and

− ⟨∂tŷh, ψ⟩(H1)′,H1 −
∫
Ω

(u∗ · ∇ŷh)ψ dx−
∫
Ω

∇ẑh · ∇ψ dx−
∫
Ω

Ψ′′(φ∗)ẑhψ dx

+

∫
Ω

(ah · ∇µ∗)ψ dx+

∫
Ω

(ν′(φ∗)u∗ · ah)ψ dx =

∫
Ω

ĝ2ψ dx, (6.21)

for almost all t ∈ (0, T ) and all ψ ∈ H1(Ω). Using Taylor’s formula, it is straightforward to check that

ĝ1 = −(wh −w∗)

∫ 1

0

ν′(sφh + (1− s)φ∗)(φh − φ∗) ds

−w∗ν′(φ∗)(φh − φ∗ − ξh)

− 1

2
w∗

∫ 1

0

∫ 1

0

ν′′(szφh + (1− sz)φ∗)(φh − φ∗)2dsdz

− (ρh − ρ∗)∇(φh − φ∗)− ρ∗∇(φh − φ∗ − ξh),

ĝ2 = α2(φ
h − φ∗ − ξh) + (uh − u∗) · ∇(ρh − ρ∗) + (uh − u∗ − vh) · ∇ρ∗

+ (ζh − ζ∗)

∫ 1

0

Ψ(3)(sφh + (1− s)φ∗)(φh − φ∗) ds

+ ζ∗Ψ(3)(φ∗)(φh − φ∗ − ξh)

+
1

2
ζ∗

∫ 1

0

∫ 1

0

Ψ(4)(szφh + (1− sz)φ∗)(φh − φ∗)2 dsdz

− (wh −w∗) · ∇(µh − µ∗)−w∗ · ∇(µh − µ∗ − ηh)

− u∗ · (wh −w∗)

∫ 1

0

ν′′(sφh + (1− s)φ∗)(φh − φ∗) ds

− ν′′(φ∗)(φh − φ∗ − ξh)(u∗ ·w∗)

− 1

2
(u∗ ·w∗)

∫ 1

0

∫ 1

0

ν(3)(szφh + (1− sz)φ∗)(φh − φ∗)2dsdz

− ν′(φ∗)(uh − u∗) · (wh −w∗)− ν′(φ∗)
(
uh − u∗ − vh

)
·w∗,

ĝ3 = (wh −w∗) · ∇(φh − φ∗) +w∗ · ∇(φh − φ∗ − ξh),

ĝ4 = α1(φ
h(T )− φ∗(T )− ξh(T )).

We recall that the estimates (3.22)–(3.23) hold for both (u∗, P ∗, φ∗, µ∗) and (uh, Ph, φh, µh). Besides, the
control-to-costate operator is Lipschitz continuous (see (6.2)), that is,

∥ρh − ρ∗∥C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′) + ∥ζh − ζ∗∥L2(0,T ;H1(Ω))

+ ∥wh −w∗∥L∞(0,T ;L2(Ω))∩L4(0,T ;H1(Ω)) + ∥πh − π∗∥L2(0,T ;H2(Ω))

≤ C∥h∥L2(Q),

for some C > 0 independent of h. Combining the above estimates with (5.23) and (5.56), we can deduce that
(see [32], Sect. 6 for details)

∥ĝ1∥2L2(0,T ;H1(Ω)) + ∥ĝ2∥2L2(0,T ;L4/3(Ω)) + ∥ĝ3∥2L2(0,T ;H1(Ω)) + ∥ĝ4∥2H1(Ω) ≤ C∥h∥4L2(Q).
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Applying Lemma 5.7, we get the following estimate on the solution ỹh to problem (6.16)–(6.21):

∥ŷh∥2C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′)

≤ C
(
∥ĝ1∥2L2(0,T ;H1(Ω)) + ∥ĝ2∥2L2(0,T ;L4/3(Ω)) + ∥ĝ3∥2L2(0,T ;H1(Ω)) + ∥ĝ4∥2H1(Ω)

)
≤ C∥h∥4L2(Q),

for any h ∈ U ⊂ L2(Q) with ∥h∥U < λ. As a consequence, it holds

∥T (R∗ + h)− T (R∗)− ρ̃h∥Z
∥h∥U

=
∥ŷh∥Z
∥h∥U

≤ C∥h∥U → 0, as ∥h∥U → 0.

This completes the proof of the assertion (1).

Next, we prove assertion (2), that is, the Lipschitz continuity of the Fréchet derivative of T .

