
Engineering Zuffix Arrays
Paolo Boldi #

Università degli Studi di Milano, Italy

Stefano Marchini #

Università degli Studi di Milano, Italy

Sebastiano Vigna #

Università degli Studi di Milano, Italy

Abstract
Searching patterns in long strings is a classical algorithmic problem with countless practical applica-
tions. Suffix trees and suffix arrays (and their variants) are a long-established solution that yields
linear-time search (in the size of the pattern). In [5] it is shown that a z-map gadget can be attached
to (enhanced) suffix arrays to improve their theoretical query time, obtaining a data structure
called zuffix array. The main contribution of this paper is to show that a carefully engineered
implementation of the z-map gadget does provide significant speedups with respect to enhanced
suffix arrays on real-world datasets, albeit doubling the required space. In particular, for large
alphabets we observe a sevenfold improvement in query time with respect to enhanced suffix arrays;
even in the worst case (small alphabets), the query time is almost halved. Thus, zuffix arrays provide
a very interesting new point in the space-time tradeoff spectrum.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Suffix trees, suffix arrays, z-fast tries

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.2

Supplementary Material Software (Source Code): https://github.com/smarchini/zuffix/tree/
reproduce

Funding This work was supported in part by project SERICS (PE00000014) under the NRRP MUR
program funded by the EU - NGEU. Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the Italian MUR. Neither the
European Union nor the Italian MUR can be held responsible for them.

1 Introduction

The suffix array [19] of a string s over an ordered alphabet Σ of σ characters is the array of
the starting points of the suffixes of s$ (where $ is a character larger than any element of Σ),
sorted lexicographically by the corresponding suffix. Suffix arrays are an extremely effective
way of looking for all the occurrences of a pattern in a string, as once they are built (with
some additional ancillary data) search requires only an amount of work linear in the length
of the search pattern. A large body of research has gone into building and representing suffix
arrays efficiently (e.g., in compressed form) [14, 8, 20, 18, 16, 22, 23, 10, 21, 6].

Interestingly, at the price of two additional (and very compressible) arrays of integers
a suffix array can be used to represent (and navigate) implicitly the suffix tree associated
with the string s [1]. Suffix trees are a special type of trie [17], which naturally suggests
the possibility to enhance searches by using a z-map [2], obtaining what was called a zuffix
tree in [5]. With this extra gadget in place, given a pattern p of length m, after a pre-
processing requiring time O(1 + (m log σ)/w) (w being the machine word size), searches can
be performed in O(log m) search steps, each accessing a constant amount of information. The
result is obtained only with high probability, and requires a verification phase (accessing m

© Paolo Boldi, Stefano Marchini, and Sebastiano Vigna;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 2; pp. 2:1–2:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.boldi@unimi.it
https://orcid.org/0000-0002-8297-6255
mailto:stefano.marchini28@gmail.com
mailto:sebastiano.vigna@unimi.it
https://orcid.org/0000-0002-3257-651X
https://doi.org/10.4230/LIPIcs.SEA.2024.2
https://github.com/smarchini/zuffix/tree/reproduce
https://github.com/smarchini/zuffix/tree/reproduce
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Engineering Zuffix Arrays

characters), but the interesting fact is that the characters are accessed in sequential fashion at
less than σ different positions of the original text s. In other words, the described technique
makes it possible to find with high probability the occurrences of pattern p in s using time
O((m log σ)/w + log m + σ) and O((m log σ)/B + log m + σ) I/Os in the cache-oblivious
model.

Whether (and under which conditions) this theoretical advantage in the cache-oblivious
model reflects an improvement in actual searches is the question we aim to answer in this paper.
We start from an enhanced suffix array, and we add a carefully engineered implementation
of the z-map gadget; our experiments show that the resulting data structure does provide
significant speedups with respect to enhanced suffix arrays on real-world datasets, albeit
doubling the required space. It is worth noting that a z-map can be attached to any trie-based
data structure, so this paper should be seen as a first effort in the direction of improving
different types of structures based on suffix trees and suffix arrays.

All code used in our experiments, with full reproducibility instructions, is available at
https://github.com/smarchini/zuffix/tree/reproduce.

2 Notation and Tools

2.1 Notation

Let Σ be a fixed alphabet (of cardinality σ) not including the special symbol $, and define
Σ̂ = Σ ∪ {$}. The alphabet Σ comes endowed with a specified (arbitrary) total order, that
is inherited by Σ̂ with the proviso that $ is larger than any other character. We use ≤ to
denote the induced lexicographic order on Σ̂∗, whereas ⪯ is used to denote the prefix order.

If x ∈ Σ̂∗ is a string, x juxtaposed with an interval is the substring of x with those indices
(indices start from 0). Thus, for instance, x[a . . b] is the substring of x starting at position a

(inclusive) and ending at position b (inclusive). We will write x[a] for x[a . . a] and x[a . .] for
x[a . . |x| − 1]. By definition, x[|x| . .] = ε.

