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Abstract. Current methods for the classification of number fields with small regulator depend
mainly on an upper bound for the discriminant, which can be improved by looking for the best
possible upper bound of a specific polynomial function over a hypercube. In this paper, we
provide new and effective upper bounds for the case of fields with one complex embedding and
degree between five and nine: this is done by adapting the strategy we have adopted to study the
totally real case, but for this new setting several new computational issues had to be overcome.
As a consequence, we detect the four number fields of signature (r1, r2) = (6, 1) with smallest
regulator; we also expand current lists of number fields with small regulator in signatures (3, 1),
(4, 1) and (5, 1).
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1. Introduction

A problem in Algebraic Number Theory consists in giving a complete classification, up to
isomorphism, of number fields with prescribed properties: in particular, scholars are interested
in tabulating complete lists of number fields K such that some chosen invariant is less than some
given upper bound. Typical examples are the classification of fields with small discriminant [2,
3, 19, 21, 22] and the classification of imaginary quadratic fields with bounded class number [14,
25, 27]. Both these investigations benefit from the crucial fact that one can prove that the
desired fields occur in finite number, so that it is theoretically possible to describe them all in a
finite time; furthermore, this permits the construction of databases gathering fields with small
discriminant, like the LMFDB database [26], Klüners-Malle’s database for fields with prescribed
Galois group [16], PARIgp tables [17] and Jones-Roberts’ database [15].

In this paper we are interested in the classification of number fields K of given signature
(r1, r2), i.e. with r1 real embeddings and r2 couples of conjugated complex embeddings, and
with small regulator RK . For every C > 0, there exists only a finite number of such fields
satisfying RK ≤ C and not of CM type. This is possible thanks to an inequality by Remak [24]
which bounds the absolute value of the discriminant dK in terms of a constant R(r1, r2, C)
depending on r1, r2 and C for the not CM case. However, the resulting upper bound is too big
to also permit a real description of all the fields with discriminant within the output range. A
procedure to overcome this difficulty was developed by Astudillo, Diaz y Diaz and Friedman [1],
who combined Remak’s inequality with a lower bound for RK deduced from explicit formulae
of Dedekind Zeta functions [12]: the resulting method allowed the aforementioned authors to
obtain the full lists of fields with smallest regulators for the following cases:

• fields of degree at most 6, in any signature (r1, r2),
• fields of degree 7 in any signature apart from (r1, r2) = (5, 1),
• fields of degree 8 with signature (r1, r2) = (8, 0) and (0, 4),
• fields of degree 9 with signature (r1, r2) = (9, 0).

The case of the signature (5, 1) was solved later by Friedman and Ramirez-Raposo [13] with an
ad hoc argument taking advantage of the fact that for this signature there is one non-conjugated
complex embedding. This, together with the success obtained for the totally real signatures (8, 0)
and (9, 0), suggested that the signature of the considered fields should play a crucial role not
only in the formulation of the problem, but also in the possible success of the specific procedure.
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In greater detail, the key ingredient in these procedures is an upper bound as sharp as possible
for the function

Pn,r2(y1, . . . , yn) :=
∏

1≤i<j≤n

∣∣∣∣1− yi
yj

∣∣∣∣
where n ≥ 2 and the n-ple (y1, . . . , yn) satisfies the following two conditions:

A) The numbers yi are ordered as 0 < |y1| ≤ |y2| ≤ · · · ≤ |yn|,
B) Among the numbers yi, there are r2 couples of complex conjugated and non-real numbers,

while all the remaining numbers are real.

A simple estimate for Pn,r2 is nn/2 [7] and is deduced by looking at the function as the de-
terminant of an n × n matrix with entries bounded by 1 in absolute value, and applying then
Hadamard’s inequality; this upper bound is suitable for the procedure to succeed when the
degree is small, but it is not strong enough as the degree of the considered fields increases; for
example this method applied to the signature (5, 1) with the upper bound 77/2 is not able to
detect the fields with small regulators. The same phenomenon occurs if one applies the method
to the signatures (6, 1), (4, 2) and (2, 3) in degree 8 with the upper bound 88/2. Friedman and

Ramirez-Raposo [13] succeeded to lower the upper bound of P7,1 from 77/2 = 907.49 . . . to
exp(6) = 403.42 . . . and this improvement was enough for the procedure to actually classify
fields with small regulator in this signature.
The results for the totally real cases in degree 8 and 9 were obtained earlier because the de-
sired upper bound is consistently smaller whenever only real numbers are considered: in fact,
Pohst [20] proved that the correct upper bound for the totally real case is 2⌊n/2⌋ when n ≤ 11
already in ’77.
Recently we were able to extend this bound to every n, see [6] (for a different proof see also [23]).
This is achieved by developing in greater detail the idea (initially sketched by Pohst) of associ-
ating to the polynomial Pn,0 a graphical scheme, i.e. a triangular array such as

(1)
+ − − +

− − +

+ −
−

where every square represents a factor of Pn,0 after the change of variables xi := yi/yi+1 and the

sign at place (i, j) represents the sign of the product
∏j

k=i xk, and then to recognize patterns
of signs in any possible graphical scheme that can be replaced with other patterns producing
an upper bound for the corresponding functions. Eventually, we were able to prove that it is
possible to reduce each graphical scheme into the one defined by signs “−” on the main diagonal.
Finally, this special scheme can be covered by elementary block of signs which are bounded by
known constants. In the example below, the scheme turns out to be estimated by 4 because
each triangular pattern is estimated by 2 and the square one is bounded by 1.

(2)
− + − +

− + −
− +

−

≤ 2 · 1 · 2 = 4

Motivated by this result, we decided to adapt the technique of graphical schemes to the study
of the functions Pn,1 and so to the research of fields with one complex embedding and small
regulator. The new setting emerged to be much more intricate: as we will explain in the next
sections, more than 150 estimates were needed for the estimate of the new graphical schemes
(contrary to the only nine inequalities needed for the totally real case), and the proof of several
of these estimates required deeper analytic and computational work. The results we obtained
are the following.
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Theorem 1. Let M := 315/2/(4 · 77/2). Then

P5,1 ≤ 16M = 16.6965 . . .

and this upper bound is the best possible one.

Theorem 2. We have

P6,1 ≤ 34.89, P7,1 ≤ 65.81, P8,1 ≤ 80, P9,1 ≤ 233.1.

The results of Theorems 1 and 2 constitute meaningful improvements with respect to all their
previous bounds. In particular, the estimate for P8,1 allows to detect the fields of signature (6, 1)
with smallest regulator.

Corollary 1. The first four fields with signature (r1, r2) = (6, 1) ordered by increasing value of
their regulator are the fields

K1 : x8 − 2x7 − x6 + x5 − 2x4 + 4x3 + 3x2 − 2x− 1

K2 : x8 − 2x7 − 3x6 + 10x5 − 2x4 − 11x3 + 5x2 + 2x− 1

K3 : x8 − 9x6 − 8x5 + 11x4 + 21x3 + 17x2 + 7x+ 1

K4 : x8 − x6 − 3x5 − 3x4 + 6x3 + 4x2 − 2x− 1

with RK1 = 7.135 . . ., RK2 = 7.380 . . ., RK3 = 7.414 . . . and RK4 = 7.430 . . ..

Corollary 2. The non-primitive field with signature (r1, r2) = (6, 1) and smallest regulator is
the field K3 of the list in Corollary 1.

The new bound for P5,1, P6,1 and P7,1 allows to improve the known lists of fields ordered
according to their regulator in the corresponding signatures. The new lists are described in the
next corollaries.

Corollary 3. There exist 40 fields K with signature (r1, r2)=(3, 1) satisfying RK ≤ 2.15 and
they all have |dK | ≤ 25679.

Corollary 4. There exist 136 fields K with signature (r1, r2)=(4, 1) satisfying RK ≤ 4.60 and
they all have |dK | ≤ 712603.

Corollary 5. There exist 59 fields K with signature (r1, r2) = (5, 1) satisfying RK ≤ 6.10 and
they all have |dK | ≤ 7495927.

The first author conjectured in [4] the maximum for the functions studied in Theorems 1
and 2. In particular, Conjecture 3 appearing there states that it should satisfy an iterative
behaviour as the degree n increases, similarly to what happens for the totally real case. For the
r2 = 1 case the conjecture states that

Pn,1 ≤

{
2

n+3
2 M n odd ≥ 5,

2
n+4
2 n even ≥ 6.

Theorem 1 proves the conjecture for the case P5,1 and the values for P6,1 and P8,1 in Theorem 2
are quite close to the conjectural ones.

Here we give a brief description of the next sections of the paper. In Section 2 we derive the
corollaries from the results of Theorems 1 and 2, and in doing so we recall the steps for the
classification method of number fields with small regulator. Section 3 recalls the framework in
which the result for Pn,0 was obtained, including the notion of graphical schemes and some basic
estimates. Section 4 introduces the change of variables which allows to study the problem for
the functions Pn,1 and the idea of ordering of these functions. Section 5 presents the proof of
Theorem 1 and the strategy based on iterated resultants that we used for it. Section 6 illustrates
how graphical schemes are adapted in the new context of fields with one complex embedding
and the several results and difficulties that are encountered whenever one tries to estimate them.
Section 7 lists some technical and computational remarks regarding the procedures we used for
the estimate of these graphical schemes and the dataset associated. Finally, Section 8 presents
some considerations about the upper bounds we found and their possible improvement, including
a discussion about the classification of number fields with signature (7, 1) and small regulator.