Given two controls R∗, R♯ ∈ Ũ , we denote by (u∗, P ∗, φ∗, µ∗), (u♯, P ♯, φ♯, µ♯) their associate states, by
(v∗, q∗, ξ∗, η∗), (v♯, q♯, ξ♯, η♯) the corresponding solutions to the linear system (5.1)–(5.6) at (u∗, P ∗, φ∗, µ∗) and

(u♯, P ♯, φ♯, µ♯) with f1 = 0, f2 = h, f3 = 0, respectively, and by (w̃∗, π̃∗, ρ̃∗, ζ̃∗), (w̃♯, π̃♯, ρ̃♯, ζ̃♯) the solutions to
the linear system (6.4)–(6.13) corresponding to R∗ and R♯. Define the differences

w̃ = w̃∗ − w̃♯, π̃ = π̃∗ − π̃♯, ρ̃ = ρ̃∗ − ρ̃♯, ζ̃ = ζ̃∗ − ζ̃♯.

We find that (w̃, π̃, ρ̃, ζ̃) is a solution to the following problem

ν(φ∗)w̃ = ∇π̃ − ρ̃∇φ∗ + g̃1, a.e. in Q,

div w̃ = 0, a.e. in Q,

ζ̃ = ∆ρ̃+ w̃ · ∇φ∗ + g̃3, a.e. in Q,

∂nρ̃ = w̃ · n = 0, a.e. on Σ,

ρ̃|t=T = g̃4, a.e. in Ω,

and

− ⟨∂tρ̃, ψ⟩(H1)′,H1 −
∫
Ω

(u∗ · ∇ρ̃)ψ dx−
∫
Ω

∇ζ̃ · ∇ψ dx−
∫
Ω

Ψ′′(φ∗)ζ̃ψ dx

+

∫
Ω

(w̃ · ∇µ∗)ψ dx+

∫
Ω

(ν′(φ∗)u∗ · w̃)ψ dx =

∫
Ω

g̃2ψ dx,

for almost all t ∈ (0, T ) and all ψ ∈ H1(Ω). Here, we have

g̃1 = −w̃♯

∫ 1

0

ν′(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds− ρ̃♯∇(φ∗ − φ♯)

− ν′(φ∗)ξ∗(w∗ −w♯)− ν′(φ∗)(ξ∗ − ξ♯)w♯

− ξ♯w♯

∫ 1

0

ν′′(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds

− (ρ∗ − ρ♯)∇ξ∗ − ρ♯∇(ξ∗ − ξ♯),
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g̃2 = (u∗ − u♯) · ∇ρ̃♯ + ξ̃♯
∫ 1

0

Ψ(3)(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds

− w̃♯ · ∇(µ∗ − µ♯)− ν′(φ∗)(u∗ − u♯) · w̃♯

− u♯ · w̃♯

∫ 1

0

ν′′(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds

+ v∗ · ∇(ρ∗ − ρ♯) + (v∗ − v♯) · ∇ρ♯

+Ψ(3)(φ∗)ξ∗(ζ∗ − ζ♯) + Ψ(3)(φ∗)(ξ∗ − ξ♯)ζ♯

+ ξ♯ζ♯
∫ 1

0

Ψ(4)(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds

−w∗ · ∇(η∗ − η♯)− (w∗ −w♯) · ∇η♯ − ν′′(φ∗)ξ∗u∗ · (w∗ −w♯)

− ν′′(φ∗)ξ∗(u∗ − u♯) ·w♯ − ν′′(φ∗)(ξ∗ − ξ♯)u♯ ·w♯

− ξ♯(u♯ ·w♯)

∫ 1

0

ν(3)(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds

− ν′(φ∗)v∗ · (w∗ −w♯)− ν′(φ∗)(v∗ − v♯)w♯

− (v♯ ·w♯)

∫ 1

0

ν′′(sφ∗ + (1− s)φ♯)(φ∗ − φ♯) ds+ α2(ξ
∗ − ξ♯),

g̃3 = w̃♯ · ∇(φ∗ − φ♯) + (w∗ −w♯) · ∇ξ∗ +w♯ · ∇(ξ∗ − ξ♯),

g̃4 = α1(ξ
∗(T )− ξ♯(T )).

Using the estimates (3.8), (3.22), (3.23), (5.9), (5.24), (5.56), (6.2) and (6.15), we find (see [32], Sect. 6 for
details)

∥g̃1∥2L2(0,T ;H1(Ω)) + ∥g̃2∥2L2(0,T ;L4/3(Ω)) + ∥g̃3∥2L2(0,T ;H1(Ω)) + ∥g̃4∥2H1(Ω)

≤ C∥R∗ −R♯∥2L2(Q)∥h∥
2
L2(Q).

Applying Lemma 5.7, we obtain

∥ρ̃∗ − ρ̃♯∥2C([0,T ];H1(Ω))∩L2(0,T ;H3(Ω))∩H1(0,T ;(H1(Ω))′)

≤ C
(
∥g̃1∥2L2(0,T ;H1(Ω)) + ∥g̃2∥2L2(0,T ;L4/3(Ω)) + ∥g̃3∥2L2(0,T ;H1(Ω)) + ∥g̃4∥2H1(Ω)

)
≤ C∥R∗ −R♯∥2L2(Q)∥h∥

2
L2(Q),

which easily yields the conclusion (6.14).