2.2 Machine model

We analyze our algorithms on a unit-cost word RAM with word size w in the cache-oblivious
model [11]. In this model, the machine has a two-level memory hierarchy, where the fast level
has an unknown size of M words and the slow level has an unbounded size and is where our
data reside. We assume that the fast level plays the role of a cache for the slow level with
an optimal replacement strategy where the transfers (a.k.a. I/Os) between the two levels
are done in blocks of unknown size of B ≤ M words; the I/O cost of an algorithm is the
total number of such block transfers. Scanning is a fundamental building block in the design
of cache-oblivious algorithms: given an array of N contiguous items the I/Os required for
scanning it completely is O(1 + N/B).

2.3 Tries

A (compacted) trie [17] over Σ is a rooted tree such that
every node α is endowed with a string cα ∈ Σ∗ (the compacted path of α);
every arc connecting an internal node α with one of its children α′ is labelled with a
character cα,α′ ∈ Σ and cα,α′ ̸= cα,α′′ for any two distinct children α′ and α′′ of α;
every internal node has at least two children.

https://github.com/smarchini/zuffix/tree/reproduce

P. Boldi, S. Marchini, and S. Vigna 2:3

For every node α of a compacted trie, we define its name nα ∈ Σ∗ and its extent eα ∈ Σ∗

recursively as follows:
nroot = ε;
eα = nαcα;
if α′ is a child of α, then nα′ = eαcα,α′ .

For any given finite nonempty prefix-free language L ⊆ Σ∗, the compacted trie of L is the
only compacted trie T (L) over Σ such that L is the set of all the extents of the leaves of
T (L).

In Figure 1, we show an example of a binary trie with the nomenclature just introduced
(and some more that will be introduced below).

0
0
1
0
0
1

0 1

1
0

0
1
0

0 1

1
0

α
n
am

e
(n

α
)

h
an

d
le

(h
α
)

ex
ten

t
(e

α
)

sk
ip

in
terva

l
[7
..1

0
]exit(00100100)

Z
ε → root
00100110 → α

Figure 1 (above) The compacted trie T (L) (with the corresponding nomenclature) and its z-map.
Here Σ = {0, 1} and L = {001001010, 0010011010010, 00100110101}.

Given a compacted trie over Σ, and given a string p, we let exit(p) (the exit node of p) be
the node having a name that is the longest possible prefix of p. (See Figure 1 for an example
of an exit node).

Note that:

▶ Proposition 1 ([5]). Let L ⊆ Σ∗ be finite, nonempty, and prefix-free, and consider the trie
T (L). A string p ∈ Σ∗ is a prefix of some element of L if and only if p ⪯ eexit(p). Moreover,
if the latter happens then the set

{eα | α is a leaf descendant of exit(p)}

is precisely the set of all x ∈ L such that p ⪯ x.

In the following, we shall always assume that Σ is a fixed alphabet, σ = |Σ| and that
L ⊆ Σ∗ is finite, nonempty and prefix-free.

3 Z-fast tries

Let us assume that we have built the trie T (L) for a given language L of size n. Proposition 1
gives an easy way to determine if a string p of length m is a prefix of some element of L:
it is enough to locate the node γ = exit(p) and then to check whether p is a prefix of the
extent of γ or not. Moreover, the second part of the statement suggests which elements of L

have p as a prefix.

SEA 2024

2:4 Engineering Zuffix Arrays

Locating exit(p) can be done trivially in O(mσ) steps, going down in the trie starting
from the root. An alternative faster solution is that of enriching the compacted trie with a
kind of acceleration map, the z-map [2], which makes it possible navigate the trie using a
number of accesses to the map logarithmic in the length of the search string.

3.1 Short strings
The idea comes in two flavors, depending on the length of the strings in the set L. Let us
start with the (simplest) case of “short” strings. The 2-fattest number of an interval [a . . b]
of non-negative integers is the (unique) integer in [a . . b] that is divisible by the largest power
of two. The handle hα of a node α of a trie is the prefix of eα whose length is the 2-fattest
number in [|nα| . . |eα|] (the skip interval of α).

In Figure 1 we show the (length of the) handles of each node, including the leaves: the
handle is the string starting from the root and ending just above the dashed lines you can
see in each node.

▶ Definition 2 (z-map). The z-map Z(−) for the trie T (L) is a map from elements of Σ∗ to
nodes in the trie, which maps hα to α for each internal node α.

The z-map can be stored using any static dictionary with constant-time access; we assume
that the dictionary returns the special value ⊥ whenever it is queried with a key that is not
in the dictionary.

The usefulness of the z-map is made evident by the following result:

▶ Theorem 3 ([5]). If the length of the strings in L is bounded by O(w/ log σ), using the
z-map for the trie T (L) it is possible to establish if a pattern p ∈ Σ∗ of length m is a prefix
of some string of L in O(log m + σ) time and I/Os.

The algorithm, presented in [5], performs a sort of a binary search (called fat binary
search), with at most one access to the actual trie structure (to enumerate the children of a
node). Moreover, the comparisons between p and other strings require at most σ scans of
overall m characters.

3.2 Long strings
If the length of the strings in L is not bounded by O(w/ log σ), the map Z(−) described
above uses superlinear space and superconstant time at every access. This is why the “long
string” version of dynamic z-fast tries [3] replaces handles with signatures: in the z-map,
instead of storing pairs (hα, α) we store pairs (H(hα), α) where H(−) is a suitably chosen
signature hash function. The signature-based version is designed to work with sets of at
most 2O(w) strings of length up to 2O(w), but this time the fat binary search returns the
correct result only with high probability.

