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Abstract

We prove a C∞ version of Nekhoroshev theorem for time dependent
Hamiltonians in Rd×Td. Precisely, we prove a result showing that for
all times the energy of the system is bounded by a constant times ⟨t⟩ε.
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1 Introduction

In this paper we study the dynamics of a Hamiltonian system of the form

H = h0(p) + P (p, x, t) , h0(p) :=

d∑
j=1

p2j
2
, (p, x) ∈ Rd × Td , (1.1)

where P (p, x, t) is a C∞ function bounded by ⟨p⟩b with some b < 2 (as usual

⟨p⟩ :=
√
1 + ∥p∥2). The main example we have in mind is that of a particle

subject to a time dependent electromagnetic field, namely

H =
d∑

j=1

(pj −Aj(x, t))
2

2
+ φ(x, t) , (1.2)

with A(x, t) and φ(x, t) functions of class C∞(Td × R;R).
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We are going to prove that ∀ε > 0 ∃Cε, s.t. the solution of the system
fulfils forever an estimate of the form

∥p(t)∥ ≤ Cε⟨t⟩ε (1 + ∥p0∥) , ∀t ∈ R (1.3)

⟨t⟩ :=
√

1 + |t|2 ; (1.4)

of course the estimate is meaningful for 0 < ε≪ 1.
This is essentially a Nekhoroshev type theorem [1, 2] (see also [3, 4, 5, 6, 7,

8] and literature therein). We recall that the original Nekhoroshev theorem
deals with perturbations of steep integrable systems and gives upper bounds
on the drift of the actions for very long times. The original Nekhoroshev’s
theorem deals with an analytic context and the result it gives is valid over
times which are exponentially long with the inverse of the size ϵ of the
perturbation. Corresponding C∞ versions have been obtained [9, 10, 11, 12,
13]: in the general case one gets bounds valid over a time scale of order ϵ−N

with an arbitrary N ; specifying the class of C∞ functions at study, namely
using Gevrey functions, or more generally ultradifferentiable functions, one
gets more precise estimates on the time scale over which the drift of actions
is under control (see [9, 10, 11, 13]).

We emphasize that all the above results deal with the time independent
case, but it is very easy to use them to deal with systems depending in a
periodic way on time; however already the case of quasiperiodic time de-
pendence requires a different approach [14] and the case of a general time
dependence requires different techniques and different ideas as developped
in [15].

The present paper is strongly related to [15]. In that paper the authors
considered a system of the form (1.1) with an analytical and globally bounded
perturbation P . They proved that if the initial datum is large enough, then
it takes a time exponentially long with its size to possibly double the size
of the solution. The mechanism underlying the result of [15] is that, if
the solution has large energy, then the unperturbed dynamics involves very
large frequencies, while the time scales related to the time dependence are
bounded, due to the boundedness of the forcing term. Thus the “mechan-
ical frequencies” decouple from the forcing frequencies making possible the
development of perturbation theory. This is essentially the same mechanism
uderlying the results [16, 17, 18, 19].

In the present paper we investigate the case where also the forcing term
is unbounded: we obtain that, provided the growth at infinity of the pertur-
bation (b in our notation) is slower than that of the unperturbed term (2 in
the present case), then one can develop Nekhoroshev theory. We think that
the result could fail for b = 2. Technically the main step to get the result
consists in changing the definition of resonance and of resonant region: the
idea is that a point p is resonant, not if |ω(p) · k| < α with some α > 0,
but if |ω(p) · k| < ∥k∥ ∥p∥δ with some positive δ < 1. We emphasize that in
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[15] the definition of resonance was the standard one and the key technical
ingredient of [15] was to take α large in order to make the effective pertur-
bation small. In the case of unbounded perturbations this is not enough,
since the size of the perturbation overcomes any possible fixed value of α as
the size of the solution increases.

In order to exploit our definition of resonance we also have to modify
the geometric part of the proof of Nekhoroshev’s theorem: while we still
use “resonant blocks” and “extended resonant blocks”, we have to modify
their shape with respect to the standard definitions. In particular we have
to change the exponenti δ as the number of the resonances present in block
increases. Actually the proofs and constructions we give here are a trans-
position to the classical context of those done in [20, 21, 22] in a quantum
context. We remark that in the present context the so called analytic part
of the proof turns out to be particularly simple and the tools of symbolic
calculus developed in the framework of pseudodifferential calculus turn out
to be very efficient in this context. In particular, as a difference with respect
to the papers [9, 10, 11, 13] it allows to develop the analytic part without
making any quantitative estimate and thus to deal with C∞ functions with-
out any control of the size of the derivatives of functions. This is similar to
what has been done in [12], but we use here a different class of symbols á la
Hörmander, characterized by their behaviour at infinity.

Our proof follows the classical Nekhoroshev’s scheme consisting in devel-
opping an analytic part and a geometric part. Thus the results we get here
can be easily extended to the case where h0 is a homogeneous steep function
of some degree d > 1 and b < d, following the quantum construction of
[22]. However, I am not aware of concrete and relevant examples of such a
situation: in all the example I know the action variables have singularities
accumulating at infinity and in order to deal with them one should develop
a version of Nekhoroshev theorem independent of the set of coordinates: we
leave this for future work.