6.2. A second-order sufficient condition

Since the control-to-state operator S and the control-to-costate operator T are continuously Fréchet differ-
entiable (recall Prop. 5.4 and Prop. 6.3), the cost functional J as well as the reduced cost functional Ĵ are
twice continuously differentiable in U thanks to the chain rule. With the help of the adjoint state, for a given
control R∗ ∈ Ũ , the first and second Fréchet derivatives of Ĵ at R∗ can be calculated. Indeed, we have

Ĵ ′(R∗)h =

∫
Q

(ρ∗ + βR∗)hdxdt, ∀h ∈ U ,
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where ρ∗ is the associated adjoint state of R∗, and

Ĵ ′′(R∗)[h1, h2] =

∫
Q

(
βh1 + ρ̃h1

R∗

)
h2 dxdt, ∀h1, h2 ∈ U ,

where ρ̃h1

R∗ is determined as in (6.3) with h = h1.
To derive the second-order sufficient condition, we apply the idea in [34] and introduce the concept of cone

of critical directions.

Definition 6.4. Let R∗ ∈ Uad and set

A0(R
∗) =

{
(x, t) ∈ Q : |ρ∗(x, t) + βR∗(x, t)| > 0

}
,

where ρ∗ is the associated adjoint state of R∗. The cone of critical directions, denoted by C(R∗), is
defined as

C(R∗) :=
{
h ∈ U ∩ L∞(Q) : h satisfies (6.22)

}
,

where (6.22) is given by

h(x, t)


≥ 0, if (x, t) /∈ A0(R

∗), R∗(x, t) = Rmin(x, t),

≤ 0, if (x, t) /∈ A0(R
∗), R∗(x, t) = Rmax(x, t),

= 0, if (x, t) ∈ A0(R
∗),

(6.22)

for almost all (x, t) ∈ Q.

The main result of this section reads as follows.

Theorem 6.5. Assume that Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, T > 0 and assumptions
(S1)–(S5) are satisfied with β > 0. Let R∗ ∈ Uad be any control satisfying the variational inequality (5.57).
Moreover, we assume that

Ĵ ′′(R∗)[h, h] =

∫
Q

(
βh+ ρ̃hR∗

)
hdxdt > 0, ∀h ∈ C(R∗) \ {0}. (6.23)

Then there exists constants λ, θ > 0 such that the following inequality holds

Ĵ (R) ≥ Ĵ (R∗) + θ∥R−R∗∥2L2(Q), ∀R ∈ Uad with ∥R−R∗∥L2(Q) < λ. (6.24)

As a consequence, R∗ is a strict local minimizer of Ĵ on the set Uad.

Proof. The proof follows from a contradiction argument in the spirit of [34], Theorem 4.1. Suppose that R∗ does
not fulfill (6.24). Then there exists a sequence of controls {Rk} ⊂ Uad satisfying Rk ̸= R∗, Rk → R∗ strongly in
L2(Q) such that

Ĵ (Rk) < Ĵ (R∗) +
1

k
∥Rk −R∗∥2L2(Q), ∀ k ∈ Z+. (6.25)

Define

h̃k =
Rk −R∗

∥Rk −R∗∥L2(Q)
.
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Since ∥h̃k∥L2(Q) = 1, we can extract a subsequence (not relabelled for simplicity) such that

h̃k → h̃ weakly in L2(Q) for some h̃ ∈ L2(Q).

Let ρk be the associated adjoint state of Rk. Using Propositions 3.11, 5.8, and 6.2, we can deduce that∣∣∣∣∫
Q

(ρk + βRk) h̃k dxdt−
∫
Q

(ρ∗ + βR∗) h̃dxdt

∣∣∣∣
≤

∣∣∣∣∫
Q

((ρk − ρ∗) + β(Rk −R∗)) h̃k dxdt

∣∣∣∣+ ∣∣∣∣∫
Q

(ρ∗ + βR∗) (h̃k − h̃) dxdt

∣∣∣∣ → 0,

as k → +∞, which implies

lim
k→+∞

Ĵ ′(Rk)h̃k = Ĵ ′(R∗)h̃. (6.26)

Using the Newton–Leibniz formula

Ĵ (Rk) = Ĵ (R∗) +

∫ 1

0

Ĵ ′(sRk + (1− s)R∗)(Rk −R∗) ds,

we infer from (6.25) that∫ 1

0

Ĵ ′(sRk + (1− s)R∗)h̃k ds <
1

k
∥Rk −R∗∥L2(Q) → 0, as k → +∞.