Acknowledgments: We thank the anonymous referee for their careful reading. We also thank
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author spent at the Università di Milano; his research was founded with a grant from the Italian
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2. Proof of the corollaries

2.1. Proof of Corollaries 1 and 2. We refer to Sections 2 and 3 of [1] for the proof of the
propositions of this section.

Proposition 1. Let K = Q(ε) be a field of degree n and signature (r1, r2) with ε ∈ O∗
K . Let

mK(ε) be the length of ε in the logarithmic lattice of the units of K. Let ε1, . . . , εn be the
conjugates of ε ordered in increasing absolute value. Then

log |dK | ≤ 2 log(Pn,r2(ε1, . . . , εn)) +mK(ε) ·
√

n3 − n− 4r32 − 2r2
3

=: U0.

Proposition 2. Assume K = Q(ε) as above and that ε is such that mK(ε) is the minimum
non-zero length in the logarithmic lattice. Let r := r1 + r2 − 1. Then

mK(ε) ≤
(√

r + 1RKγr/2r

)1/r
where γj is the Hermite constant of dimension j.

Let us consider now the family of fieldsK of degree 8 and signature (6, 1) with RK ≤ R0 := 7.431.
The inequalities of Propositions 1 and 2, together with the upper bound for P8,1 from Theorem 2

and the fact that γ6 =
6
√

64/3 [10, p. 332], imply that, whenever K is generated by a unit with
minimum logarithmic length, we have

(3) log |dK | ≤ 2 log(80) +
(√

7 · 7.431 ·
√

64/3
)1/6

·
√

83 − 8− 4− 2

3
= 36.079500 . . .

In particular, the hypotheses of Proposition 2 are satisfied whenever K is primitive, i.e. has no
subfields different from Q and itself. Thus, the first conclusion we can get is that any field of
signature (6, 1) with |dK | > exp(36.079500 . . .) must have RK > 7.431.
The role of the upper bound (3) is crucial in the next proposition.

Proposition 3. Let gr1,r2 : (0,+∞) → R be the analytic function defined as

gr1,r2(x) :=
1

2r14πi

∫ 2+i∞

2−i∞
(πn4r2x)−s/2(2s− 1)Γ(s/2)r1Γ(s)r2ds.

Let K be a field with signature (r1, r2) and let d1, d2 be such that 0 < d1 < |dK | < d2. If
2gr1,r2(1/d1) > R0 and 2gr1,r2(1/d2) > R0, then

(4) RK ≥ 2gr1,r2(1/|dK |) > R0.

If d2 ≤ δ, where δ3 is a lower bound for the discriminant of a field of signature (3r1, 3r2), then
all the factors 2 in the three inequalities involving R0 can be replaced with 4.

We notice that exp(36.079500 . . .) is bigger than δ := (19.6)8, with δ3 a lower bound for the
fields of degree 24 and signature (18, 3) (this value can be recovered from Diaz y Diaz’ tables of
discriminant lower bounds [11]). One then verifies that

2g6,1(exp(−36.079500 . . .)) = 11.54216 . . . > 7.431

and
2g6,1(1/19.6

8) = 37.50073 . . . > 7.431,

so that from Proposition 3 the desired fields satisfy |dK | ≤ (19.6)8, which is around 2.1 · 1010.
From [3] we have the list of all the fields K of signature (6, 1) with |dK | ≤ 79259702, which is
considerably smaller. However, one verifies that

4g6,1(1/79259702) = 7.48749 > 7.431.

Hence from the second part of Proposition 3 it follows that every field K of signature (6, 1) with
79259702 < |dK | ≤ (19.6)8 must have RK > 7.431, and so the only possible fields with regulator
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below this bound must be contained in the known list (which is formed of eight fields). For every
such field we compute their regulator using PARI/GP: the computation is a priori conditional
on GRH and the output is an integer multiple of the true value, but we can prove that every
output is the correct value for RK because they satisfy the following condition.

Proposition 4. Let K be a field of signature (r1, r2), and gr1,r2 as in Proposition 3. Let

R̃K := mRK be an integer multiple of the regulator RK . Let wK be the number of roots of unity
of K (which is two for every field with r2 ≥ 1). If

0 <
R̃K/wK

2gr1,r2(1/|dK |)
< 2

then R̃K = RK .

The unique fields in the list satisfying RK ≤ 7.431 are the fields K1, K2, K3 and K4 described
in the statement of Corollary 1. This proves that K1, K2 and K4 are the primitive fields of
signature (6,1) with smallest regulator, equal to 7.135 . . ., 7.38 . . . and 7.430 . . ., respectively.
The discussion, however, is not concluded: we have to deal with the case of non-primitive fields,
for which Inequality (3) is not guaranteed to be correct, since it may happen that the unit ε
with smallest logarithmic length generates a proper subfield of K. To deal with the possibility
Q(ε) ⊊ K we need a relative version of Proposition 1 and some lower bounds on the logarithmic
lengths in a tower of fields.

Proposition 5. Let K,F be number fields with K = F (ε) where ε ∈ O∗
K . Then

log |dK | ≤ [K : F ] log |dF |+ [K : Q] log([K : F ]) +mK(ε)C(K/F )

with

C(K/F ) :=

√
1

3

∑
v∈∞F

([K : F ]3 − [K : F ]− 4r2(v)3 − 2r2(v))

where r2(v) = 0 unless v is real, in which case r2(v) is the number of complex places of K lying
above v.

Proposition 6. If F ⊂ K and η ∈ O∗
F , then mK(η) ≥

√
[K : F ] ·mF (η). Moreover, if F = Q

and K is totally real, then for ε ∈ O∗
K we have mK(ε) ≥

√
[K : Q] log((1 +

√
5)/2).

Consider a field K of signature (6,1) and let η1, η2, . . . , η6 be its independent units realizing
the successive minima for mK . We have three possible cases to consider, which are the only
possible ones due to the signature of the involved fields:

a) F = Q(η1) is quartic of signature (4, 0), and K = F (ηj) with j ∈ {2, 3, 4};
b) F = Q(η1) is quadratic totally real, and K = F (η2);
c) F = Q(η1) is quadratic totally real, L = F (η2) is quartic of signature (4, 0) and K = L(ηj)

with j ∈ {3, 4}.
For every such possible case we employ Propositions 5 and 6 to obtain an estimate of the form
log |dK | ≤ A0 +

∑s
i=1AimK(ηi). We have then

a) log |dK | ≤ 24 log 2 + 2
√
10mK(η1) +

√
6mK(ηj), j ∈ {2, 3, 4},

b) log |dK | ≤ 24 log 2 + 2
√
2mK(η1) +

√
38mK(η2),

c) log |dK | ≤ 24 log 2 + 2
√
2mK(η1) + 2

√
2mK(η2) +

√
6mK(ηj), j ∈ {3, 4}.(5)

This upper bound can then be properly optimized thanks to Lemma 3 of [1] (with the parameter
δ appearing there set to

√
8 log((1+

√
5)/2) which is a possible choice according to Proposition 6),

giving

log |dK | ≤


35.237296 . . . in case a),

35.701163 . . . in case b),

33.821710 . . . in case c).
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Therefore a non-primitive field of signature (6, 1) withRK≤7.431 satisfies |dK | ≤ exp(35.701163 . . .):
we have 2 ·g6,1(exp(−35.701163 . . .)) > 47 > 7.431 and thus (applying again the previous propo-
sitions) we return to the aforementioned list of eight fields, where we see that the unique non-
primitive field with regulator below 7.431 is K3, which has regulator 7.414 . . .. This completes
the proof of Corollary 1 and Corollary 2.

2.2. Proof of Corollaries 3, 4 and 5. The proof of the last three results is similar to the one
above in the degree 8 case. Notice that, since 5 and 7 are primes, the hypothesis of Proposition 1
is satisfied and thus only the corresponding inequality must be used.

In the degree 5 case, assume R0 := 2.15: if K is such that RK ≤ R0, then P5,1 ≤ 16M implies
|dK | ≤ exp(16.882140 . . .). This number is bigger than (13.136)5, which is the lower bound δ as in
Proposition 3 for this signature, hence we have to verify the condition (4) with a factor 2 instead
of 4. This yields 2g3,1(exp(−16.882140 . . .)) = 3.406994 . . . > 2.15 and 2g3,1(1/(13.136)

5) =
2.158866 . . . > 2.15. Since 48000 < (13.136)5, we verify that 4g3,1(1/48000) = 2.157100 . . . >
2.15 and so the only fields with signature (3, 1) and RK ≤ 2.15 are among the 145 fields in this
signature with |dK | ≤ 48000. We download the lists from LMFDB (which are complete up to
this bound) and we put them in PARIgp: a computation of the regulator shows that only 40
fields among them satisfy RK ≤ 2.15, and they all have |dK | ≤ 25679. The output regulators
are the true values since the condition described in Proposition 4 is always satisfied.

Now, assume the degree is 6 and R0 := 4.60: since P6,1 ≤ 34.89, assuming RK ≤ R0 and
mimicking the computations in [1, Section 5.2] we have that the several relations between units
of minimum length and subfields of K imply

|dK | ≤


exp(24.666347 . . .) K = Q(η1),

exp(23.93583 . . .) Q(η1) is a real quadratic subfield of K,

exp(19.70966 . . .) Q(η1) is a totally real cubic subfield of K.