Finally we remark that a different proof, by Lochak [23, 24], of Nekhoro-
shev’s Theorem exists, a proof which is much simpler than the original one,
and which has also proved to be suitable for the extension to some infinite
dimensional systems [18] and in particular to PDEs [25, 26]. Unfortunately
we have not been unable to adapt such a proof to the present time dependent
case.

We emphasize that, with respect to classical Nekhoroshev’s results, we
add a global in time estimate, according to which the energy grows at most
with a rate slower than any (small) power of time. We also remark that
the quantum analogous results controlling the growth of the Sobolev norms
of the wave function by ⟨t⟩ε are by now quite standard [27, 28, 29, 30, 31,
20, 32], and the present work arises from the curiosity of understanding if
something similar is true in classical mechanics.
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2 Main Result

Definition 2.1. A function f ∈ C∞(Td×Rd) is said to be a symbol of class
Sm
δ , if it fulfils∣∣∣∂αx ∂βp f(x, p)∣∣∣ ≤ Cα,β⟨p⟩m−δ|β| , ∀α, β ∈ Nn , ∀(x, p) ∈ Td × Rd . (2.1)

The best constants s.t. (2.1) hold are a family of seminorms for the space
of symbols. In this way the space of symbols becomes a Fréchet space.

In order to deal with time dependent perturbations, we have to consider
also function taking value in the spaces of symbols.

Definition 2.2. If F is a Fréchet space, we denote by Ck
b (R;F) the space

of the functions f ∈ Ck (R;F), such that all the seminorms of ∂jt f are
bounded uniformly over R for all j ≤ k. If this is true for all k we write
f ∈ C∞

b (R;F) .

Theorem 2.3. Assume that P ∈ C∞
b (R;Sb

1) with b < 2, then ∀ε > 0 ∃Rε,
s.t., if the initial datum fulfills ∥p0∥ ≥ Rε then along the solutions of the
Cauchy problem for the Hamilton equation of (1.1) one has

∥p(t)∥ ≤ 16 ∥p0∥
〈

t

∥p0∥

〉ε

, ∀t ∈ R . (2.2)

Then, by compactness of the ball of radius Rε, it is easy to obtain the
following corollary

Corollary 2.4. Assume that P ∈ C∞
b (R;Sb

1) with b < 2, then ∀ε > 0 ∃Cε,
s.t. along the solutions of the Cauchy problem for the Hamilton equation of
(1.1) with initial datum p0 one has

∥p(t)∥ ≤ Cε⟨p0⟩ ⟨t⟩ε , ∀t ∈ R , (2.3)

and therefore ∀p0 ∈ Rd

lim
t→∞

ln⟨p(t)⟩
ln |t|

= 0 . (2.4)

Remark 2.5. We expect that, by a technique similar to the one that allows
to deduce Theorem 2.3 from Theorem 4.20, it should be possible to use the
main result of [15] to prove that in the case of analytic bounded perturbations
one would have an estimate of the form

∥p(t)∥ ≤ C⟨p0⟩ ln ⟨t⟩ ,

however we did not work out the details. Furthermore, it could be interesting
to understand the form such an estimate would take in the case of unbounded
analytic perturbations.
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Such results have to be confronted with the corresponding quantum re-
sult, in which one considers the Schrödinger equation with Hamiltonian
given by the quantisation of H. In this case it was proved in [21, 22] that
the wave function ψ(t) fulfils

∥ψ(t)∥Hs ≤ Cε,s ∥ψ0∥Hs ⟨t⟩ε , ∀t ∈ R .

Actually the question of the validity of a similar estimate in the classical
case was the main motivation for the present work.

As anticipated above, the main example we have in mind is that of a
particle in an electromagnetic field with Hamiltonian (1.2), in which one has

P (p, x, t) = −p ·A(x, t) + ∥A(x, t)∥2

2
+ φ(x, t) .

3 Analytic Part

We start by fixing some notations and definitions that will be used in the
rest of the paper. Given two real valued functions f and g, sometimes we
will use the notation f ≲ g to mean that there exists a constant C > 0,
independent of all the relevant quantities, such that f ≤ Cg. If f ≲ g and
g ≲ f , we will write f ≃ g.

We will denote by BR(p) the open ball of radius R centered p.
Given a function g, we will denote by Xg the corresponding Hamiltonian

vector field and by

{f ; g} := dfXg ≡
d∑

j=1

∂f

∂xj

∂g

∂pj
− ∂g

∂xj

∂f

∂pj
(3.1)

the Poisson bracket of two functions. Remark that if f ∈ Sm1
δ and g ∈ Sm2

δ ,

then {f ; g} ∈ Sm1+m2−δ
δ . The gain of δ is fundamental for the construction

of the regularising transformation.
Given µ > 0 and 0 < δ < 1 (typically µ ≪ 1 and δ ≃ 1), we give the

following definitions:

Definition 3.1. We say that a point p ∈ Rd is resonant with k ∈ Zd \ {0}
if

|p · k| ≤ ∥p∥δ∥k∥ and ∥k∥ ≤ ∥p∥µ . (3.2)

Definition 3.2. [Normal form] We say that a function Z(p, x) =
∑

k∈Zd Ẑ(p)eik·x

is in normal form if all the points in supp(Ẑk(.)) are resonant with k.
We say that a function Z(p, x, t) is in resonant normal form if this is true
in the above sense, for any fixed time t.