This fact, combined with (6.26) and Proposition 6.2, easily yields Ĵ ′(R∗)h̃ ≤ 0. On the other hand, since

Rk ∈ Uad, it follows from (5.57) that Ĵ ′(R∗)h̃k ≥ 0. This further implies Ĵ ′(R∗)h̃ ≥ 0. As a consequence, we
find

Ĵ ′(R∗)h̃ = 0.

Then, following the same argument as in Step 2 of the proof for [34], Theorem 4.1, we can conclude

h̃ ∈ C(R∗).

Next, from Proposition 6.3 and the compact embedding Z ↪→↪→ L2(Q), we can deduce that, up to a
subsequence (not relabelled hereafter for simplicity), it holds

∥ρ̃h̃k

R∗ − ρ̃h̃R∗∥L2(Ω) → 0, as k → +∞.

As a result, we have (again up to a subsequence)∣∣∣∣∫
Q

ρ̃h̃k

R∗ h̃k dxdt−
∫
Q

ρ̃h̃R∗ h̃dxdt

∣∣∣∣ ≤ ∣∣∣∣∫
Q

(
ρ̃h̃k

R∗ − ρ̃h̃R∗

)
h̃k dxdt

∣∣∣∣+ ∣∣∣∣∫
Q

ρ̃h̃R∗(h̃k − h̃
)
dxdt

∣∣∣∣ → 0,

as k → +∞. Hence, it holds

lim
k→+∞

Ĵ ′′(R∗)[h̃k, h̃k] = Ĵ ′′(R∗)[h̃, h̃]. (6.27)
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Using a second-order Taylor’s expansion, we find

Ĵ (Rk) = Ĵ (R∗) + Ĵ ′(R∗)(Rk −R∗)

+
1

2
∥Rk −R∗∥2L2(Q)

∫ 1

0

∫ 1

0

Ĵ ′′(szRk + (1− sz)R∗)[h̃k, h̃k] dsdz.

From (5.57) and (6.25) we infer that∫ 1

0

∫ 1

0

Ĵ ′′(szRk + (1− sz)R∗)[h̃k, h̃k] dsdz <
2

k
. (6.28)

Besides, the Lipschitz continuity property (see Prop. 6.3) implies∣∣∣∣∫ 1

0

∫ 1

0

Ĵ ′′(szRk + (1− sz)R∗)[h̃k, h̃k] dsdz − Ĵ ′′(R∗)[h̃k, h̃k]

∣∣∣∣ → 0, as k → +∞.

From the above fact, (6.27) and (6.28), we easily deduce that

Ĵ ′′(R∗)[h̃, h̃] = lim sup
k→+∞

Ĵ ′′(R∗)[h̃k, h̃k]

= lim sup
k→+∞

∫ 1

0

∫ 1

0

Ĵ ′′(szRk + (1− sz)R∗)[h̃k, h̃k] dsdz

+ lim
k→+∞

(
Ĵ ′′(R∗)[h̃k, h̃k]−

∫ 1

0

∫ 1

0

Ĵ ′′(szRk + (1− sz)R∗)[h̃k, h̃k] dsdz

)
≤ 0.

Recalling condition (6.23) and the fact that h̃ ∈ C(R∗), we find h̃ = 0 so that h̃k → 0 weakly in L2(Q). Hence,

ρ̃h̃R∗ = 0 and, up to a subsequence, we have

∥ρ̃h̃k

R∗∥L2(Ω) → 0, as k → +∞.

Then, we find that

0 < β = β lim
k→+∞

∥h̃k∥2L2(Ω)

= lim
k→+∞

Ĵ ′′(R∗)[h̃k, h̃k]− lim
k→+∞

∫
Q

ρ̃h̃k

R∗ h̃k dxdt

= Ĵ ′′(R∗)[h̃, h̃] ≤ 0,

which leads to a contradiction. The proof of Theorem 6.5 is complete.

Appendix A.

In this appendix, we prove Theorem 3.5 about the existence and uniqueness of a strong solution to problem
(1.3)–(1.4).

The strategy follows the arguments similar to those in [4, 5, 14, 15]. Below we sketch the main steps and point
out the necessary modifications due to the presence of mass source terms. For simplicity, we denote the norm
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of L2(Ω) (or (L2(Ω))2) by ∥ · ∥, and the norms of Lp(Ω), Wm,p(Ω), Hm(Ω) by ∥ · ∥Lp , ∥ · ∥Wm,p and ∥ · ∥Hm ,
respectively.