Hence, in any case we have |dK | ≤ exp(24.666347 . . .) and this upper bound is bigger than
(15.536)6, which is our choice for δ in this signature. We have 2g4,1(exp(−24.666347 . . .)) =
5.083637 . . . > 4.60 and 2g4,1(1/(15.536)

6) = 5.266992 . . . > 4.60. Since 1300000 < (15.536)6,
we further verify that 4g4,1(1/1300000) = 4.631338 . . . > 4.60: therefore, the only possible fields
with signature (4, 1) and RK ≤ 4.60 must be among the 613 ones with |dK | ≤ 1300000. A
PARIgp computation as above shows that 136 among them have the desired regulator, and all
the output values are the true values because the hypothesis in Proposition 4 is satisfied.

Finally, assume the degree is 7 and R0 := 6.10: then P7,1 ≤ 65.81 and any field with signature
(5, 1) and RK ≤ R0 has |dK | ≤ exp(30.549708 . . .), which is greater than the number (17.686)7,
which is our choice for δ for this signature. One has 2g5,1(exp(−30.549708 . . .)) = 7.409746 . . . >
6.10 and 2g5,1(1/(17.686)

7) = 13.744146 . . . > 6.10. Since 14500000 < (17.686)7, we verify that
4g5,1(1/14500000) = 7.060629 . . . > 6.10, so that one only has to check if among the 294 fields
with signature (5, 1) and |dK | ≤ 14500000 there exist some with RK ≤ 6.10. The usual PARIgp
computation on the complete LMFDB list finds 59 of them, and they all satisfy |dK | ≤ 7495927.

3. Recalls on the totally real case

In this section we briefly recall how the supremum for Pn,0 was obtained: this discussion will
set the foundation for the work on the function Pn,1. All the results in this section are proved
in [6].

In the totally real case all the numbers yi satisfying A) and B) that we consider are real.
Setting the change of variables

(6) xi :=
yi
yi+1

, i = 1, . . . , n− 1

the function Pn,0 becomes the polynomial in n− 1 variables (each one in [−1, 1])

Qn−1(x1, . . . , xn−1) =
n−1∏
i=1

n−1∏
j=i

(
1−

j∏
k=i

xk

)
and looking for the supremum of Pn,0 is equivalent to looking for the maximum of Qn−1 over
[−1, 1]n−1. Instead of directly studying the function Qn−1, one considers all the 2n−1 subcases
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defined by a choice for the signs of the variables; if ε := (ε1, . . . , εn−1) is a vector formed by
elements εi ∈ {±1}, we consider the 2n−1 configurations

(7) Qn−1,ε(x1, . . . , xn−1) =
n−1∏
i=1

n−1∏
j=i

(
1−

j∏
k=i

εk

j∏
k=i

xk

)
where now each variable is assumed to be in [0, 1].

Using the notation of [6], we recall the notion of graphical scheme, i.e. a triangular n × n
array C which has only symbols “+” or “-” in its entries Ci,j for 1 ≤ i ≤ j ≤ n− 1. (1) and (2)
are examples of graphical schemes. A function FC defined over [0, 1]n−1 can be associated to
each graphical scheme C, and it has the form:

FC(x1, . . . , xn−1) =
n−1∏
i=1

n−1∏
j=i

(
1− Ci,j

j∏
k=i

xk

)
.

The configuration (7) is thereby the function FC for the graphical scheme C with entries

Ci,j =

{
+ if

∏j
k=i εk = 1,

− if
∏j

k=i εk = −1.

Given two graphical schemes C and C ′, we say that C ≤ C ′ if FC ≤ FC′ . Estimates of
graphical schemes can be obtained by recognizing patterns in the starting scheme C and replacing
them with a new pattern such that the replacement corresponds to an estimate between the
corresponding factors: the resulting scheme C ′ will then satisfy C ≤ C ′. We denote these
estimates as dynamical estimates. We recall four dynamical estimates.

Lemma 1. Let C be a graphical scheme.

P) Let C ′ be the graphical scheme defined changing the element + into − and keeping everything
else unchanged. Then C ≤ C ′.

H) Let C ′ be the graphical scheme defined changing the two elements + − , not necessarily

adjacent, into − + and keeping everything else unchanged. Then C ≤ C ′.

V) Let C ′ be the graphical scheme defined changing the two elements
−
+ , not necessarily adjacent,

into
+
− and keeping everything else unchanged. Then C ≤ C ′.

S) Let C ′ be the graphical scheme defined changing the four elements
− +
+ − , not necessarily

adjacent, into
+ −
− + and keeping everything else unchanged. Then C ≤ C ′.

These four estimates are sufficient, as the following result states.

Theorem 3 (Th.2 in [6]). Let Cn−1,ε be the graphical scheme of a configuration Qn−1,ε. Let
Cn−1,− be the graphical scheme of the configuration Qn−1,ε− which has vector of signs ε− :=
(−1,−1, . . . ,−1). Then Cn−1,ε ≤ Cn−1,−: the estimate is obtained by applying only estimates
of the form P, H, V and S to the entries of Cn−1,ε.

The desired maximum for our configurations can thus be obtained by just studying the graph-
ical scheme Cn−1,−, which is of the form

− + − + · · ·
− + − · · ·

− + · · ·
− · · ·

· · ·

with every line made of alternating signs. Patterns in the scheme correspond to factors of the
corresponding function, and each such factor may be bounded by suitable constants.

Lemma 2. Let C be a graphical scheme. The following patterns, if contained in C, can be
estimated with the following constants:
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•
j

i + ≤ 1, i.e. FCi,j ≤ 1.

•
j j′

i + − ≤ 1, i.e. FCi,jFCi,j′ ≤ 1.

•

j
i −
i′ + ≤ 1, i.e. FCi,jFCi′,j ≤ 1.

•

j j′
i − +
i′ + − ≤ 1, i.e. FCi,jFCi′,jFCi,j′FCi′,j′ ≤ 1.

• Assume j′ = j + 1. Then
j j′

i − +
i′ − ,

j j′
i − −
i′ + ,

j j′
i + −
i′ − are all ≤ 1 i.e. FCi,jFCi,j′FCi′,j′ ≤ 1 for each of them.

• Assume i′ = i+ 1. Then
j j′

i − +
i′ − ,

j j′
i − −
i′ + ,

j j′
i + −
i′ − are all ≤ 1 i.e. FCi,j · FCi,j′ · FCi′,j′ ≤ 1 for each of them.

These static estimates are what is needed in order to recover the result for Cn−1,−.

Theorem 4 (Lemma 3 and Th. 1 in [6]). One has Cn−1,− ≤ 2⌊n/2⌋ so that this is the max-
imum of Qn−1 on [−1, 1]n−1. This bound cannot be improved since it is attained at the point

(−1, 0,−1, 0, . . .), so that the supremum of Pn,0 is 2⌊n/2⌋.

4. The change of variables for r2 = 1

Starting from the previous considerations for the totally real case, we begin the investigation
for the function Pn,1. As before, we would like to transform it into a polynomial function via
a change of variables and to look for the maximum of this new function over a proper domain.
However, this transformation will no longer be immediate due to the presence of a couple of
complex conjugated numbers among the yi.
In fact, we have to consider an n-ple (y1, y2, . . . , yk, yk, yk+1, . . . , yn−1) which satisfies condition
A). The change of variables (6) cannot be applied directly, since quotients yk−1/yk and yk/yk+1

are not real. A more suitable change of variables is instead the following:

(8) xi :=


yi/yi+1, i ̸= k − 1, k

yk−1/|yk|, i = k − 1

|yk|/yk+1, i = k

, g := cos(arg yk).

Several things have to be remarked about this transformation: first of all, the resulting function

will no longer be purely polynomial, since it will always contain the term 2
√
1− g2, correspond-

ing to the factor |1 − yk/yk|; moreover, and most importantly, different functions will arise as
different indexes k are chosen for the position of the complex conjugated couple (yk, yk).

We define k-th ordering of Pn,1 the function Ln,k resulting from the change of variables (8)
applied to Pn,1 with the complex couple (yn−k, yn−k). Here are the first and the second ordering
for n = 5, corresponding to indexes k = 4 and k = 3 for the complex couple.

L5,1 =(1− x1)(1− x1x2)(1− 2x1x2x3g + (x1x2x3)
2)

(1− x2) (1− 2x2x3g + (x2x3)
2)

(1− 2x3g + x23) · 2
√

1− g2,

L5,2 =(1− x1)(1− 2x1x2g + (x1x2)
2)(1− x1x2x3)

(1− 2x2g + x22) (1− x2x3)

(1− 2x3g + x23) · 2
√

1− g2.

Notice that the polynomial factors containing g and different from the square root correspond
to either products of the form |1− yi/yk| · |1− yi/yk| = |1− yi/yk|2 or |1− yk/yj | · |1− yk/yj | =
|1− yk/yj |2.
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A priori we should then study all the n − 1 possible orderings resulting from this change of
variables, since every time we end up with a different function. Fortunately, there is a symmetry
between the orderings which allows to discard half of the cases.

Lemma 3. Let n ≥ 3 and 1 ≤ k ≤ n− 1. Then

Ln,k(x1, x2, . . . , xn−2, g) = Ln,n−k(xn−2, xn−3, . . . , x1, g).

Proof. The sequence

0 < |y1| ≤ |y2| ≤ · · · ≤ |yk| = |yk| ≤ · · · ≤ |yn−1|

is equivalent to the sequence

0 <

∣∣∣∣ 1

yn−1

∣∣∣∣ ≤ · · · ≤
∣∣∣∣ 1yk
∣∣∣∣ ≤ ∣∣∣∣ 1yk

∣∣∣∣ ≤ · · · ≤
∣∣∣∣ 1y1
∣∣∣∣ .