In order to characterise the properties of the Lie transform we need to
introduce also the following class of functions
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Definition 3.3. A function R will be said to be a remainder of order N
and we will write R ∈ RN if ∣∣∣∂αx ∂βpR(x, p)∣∣∣ ≤ Cα,β⟨p⟩−N , (3.3)

∀α, β ∈ Nn , |α|+ |β| ≤ 2 ,∀(x, p) ∈ Td × Rd . (3.4)

In the following we will use time dependent transformations Φ(p, x, t)
with the property that for any fixed t they are canonical. In this case it is
easy to see that the change of coordinates (p, x) = Φ(p′, x′, t) transforms the
equations of motions of a Hamiltonian H to the equations of motion of a
new Hamiltonian H ′. In this case we will say that Φ conjugates H and H ′.

We are going to prove the following normal form theorem

Theorem 3.4. [Normal Form] Let H be given by (1.1), with P ∈ C∞
b

(
R;Sb

1

)
,

b < 2. Fix N ≫ 1, then there exists 0 < δ∗ < 1, µ∗ > 0 such that, if
δ∗ < δ < 1, 0 < µ < µ∗, then there exists a time dependent canonical
transformation T which conjugates H to

H(N) := h0 + ZN (t) +R(N)(t) , (3.5)

with ZN ∈ C∞
b

(
R;Sb

δ

)
in normal form, while R(N) ∈ C∞

b

(
R;RN

)
is a

remainder of order N .
Denoting (p, x) = T (p′, x′, t), one has ∥p− p′∥ ≤ C ∥p∥b−δ.

The rest of this section is devoted to the proof of this theorem.
The idea is to perform a sequence of canonical transformations conjugat-

ing the original system to a normal form plus a remainder whose growth at
infinity decreases at each step. Eventually it becomes a function arbitrarily
decreasing in the action space.

3.1 Time dependent Lie transform

The canonical transformations will be constructed as Lie transforms gener-
ated by time dependent symbols. So, first we recall the main definitions and
properties.

Consider a family of time dependent Hamiltonians g(p, x, t), but think of
t as an external parameter. Denote by Φτ

g(p, x, t) the time τ flow it generates,
namely the solution of

dx

dτ
=
∂g

∂p
(p, x, t) ,

dp

dτ
= −∂g

∂x
(p, x, t) . (3.6)

In the case g ∈ Sm
δ with m ≤ 1 the flow of (3.6) is globally defined. This is

the only situation we will encounter.
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Definition 3.5. The time dependent coordinate transformation

(p, x) = Φg(p
′, x′, t) ≡ Φ1

g(p
′, x′, t) := Φτ

g(p
′, x′, t)

∣∣
τ=1

(3.7)

is called the time dependent Lie transform generated by g.

Remark 3.6. The time dependent Lie transform Φg conjugates a Hamilto-
nian f to the Hamilton

f ′(p′, x′, t) := f(Φg(p
′, x′, t))−Ψg(p

′, x′, t) , (3.8)

Ψg(p
′, x′, t) :=

∫ 1

0

∂g

∂t

(
Φτ
g(p

′, x′, t)
)
dτ . (3.9)

This can be easily seen by working in the extended phase space in which time
is added as a new variable.

Given a function f ∈ Sm
δ , we study f ◦ Φg. We start by the time inde-

pendent case

Lemma 3.7. Let g ∈ Sη
δ be a time independent function, and f ∈ Sm

δ , with
η < δ, then, for any positive N , one has

f ◦ Φ1
g =

N∑
l=0

fl
l!

+Rm−(N+1)(δ−η) , (3.10)

with fl ∈ S
m−l(δ−η)
δ , precisely given by

f0 := f , fl := {fl−1; g} ≡ dl

dtl

∣∣∣∣
t=0

f ◦ Φt
g , l ≥ 1 , (3.11)

and Rm−(N+1)(δ−η) a remainder of order (N + 1)(δ − η)−m.
Furthermore, if one denotes (p, x) = Φg(p

′, x′, t), one has∥∥p− p′
∥∥ ≤ C ∥p∥η . (3.12)

Proof. Just use the formula for the remainder of the Taylor series (in time)
which gives

f ◦ Φ1
g =

N∑
l=0

fl
l!

+
1

N !

∫ 1

0
(1 + s)NfN+1 ◦ Φs

gds ,

from which the thesis immediately follows.
In particular we have the following corollary which covers the case of

the time dependent Lie transform and which is proved by simply remarking
that Ψg ∈ C∞(R;Sη

δ ) up to a remainder of arbitrary order.
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Corollary 3.8. Let g ∈ C∞
b (R;Sη

δ ) with η < δ; denote by Φg the time
dependent Lie transform generated by g. Let f ∈ Sm

δ , then, for any N , one
has

f ◦Φg = f+{f ; g}+C∞(R;Sm−2(δ−η)
δ )+C∞(R;Sη

δ )+C
∞(R;RN ) . (3.13)

By C∞(R;Sη
δ ) in the above formula, we mean a function belonging to such

a space and similarly for the other terms.