If we use signatures of size (c + ε) log n, with c ≥ 2, we will find distinct hash values for
all handles after a constant expected number of attempts. Indeed, under a full randomness
assumption, the probability of having a hash collision between distinct handles is at most

1 − e−n2/21+(c+ε) log n

= 1 − e−n2/2nc+ε

≤ 1
2nc−2+ε

→ 0

as n → ∞. Once we are sure that the signatures are all distinct, in estimating the probability
of error of a fat binary search we have to care just about at most log m false-positive results
in queries performed during the fat binary search, which by the union bound happens with
probability at most

2−(c+ε) log n log m = 1
ncnε

O(w) = o

(
1
nc

)
.

P. Boldi, S. Marchini, and S. Vigna 2:5

Note that each time we have to query the z-map, we must compute the hash of a potentially
long prefix: for this purpose, the dynamic z-fast trie uses hash functions that can hash any
prefix of the pattern p in constant time after preprocessing p in time O(1 + (m log σ)/w) and
storing a linear amount of information (see Section 5).

Thus, for the signature-based case, we have:

▶ Theorem 4 ([5]). Under the full randomness assumption, let c ≥ 2 and assume that Z(−)
stores ((c+ε) log n)-bit hash values without collisions. Then, in time O((m log σ)/w+log m+σ)
and with O((m log σ)/B + log m + σ) I/Os it is possible to establish if a pattern p ∈ Σ∗

of length m is prefix of some string of L; the result will be correct with probability at least
1 − o(1/nc); when the algorithm detects that an error has occurred, the correct result is
obtained by resorting to the standard naive search on the trie, which requires O(mσ) time
and I/Os.

4 Suffix Trees, Suffix Arrays, and Zuffification

Given a string s ∈ Σ∗, the suffix tree [24] T (s) is the trie over the alphabet Σ̂ containing all
suffixes of s$. Although one can build in linear time the suffix tree of a string, there are
approaches based on suffix arrays [19] that are much more efficient in practice. The suffix
array sa of s is the permutation of {0, 1, . . . , n} such that

s$[sa[0] . .] < s$[sa[1] . .] < · · · < s$[sa[n] . .].

Not only there are linear-time algorithms to build the suffix array: at the price two additional
(and very compressible) arrays of integers, the suffix array can be made into a so-called
enhanced suffix array, and then used to represent and navigate implicitly the suffix tree [1].

The z-map gadget described in Section 3 is applicable to all prefix-free languages, so in
particular it can be used for suffix trees, and since the enhanced suffix array is equivalent to
the suffix tree, it can be used to build the z-map over the suffix tree/array: this operation is
called zuffification of the suffix tree/array [5].

To build the z-map, we perform a depth-first visit of the suffix tree: in fact, we will
simulate it on a suffix array. For each internal node, we can compute its handle (as explained
above), the corresponding hash, and store in a static dictionary the correspondence between
the hash and the node; hash collisions will cause some correspondence to be wrong, but
we will handle this problem as part of the resilience of fat binary search to hash collisions.
Computing a hash for a string x needs time O(1+(|x| log σ)/w), which would imply quadratic
construction and preprocessing time: in the next sections, we are going to discuss how to
reduce it to linear time.

5 Constant Time Prefix Hashing

We start by studying how to compute the hash of a prefix of a string s in constant time.
Note that in theory this is not enough to obtain linear construction time, but we will see
that in practice this kind of approach works very well.

When looking for the exit node of a string we query the z-map on prefixes of the pattern.
We will use a scheme that scans the entire string only once and enables computing the
signature of any prefix in constant time. This scheme exploits the pause&resume technique,
exposed by several general-purpose hash functions: to compute the signature of large files or
streaming data it is common practice to process the sequence in chunks; in other words, we
read the first portion (i.e., a chunk) of the string, compute an intermediate internal state of
the hash function, and continue from there without keeping the whole string in memory.

SEA 2024

2:6 Engineering Zuffix Arrays

Consider a hash function H offering the pause&resume capability, and fix a constant
block-size B: during the computation of H(s), keep track of the internal state of the function
(in a suitable internal-states table) at H(s[. . B]), H(s[. . 2B]), H(s[. . 3B]), . . . , and so on.
The signature of any prefix s[. . k] can then be computed by loading the nearest internal
state, H(s[. . ⌊k/B⌋]), and resuming the hash function from there, reading at most B − 1
additional characters of s.

With this observation in mind, we can try out some of the fastest general-purpose hash
functions available from off-the-shelf libraries to trade off a (maybe only theoretically) slower
construction time for practically faster search queries.

6 Constant Time Substring Hashing

If we want to obtain linear construction time, we need to be able to compute the hash of any
substring of a string s in constant time. For this purpose, we can use hash functions based
on Cyclic Redundancy Checks (CRCs). CRCs are a widespread family of hash functions
based on the division in the ring of polynomials with coefficients in the finite field F2, the
field of integers modulo 2. In this field, addition and subtraction correspond to bitwise-xor
and multiplication is a “carry-less product”, which in binary arithmetic can be thought
of as a repeated shift&xor operation similar to long multiplication. Hence, CRCs can be
implemented using either hardware facilities (e.g., the pclmulqdq assembly instruction, i.e.,
the carry-less product of two 64-bit values) or with bitwise operations.