The claim follows by constructing the function Ln,n−k using the numbers zj := 1/yn−j . □

Remark: the quantity Pn,1 can be seen to be estimated by the quantity 2⌊(5n−8)/2⌋: in fact, if
yk and yk form the complex conjugated couple, there are n− 2 factors of the form |1− yj/yk|2
or |1− yk/yj |2 with j ̸= k, each term bounded by 4. The term |1− yj/yj | is bounded by 2 and
removing all these terms from Pn,1 we obtain a function which becomes Pn−2,0 via an additional

change of variable and which is at most 2⌊(n−2)/2⌋. The product Pn,1 is thus estimated by

2 · 4n−2 · 2⌊(n−2)/2⌋ = 2⌊(5n−8)/2⌋. However, this estimate turns out to be better than the trivial
bound nn/2 only for n ≥ 25, so it is of no use for the applications we study in Theorems 1 and 2.

5. Proof of Theorem 1

In order to prove an estimate for P5,1, we consider the only two possible orderings for its
transformation via the change of variables (8), which are the examples L5,1 and L5,2 shown in
the previous section. The study of the two functions will be quite similar, but we consider them
separately since some meaningful differences will occur; moreover, the techniques employed in
this section will be later employed for the study of functions Pn,1 with n ≥ 6.

Remark: in the following lines, we shall often factorize polynomials in several variables with
rational coefficients. The factorization results turned to be available thanks to the computer
algebra MAGMA [9]. Moreover, real roots of rational polynomials shall be computed: this
have been made by employing the computer algebra PARIgp [18]. MAGMA and PARIgp files
describing the details of these computations can be found in [5].

5.1. Estimate for L5,1. The first ordering was partially studied in [4] as a toy model for the
formulation of the conjectures about upper bounds for Pn,1: there, a partial result about the
maximum of L5,1 is proved.

Lemma 4. The function L5,1(x1, x2, x3, g) assumes its maximum over [−1, 1]4 for x3 = 1 and
g ̸= ±1.

Under this assumption, L5,1 reduces to the simpler expression

(1− x1)(1− x1x2)(1− 2x1x2g + (x1x2)
2)

(1− x2) (1− 2x2g + x22)

4 · (1− g)
√

1− g2.

The search of the maximum for this function over [−1, 1]2 × (−1, 1) is carried through various
steps: first of all, we study the behaviour of the function whenever one of the variables is equal
to 0 (this will turn useful for next computations). We have:

• x1 = 0: the function is L5,1(0, x2, 1, g) = L4,1(x2, 1, g) and we know this function is at most
16 (see the remark in Section 1). This value is attained at x2 = −1 and g = 0.

• x2 = 0: the function is 4 · (1 − x1)(1 − g)
√

1− g2 which is maximized at x1 = −1 and

g = −1/2 giving 6
√
3 = 10.392 . . .(this is verified by studying the partial derivatives of the

given function).
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• g = 0: the function becomes

L = 4(1− x1)(1− x1x2)(1 + (x1x2)
2)(1− x2)(1 + x22).

We look for the maximum of L over [−1, 1]2. First of all, we determine whether there are
stationary points in the interior (−1, 1)2: we derive L with respect to x1 and denote by Lx1

the only factor of the derivative (which is a polynomial) which is not zero on the boundary.
This gives

Lx1 = 4x32x
3
1 + (−3x32 − 3x22)x

2
1 + (2x22 + 2x2)x1 + (−x1 − 1).

We define Lx2 in the same way but from the derivative with respect to x2 and we obtain

Lx2 =(6x52 − 5x42 + 4x32 − 3x22)x
3
1 + (−5x42 + 4x32 − 3x22 + 2x2)x

2
1

+ (4x32 − 3x22 + 2x2 − 1)x1 + (−3x22 + 2x2 − 1).

An eventual stationary point must be a common root (α, β) of Lx1 and Lx2 , thus its coor-
dinate α must be a root of the resultant between the two polynomials with respect to the
variable x2. This resultant is equal to

32x91 + 24x81 + 20x71 + 7x61 + 24x51 + 67x41 + 15x21 + 27.

However, this polynomial has no real roots between −1 and 1, so this means that L has no
stationary points in the interior.

One then studies the behaviour of L on the boundaries: clearly L is 0 when x1 = 1 or
x2 = 1, while at x1 = −1 we have

L = 8(1− x42)(1 + x22) ≤ 8 · 32
27

= 9.481 . . .

(the upper bound is obtained at x2 = ± 1√
3
) and at x2 = −1 we have

L = 16(1− x41) ≤ 16.

Thus we have proved that, whenever one of the three variables is equal to 0, the function L5,1

is at most 16: this information will be useful for the next computations. After this preliminary
discussion, we have two things to consider in order to optimize L5,1: we must study the behaviour
of the function on the boundaries of [−1, 1]3 and then we must look for possible stationary points
in the interior of this cube. Let us begin with the boundary investigation.

• x1 = 1: the function L5,1 assumes the value 0 under this condition. The same holds for the
boundaries x2 = 1 and g = ±1.

• x1 = −1: the function L5,1 becomes

S = 8 · (1− x22)((1 + x22)
2 − 4x22g

2)(1− g) ·
√

1− g2.

Again, we would like to consider the partial derivatives of S with respect to x2 and g in
order to find an eventual maximum point (notice that in this case S becomes 0 whenever a
boundary condition is satisfied by either x2 or g). However, we do not compute directly the
derivatives of S since we do not want to carry the square root term in the research of the
points: we consider thus only the term

L = 8 · (1− x22)((1 + x22)
2 − 4x22g

2)(1− g)

and we study the system {
∂L
∂x2

= 0,
∂L
∂g (1− g2)− Lg = 0,

where the second quantity is obtained from the derivative rule for S with respect to g. We
factorize the left hand sides of these equations and we discard any factor that either has
roots only on the boundary or has roots only when some variable is zero: this is because
the necessary considerations have been already made or will be done in further boundary
study. We are thus left with the factors

Lx2 = 3x42 + (−8g2 + 2)x22 + (4g2 − 1)
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and

Lg = (2g + 1)x42 + (−16g3 − 4g2 + 12g + 2)x22 + (2g + 1).

and we study the system Lx2 = Lg = 0. A stationary point for S must be then a common
root (β, γ) of Lx2 and Lg, hence β must be a root of their resultant with respect to g,
which is 8x42 + x22 − 1. This polynomial has two roots between −1 and 1, and substitution
of these roots in Lx2 provides four stationary points (±β,±γ) where β = 0.54455 . . . and
γ = 0.29653. One then verifies that S(±β, γ) = 5.9612 . . . and S(β,±γ) = 10.9870 . . . (so
we are below the value 16 we have found before).

• x2 = −1: this case has been studied in [4, Conjecture 1], where it was proved that un-
der the assumption x2 = −1 and x3 = 1 the function L5,1 has a maximum at the point

(x1, x2, x3, g) = (1/
√
7,−1, 1, 1/(2

√
7)) and the maximum value is exactly 16M (the first

author stated in [4] that the determination of this maximum for L5,1 was still an open
problem because of the lack of techniques for a rigorous optimization over the interior of
[−1, 1]3).

Finally, we discuss the possible existence of maximum points for L5,1 in the open set (−1, 1)3.
First of all, we compute the derivatives

∂L

∂x1
,

∂L

∂x2
,

∂L

∂g
(1− g2)− Lg.

We factorize them and then we denote by Lx1 , Lx2 and Lg the unique factors of each derivative
which has no roots in the boundary or for some variable equal to 0. We study then the system
Lx1 = Lx2 = Lg = 0: common zeros (α, β, γ) of these three objects must give also common zeros
(α, β) of the resultants

Res(Lx2 , Lx1 ; g), Res(Lg, Lx1 ; g).

We denote by res1g and res2g the unique factors of these resultants which again have no roots
on the boundary or for some variable equal to zero, and we study the system res1g = res2g = 0.
Finally, we look for the x1-coordinate α of our stationary points by studying the factors of
Res(res1g, res2g;x2): one verifies that the only acceptable values for α (i.e. roots of this resultant
which are in (−1, 1)) are −1/2 and 3/5. But if we substitute x1 = −1/2 in res1g, we notice
that the only roots of the new polynomial (i.e. the only acceptable values for β) are x2 = 0 or
x2 = −1, which constitute boundary cases which we already studied. If instead we substitute
x1 = 3/5 in res1g, we find a unique admissible value β = 0.7373 . . . but substitution of both
x1 = α and x2 = β in Lx gives no admissible values for g.

This means that we do not find stationary points in (−1, 1)3 for the function L5,1: gathering
all the results, this proves that L5,1 ≤ 16M over [−1, 1]4 and this upper bound is attained at

the point (x1, x2, x3, g) = (1/
√
7,−1, 1, 1/(2

√
7)).

5.2. Estimate for L5,2. In this case we do not have a result similar to Lemma 4 which allows
to remove one variable from the optimization. However, it is straightforward to verify that

L5,2(x1, x2, 1, g) = L5,1(x1, x2, 1, g) = L5,2(x1,−x2,−1,−g)

and thus anytime we are reduced to a case in our computation where x3 = ±1, we already know
that L5,2 is at most 16M . We optimize this function by following the steps we presented for the
function L5,1: so we study the cases where one variable is zero as the first thing.

• x1 = 0: just like for L5,1, we obtain a function which is a transformation of P4,1 via a change
of variables (8), so we know it is ≤ 16 (and the value is attained at x2 = −1, x3 = 1, g = 0).

• x2 = 0: this is the same as the case x2 = 0 for L5,1, so we already know it is at most

6
√
3 = 10.392 . . ..

• x3 = 0: just like x1 = 0, this case provides a transformation of P4,1, and so the function
under this condition is at most 16.