Step 1. The approximating problem. Let ε ∈ (0, κ) with κ being the constant given in (A1)′. As in [5],
we introduce a family of regular potentials {Ψε} that approximates the original singular potential Ψ by setting

Ψε(s) = Fε(s)−
Θ0

2
s2, ∀ s ∈ R, (A.1)

where

Fε(s) =



4∑
j=0

1

j!
F (j)(1− ε) [s− (1− ε)]

j
, ∀ s ≥ 1− ε,

F (s), ∀ s ∈ [−1 + ε, 1− ε],
4∑

j=0

1

j!
F (j)(−1 + ε) [s− (−1 + ε)]

j
, ∀ s ≤ −1 + ε.

(A.2)

Thanks to the definition of Ψε, one easily finds (see [4]) some κ ∈ (0, κ] such that, for any ε ∈ (0, κ), the
approximating function Ψε given by (A.1) satisfies Ψε ∈ C4(R) and

γ1s
4 − γ2 ≤ Ψε(s), −α ≤ Ψ′′

ε (s) ≤ L, ∀ s ∈ R,

where γ1, γ2 are positive constants independent of ε, the constant α is given in (A1) and L is a positive constant
that may depend on ε. Moreover, we have

Ψε(s) ≤ Ψ(s), ∀ s ∈ [−1, 1] and |Ψ′
ε(s)| ≤ |Ψ′(s)|, ∀ s ∈ (−1, 1).

For every ε ∈ (0, κ), we study the following approximating problem:
ν(φε)uε = −∇Pε + µε∇φε,

divuε = S,

∂tφε + div (φεuε) = ∆µε + S +R,

µε = −∆φε +Ψ′
ε(φε),

in Q, (A.3)

subject to the initial and boundary conditions{
uε · n = ∂nµε = ∂nφε = 0, on Σ,

φε|t=0 = φ0, in Ω.
(A.4)

When the strong solutions are concerned, we need to pay some attention to the “initial value” of the approx-
imated chemical potential µε,0 ≜ −∆φ0 +Ψ′

ε(φ0) (see [4, 35]). To this end, we consider the following Neumann
problem with a singular nonlinearity: {

−∆u+ F ′(u) = f, in Ω,

∂nu = 0, on ∂Ω,
(A.5)

where the function F satisfies the assumptions (A1) and (A1)′. Then the following lemma holds
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Lemma A.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. For any f ∈ L2(Ω), problem (A.5)
admits a unique strong solution u ∈ H2(Ω) and F ′(u) ∈ L2(Ω). If f ∈ H1(Ω), then

∥∆u∥ ≤ C∥∇u∥ 1
2 ∥∇f∥ 1

2

for some positive constant C independent of u. For any q ∈ [2,+∞), there exists a positive constant C = C(q,Ω)
such that

∥u∥W 2,q + ∥F ′(u)∥Lq ≤ C (1 + ∥f∥H1) and ∥F ′′(u)∥Lq ≤ C
(
1 + eC∥f∥2

H1

)
.

Moreover, F ′(u) ∈W 1,q(Ω) and there exists a constant δ ∈ (0, 1) such that

∥u∥L∞ ≤ 1− δ. (A.6)

Remark A.2. The results presented in Lemma A.1 can be found in [5, 30, 35, 36], and in particular, the strict
separation property (A.6) was proved in [37], Lemma 3.2.

Now, for the initial datum φ0 given in Theorem 3.5, we infer from Lemma A.1 that there exists some δ̃ ∈ (0, 1)

such that ∥φ0∥L∞ ≤ 1− δ̃, i.e., the initial phase function is indeed strictly separated from the pure states ±1.

The constant δ̃ depends on ∥µ̃0∥H1 and Ω. Then, by the elliptic estimate, we also find that φ0 ∈ H3(Ω). As a
consequence, different from [4], Section 5, here we do not need to introduce approximations for the initial data

(in two dimensions). Indeed, for every ε ∈ (0,min{κ, (1/2)δ̃}), we have (recall (A.2))

µ̃ε,0 ≜ −∆φ0 + F ′
ε(φ0) = −∆φ0 + F ′(φ0) = µ̃0,

which yields the ε-independent estimate ∥µ̃ε,0∥H1 = ∥µ̃0∥H1 .
Existence and uniqueness of global strong solutions to the approximating problem (A.3)–(A.4) can be proven

by using the standard arguments similar to those in [6, 7, 14] via a suitable Faedo–Galerkin scheme. We only
state the result and skip its proof.

Proposition A.3. Let the assumptions in Theorem 3.5 be satisfied. For every ε ∈ (0,min{κ, (1/2)δ̃}), problem
(A.3) admits a unique global strong solution (uε, Pε, φε, µε) on [0, T ] such that

uε ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω)),

Pε ∈ C([0, T ];V0) ∩ L2(0, T ;H4(Ω)),

φε ∈ C([0, T ];H3(Ω)) ∩ L2(0, T ;H5(Ω)) ∩H1(0, T ;H1(Ω)),

µε ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω)).