In the computation of CRCs, the whole string is interpreted as a long binary number
whose digits become the coefficients of a polynomial; the signature is therefore the remainder
of the polynomial modulo a fixed irreducible polynomial, the generator polynomial. More
precisely, CRC hash functions are defined as:

H(s) = s(x)xk mod g(x) ⇔ s(x)xk = q(x)g(x) + H(s)

where s(x) is the binary representation of the string s thought of as a polynomial in the
variable x, q(x) is the quotient polynomial, and g(x) is the generator polynomial. The degree
k of the generator polynomial g(x) determines the size of the signature.

As part of the SSE4.2 extensions, modern CPUs provide full hardware support (i.e., using
a single assembly instruction) for computing the 32-bit CRC used in the standard iSCSI;
this CRC adopts a generator known as the Castagnoli polynomial [7].

CRCs are linear functions, and their internal state corresponds to the signature of the
string up to that position. Given two strings a and b, we show how to compute efficiently
H(ab) starting from H(a) and H(b). In particular, we discuss how to append (internally)
and prepend zero-bit strings to a signature; then, we can leverage the linearity properties to
compose and decompose signatures (⊕ denotes bitwise-xor):

H(ab) = H
(
a0|b| ⊕ 0|a|b

)
= H

(
a0|b|) ⊕ H

(
0|a|b

)
.

We start by noting that H
(
0ℓs

)
= H(s) for any string s and for any integer ℓ: adding

high-degree zero-coefficient terms to a polynomial does not affect its value. Appending zeroes,
instead, consists in a polynomial multiplication between s(x) (i.e., the polynomial of s) and
xℓ. To compute H

(
s0ℓ

)
we use the fact that internal states are signatures of prefixes. Instead

of employing the shift&xor method, this operation is typically performed employing a lookup
table for the linear transformation of appending power-of-two many zeroes to an internal
state: by querying the table for every 1-bit in the binary representation of ℓ we can simulate
encountering ℓ consecutive zeroes after reading the string.

P. Boldi, S. Marchini, and S. Vigna 2:7

Constant-time substring hashing is possible after precomputing the internal-state table as
we discussed in Section 5, and a similar table for strings of the form 10ℓ. Given two integers i

and j such that i < j, the internal-state table of the string s enables us to compute H(s[. . i])
and H(s[. . j]) in constant time; then, we can apply the linear transformation that appends
j − i zero-symbols to H(s[. . i]) and use linearity to calculate H(s[i + 1 . . j]) in constant
time. However, we found that in practice the second table can be avoided since the cost of
computing its values on-the-fly is logarithmic in ℓ.

7 Collision Detection during Fat Binary Search

As we already mentioned, we query the z-map with hashes of prefixes. It is thus possible
that a prefix has the same hash value as a handle, even if it is a different string. If this
happens, the exit node we obtain as a result of the fat binary search will be incorrect. To
detect this behavior, we need to check after the search whether the node we found is really
the exit node.

The standard memcmp approach consists of performing a full string comparison between
the extent of the exit node and the pattern. This check cannot fail to detect an error.

An alternative, the signature approach, works as follows: instead of comparing strings
character by character, in the case of CRC hashing we use constant time substring hashing
to compare the pattern with the original text. The rationale is that since we can hash the
original text and the pattern in constant time this check, albeit not exact, might be faster
than the memcmp approach, and might provide an interesting tradeoff.

8 Experimental Evaluation

We ran our benchmarks on a 12th Gen Intel® Core™ i7-12700KF (Alder Lake) workstation,
with 64 GiB of DDR4 RAM, GNU/Linux 6.1.14, and the GNU C Compiler (GCC) 13.0.1.
We compiled the external dependencies (most notably, the hash function implementations)
with optimizations enabled; note, in particular, that our architecture supports the BMI and
the AVX2 instruction set. We tested two distinct CRC implementations using two different
32 bit generator polynomials. In particular, we used the software-based CRC implementation
present in Zlib [12] and the hardware-based implementation in Facebook’s Folly1. The
hardware-based implementation uses the crc and the pclmulqdq assembly instructions,
with the optimizations discussed in [15].

The tests were performed on datasets from the standard Pizza & Chilli Corpus [9], which
includes various types of text that have been selected as a representative sample of different
applications of indexed text search. To account for the edge cases, we also included artificially
generated texts made of random strings varying in alphabet size, and the highly repetitive
Fibonacci words [4]. Each character in the randomly generated texts is extracted with equal
probability from a set of 4 (rand-4) and 62 (rand-62) ASCII symbols. These random texts
are used to reproduce some of the properties in the dna and in the english dataset in Pizza &
Chilli. We report the data of the most important findings and present some more general
considerations based on the insights given by the full set of experiments.

1 https://github.com/facebook/folly/

SEA 2024

https://github.com/facebook/folly/

2:8 Engineering Zuffix Arrays

8.1 Variants
We consider a number of implementations described in Table 1. Our baseline is enhanced,
our implementation of the enhanced suffix array. The other variants are combinations of
hash functions, either with memcmp or signature string comparisons.

Table 1 Naming conventions explained. B is the block size, a parameter that determines the size
of a chunk in the internal-state table. S is the size (in bits) of the internal state of the hash function.
For XXH3 we used the functions exposed by the library to save and load the internal state, which is
suboptimal for our use case.