• g = 0: the function becomes

L = 2 · (1− x1)(1 + (x1x2)
2)(1− x1x2x3)(1 + x22)(1− x2x3)(1 + x23).

Again, we first look for stationary points in the interior (−1, 1)3 for the variables (x1, x2, x3)
and then we look at the behaviour on the boundaries of the three-dimensional cube.
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For the stationary points, we need common roots of the derivatives

∂L

∂x1
,

∂L

∂x2
,

∂L

∂x3

and we denote by Lx1 , Lx2 and Lx3 the unique factors of each derivative which is not always
positive and has no roots only in the boundary or for some variable equal to 0. A common
zero (α, β, γ) of these objects must give a common zero (α, β) for the resultants

Res(Lx1 , Lx2 ;x3), Res(Lx3 , Lx2 ;x3).

We factorize the first resultant and we keep only the factor without roots on the boundary
or for a variable equal to 0: we call it res1x3. We do the same with the second resultant,
with the remark that the non-trivial factors are now two (both different from res1x3): we
denote their product as res2x3. Finally, the common zero for these two resultants must give
a root α of their resultant with respect to the variable x2, which is

21840x111 + 107944x101 + 280513x91 + 529240x81 + 728752x71 + 802042x61

+ 728398x51 + 511918x41 + 311680x31 + 126574x21 + 44721x1 + 5418.

This polynomial has only one root α ∈ (−1, 1): substitution of x1 = α in res2x3 gives two
possible values for β, and substitution of x1 = α and x2 = β in Lx3 gives two values for γ.
We end with two stationary points, and the function L assumes at both the value 3.0285 . . .

We see now what happens to L if we assume boundary conditions on x1 and x2: at x1 = 1
the function is trivially zero, while at x1 = −1 it becomes

4 · (1 + x22)(1 + x22)(1− (x2x3)
2)(1 + x23).

The first factor (1 + x22) is trivially ≤ 2, while the remaining three factors are estimated by
2 thanks to Lemma (2). Hence the function L is at most 16 in this case.

If we assume x2 = 1 the function L becomes

4 · (1− x1)(1 + x21)(1− x1x3)(1− x3)(1 + x23) = 4 · F.

By using partial derivatives and standard boundary optimization in two variables, the factor
F results to be at most 4, so that also in this case we obtain L ≤ 16. Finally, we notice that
for x2 = −1 there is nothing to prove, since L(x1,−1, x3) = L(x1, 1,−x3).

Once this preliminary case for the variables equal to zero is discussed, we begin by studying
what happens in the more general cases of either x1 or x2 being equal to ±1.

• x1 = 1: the function is trivially zero.
• x2 = 1: the function becomes

S = 4 · (1− x1)(1− 2x1g + x21)(1− x1x3)(1− g)(1− x3)(1− 2x3g + x23) ·
√

1− g2.

Let L := S/
√
1− g2. The procedure of studying successive resultants employed before and

applied to the quantities

∂L

∂x1
,

∂L

∂x3
,

∂L

∂g
(1− g2)− Lg

finds no stationary points in the interior of [−1, 1]3. Assuming then x1 = −1 (which is the
only meaningful boundary condition we can impose on this case) we obtain

16 · (1− x23)(1− 2x3g + x23)(1− g2) ·
√

1− g2.

This is exactly the function with maximum equal to 16 · M (attained at x3 = 1/
√
7 and

g = 1/(2
√
7)).

• x2 = −1: this case reduces to the previous one since it is immediate to verify that

L5,2(x1,−1, x3, g) = L5,2(x1, 1,−x3,−g).

• x1 = −1: the function becomes

S = 4 · (1 + 2x2g + x22)(1− 2x2g + x22)(1− (x2x3)
2)(1− 2x3g + x23) ·

√
1− g2.
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Let L := S/
√
1− g2. The procedure of studying successive resultants applied to the quan-

tities
∂L

∂x2
,

∂L

∂x3
,

∂L

∂g
(1− g2)− Lg

finds no stationary points in the interior of [−1, 1]3. There are no other meaningful boundary
conditions to impose.

We are thus left with the research of stationary points for L5,2 in the open set (−1, 1)4. We have
four quantities to consider, which are

∂L

∂x1
,

∂L

∂x2
,

∂L

∂x3
,

∂L

∂g
(1− g2)− Lg.

We factorize each one of these quantities and we keep only the non-trivial factors (i.e. factors
which do not have roots on the boundary or for some variable equal to zero): we call these
factors Lx1 , Lx2 , Lx3 and Lg and we study the system Lx1 = Lx2 = Lx3 = Lg = 0. Then, as in
previous cases, we consider their resultants in order to look for common zeros: we compute then

Res(Lx2 , Lx1 ; g), Res(Lx3 , Lx1 ; g), Res(Lg, Lx1 ; g),

we factorize them and we keep the non-trivial factors, denoting them as res1g, res2g and res3g.
We study the system res1g = res2g = res3g = 0 and we compute then the resultants

Res(res2g, res1g;x3), Res(res3g, res1g;x3).

Now, a particular phenomenon occurs: if we factorize both resultants, it results that they share
a common factor of the form x1x

2
2−1/4x22−3/4 which may have roots in the interior. We denote

this common factor as resC. Together with this, each one of these two resultants possesses a
specific non-trivial factor which is not shared by the other resultant: we denote these factors as
res1x3 and res2x3. We must then proceed considering two distinct subcases.

CASE 1: We focus on resC = 0. This means that we have to extract common roots of the four
derivatives above from the curve x1x

2
2− 1

4x
2
2− 3

4 = 0. Luckily, we can recover a relation between
x1 and x2 from this equation of the form

(9) x1 =
3 + x22
4x22

.

Substitution of (9) in res1g and res2g allows to eliminate the variable x1 and obtain two new
expressions (after factorization) res1gS and res2gS, which are the only non-trivial factors arising
from this substitution. We can then compute the resultant

Res(res1gS, res2gS;x3)

whose only non-trivial factor has the form x82 − 4x62 − 17
16x

4
2 − 45

8 x
2
2 +

27
16 . We obtain then the

possible stationary points of this case by looking at the system
x82 − 4x62 − 17

16x
4
2 − 45

8 x
2
2 +

27
16 = 0

res1gS = 0

resC = 0

Lx1 = 0.

Studying the first equation, one verifies that substitution of the roots of this equation in the
second one give values for x1 which are bigger than 1 in absolute value: hence Case 1 does not
yield any stationary point in our domain.

CASE 2: We proceed with the usual resultant tree by computing

Res(res1x3, res1x3;x2).

This gives several non-trivial factors which we can multiply with each other to obtain a unique
polynomial resx2 in the variable x1. We can then proceed backwards as before and study the
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system 
resx2 = 0

res1x3 = 0

res1g = 0

Lx1 = 0.

The first equation has only x1 as a variable, the second one has x1 and x2, and so on. This
makes the discussion of the system easier and it allows to show that it has no solutions. Hence,
the function L5,2 does not have stationary points in the open set (−1, 1)4, and from the previous
discussion we can conclude that the maximum of L5,2 over [−1, 1]4 is 16M .

6. Graphical schemes for the proof of Theorem 2

Unfortunately the resultant tree procedure employed in the previous section cannot be applied
to the optimization of Pn,1 when n ≥ 6. This happens because the increased degree of Pn,1 not
only makes more complicated the factorization of the resultants in the tree, but also because
those resultants share more and more factors that should be addressed with ad hoc arguments
that however are possible only when their degree is small, and this is no more the case: the
argument we have used to handle Case 2 described before is unavailable in general. Thus, we
renounce to detect the exact maximum and we settle for computing an upper bound by splitting
Pn,1 into several blocks and producing upper bounds for each block. However, the splitting is
strongly influenced by the signs of the variables and in order to improve the final result we have
to treat separately the 2n−1 subcases corresponding to a well determined choice for the signs of
each variable. The next result shows that we can restrict the range for g to [0, 1]: this halves
the total number of cases.

Lemma 5. Let Ln,k(x1, . . . , xn−2, g) be the k-th ordering of Pn,1. Then the maximum of Ln,k

over [−1, 1]n−1 is assumed at g ≥ 0.

Proof. Remember that the k-th ordering is defined by the couple of complex conjugated num-
bers (yn−k, yn−k), and that we can assume 1 ≤ k ≤ ⌊(n− 1)/2⌋ + 1. If k = 1, then in the
transformation given by the change of variables (8) the variable g appears always paired with
xn−2 in the form xn−2 · g. This proves that

Ln,1(x1, . . . , xn−3,−xn−2,−g) = Ln,1(x1, . . . , xn−3, xn−2, g).

For 2 ≤ k ≤ ⌊(n− 1)/2⌋ + 1, the variable g is always multiplied with either xn−k or xn−k−1;
moreover, a product containing xn−k−1xn−kg never appears. Hence, we have

Ln,k(x1, . . . ,−xn−k−1,−xn−k, . . . ,−g) = Ln,k(x1, . . . , xn−k−1, xn−k, . . . , g).