The strong solution satisfies the system (A.3) almost everywhere in Q. Moreover, uε · n = ∂nµε = ∂nφε = 0
almost everywhere on Σ and φ(·, 0) = φ0 in Ω.

Step 2. A priori estimates. We derive uniform estimates for (uε, Pε, φε, µε) that are independent of the

approximating parameter ε ∈ (0,min{κ, (1/2)δ̃}).

First estimate. Integrating the third equation of (A.3) over Ω, we have∫
Ω

φε(t, x) dx =

∫
Ω

φ0(x) dx+

∫
Ω

R(t, x) dx, ∀ t ∈ [0, T ].
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Then, from assumption (A3) and (3.3) we deduce that

|φε(t)| ≤ 1− δ0, ∀ t ∈ [0, T ]. (A.7)

Second estimate. The pressure Pε can be written as follows (see e.g., [4, 14])

Pε = Ndiv (ν(φε)uε)−Ndiv (µε∇φε)

= Ndiv (ν(φε)uε)−Ndiv ((µε − µε)∇φε) + µε(φε − φε). (A.8)

Using (A2), Hölder’s inequality and (A.7), we find

∥Pε∥ ≤ C∥ν(φε)uε∥L3/2 + C∥(µε − µε)∇φε∥L6/5 + |µε|(1 + ∥φε∥)
≤ C∥uε∥+ ∥µε − µε∥L3∥∇φε∥+ |µε|(1 + ∥φε∥).

Third estimate. Thanks to (A1) and (A.7), we find the following standard estimate (see e.g., [5])

∥Fε(φε)∥L1 ≤ C

∫
Ω

(φε − φε)(F
′
ε(φε)− F ′

ε(φε)) dx+ C,

based on which we can further obtain (see [29])

∥Fε(φε)∥L1 ≤ C(∥µε − µε∥∥φε − φε∥+ ∥φε − φε∥∥φε∥) + C

≤ C∥µε − µε∥∥φε∥+ C(1 + ∥φε∥2).

As a consequence, we get

|µε| ≤ ∥Fε(φε)∥L1 +Θ0|Ω|−1

∣∣∣∣∫
Ω

φε dx

∣∣∣∣ ≤ C∥µε − µε∥∥φε∥+ C(1 + ∥φε∥2). (A.9)

Fourth estimate. Multiplying the first equation of (A.3) by uε and the third equation by µε, adding the
resultants together and integrating over Ω, we obtain

d

dt
Eε(t) +

∫
Ω

ν(φε)|uε|2 dx+ ∥∇µε∥2

=

∫
Ω

µεS(1− φε) dx+

∫
Ω

Rµε dx+

∫
Ω

PεS dx

=

∫
Ω

(µε − µε)S(1− φε) dx+

∫
Ω

Rµε dx+

∫
Ω

SNdiv (ν(φε)uε) dx

−
∫
Ω

SNdiv ((µε − µε)∇φε) dx,

where

Eε(t) =
1

2
∥∇φε(t)∥2 +

∫
Ω

Ψε(φε(t)) dx.
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Here, we have used (A.8) and the assumption S = 0. Observing that ∥∇φε∥2 ≤ 2(Eε + γ2|Ω|), we can derive the
following inequality (see [32], Appendix A for details)

d

dt
Eε(t) +

1

2

∫
Ω

ν(φε)|uε|2 dx+
1

2
∥∇µε∥2 ≤ C(1 + ∥R∥2 + ∥S∥2)(1 + Eε(t)), (A.10)

where C > 0 is independent of ε. Thus, it follows from (A.10) and Gronwall’s lemma that

1

2
∥∇φε(t)∥2 +

∫
Ω

Ψε(φε(t)) dx ≤ CT , ∀ t ∈ [0, T ], (A.11)

and ∫ T

0

(
∥uε(t)∥2 + ∥∇µε(t)∥2

)
dt ≤ CT , (A.12)

where CT > 0 may depend on the initial energy Eε(0), ν∗, ν∗, γ2, Ω and T . In particular, from the argument in
Step 1, we see that

Eε(0) =
1

2
∥∇φ0∥2 +

∫
Ω

Ψ(φ0) dx,

that is, the initial energy is independent of ε.

Fifth estimate. Testing the fourth equation in (A.3) with −∆φε, we get

∥∆φε∥2 − (Ψ′
ε(φε),∆φε) = −(µε,∆φε).

Then by Lemma A.1 and the same argument as in [4, 5], we can conclude∫ T

0

∥φε(t)∥4H2 dt+

∫ T

0

∥µε(t)∥2H1 dt+

∫ T

0

∥F ′
ε(φε)(t)∥2Lp dt+

∫ T

0

∥φε(t)∥2W 2,p dt ≤ CT .