B S variant meaning

— — enhanced Abouelhoda et al.’s enhanced suffix array[1]
480 B 192 memcmp-wyhash zuffix array with string comparison and wyhash
64 kB 4608 memcmp-xxh3 zuffix array with string comparison and XXH3
512 B 32 memcmp-folly zuffix array with string comparison and hardware CRC
1 kB 32 memcmp-zlib zuffix array with string comparison and software CRC

512 B 32 signature-folly zuffix array with signature comparison and hardware CRC
1 kB 32 signature-zlib zuffix array with signature comparison and software CRC

8.2 Statistics
In Table 2, we collected a series of statistics for each text. These statistics are meant to
integrate those previously collected by the authors of the Pizza&Chili Corpus. Our additional
data focus on suffix-tree structural properties and hash-function qualities: as we will see,
our additional data make it possible to give a detailed explanation of the results of our
experiments.

8.3 Suffix tree
By reporting the depth of the suffix tree, counting the number of internal nodes, and
measuring the average length of name, handle, and extent of the internal nodes we aim to
identify some of the variables needed to take advantage of the zuffification. In particular,
we remark that the z-map speeds up the top-down navigation of suffix trees. The enhanced
suffix array implements the suffix tree navigation in such a way that it induces a first-child
next-sibling top-down tree traversal. Therefore, the enhanced suffix array can efficiently
walk from the root to the exit when the alphabet is small, but we expect it to be slower on
large alphabet texts. The running time of the fat binary search, instead, is not as directly
dependent on the size of the alphabet.

8.4 Hash functions
We implemented the z-map using an open-addressing hash table with linear probing. For
each hash function, we display the ratio number of distinct handles with equal signatures
(store collisions). Note that with signatures of 64 bits or more we find no collisions. Moreover,
collision problems can be partially mitigated with a few inexpensive runtime checks, preceding
the techniques discussed in section 7. In a single search query, the z-map is expected to
find nodes that lay on the path from the root to the exit node, whose handle length is the
2-fattest number in its skip interval. With the implicit representation of the tree provided

P. Boldi, S. Marchini, and S. Vigna 2:9

by the enhanced suffix array, ancestor queries are trivially answered in constant time by
comparing lcp intervals [1]. This consideration will intuitively lead us to the conclusion that
collisions will not play the biggest role in the choice of hash functions, an intuition that will
be confirmed by the experimental results.

8.5 Space
The number of internal nodes also counts how many handles are stored in the z-map and
it can be used to estimate the space consumed by the data structure. Consider a standard
(non-compressed) implementation of the enhanced suffix array. Given a text of length n, let
w ≥ ⌈lg n⌉ be the size in bits of an unsigned integer large enough to hold indices of the text,
and let B be the block size of a hash function with an internal state of size S. We denote
with slack(−) the function that determines the size of the hash table given the number of
internal nodes; in our implementation, tables are sized as powers of two, and they are never
filled more than 2/3. The space used to implement a zuffix array is thus given by the sum of
the space occupied by the enhanced suffix array (suffix array, lcp array, additional array),

space(sa) = nw

space(lcp) = (n + 2)w
space(add) = nw,

by the space occupied by the z-map (hash and node),

space(Z) = (2w + (c + ε) log n) · slack(# internal nodes)

and by the space occupied by the internal-state table of the hash function in the signature
case

space(H) = nS/B.

The block size and the state size used in our implementation are reported in Table 1 and,
in our benchmarks, we set w to 64. While performing string matching, the zuffix array
consumes additional mS/B space for the internal-state table of the pattern. We tuned the
block size of the hash function for speed and we obtained internal-state tables up to 32 times
smaller than the strings.

8.6 Performance
A well-known assumption in stringology is that the pattern is orders of magnitude shorter
than the text. From a theoretical standpoint, this folklore assumption can be justified by
analyzing the suffix tree of the text, as we did in Table 2. In a suffix tree, the string-matching
problem is, fundamentally, an exit node search followed by a string comparison. The names
of the leaves provide a good description of the longest “meaningful” patterns we may search
for: all the strings that are longer than the maximum name have zero or only one occurrence
in the text. If two strings are longer than the maximum name in the suffix tree and if one
of them is the prefix of the other, then the running time of the string-matching algorithm
differs by only a (longer) string comparison. By considering only the patterns whose length
is smaller than the maximum name length, we aim to focus only on the most significant
portion of the performance plot.

The texts from the Pizza&Chilli Corpus come from real sources, and they are meant to
be representative of real-life applications of text indexing. The two random texts and the

SEA 2024

2:10 Engineering Zuffix Arrays

Table 2 Statistics for each text dataset.