Both these symmetries show that we can reduce to the case g ≥ 0 for the search of the maximum.
□

Starting from this assumption, we now set the construction of graphical schemes as for the
totally real case: we choose a vector of signs ε = (ε1, . . . , εn−2) and instead of studying the

function Ln,k we study the analogous function with
∏j

k=i xk replaced by
∏j

k=i εk
∏j

k=i xk, so
that we have to study 2n−2 functions defined over [0, 1]n−1. Just like for the real case, we denote
these functions as configurations. The main difference with the totally real case is that now we
have to take into account also the terms of the ordering in which the variable g appears, together
with the square root term: the factors containing g will be labeled with a mark “ ’ ” after the
sign + or −, and the square root will be denoted as R1/2. Thus, the graphical schemes of the
configurations of L6,1, L6,2 and L6,3 with the vector of signs (+,−,−,+) are

+ − + +′

− + +′

− −′

+′ 2R1/2

,

+ − +′ +

− +′ +

−′ −
+′ 2R1/2

,

+ −′ + +

−′ + +

−′ −′

+ 2R1/2

.
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The three schemes above represent respectively the functions

(1− x1)(1 + x1x2)(1− x1x2x3)(1− 2x1x2x3x4g + (x1x2x3x4)
2)

(1 + x2) (1− x2x3) (1− 2x2x3x4g + (x2x3x4)
2)

(1 + x3) (1 + 2x3x4g + (x3x4)
2)

(1− 2x4g + x24) · 2
√

1− g2,

(1− x1)(1 + x1x2)(1− 2x1x2x3g + (x1x2x3)
2)(1− x1x2x3x4)

(1 + x2) (1− 2x2x3g + (x2x3)
2) (1− x2x3x4)

(1 + 2x3g + x23) (1 + x3x4)

(1− 2x4g + x24) · 2
√

1− g2,

(1− x1)(1 + 2x1x2g + (x1x2)
2)(1− x1x2x3) (1− x1x2x3x4)

(1 + 2x2g + x22) (1− x2x3) (1− x2x3x4)

(1 + 2x3g + x23)(1 + 2x3x4g + (x3x4)
2)

(1− x4) · 2
√

1− g2.

A possible way to estimate this new kind of schemes could be using an algorithm employing
dynamical estimates just like the one for totally real fields, so that all configurations are reduced
to a standard one for which static estimates can be applied. Unfortunately, this algorithm does
not seem to be available due to the new terms with the variable g. As an example, we no longer
have an estimate of the form +−′ ≤ −+′

. In fact, this would be equivalent to the estimate
(1−x)(1+2xyg+(xy)2) ≤ (1+x)(1−2xyg+(xy)2) for x, y, g ∈ [0, 1], but it easy to verify that,
while this is true whenever g = 0, there are instead values in the admissible range for which it

is false. Similarly, the estimate
−+′

+−′ ≤
+−′

−+′
is not true. However, some dynamical estimates in

this new setting are still possible, as proved in the following lemma.

Lemma 6. We have +′−′ ≤ −′+′
and

−′

+′ ≤
+′

−′
.

Proof. Both these estimates correspond to

(1− 2xg + x2)(1 + 2xyg + (xy)2) ≤ (1 + 2xg + x2)(1− 2xyg + (xy)2).

To prove this, subtract the left hand side from the right hand side: the result is factorized as
4xg(1− y)(1− yx2) ≥ 0 (remember that we are assuming all variables to be in [0, 1]). □

Together with this dynamical estimate, it is also possible to detect new patterns which involve
the terms with g, so that the scheme can be covered with patterns and estimated by multiplying
the upper bounds of every pattern. An example of this static inequality is given by the following.

Lemma 7. We have +−′ ≤ 32/27 and
−′

+ ≤ 32/27.

Proof. The claim is equivalent to proving that (1− x)(1 + 2xyg + (xy)2) ≤ 32/27. Now, under
the assumption that the variables are all in [0, 1], it is immediate to see that the left hand side is
maximized for y = g = 1, and it becomes (1−x)(1+x)2: this quantity is maximized at x = 1/3,
giving the value 32/27 as maximum. □

The combination of dynamical and static estimates is the tool which allows to obtain estimates
for the configurations in all orderings and degree between 6 and 9 as reported in Theorem 2.
Differently from the totally real case, the main difficulty is now the static part of the approach:
our method relies much more on this kind of estimates, since the presence of the terms with
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g forbids several dynamical estimates. As a consequence, the number of patterns that have
to be recognized is much larger, around 150, and for several of them the optimization can be
quite troublesome. We gathered all the patterns we recognized, together with the corresponding
estimates and their proofs, in the dataset [5]: in the rest of this section we do not show the
proof of every such inequality, but we discuss some of the most meaningful ones. Additional
discussion on the dataset [5] and how we used it for the proof of Theorem 2 can be found in the
next section.

6.1. Dynamical estimates. In some cases, an approach completely similar to the one of
Lemma 1 can be useful: some configurations for our new graphical schemes can be proved
to be less than other ones by using only dynamical estimates, which can be either the old ones
described in Lemma 1 or the new ones given in Lemma 6. An example is the configuration of
P6,1, first ordering, defined by the vector of signs (+,−,+,+):

+ − − −′

− − −′

+ +′

+′ 2R1/2

In fact, we can apply the estimate H of Lemma 1 to the couple {(1, 1), (1, 2)}, the estimate V of
the same lemma to {(2, 3), (3, 3)} and the vertical estimate of Lemma 6 to {(1, 4), (4, 4)}. This
proves that the considered configuration is estimated by the one (with degree 6 and with first
ordering) defined by the vector of signs (−,−,−,−). This new configuration requires an ad hoc
estimate with static inequalities (which show that the upper bound is 32, see [5]), but we have
proved that several configurations in this ordering reduce to this case. Similar reductions occur
in other degrees and orderings, though being a small fraction of all the possible configurations.

6.2. Easy static estimates. Although the presence of the terms with g prevents reducing the
discussion to a mostly dynamical approach, several factors of the new graphical schemes are
simple enough to be estimated with inequalities that do not require complicated optimization:
a first example is the inequalities presented in Lemma 7. Other instances of this phenomenon
is the inequality described in the following lemma.

Lemma 8. We have + +−′ ≤ 1.

Proof. The claim is equivalent to proving that (1− x)(1− xy)(1 + 2xyzg+ (xyz)2) ≤ 1 with all
the variables in [0, 1]. It is clear that the polynomial is maximized at z = g = 1, providing

(1− x)(1− xy) · (1 + xy)2 ≤ (1− x)(1− xy) · (1 + x)(1 + xy) = (1− x2)(1− (xy)2) ≤ 1.

□

An application of this can be seen for the estimate of the configuration of P8,1, second ordering,
defined by the signs (+,−,−,+,−,−), whose graphical scheme is

(10)

+ − + + −′ +

− + + −′ +

− − +′ −
+ −′ +

−′ +

−′ 2R1/2

Assuming an estimate for the configuration of P6,1, second ordering signs (−,+,−,−), has been
found ([5] reports that it is 12.33), one can find a bound for this configuration by simply esti-
mating the first two lines. In fact, the signs at positions {(1, 1), (1, 2)}, {(1, 6)} and {(2, 6)} are
patterns described in Lemma 2 and such that they are bounded by 1. Similarly, the positions
{(1, 3), (1, 4), (1, 5)} and {(2, 3), (2, 4), (2, 5)} form the pattern described in Lemma 8 and so they
are bounded by 1 too. Finally, the remaining position {(2, 2)} is trivially bounded by 2: this
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means that the first two lines of this scheme are bounded by 2 and thus the examined config-
uration is bounded by 24.66. This argument shows that the optimization of this configuration
relies critically on the result for the configuration in degree 6, for which more accurate estimates
are needed.

6.3. Less easy static estimates. As we said, the estimate of the previous configuration relies
heavily on the upper bound for the graphical scheme

− − +′ −
+ −′ +

−′ +

−′ 2R1/2

This can be decomposed in three blocks, which are A := {(1, 1), (1, 4), (2, 4)}, B := {(1, 2), (1, 3),
(2, 2), (2, 3)} and C := {(3, 3), (3, 4), (4, 4)} (this one multiplied with 2R1/2). While the block
A is immediately seen to be bounded by 2 thanks to Lemma 2, the remaining two blocks are
more complicated and for them we cannot give a quick proof just like for the inequality of
Lemma 8. Nonetheless, the optimization of these patterns can be obtained following the very
same resultant tree strategy which we employed for the proof of Theorem 1.

Lemma 9. We have
−+′

+−′ ≤ 32/27 and

j j′
i − +
i′ − 2R1/2 ≤ 5.2 for j′ = j + 1 or i′ = i+ 1.

Proof. Let us begin with the first pattern. We want to prove that the function

F = (1 + xy)(1− 2xyzg + (xyz)2)(1− y)(1 + 2yzg + (yz)2)

is at most 32/27 for (x, y, z, g) ∈ [0, 1]4. Just like for the proof of L5,1, we begin the optimization
by studying the behaviour of this function on the boundary of the hypercube, and then we shall
look for eventual stationary points in (0, 1)4 (all the factorizations computed in the next lines
are done via MAGMA, while all the computations of real roots of rational polynomials are done
in PARI). We begin by studying what happens whenever one of the variables is 0 (notice that
this is indeed a boundary computation, since differently from Theorem 1 we are assuming all
the variables to be non-negative); later we shall study the case of the variables being equal to 1.

x = 0: the function becomes (1− y)(1 + 2yzg+ (yz)2), which is the one described in Lemma 7:
hence we already know its maximum is 32/27.

y = 0: the function trivially becomes identical to 1.
z = 0: the function becomes (1 + xy)(1− y) ≤ (1− y2) ≤ 1.
g = 0: the function is now (1+xy)(1+(xyz)2)(1−y)(1+(yz)2): this is maximized at x = z = 1

giving
(1 + y)(1 + y2)(1− y)(1 + y2) = (1− y4)(1 + y2) ≤ 32/27

(this follows again by Lemma 7 considering y2 as the variable).
x = 1: the function has now the form

(1 + y)(1− 2yzg + (yz)2)(1− y)(1 + 2yzg + (yz)2) = (1− y2)[(1 + (yz)2)2 − 4(yzg)2].