Sixth estimate. We proceed to derive some higher-order estimates for the approximate solution. To this
end, we first infer from Lemma 2.1 that, since S ∈ C([0, T ];L2

0(Ω)) (cf. (A3)), there exists vS ∈ C([0, T ];H1(Ω))
satisfying

div vS = S in Ω, v = 0 on ∂Ω,

for t ∈ [0, T ]. Setting

ũε = uε − vS ,

we can rewrite the approximate problem (A.3) in the following way:
ν(φε)ũε = −ν(φε)vS −∇Pε + µε∇φε,

divũε = 0,

∂tφε + div (φεũε) = ∆µε + S +R− div (φεvS),

µε = −∆φε +Ψ′
ε(φε),

in Q, (A.13)
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subject to the initial and boundary conditions{
ũε · n = ∂nµε = ∂nφε = 0, on Σ,

φε(·, 0) = φ0, in Ω.
(A.14)

Differentiating (formally) the first equation of (A.13) with respect to time, multiplying the resultant by ũε

and integrating over Ω, we obtain

1

2

d

dt

∫
Ω

ν(φε)|ũε|2 dx = ⟨∂tµε,∇φε · ũε⟩(H1)′,H1 +

∫
Ω

µε∇∂tφε · ũε dx

− 1

2

∫
Ω

ν′(φε)∂tφε|ũε|2 dx−
∫
Ω

∂t(ν(φε)vS) · ũε dx. (A.15)

We remark that the above computation can be rigorously justified by a standard approximation procedure using
the time difference operator ∂ht f = h−1[f(t + h) − f(t)] and then letting h go to 0 (see e.g., [4], pp. 21). In a
similar manner, we have

d

dt

∫
Ω

div (φεvS)µε dx = ⟨∂t(div (φεvS)), µε⟩(H1)′,H1 + ⟨∂tµε,div (φεvS)⟩(H1)′,H1 , (A.16)

d

dt

∫
Ω

(S +R)µε dx = ⟨∂tµε, S +R⟩(H1)′,H1 + ⟨∂t(S +R), µε⟩(H1)′,H1 . (A.17)

Furthermore, multiplying the third equation of (A.13) by ∂tµε = −∆∂tφε + Ψ′′
ε (φε)∂tφε and integrating over

Ω, after integration by parts, we get

1

2

d

dt
∥∇µε∥2 + ∥∇∂tφε∥2 +

∫
Ω

F ′′
ε (φε)(∂tφε)

2 dx

= −⟨∂tµε, ũε · ∇φε⟩(H1)′,H1 +Θ0∥∂tφε∥2 + ⟨∂tµε, S +R⟩(H1)′,H1

− ⟨∂tµε,div (φεvS)⟩(H1)′,H1 . (A.18)

Adding (A.15)–(A.18) together yields

d

dt
Λε(t) + ∥∇∂tφε∥2 +

∫
Ω

F ′′
ε (φε)(∂tφε)

2 dx

=

∫
Ω

µε∇∂tφε · ũε dx− 1

2

∫
Ω

ν′(φε)∂tφε|ũε|2 dx−
∫
Ω

∂t(ν(φε)vS) · ũε dx

+Θ0∥∂tφε∥2 − ⟨∂t(S +R), µε⟩(H1)′,H1 + ⟨∂t(div (φεvS)), µε⟩(H1)′,H1 , (A.19)

where

Λε(t) =
1

2

∫
Ω

ν(φε)|ũε|2 dx+
1

2
∥∇µε∥2 +

∫
Ω

div (φεvS)µε dx−
∫
Ω

(S +R)µε dx.

From (A.7), (A.9), (A.11) and the Poincaré–Wirtinger inequality we see that∣∣∣∣∫
Ω

div (φεvS)µε dx

∣∣∣∣ ≤ (∥φε div vS∥
L

4
3
+ ∥∇φε · vS∥

L
4
3
)∥µε∥L4

≤ C(∥φε∥L4∥S∥+ ∥∇φε∥∥vS∥L4)∥µε∥
1
2 ∥µε∥

1
2

H1
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≤ C∥S∥(1 + ∥∇µε∥)

≤ 1

8
∥∇µε∥2 + C(1 + ∥S∥2),

and ∣∣∣∣∫
Ω

(S +R)µε dx

∣∣∣∣ ≤ (∥S∥+ ∥R∥)∥µε∥

≤ C(∥S∥+ ∥R∥)(1 + ∥∇µε∥)

≤ 1

8
∥∇µε∥2 + C(1 + ∥S∥2 + ∥R∥2).

From (A3) we also note that S,R ∈ C([0, T ];L2(Ω)) (see [38]). As a consequence, setting

Λ∗
ε(t) = Λε(t) + S∗ with S∗ = C(1 + ∥S∥2L∞(0,T ;L2(Ω)) + ∥R∥2L∞(0,T ;L2(Ω))),

for some sufficiently large C > 0, it follows that

1

2
ν∗∥ũε∥2 +

1

4
∥∇µε∥2 + 1 ≤ Λ∗

ε(t) ≤
1

2
ν∗∥ũε∥2 + ∥∇µε∥2 + 2S∗.