dna proteins dblp-xml sources english rand-4 rand-62 fibonacci
σ 4 27 97 230 239 4 62 2
size 200 MiB 200 MiB 200 MiB 200 MiB 200 MiB 200 MiB 200 MiB 8.80 MiB
suffix tree depth 165 391 123 3237 122 19 8 48
internal nodes 142 M 268 M 100 M 131 M 129 M 130 M 35 M 9 M
avg{|nα|} 18 252 37 149 124 13 5 1603384
avg{|hα|} 64 380 40 452 10732 13 5 2017069
avg{|eα|} 81 446 43 566 15171 13 5 2435423
construction time 12.10 s 17.34 s 9.97 s 10.85 s 11.72 s 12.15 s 12.30 s 280.94 ms
suffix tree space 4.7 GiB 4.7 GiB 4.7 GiB 4.7 GiB 4.7 GiB 4.7 GiB 4.7 GiB 211.20 MiB

wyhash (64 bit pause&resume)
zuffification 4.73 s 6.60 s 3.80 s 5.76 s 47.6 s 4.23 s 1.71 s 8 m 24 s
z-map space 6 GiB 6 GiB 6 GiB 6 GiB 6 GiB 6 GiB 1.5 GiB 384 MiB
store collisions 0 0 0 0 0 0 0 0

xxh3 (128 bit pause&resume)
zuffification 5.02 s 6.71 s 4.39 s 5.64 s 34.8 s 4.24 s 1.60 s 5 m 22 s
z-map space 8 GiB 8 GiB 8 GiB 8 GiB 8 GiB 8 GiB 2 GiB 512 MiB
store collisions 0 0 0 0 0 0 0 0

folly (32 bit CRC hardware)
zuffification 14.2 s 12.2 s 10.1 s 11.2 s 12.7 s 13.3 s 4.80 s 526 ms
z-map space 5 GiB 5 GiB 5 GiB 5 GiB 5 GiB 5 GiB 1.25 GiB 320 MiB
store collisions 1.62% 0.65% 1.16% 1.52% 1.50% 1.52% 0.22% 0.22%

zlib (32 bit CRC software)
zuffification 62.9 s 55.0 s 43.5 s 53.0 s 56.2 s 58.4 s 16.5 s 4.58 s
z-map space 5 GiB 5 GiB 5 GiB 5 GiB 5 GiB 5 GiB 1.25 GiB 320 MiB
store collisions 1.71% 0.65% 1.16% 1.52% 1.50% 1.74% 0.22% 0.11%

Fibonacci words dataset are artificial and they are best used as a means of comparison. Each
text is trimmed to 200 MiB, so the results are normalized in size; the only exception is the
text for the Fibonacci words, whose length is F35. The symbols are always considered to
be byte-based, so in the Pizza&Chilli Corpus we do not split English words into terms and
the gene DNA nucleotides (or any unknown choice among them) are represented with their
standard ASCII characters.

8.7 Construction

Albeit the general-purpose hash functions with the pause&resume capabilities discussed in
Section 5 induce a suboptimal construction time, in practice the best functions available
from off-the-shelf libraries are faster than CRCs, while also offering a wider output, leading
to fewer collisions. In Table 2 we report the running time of zuffification. This result can
be compared with the construction time of the enhanced suffix array, also reported in the
table. For the construction of the suffix array we are using Ilya Grebnov’s libsais [13]
compiled with OpenMP support. To the best of our knowledge, this is the fastest suffix
array construction algorithm currently available. Note that our current implementation of
zuffification is not multi-threaded, so the work done to construct the z-map is much smaller
than the work required to build the enhanced suffix array. The size of the z-map is also
reported in the table: it is comparable to the size of the enhanced suffix array for 32-bit
CRCs, it becomes slightly larger in the case of 64-bit hashes, and it is almost twice as big for
128-bit hashes. The only exception is rand-64 because the number of internal nodes in that
case is very small.

Fibonacci words contain, asymptotically, the maximum number of repetitions that may
be contained in any string. Fibonacci words are a worst-case example for the construction
algorithm and in the fibonacci column of Table 2 we can see how the theoretical results are
reflected in practice: zuffification under the general-purpose pause&resume hash functions can

P. Boldi, S. Marchini, and S. Vigna 2:11

be several times slower than CRCs. Nevertheless, in all the other (more realistic) scenarios
that we have studied, the general-purpose hash functions are competitive and sometimes
outperform the theoretically faster hash functions offering constant-time substring hashing.
This result is mostly a consequence of the statistical properties of the text and it is not just a
matter of its size. The fibonacci corpus maximizes the length of the names; thus, zuffification
can be significantly slower than in other corpora even if its text is much smaller.

Table 3 Raw performance (in nanoseconds) of string search by pattern size.

size enhanced mem-wyhash mem-xxh3 mem-folly mem-zlib sgn-folly sgn-zlib

dn
a

101 1505 720 1178 731 745 835 1755
102 2009 1237 2063 1139 1766 1393 3092
103 1996 1655 2643 1481 2740 1760 4068
104 1998 2014 3269 1800 3497 2059 4842

pr
ot

ei
ns 101 3153 814 1365 848 973 1105 2190

102 3267 1125 1710 1116 1637 1350 2895
103 3326 1587 2345 1487 2772 1758 4075
104 3323 2495 3872 2180 4851 2447 6175

db
lp 101 4333 795 1059 811 887 1007 1973

102 5815 1232 1708 1196 1955 1448 3298
103 5736 1598 2281 1500 3037 1755 4459

so
ur

ce
s 101 6810 850 1255 891 994 1103 2131

102 7300 1220 1760 1229 1884 1484 3108
103 7379 1695 2382 1605 2959 1858 4288
104 7352 2612 3915 2337 5068 2588 6389

en
gl

is
h 101 6137 799 1236 859 931 1029 2100

102 6365 1203 1888 1166 1760 1445 3087
103 6424 1625 2437 1535 2819 1825 4186
104 6458 2428 3735 2219 4843 2477 6131

rn
d-

4 101 1459 716 1174 721 737 835 1748
102 1732 931 1709 856 1178 1210 2491

rn
d-

62 101 5033 742 1228 723 809 916 1857
102 5028 748 1205 717 821 918 1835

fib
o

101 160 163 186 161 174 236 1301
102 212 217 273 207 508 285 1935
103 325 536 712 570 1575 815 3659
104 638 1060 1473 1083 3110 1213 4844