From now on, time will only play the role of a parameter, so we will omit
to write explicitly this variable and omit to specify the dependence on it,
which will always be of class C∞

b .
We are now ready for the construction of the normal form transforma-

tion. Before starting we change the family of seminorms that we will use for
symbols. Actually we will use them explicitly only in the proof of Lemma
3.11.

Remark 3.9. One has that f ∈ Sm
δ if and only if for all integers N1 and

N2 there exists a positive constant Cm
δ,N1,N2

such that

℘m
δ,N1,N2

(f) := sup
p∈Rd, k∈Zd,
α∈Nd, |α|=N1

∣∣∣∂αp f̂k(p)∣∣∣ |k|N2⟨p⟩−(m−δ|α|) <∞ , (3.14)

with f̂ the Fourier coefficients of f .

As anticipated in the notation of equation (3.14), in the following we will
use the constants ℘m

δ,N1,N2
as seminorms.

We come to the normal form procedure: we look for a generating function
g that we want to use to transform H to a normal form plus a remainder
decaying at infinity faster than |p|b. If g ∈ Sη

δ , with a suitable η (as it will
occur), the Lie transform Φg conjugates H to

h0 + P + {h0; g}+ lower order terms . (3.15)

So we look for a symbol g s.t. P + {h0; g} is in normal form. Actually we
will construct a symbol g with the property that P + {h0; g} consists of a
part in normal form plus a part decaying at infinity faster than any inverse
power of |p|.

3.2 Solution of the Cohomological equation

In this subsection we are going to prove the lemma of solution of the Coho-
mological equation

{h0, g}+ f − Z ∈ S−∞
δ . (3.16)

It is a small variant of Lemma 5.8 of [33], we give the proof for the sake of
completeness.
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Lemma 3.10. Let 2
3 < δ < 1, then the following holds true: ∀f ∈ Sm

δ , there

exist g ∈ Sm−δ
δ , Z ∈ Sm

δ , with Z in normal form, s.t. (3.16) holds.

First, following [33] we split f in a resonant, a nonresonant and a
smoothing part. This will be done with the help of suitable cutoffs, so
let χ ∈ C∞(R,R) be a symmetric cutoff function which is equal to 1 in
[−1

2 ,
1
2 ] and has support in [−1, 1]. With its help we define,

χ̃k(p) := χ

(
∥k∥
∥p∥µ

)
, χk(p) := χ

(
p · k

∥p∥δ∥k∥

)
, (3.17)

dk(p) :=
1

p · k

(
1− χ

(
a · k

∥p∥δ∥k∥

))
. (3.18)

By a simple computation one verifies that such functions are symbols, pre-
cisely (for more details see Lemma 5.4 of [33]) χk, χ̃k ∈ S0

δ , and dk ∈ S−δ
δ .

We use the above cutoffs to decompose any function f ∈ Sm
δ :

f = f (nr) + f (res) + f (S) . (3.19)

with

f (nr)(p, x) :=
∑

k∈Zd\{0}

(1− χk(p))χ̃k(p)f̂k(p)e
ikx , (3.20)

f (res)(p, x) :=
∑
k∈Zd

χk(p)χ̃k(p)f̂k(p)e
ikx , (3.21)

f (S)(p, x) :=
∑

k∈Zd\{0}

(1− χ̃k(p))f̂k(a)e
ikx . (3.22)

Furthermore, one has that, if f ∈ Sm
δ , then f (res), f (nr) ∈ Sm

δ and f (res) is
in normal form. Concerning f (S), by a variant of Lemma 5.6 of [33] one has
the following Lemma.

Lemma 3.11. Assume f ∈ Sm
δ , then f (S) ∈ S−∞

δ .

Proof. Consider the k-th Fourier coefficient of f (S): keeping into account
that (1− χ̃k(p)) is supported in the region ∥k∥ ≥ ∥p∥µ, one has

∣∣∣(1− χ̃k(p))f̂k(p)
∣∣∣ ≤

∣∣∣(1− χ̃k(p))f̂k(p)
∣∣∣

∥k∥N
∥k∥N

≲

∣∣∣f̂k(p)∣∣∣
∥p∥µN

∥k∥N ≤ ℘m
δ,0,N (f)⟨p⟩m 1

⟨p⟩Nµ
,

which, provided N is large enough decreases at infinity as much as desired.
The control of the other seminorms is done similarly and is omitted.
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Proof of Lemma 3.10. Define

g := i
∑
k ̸=0

dk(p)f̂k(a) , (3.23)

then it is immediate to verify that

{h0; g} ≡ −p · ∂
∂x
g = f (nr) .

3.3 End of the proof of Theorem 3.4

In this subsection we prove the following iterative lemma from which The-
orem 3.4 immediately follows.

Lemma 3.12. FixM , let H be as in equation (1.1). There exists 0 < δ∗ < 1
and µ∗ > 0 such that, if δ∗ < δ < 1, and 0 < µ < µ∗, define

a := min {2δ − b; δ} ; (3.24)

then a > 0 and the following holds. For any ∀n ∈ N with M ≥ n ≥ 0 there
exists a time dependent canonical transformations Tn conjugating H to

Hn = h0 + Zn +Rn + R̃n , (3.25)

where Zn ∈ Sb
δ is in normal form; Rn ∈ Sb−na

δ , R̃n ∈ RN . Furthermore,

denoting as before (p, x) = Tn(p′, x′, t), one has ∥p− p′∥ ≤ Cn ∥p∥b−δ.