By some careful computations, we can control the right-hand side of (A.19) in terms of the quantity Λ∗
ε and

obtain (see [32], Appendix A for details)

d

dt
Λ∗
ε(t) +

1

2
∥∇∂tφε∥2 +

∫
Ω

F ′′
ε (φε)(∂tφε)

2 dx ≤ C
(
Λ∗
ε

)2
ln(C + CΛ∗

ε) + C(∥∂tS∥2 + ∥∂tR∥2(H1)′).

Thanks to the time continuity of the approximate solution and vS , we see that

∥
√
ν(φε(0))ũε(0)∥ ≤ C∥µε(0)∥V ∥φε(0)∥L∞ + C∥vS(0)∥

≤ C(1 + ∥µ̃0∥H1 + ∥S(0)∥),

which is bounded. As a result, the initial value of Λ∗
ε is bounded by

1 ≤ Λ∗
ε(0) ≤ C(1 + ∥µ̃0∥2H1 + ∥S(0)∥2) + 2S∗.

Hence, from Gronwall’s lemma, (A3) and the fact Λ∗
ε ∈ L1(0, T ) (recall (A.12)), we can conclude that

Λ∗
ε(t) ≤ CT , ∀ t ∈ [0, T ],

where CT > 0 depends on ∥S∥L2(0,T ;H1(Ω)), ∥∂tS∥L2(0,T ;L2(Ω)), ∥R∥L2(0,T ;H1(Ω)), ∥∂tR∥L2(0,T ;(H1(Ω))′), ∥µ̃0∥H1 ,
Eε(0), Ω, T and coefficients of the system, but it is independent of ε. Recalling the definition of Λ∗

ε, we infer
from the above estimate that

∥µε(t)∥H1 + ∥ũε(t)∥ ≤ CT , ∀ t ∈ [0, T ],

as well as ∫ T

0

∥∇∂tφε(t)∥2 dt ≤ CT .
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Hence, it holds

∥uε(t)∥H1 + ∥φε(t)∥W 2,p + ∥∂tφε(t)∥(H1)′ + ∥F ′
ε(φε)(t)∥Lp ≤ CT , (A.20)

for any t ∈ [0, T ] and p ∈ [2,+∞). The H2-estimate for the pressure Pε can be derived from Lemma 2.2 and
(A.20) (cf. [4]):

∥Pε(t)∥H2 ≤ CT , ∀ t ∈ [0, T ].

Finally, we infer from the third equation of (A.13), (A3), (A.20) and a standard elliptic estimate that

∥µε∥H3 ≤ C(∥∂tφε∥H1 + ∥div (φεuε)∥H1 + ∥S∥H1 + ∥R∥H1 + ∥µε∥)
≤ C(∥∇∂tφε∥+ ∥µε∥) + C(∥S∥H1 + ∥R∥H1),

almost everywhere in (0, T ). This further yields∫ T

0

∥µε(t)∥2H3 dt ≤ CT .

Step 3. Existence. Based on the ε-independent estimates obtained in the previous step, we can pass to
the limit as ε→ 0+ and obtain the existence of a global strong solution (u, P, φ, µ) to problem (1.3)–(1.4) with
corresponding regularity properties via a standard compactness argument (cf. [5]). Further regularity of the
solution (u, P, φ, µ) can be obtained. To this end, from µ ∈ L∞(0, T ;H1(Ω)) and Lemma A.1, we can deduce
that F ′′(φ) ∈ L∞(0, T ;Lp(Ω)) for any p ∈ [2,+∞), and the strict separation property (3.5) (cf. [37], see also
an alternative argument for the Cahn–Hilliard equation in [16]). Then from the equation µ = −∆φ + Ψ′(φ),
(A1) and the elliptic estimate, we find that φ ∈ L∞(0, T ;H3(Ω)). Recalling (A1)′ and using (3.5), we further
obtain F ′(φ) ∈ L2(0, T ;H3(Ω)). Applying the elliptic estimate again, we can conclude φ ∈ L2(0, T ;H5(Ω)). For
the chemical potential µ, similar to [4], we get ∂tµ ∈ L2(0, T ; (H1(Ω))′). Finally, using standard interpolation
arguments, we can derive the time continuity φ ∈ C([0, T ];H3(Ω)) and µ ∈ C([0, T ];H1(Ω)).

Step 4. Uniqueness. Uniqueness of the strong solution is a direct consequence of the continuous dependence
estimate obtained in Proposition 3.8.

The proof of Theorem 3.5 is complete. □
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