8.8 Search queries

In Table 3 we report the query performance of all datasets for medium-length patterns,
whereas in Figures 2–4 we show the performance of each variant under four significantly
different scenarios and a wide range of lengths. Each plot reports the running time of search
queries. Expectedly, the running time increases with the length of the pattern. For each
pattern size, we generated 10 000 patterns extracted from random positions of the text and
we measured the running time of each variant using standard benchmarking techniques. The
running time reported in the plots is meant to be representative of that of a single search
query; in particular, we avoided the potential caching speedups that may occur when several
operations of the same kind happen in near succession. We remark that zuffix arrays are
expected to access the underlying suffix tree only once, and thus the underlying tree could
even be stored in external memory, making the space occupation of the whole structure a
less daunting obstacle than what might appear from the raw numbers in Table 2.

SEA 2024

2:12 Engineering Zuffix Arrays

54
.19

M
14

.62
M
3.9

9M
1.0

9M
30

5k
86

.63
k

26
.16

k
8.0

4k
3.2

5k
1.4

7k
75

.7
16

.74
3.9

2
2.4

2
1.9

1
1.4

5
1.31.1

7
1.2

1
1.0

2
1.0

2
1.0

1
1.0

1
1.0

1
1.0

1
1.0

1
1.0

1
1.0

1
1.0

1
1 1 1 1 1 1 1 1

Average occurrences per pattern

100 101 102 103 104

Pattern length (Bytes)

1000

2000

3000

4000

5000

Ti
m

e
(n

s)

18 12 23 19 19 25 18 239 22 21 14 12 15 23 17 2423

15

14 16 26 24 18 21 1924

16

26
28 22 17

20 20 172
1

23

26 26 26
17 22 20 2120

13

18 22 16 18 26 26 1714enhanced
memcmp-wyhash
memcmp-xxh3
memcmp-folly
memcmp-zlib
signature-folly
signature-zlib

(a) dna: highly-repetitive small alphabet.

7.2
6M

1.2
1M

58
3.2

1k

37
0.5

8k

28
2.9

3k

23
7.0

9k

18
3.9

k
14

9.2
k

12
5.2

2k

10
4.8

5k

19
.1k

9.0
2k

3.9
1k

77
0.1

8
20

6.0
6

60
.72
42

.83
26

.95
10

.08
1.0

4
1 1 1 1 1 1 1 1

Average occurrences per pattern

100 101 102 103

Pattern length (Bytes)

1000

2000

3000

4000

5000

6000

Ti
m

e
(n

s)

2
5 2

3

3 5 4 3 5 6 3 6 2 5 2 4
6 4 6 61 4

3

5 7
2

6 3 6 6 3

7

1 4 7
2 6 5 3 6

enhanced
memcmp-wyhash
memcmp-xxh3
memcmp-folly
memcmp-zlib
signature-folly
signature-zlib

(b) dblp-xml: highly-repetitive large alphabet.

Figure 2 Raw performance of string search by pattern size.

P. Boldi, S. Marchini, and S. Vigna 2:13

52
.43

M
13

.11
M

3.2
8M

81
9.2

k
20

4.8
k
51

.2k
12

.8k
3.2

k
80

1.1
6

20
0.8

1 1 1 1 1 1 1 1 1

Average occurrences per pattern

100 101 102

Pattern length (Bytes)

500

1000

1500

2000

2500

3000

Ti
m

e
(n

s)

6 3 7 2 2 4 3 2

6 3 2 4 9 4 8

enhanced
memcmp-wyhash
memcmp-xxh3
memcmp-folly
memcmp-zlib
signature-folly
signature-zlib

(a) rand-4: barely repetitive small alphabet.

3.3
8M

54
.56

k
88

1.3
8

15
.11

1.2
3

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Average occurrences per pattern

100 101 102

Pattern length (Bytes)

1000

2000

3000

4000

5000

Ti
m

e
(n

s)

enhanced
memcmp-wyhash
memcmp-xxh3
memcmp-folly
memcmp-zlib
signature-folly
signature-zlib

(b) rand-62: barely repetitive large alphabet.

Figure 3 Raw performance of string search by pattern size.