Proof. We prove the theorem by induction. In the case n = 0, the claim is
trivially true.

We consider now the case n > 0. Denote m := b − na; we determine
gn+1 ∈ Sη

δ , η = b − na − δ < 1, according to Lemma 3.10 with f replaced
by Rn. Then one uses Φgn+1 to conjugate Hn to H ′

n given by

H ′
n = H − {Hn; gn+1}+ S

m+2(η−δ)
δ + Sη

δ +
˜̃
Rn+1 + R̃n ◦ Φgn+1

= h0 + Zn +Rn − {h0; gn+1}+ Sb+η−δ
δ + S

m+2(η−δ)
δ + Sη

δ +
˜̃
Rn+1 + R̃n ◦ Φgn+1

= h0 + Zn +R(res)
n + S

m−(2δ+δ−2)
δ + Sb+η−δ

δ + S
m+2(η−δ)
δ + Sη

δ

+
˜̃
Rn+1 + R̃n ◦ Φgn+1 ,

(3.26)

where the term
˜̃
Rn+1 contains the remainder of the expansion of the Lie

transforms of the different functions. Define now Zn+1 := Zn + R
(res)
n ,

R̃n+1 :=
˜̃
Rn+1 + R̃n ◦ Φgn+1 and Rn+1 to be the sum of the remaining
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terms. Writing explicitly the different exponents of the classes S of the
terms composing Rn+1, we get that they are given by

e1 := b− na− (3δ − 2) = b− na− a1 , a1 := 3δ − 2

e2 := b+ b− na− 2δ = b− na− a2 , a2 := 2δ − b ,

e3 := b− na+ 2(b− na− 2δ) = b− na− a3 , a3 := 2(na+ 2δ − b)

e4 := b− na− δ = b− na− a4 , a4 := δ .

Remarking that a3 ≥ a2 and taking the smallest a one immediately gets the
thesis.

To conclude the proof of Theorem 3.4 just take M = [N/a] + 1.

4 Geometric Part

4.1 The partition

Following Nekhoroshev, in this section we partition the action space Rd

according to the resonance relations fulfilled in each region. We adapt the
construction to our setting. We will point out during the construction the
main differences with the standard construction. The construction is very
similar to the one developed in a quantum context in [20, 22]. As in original
Nekhoroshev’s construction, the sub moduli of Zd play a fundamental role
in this construction, so, we first recall their definition.

Definition 4.1. A subgroupM ⊆ Zd will be called a module if Zd ∩ spanRM =M .
Given a moduleM , we will denoteMR the linear subspace of Rd generated by
M . Furthermore, given a vector p ∈ Rd we will denote by pM its orthogonal
projection on MR.

In order to perform our construction we take positive parameters δ, µ,
C1, . . . , Cd , D1, . . . , Dd, R fulfilling

d(d+ 1)

2
µ < 1− δ ,

1 = C1 < C2 · · · < Cd ,

1 = D1 < D2 · · · < Dd ,

(4.1)

and define

δs := δ +
s(s− 1)

2
µ (= δs−1 + (s− 1)µ) , (4.2)

while R will be assumed to be large enough.
We start by the following definition

Definition 4.2 (Resonant zones). Let M be a module of Zd of dimension
s.
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(i) If s = 0, namely M = {0}, we say that p ∈ Z(0)
M if either ∥p∥ < R or

|p · k| ≥ ∥k∥ ∥p∥δ , ∀k : ∥k∥ ≤ ∥p∥µ . (4.3)

Z(0)
{0} will be called the non resonant zone.

(ii) If s ≥ 1, for any set of linearly independent vectors {k1, . . . , ks} in M ,
we say that p ∈ Zk1,...,ks if ∥p∥ ≥ R and ∀j = 1, ..., s one has

∥p · kj∥ ≤ Cj ∥k∥ ∥p∥δj and ∥k∥ ≤ Dj ∥p∥µ . (4.4)

then we put

Z(s)
M :=

⋃
k1,...,ks

lin. ind. in M

Zk1,...,ks . (4.5)

The sets Z(s)
M are called resonant zones.

In the standard case the resonant zones are strips whose width changes
as the order of the resonance increases. Here also the shape of the resonant
zone changes as the number of resonances incresases, since the exponents
δs depend on s. Furthermore, the fact of defining a zone using any possible
choice independent vectors in the resonance modulus gives a shape slightly
different from the standard one.

The sets Z(s)
M contain points p which are in resonance with at least s

linearly independent vectors in M .

Remark 4.3. Fix r, s ∈ {1, . . . , d} with 1 ≤ r < s, then for any M with
dim M = s, one has

Z(s)
M ⊆

⋃
M ′⊂M

dimM ′=r

Z(r)
M ′ .

Following Nekhoroshev we now define the resonant blocks, which are
composed by the points which are resonant with the vectors in a moduleM,
but are non-resonant with the vectors k ̸∈M and the extended blocks which
will turn out to be invariant under the dynamics of h0 + Z.