Notice that, under our hypotheses, this expression is maximized at g = 0: thus we reduce
to the previous boundary computation, so that we already know that the function is at
most 32/27 in this case too.

y = 1: the function is trivially equal to 0.
z = 1: the function becomes L = (1 + xy)(1 − 2xyg + (xy)2)(1 − y)(1 + 2yg + y2): this does

not have a direct estimate and so we proceed with the resultant tree, i.e. we look for
stationary points of L in (0, 1)3, i.e. we want to solve

∂L

∂x
=

∂L

∂y
=

∂L

∂g
= 0.

We factor these derivatives and denote by Lx, Ly and Lg the only factors of each deriv-
ative which are not trivial (in the sense that they have not only roots on the boundary
or they are not always positive over the domain). Then we compute Res(Lx, Lg; g) and
Res(Ly, Lg; g), and we call res1g and res2g their unique non-trivial factors. We are then
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considering the system Lx = res1g = res2g = 0 and thus we compute the resultant
Res(res1g, res2g;x): however, the polynomial we obtain has only factors which are pow-
ers of y or (y − 1), hence trivial: this means that it is not possible to find a stationary
point for L.

The discussion on L concludes by considering the only boundary condition we can add
to z = 1, i.e. g = 1: in this subcase the function is now (1+ xy)(1− xy)2(1− y)(1+ y)2,
and since its derivative in x has no zeros in (0, 1), this case reduces to previous ones and
so is not of interest.

g = 1: this case is very similar to the one above, since again we have a function in three variables
for which a resultant tree is required. Fortunately, this is even easier since, denoting by Ly

and Lz the unique non-trivial factors of ∂L/∂y and ∂L/∂z are such that Res(Ly, Lz; z)
has only trivial factors, and since we do not have additional boundary conditions to
impose, we can skip this case.

Finally, we consider the study over the interior (0, 1)4. This requires a resultant tree starting
from four derivatives, so a priori it appears to be more complicated: however, if Fz and Fg are
the unique non-trivial factors of the derivatives of F with respect to z and g, one verifies that
Res(Fz, Fg; g) has only trivial factors, so that the two derivatives have no common roots in the
interior and thus stationary points for F do not exist. This concludes the optimization of the
first pattern.

The optimization of the second pattern is completely similar, since it is equivalent to proving
that

S = (1 + 2xg + x2)(1− xy)(1 + 2yg + y2) · 2︸ ︷︷ ︸
F

·
√

1− g2

is bounded by 5.2 and this is done via a simpler resultant tree that only involves three variables.
The only thing we remark is that the derivatives are made for the function F and that instead of
the one with respect to g we consider the quantity

(
∂F
∂g (1− g2)−Fg

)
. In this way, the resultant

tree procedure shows that the function S has no stationary points in (0, 1)3 and its maximum
is assumed at the boundary values (x, y, z) = (0, 1, 1/2) and is equal to 3

√
3 < 5.2. □

The results of Lemma 9 allow to estimate the blocks B and C of the scheme we are considering:
we multiply then the upper bounds of every block and we end with the upper bound 2 · 32/27 ·
5.2 = 12.3259 . . . < 12.33 for this configuration.

Many other patterns we found are estimated with a resultant tree procedure in three or four
variables like the one described above. However, not all the necessary patterns involve such a
small number of variables or an easy procedure.

6.4. Complicated static estimates. The 24 different configurations of L6,1 (i.e. the number
of transformations of P6,1 in the first ordering we get with the different choice of the signs of
their variables) can be estimated using static or dynamic inequalities which are in similar shape
to the ones we have briefly described before, or in the worst case not so much more complicated.
This is no more the case whenever we change the ordering and/or the degree: though many
of the configurations can still be bounded in similar fashion, some other ones do need of a
more detailed investigation, especially in order to obtain an upper bound which is suitable for
our original number-theoretic goal. We illustrate this with the following example, which is the
configuration of L8,4 (i.e. fourth ordering in degree 8) with the vector of signs (+,−,−,−,−,−).

+ − +′ − + −
− +′ − + −

−′ + − +

−′ +′ −′

− +

− 2R1/2

This is a complicated scheme to estimate, due to the presence of multiple factors to consider
and the symmetric disposition of the g-terms. In fact, none of the estimates of the previous
kind is able to give a satisfying estimate for this configuration (the concept of “satisfying” will
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be further explained in the next sections). It was thus necessary to provide more complicated
decompositions of this scheme, each one requiring a much longer optimization process (similar
to the one employed for the estimate of L5,2) and the one we gave is made of the following two

blocks: the first one is the gray one which also includes the factor 2R1/2, while the second one
is formed by the remaining of the scheme.

+ − +′ − + −
− +′ − + −

−′ + − +

−′ +′ −′

− +

− 2R1/2

Lemma 10. The gray block multiplied with 2R1/2 is bounded by 9.482.

We do not give here the complete proof of this lemma and we refer instead our database [5]
which contains the complete proof written in MAGMA and PARIgp files; nonetheless, we show
one of the main difficulties occurred in the estimate of this block. In fact, the function we need
to estimate has the form

S = (1 + xyzt)(1− xyzta)(1− 2yzg + (yz)2)(1 + yztab)(1 + 2zg + z2)(1− zt)

(1 + 2tg + t2)(1− 2tag + (ta)2) · 2
√
1− g2.

We now have six variables to consider, and this results in considering a system of six polynomial
equations to solve. Again, we start by the derivatives of S with respect to every variable (with the

derivative with respect to g given in terms of ∂L/∂g · (1−g2)−L ·g, where L := S/(2
√
1− g2)).

Factorization gives some non trivial factors that we gather into a system

Lx = Ly = Lz = Lt = La = Lg = 0

and the usual resultant tree and factorization process (done with resultants of these factors with
each other with respect to the variable a, g and then x) gives

res1a = res2a = res3a = res4a = res5a = 0,

res1g = res2g = res3g = res4g = 0,

res1x = res2x = res3x = 0.

The next step consists in looking for the common zeros of the last three resultants, and so we
compute and factor the resultants Res(res2x, res1x; y) and Res(res3x, res1x; y). However, now
there is an abundance of non-trivial factors, and most of them are common between the two
resultants: in fact, Res(res2x, res1x; y) and Res(res3x, res1x; y) share five common non-trivial
factors resC1, resC2, resC3, resC4, resC5 and they both posses a specific and different non-
trivial factor, which are respectively res1y and res2y. This forces to consider six subcases, even
if five of them are very similar.

CASES 1-5: we consider the common factor resCi (with i ∈ {1, . . . , 5}) and we look for stationary
points of S over the locus resCi = 0. These common factors are polynomial expressions which
are simpler than the ones describing the factors of the derivatives, and thus one can consider
the system

Lx = Ly = Lz = Lt = La = resCi = 0

and restart the resultant tree process, which is now easier and with simpler resultants since a
complicated condition has been replaced with a simpler one. Iteration of this process eventually
leads to the desired polynomial in one variable from which we can extract roots and move
backwards to search for stationary points.

In these specific cases, the factors resCi are always linear in some variable, and thus the
relation resCi = 0 allows to substitute one variable in a chosen previously computed polynomial:
in particular, if we substitute in either res1x or res1g, we obtain polynomials which have no roots
in the open interval (0, 1).



20 F. BATTISTONI AND G. MOLTENI

CASE 6: we proceed with the resultant tree computing Res(res1y, res2y; z): we multiply the
non-trivial factors of this resultant obtaining a polynomial res1z and finally we solve the system

Ly = res1a = res1g = res1x = res1y = res1z = 0

where the first polynomial has six variables, the second five, the third four and so on. The
search of the roots and the evaluation give some stationary points, which however give small
local maximums (around 1.41 . . .) that are easily dominated by values on the boundary.

The detailed optimization of the interior and the boundary is reported in [5] and similar
difficulties (sometimes with worse expressions) are encountered in the estimate of the second
block and in the optimization of some other configurations for which the old procedures do not
work suitably. They all share, however, the same “resultant tree/common factors” behaviour
that we described with this example.

A similar optimization procedure shows that the non-coloured part of the scheme, if considered
as a unique block, is estimated by 8.641. Thus the scheme is bounded by the product of the
upper bounds of the two blocks, which is 82. We further improve this result verifying that the
gray block is bounded by 8 when g ∈ [1/2, 1] and that the non-coloured part is bounded by 8.25
when g ∈ [0, 1/2]. Therefore the scheme is actually bounded by max(9.482·8.25, 8·8.641) ≤ 78.3.

7. Technical and computational remarks

In this section we gather several remarks about our computations and the estimates we needed
in order to deal with all the graphical schemes we considered.

1) As we mentioned, the optimization in the degree 5 case, i.e. P5,1, was made considering each
variable lying in [−1, 1]: the function was simple enough in both orderings to provide a rigorous
optimization. For Pn,1 with n ∈ {6, 7, 8, 9}, only variables between 0 and 1 were considered.

2) We have three (respectively three, four, four) orderings for P6,1 (respectively P7,1, P8,1, P9,1).
Each ordering unfolds into 16 configurations (respectively 32, 64, 128), each one defined by
a vector of signs. Every configuration is estimated by recognizing patterns into it and either
bounding them via static estimates or replacing them with other patterns via dynamic estimates.
In several cases this is achieved just estimating the first line or the last column of the scheme
and then multiplying the obtained upper bound with the one previously found for the remainder
of the scheme, which results to be a configuration in smaller dimension which has been studied
before. The scheme shown in (10) that we have already discussed earlier is an example of this
procedure.