Definition 4.4 (Resonant blocks). We first define, for M = Zd, the set

B(0)

Zd := Z(0)

Zd . Then, we proceed iteratively: for s < d let M be a module of
dimension s, we define the resonant block

B(s)
M = Z(s)

M \

 ⋃
s′>s

dimM ′=s′

B(s′)
M ′

 .
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Definition 4.5 (Extended blocks and fast drift planes). For any module M
of dimension s, we define

Ẽ
(s)
M =

{
B(s)
M +MR

}
∩ Z(s)

M

and the extended blocks

E
(s)
M = Ẽ

(s)
M \

 ⋃
s′<s

dimM ′=s′

E
(s′)
M ′

 ,

where A+B = {a+ b | a ∈ A, b ∈ B} . Moreover, for all p ∈ E
(s)
M we define

the fast drift plain

Π
(s)
M (p) = {p+MR} ∩ Z(s)

M .

4.2 Properties of the partition

A useful technical tool is given by the following remark:

Remark 4.6. If p, b ∈ Rd, fulfil ∥p∥, ∥b∥ ≥ 1, and

∥p− b∥ ≤ C∥b∥δ̃ ,

with some constants C > 0 and 0 < δ̃ < 1, then one has

∥p− b∥ ≲ ∥p∥δ̃ .

We start now to study the properties of the partition.

Remark 4.7. By the very definition of Z(s)
M , for any s ≥ 1, one has Z(s)

M ∩
BR(0) = ∅.

Lemma 4.8. Provided R is large enough, the resonant zone Z(d)

Zd is empty.

The proof requires the use of the following Lemma from [6]. For the
proof we refer to [6].

Lemma 4.9. [Lemma 5.7 of [6]] Let s ∈ {1 , . . . , d} and let {u1 , . . . us} be
linearly independent vectors in Rd . Let w ∈ span{u1 , . . . us} be any vector.
If α ,N are such that

∥uj∥ ≤ N ∀j = 1 , . . . s ,

|w · uj | ≤ α ∀j = 1 , . . . s ,

then

∥w∥ ≤ sN s−1α

Vol{u1 | · · · |us}
.
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Proof of Lemma 4.8. Assume that Z(d)

Zd is not empty and take p ∈ Z(d)

Zd , then

there exist {k1, . . . , kd} ⊂ Zd linear independent vectors such that (4.4) is
fulfilled by p with the given kj ’s. Using Lemma 4.9 we deduce

∥p∥ ≤ d(Dd)
dCd∥p∥δd+µd .

By (4.1), one has that δd + dµ < 1. So, provided R is large enough this is in
contradiction ∥p∥ < R.

Lemma 4.10. There exists a constant C s.t. if Π
(s)
M (p) is a fast drift plane,

then
diam(Π

(s)
M (p)) ≤ C∥p∥δs+1 . (4.6)

Proof. First, by definition of resonant zones, for a ∈ Z(s)
M , there exist k1, ..., ks ∈

M s.t. |p · kj | ≤ Cs ∥kj∥ ∥p∥δs , ∀j = 1, ..., s, so that, by Lemma 4.9

∥ΠMp∥ ≲ ∥p∥δs+sµ . (4.7)

If p′ ∈ Π
(s)
M (p) then the same holds for p′. So we have∥∥p− p′
∥∥ =

∥∥ΠM (p− p′)
∥∥ ≤ ∥ΠMp∥+

∥∥ΠMp
′∥∥ ≲ (∥p∥δs+1 +

∥∥p′∥∥δs+1) .

By Remark 4.6 this implies the thesis.
In particular we have the following Corollary

Corollary 4.11. If p ∈ E
(s)
M there exists p′ ∈ B(s)

M s.t.∥∥p− p′
∥∥ ≤ C ∥p∥δs+1 . (4.8)

Indeed, by definition of extended block ∃p′ ∈ Π
(s)
M (p)∩B(s)

M , and therefore,
by (4.6) the corollary holds.

The next lemma ensures that, if the parameters Cj , Dj are suitably cho-

sen, an extended block E
(s)
M,j is separated from every resonant zone associated

to a module M ′ with dim(M) = s′ ≤ s, which is not contained in M. This
is the extension to our context of the classical property of separation of
resonances.

Lemma 4.12. [Separation of resonances] Take K > 0. There exist positive
constants R, C̃s+1 and D̃s+1 depending only on µ, δs, Cs, Ds,K such that, if

Cs+1 > C̃s+1 , Ds+1 > D̃s+1, R > R̄ ,

then the following holds true. Let p ∈ E
(s)
M for some M of dimension s =

1, . . . , d− 1, and let p′ ∈ Rd be such that∥∥p− p′
∥∥ ≤ K∥p∥δs+1 ,

then ∀M ′ ̸⊂M s. t. s′ := dimM ′≤s one has

p′ /∈ Z(s′)
M ′ .