3) The dataset [5] contains the collection of all static and dynamic estimates we employed for the
optimization of the orderings: more in detail, they are gathered in the file “estimates-general-
database.txt”. The file contains slightly more than 150 estimates, divided into 9 groups. Group
A) contains the estimates first employed for the totally real case and described in Lemma 1
and Lemma 2. Groups from B) to G) collect estimates involving the terms containing the new
variable g: their labelling follows no particular order, apart from chronological appearance and
similarities in their resolution. Moreover, these estimates are used mostly for the cases in degree
6, 7 and 8. Group H) contains inequalities which turned useful for dealing with the degree 9
case: some of them were later used in lower degree cases replacing some estimates of the previous
groups since they turned to be easier to apply. Group I) contains unused but proved estimates.
Finally, the tiny group RMK contains four inequalities which allow to reduce the number of
variables in the optimization of a specific scheme and to estimate a large amount of factors in a
similar way to the “triangle estimate” of Lemma 2.

4) Apart from the very easy ones, the estimates in this collection are all proved by eliminating
the variables via the iterated computation of the resultants, as explained in the previous section:
the factorization process was carried most of the times in MAGMA (which is very suitable for
the factorization of rational polynomials in several variables) while the computation of real roots
and evaluation of polynomials was done mostly in PARIgp.
For the search of the solutions of these systems we have also considered the possibility to take
advantage of more advanced tools in Elimination Theory, as Gröbner bases, and using MAGMA
and msolve [8] for these computations. However, apart from some marginal success, we have
discovered that both softwares are not strong enough to simplify in some significant way our
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arguments. For example, MAGMA cannot compute a Gröbner basis for the system giving the
stationary points of L6,1. On the other hand, msolve computes the basis very quickly, but
then cannot compute the solutions since the system contains a positive-dimensional variety that
msolve is not able to make explicit. This is unfortunate, since a direct attack of this system
would be able to compute the true maximum for P6,1. The same phenomenon appears with
the systems which come with many other inequalities we considered for the proof of Theorem 2
(see Cases 1-5 which are described in Section 6.4). For this reason we have decided to relay our
computations on the old technique of eliminating variables via an iterated chain of resultants.
The dataset [5] contains a MAGMA file and a PARIgp file for every proved estimate: the
PARIgp part especially contains a program which allows to compute all the roots of the examined
polynomials.

5) The proof of some estimates (especially the ones in group G)) turned out to be longer,
since they involved polynomials with six or seven variables for which many subcases had to be
considered during the optimization. Many of these cases required intermediate considerations
due to the presence of the common factors between the considered resultants: they were dealt
with in the same way as done in the proof of the second ordering of Theorem 1.

6) Many configurations are estimated by dividing them in blocks and by providing an estimate
for every block via resultant trees. Sometimes, choosing the blocks for the decomposition is
immediate; however, there are cases where a convenient division in blocks was not evident
(such was, for example, the configuration of the fourth ordering L8,4 in degree 8 given by the
vector of signs (+,−,−,−,−,−)). We looked for a good decomposition by writing the object
function in MATLAB and by applying the Global Optimization Toolbox, which provided several
groups of blocks and their (numerical) maximums whenever the variables are between 0 and 1.
The MATLAB results, however, were only considered as suggestions and not as proved facts:
whenever we found what seemed a convenient decomposition, we have produced a full proof that
the proposed maximum of each block was indeed correct (the proof was carried again via the
resultant tree procedure in MAGMA/PARIgp).

7) Sometimes, in order to improve the results and obtain upper bounds suitable for our number-
theoretic goals, a simple division in blocks was not sufficient. In some specific cases, like the
configuration of the third ordering L8,3 in degree 8 given by the vector of signs (+,−,+,+,−,
+), we not only divided the function in two blocks, but we also considered for every block two
precise subcases: the first one is given by assuming a specific variable xi in an interval [0, α]
(where α ∈ (0, 1) is a convenient number), the second one by assuming xi ∈ [α, 1]. This was done
in order to exploit a cancellation behaviour, since the two blocks do not assume their maximum
values on the same points: in particular, one block will assume its maximum for xi ∈ [0, α] and
be instead quite small in [α, 1], while the other block will present the opposite behaviour. The
necessary inequalities, with their MAGMA/PARIgp files, are present in the dataset.

8. Final remarks on the results

The following table represents the upper bounds we detected for each ordering.

ordering
degree n and r2 = 1

5 6 7 8 9

1st 16M 32 32M 64M 155.1
2nd 16M 32M 54M 79.42 190.2
3rd 34.89 65.81 79.2 201.4
4th 80 233.1

First of all, we compare these upper bounds with the basic bound nn/2: the new bounds are
considerable improvements being reduced by the factor 3.3 (6.2, 13.8, 51.2, 84.4, respectively)
in the case of degree 5 (6, 7, 8, 9, respectively).

We also know from Theorem 1 that the new upper bound 16M in degree 5 is the best
possible for each ordering, since this value is attained in both cases at the point (x1, x2, x3, g) =
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(1/
√
7,−1, 1, 1/(2

√
7)). The upper bounds for degree 6 first ordering and degree 7 first ordering

are sharp too, since
L6,1((−1, 0,−1, 1, 0)) = 32

and
L7,1((−1, 0, 1/

√
7,−1, 1, 1/(2

√
7))) = 32M.

Notice in particular that the correct bound for degree 6 first ordering is two times the bound
for the function P4,1, and the one in degree 7 first ordering is twice the bound for P5,1. We
conjecture the following:

• For a fixed degree n, the maximum of Ln,k should be the same independently from the
chosen k-th ordering, exactly like it happens for n ≤ 5.

• the maximum of Pn,1 follow a recursive formula starting from degree 4 and 5:

supPn+2,1 = 2 supPn,1 for n ≥ 4, so that supPn,1 =

{
2(n+4)/2 n ≥ 4 even

2(n+3)/2M n ≥ 5 odd.

We conclude by considering the degree 9 case. At the moment the known list of ten fields with
signature (7, 1) in LMFDB is not proved to be complete, but one conjectures that this is the
case. Assume that this is true. The PARIgp computation of the regulators yields their true
value since the conditions of Proposition 4 are satisfied, and the smallest value is approximatively
18.0874 and comes from the field with smallest discriminant in the list, i.e. the field defined by
the polynomial

(11) x9 − x8 − 5x7 + 6x6 + 5x5 − 11x4 + 5x3 + 6x2 − 6x+ 1

and absolute discriminant equal to 1904081383. Adjusting the level R0 in Proposition 2 to
18.1 and using the upper bound 233.1 in Theorem 2 for P9,1 we get the bound log |dK | ≤
47.334357 . . .. Thus, in order to explore all (7, 1) fields having a regulator ≤ 18.1 we should
explore all fields with absolute discriminant up to exp(47.334357 . . .). Unfortunately in this case
Proposition 3 does not help to reduce the range, since 4g7,1(exp(−47.334357 . . .)) is negative,
and the task remains impossible. The only thing we can conclude (using the classification
method with this upper bound) is that, imposing R0 := 5.3, Proposition 1 gives the upper
bound |dK | ≤ exp(41.471548 . . .): we have also 2g7,1(exp(−41.471548 . . .)) = 32.365375 > 5.3
and 4g7,1(1/1904081382) = 16.786962 . . . > 5.3, therefore any field of signature (7, 1) with
|dK | > 1904081382 has regulator above 5.3, and if 1904081383 is indeed the minimal discriminant
in this signature, this would mean that every field with signature (7, 1) would have regulator
bigger than 5.2.

The situation does not improve even if we assume for P9,1 the conjectured optimal upper
bound equal to 64M = 66.786126 . . .. This is because looking for fields with RK ≤ 18.1 is still
unfeasible by the classification method since Proposition 1 now gives |dK | ≤ exp(44.834413 . . .)
and 4g7,1(exp(−44.834413 . . .)) is again negative. The classification remains then not possible
and the only thing we can conclude, by operating like above and assuming the conjectural bound
64M , is that all fields in signature (7, 1) with |dK | > 1904081382 have regulator which is at
least 9.2.

It appears then that, at least for the fields with one complex embedding, the method for the
classification of number fields with small regulator has reached its limits and new theoretical
improvements are needed for the resolution of the problem: in particular, it would be of interest
to know if more efficient versions of the lower bound (4) for RK can be obtained, either by
improving the existent result using explicit formulae of Dedekind Zeta functions or by new
tools.
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Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy
Email address: giuseppe.molteni1@unimi.it

https://github.com/FrancescoBattistoni/Bounds-for-polynomials-with-1-complex-embedding
https://github.com/FrancescoBattistoni/Bounds-for-polynomials-with-1-complex-embedding
http://galoisdb.math.upb.de/home
http://pari.math.u-bordeaux.fr/packages.html
http://pari.math.u-bordeaux.fr/packages.html
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.lmfdb.org
http://www.lmfdb.org

	1. Introduction
	2. Proof of the corollaries
	2.1. Proof of Corollaries ?? and ??
	2.2. Proof of Corollaries ??, ?? and ??

	3. Recalls on the totally real case
	4. The change of variables for r2=1
	5. Proof of Theorem ??
	5.1. Estimate for L5-1
	5.2. Estimate for L5-2

	6. Graphical schemes for the proof of Theorem ??
	6.1. Dynamical estimates
	6.2. Easy static estimates
	6.3. Less easy static estimates
	6.4. Complicated static estimates

	7. Technical and computational remarks
	8. Final remarks on the results
	References