14



Proof. Assume by contradiction that p′ ∈ Z(s′)
M ′ for some M ′ ̸=M. It follows

that there exist s′ integer vectors, k1, ..., ks′ ∈M ′ among which at least one
does not belong to M , s.t.∣∣p′ · kj∣∣ ≤ Cj∥p′∥δj∥kj∥ , ∥kj∥ ≤ Dj∥p′∥µ . (4.9)

Let kȷ̄ be the vector which does not belong to M . By Corollary 4.11, there

exists b ∈ B(s)
M s.t. ∥p − b∥ ≲ ∥p∥δs+1 and thus also ∥p′ − b∥ ≲ ∥p′∥δs+1 (of

course with a different constant). Thus it follows that there exist constants
C̃s+1, D̃s+1 s.t.

|b · kȷ̄| ≤ C̃s+1∥b∥δs+1∥kȷ̄∥ , ∥kȷ̄∥ ≤ D̃s+1∥b∥µ .

But, if Cs+1 > C̃s+1, Ds+1 > D̃s+1, this means that b is also resonant with

kȷ̄ ̸∈M , and this contradicts the fact that b ∈ B(s)
M,j .

In order to take into account the effects of the remainder in the normal
form theorem and to conclude the proof we need to extend the resonant
planes.

Definition 4.13. We define[
Π

(s)
M (p)

]ext
:=

⋃
p′∈Π(s)

M (p)

B∥p′∥δs+1 (p
′) , (4.10)

[
Π

(s)
M (p)

]ext
tr

:=
[
Π

(s)
M (p)

]ext
∩ Z(s)

M , (4.11)

(4.12)

where, ad before BR(p) is the ball of radius R and centre p.

Remark 4.14. One has

diam(
[
Π

(s)
M (p)

]ext
) ≤ Cs ∥p∥δs+1 , (4.13)

for some Cs.

Remark 4.15. If the constants R, C̃s+1 and D̃s+1 are chosen suitably, then

∀p′ ∈ [Π
(s)
M (p)]ext and all p′′ s.t.∥∥p′′ − p′

∥∥ ≤
∥∥p′∥∥δs+1 ,

one has
p′′ ̸∈ Zs′

M ′ , ∀(s′ ≤ s , M ′ :M ′ ̸⊆M) . (4.14)

Remark 4.16. By Lemma 4.12, it follows that if p′′ ∈ ∂Π
(s)
M (p′), p′ ∈

[Π
(s)
M (p)]exttr , then p′′ ∈ ∂E

(s′)
M ′ with M ⊂M ′ and s′ < s.
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Lemma 4.17. If the constants R, C̃s+1 and D̃s+1 are chosen suitably, then,

∀p ∈ [Π
(s)
M (p′)]ext and ∀k ̸∈M one has

∥k∥ ≤ ∥p∥µ =⇒ |p · k| ≥ ∥p∥δ ∥k∥ . (4.15)

Proof. Following the proof of Lemma 4.12, assume by contradiction that

|p · k| ≤ ∥p∥δ ∥k∥, then ∃p′ ∈ E
(s)
M s.t. |p− p′| ≲ ∥p∥δs+1 , and therefore

∃p′′ ∈ B(s)
M s.t. |p− p′′| ≲ ∥p∥δs+1 . It follows∣∣p′′ · k∣∣ ≤ ∣∣p− p′′

∣∣ ∥k∥+ |p · k| ≲ |p|δs+1 ∥k∥ ≲
∣∣p′′∣∣δs+1 ∥k∥ ,

but if Cs+1 is chosen large enough, this means that p′′ fulfils (4.4) with

j = s+ 1, against p′′ ∈ B(s)
M .

Corollary 4.18. Consider the normal form ZN obtained by Theorem 3.4.

Define Z(p, x, t) := ZN (p, x, t)(1 − χ
(
∥p∥2
R

)
) (which is supported outside

BR(0)). For p′ ∈ [Π
(s)
M (p)]ext,

Z(p′, x, t) =
∑
k∈M

Zk(p
′, t)eik·x , (4.16)

namely the sum is restricted to k ∈M .

Remark 4.19. ∀p ∈ Rd ∃!M s.t. p ∈ E
(s)
M . The important point is the

unicity.

We are now ready to prove the following Theorem, giving a control on
the dynamics over long times. This is the typical Nekhoroshev type theorem
adapted to our C∞ context.

Theorem 4.20. There exist positive K1 < K2 < ... < Kd s.t. the following
holds true: consider the Cauchy problem for the Hamiltonian system (3.5)

with initial datum p0. Let M with dimM = s be s.t. p0 ∈ E
(s)
M . Then one

has

p(t) ∈ [Π
(s)
M (p0)]

ext , ∀|t| ≤ 1

Ks
∥p0∥N+δ , (4.17)

and thus, in particular, for the same times one has

∥p(t)∥ ≤ 2 ∥p0∥ . (4.18)

Proof. First we remark that this is true when s = 0 and thus p0 is in the
nonresonant region. Indeed, in this case one has that the equations for p

reduce to ṗ = −∂R(N)

∂x = O(
∥∥∥p−N

0

∥∥∥).
Following Nekhoroshev we proceed by induction on s. So, assume p0 ∈

E
(s)
M with s ≥ 1. Assume that the result has been proved for s − 1 and

we prove it for s. Introduce in [Π
(s)
M (p0)]

ext coordinates p = (pM , p⊥) with
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pM ∈ MR and p⊥ ∈ (MR)
⊥. In these coordinates one has that Π

(s)
M (p) is

the set of p̃ = (p̃M , p̃⊥) with p̃⊥ = p⊥ and p̃M belonging to some domain
D (which depends also on p⊥, but this is not important in the following).
Then one has that p̃ ∈ ∂Πs

M (p) is equivalent to p̃M ∈ ∂D. It follows that

p̃ ∈ ∂[Π
(s)
M (p0)]

ext
tr implies that either ∥p⊥∥ = ∥p0∥δs+1 or p̃ ∈ ∂Π

(s)
M (p′) for

some p′ ∈ [Π
(s)
M (p0)]

ext
tr .

We are now ready to conclude the proof: assume that ∃0 < t̄ ≤ ∥p0/Ks∥
s.t. p(t̄) ∈ ∂[Π

(s)
M (p0)]

ext
tr . If it does not exists, then there is nothing to

prove. Then either ∥p0,⊥ − p⊥(t̄)∥ = ∥p0∥δs+1 or p(t̄) ∈ ∂Π
(s)
M (p′) for some

p′ ∈ [Π
(s)
M (p0)]

ext
tr . Now the first possibility is ruled out by the fact that in

[Π
(s)
M (p0)]

ext the equations for p⊥ reduce to ṗ⊥ = O(∥p0∥N ). So, assume that

p(t̄) ∈ ∂Π
(s)
M (p′), then, by Remark 4.16 one has p(t̄) ∈ ∂E

(s′)
M ′ with s′ < s.

Then, by induction, considering p(t̄+) as an initial datum, one gets that (by
Remark 4.14)

∥p0 − p(t̄)∥ ≤ Cs ∥p(t̄)∥δs , ∥p(t)− p(t̄)∥ ≤ Cs ∥p(t̄)∥δs , |t− t̄| ≤ ∥p(t̄)∥N+δ

Ks−1
.

(4.19)
But, actually, by the bound on time (4.17), the times fulfil

|t− t̄| ≤ |t|+ |t̄| ≤ 2 ∥p0∥N+δ

Ks
≤ C

2 ∥p(t̄)∥N+δ

Ks
,

and therefore, if 2C/Ks < Ks−1, the estimates (4.19) hold for the times we
are interested in. Concerning the distance from Πs

M (p0), the above estimates
imply

∥p(t)− p0∥ ≤ 2C̃s ∥p(t̄)∥δs ≲ ∥p0∥δs ,

so the left hand side is smaller than ∥p0∥δs+1 provided p0 is large enough.
For p0 in a compact set the estimate is trivial.
Proof of Theorem 2.3. Assume that there exists a solution with

lim sup
t→+∞

∥p(t)∥ = +∞ ,

otherwise the result holds trivially. Let Rk := R02
k with R0 := ∥p0∥, then

there exists a sequence of times tk s.t.

sup
|t|≤tk

∥p(tk)∥ = 2Rk .

Applying Theorem (4.20) with initial datum p(tk), one gets

tk+1 >
1

Kd
RN

k + tk

17



(where we redefined N + δ → N). So, taking t0 = 0, one gets

tL+1 ≥
L∑

k=0

1

Kd
(R02

k) =
1

Kd
RN

0

2(L+1)N − 1

2N − 1
≥ 1

2Kd
RN

0 2LN . (4.20)

Thus, defining

τ0 := 0 , τk+1 :=
1

2Kd
(R02

k)N , k ≥ 0 ,

we have
sup
|t|≤τk

∥p(t)∥ ≤ 2Rk . (4.21)

To write a global in time formula consider the function

θ̃(t) :=

∞∏
k=0

(2θ(t− τk)) ,

with θ(t) the standard Heaviside step function. Remark that θ̃ is well defined
since, for any time only a finite number of factors is different from zero. Thus
we have the global estimate

∥p(t)∥ ≤ R0θ̃(t) .

Consider now the function f(t) := R0θ̃(t)
t . We consider it only for t ≥ 1.

Such a function has positive jumps at τk and in all the other intervals it
is monotonically decreasing like t−1. In order to bound such a function we
look for a function interpolating the peaks. One has, for k ≥ 1

f(τ+k ) = 2Kd
R02

k+1

RN
k−1

= 2Kd
4Rk−1

RN
k−1

=
2 (2Kdτk)

1/N

τk
.

So it is clear that an interpolating function is

f̃(t) := 4 (2Kd)
1/N t1/N

t
, (4.22)

and in this way, ∀t ≥ τ1, one has f(t) ≤ f̃(t). It follows

∥p(t)∥ ≤ 4 (2Kd)
1/N t1/N , t ≥ τ1 . (4.23)

We now manipulate such an expression to get the thesis. Taking into account
that at τ1 the r.h.s. of (4.23) is equal to 4R0, one has, ∀t > 0

∥p(t)∥ ≤ max
{
4R0, 4 (2Kd)

1/N t1/N
}
= max

{
4R0, 4 (2Kd)

1/N τ
1/N
1

(
t

τ1

)1/N
}

(4.24)

= 4R0max

{
1,

(
t

τ1

)1/N
}

≤ 4R0

〈
t

τ1

〉1/N

.

(4.25)
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Still we have to take into account the change of coordinates. In this way
we get that there exists R̄0, s.t., if the initial datum fulfills ∥p0∥ ≥ R̄0, then
one has

∥p(t)∥ ≤ 16R0

〈
t

τ1

〉1/N

.
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