SEA 2024

2:14 Engineering Zuffix Arrays

13
.84

M
1.5

2M
36

5.4
6k

13
3.2

9k

51
.92

k
13

.85
k

6.3
k

2.8
4k

1.2
5k

70
2.4

4
93

.9
25

.31
45

.87
15

.14
3.7

3
1.9

9
2.21.9

1
1.8

5
1.5

7
1.4

7
1.4

3
1.41.41.3

9
1.3

8
1.3

8
1.3

7
1.3

2
1.2

9
1.2

6
1.2

4
1.2

1
1.2

1
1.1

9
1.1

8
1.1

7
1.1

1
1.0

9
1.0

8
1.0

6
1.0

6
1.0

5
1.0

5
1.0

5
1.0

4

Average occurrences per pattern

100 101 102 103 104 105

Pattern length (Bytes)

2000

4000

6000

8000

10000

12000

14000

Ti
m

e
(n

s)

114 13 17 17 15 18 20 9 151918 16 13 11 15 10 13119 19 14 14 11 9 8 128 6 13

14 7
7 9 13 9 9 199

8
1410

16 14 13 13 19 9 111314 17 17 15 10 11 9 9 7 14

14 11 12 8 9 1410
1211

8 17
9 15 13 127 9 8

enhanced
memcmp-wyhash
memcmp-xxh3
memcmp-folly
memcmp-zlib
signature-folly
signature-zlib

(a) english: natural language.

9.2
3M

1.0
2M

10
0.1

2k

9.7
4k

1k 10
1.9

7
9.2

9
4.8

6M
49

7.1
3k

50
.82

k
5.0

8k
49

8.7
1

47
.76

4.1
7

2.5
7M

25
2.7

9k

24
.74

k
2.4

7k
25

4.7
4

24
.53

1.6
4

1.6
9M

16
6.4

7k

16
.22

k
1.6

8k
16

9.5
9

16
.01

1.2
M

12
4.9

5k

12
.74

k
1.2

7k
12

2.2
9

11
.44

Average occurrences per pattern

100 101 102 103 104 105 106

Pattern length (Bytes)
102

103

104

105

106

Ti
m

e
(n

s)

enhanced
memcmp-wyhash
memcmp-xxh3
memcmp-folly
memcmp-zlib
signature-folly
signature-zlib

(b) fibo: Fibonacci words.

Figure 4 Raw performance of string search by pattern size.

P. Boldi, S. Marchini, and S. Vigna 2:15

The signature variants may return false positives: if there are any for some pattern, we
report their number on the plot (the time required to check for false positives is included
in our benchmarks). Counting the false positives in signature variants is also indicative of
the performance of their memcmp counterpart: when the z-map fails to find the exit node,
the string search algorithm (implicitly) falls back to a regular (non z-fast, but starting from
the root) search in the underlying suffix tree. Even in more extensive experiments, the
average numbers of false positives in the CRC variants never exceed the 0.3% of the queries,
suggesting that this worse-case search happens quite rarely, as we can also evince from the
plots, and that 32-bits hash functions might be sufficient in most applications.

We search the same patterns for each variant; parallel to the length of the patterns, we
report the average number of occurrences of each pattern as a different characterization of
complexity: the running time increases as the size of the pattern grows, but when the average
number of occurrences approaches one the hardness of the search problem remains the same,
independently of the pattern length, and the only additional cost is the final check. Thus,
after this point we do not perform tests with longer patterns: this strategy is evident in the
random datasets, in which short patterns are sufficient to identify completely a single result.

The running time of our baseline (the enhanced suffix array) is mainly dependent on
the alphabet size: the larger the alphabet, the longer it takes to walk down the (implicit,
first-child next-sibling) suffix-tree representation. The performances of the enhanced suffix
array in rand-62 and in english are similar, because both texts can be thought of as being
mostly made of Latin uppercase and lowercase letters, and few other symbols – despite the
alphabet in the english corpus is much larger (see Table 2), most of the other symbols rarely
occur.

As we previously noted, while all the zuffix-array variants have an underlying enhanced
suffix array, the size of the alphabet has little to no influence on their performance, as after
the fat binary search we access a single node of the suffix tree. Therefore, zuffification can
be used to improve the performance of enhanced suffix arrays on large alphabets.

The performance of the zuffix arrays is mostly dependent on the average length of the
handle of the exit node. We can see indeed that all the zuffix-array variants have a similar
running time across all datasets, except in the case of Fibonacci words, where the small
alphabet and the enormous average handle length makes fat binary search less effective.

We can observe that zuffix arrays, at least in their fastest variants (hardware CRC and
wyhash), are always faster than their non-accelerated variant (again, except in the case of
Fibonacci words). Despite the enhanced suffix array being a very performant data structure,
especially in small alphabet texts, zuffix arrays provide impressive speedups. In a small
alphabet text like dna, the zuffix array is up to twice as fast as the enhanced suffix array.
In a larger text, like dblp-xml and english, the zuffix array is up to 7 times faster than its
baseline. Even when the patterns have only one occurrence in the text, the zuffix array is 1.5
to 3.5 times faster than the enhanced suffix array.

There is of course a price to pay: the zuffix array is comparable in size to the underlying
enhanced suffix array in the CRC version, so it doubles the memory requirements. Nonetheless,
for large alphabets we obtain a speedup of almost one order of magnitude, which we believe
is a very interesting tradeoff.

SEA 2024

2:16 Engineering Zuffix Arrays

9 Lessons Learned

The z-map can make searches several times faster for medium-length patterns. As one can
see from Table 3 and Figure 2–4, searches on such patterns are up to 7 times faster than
on an enhanced suffix array. As the pattern length grows, however, the cost of memory
access becomes dominant, so in the case of highly repetitive text with a small alphabet
and long patterns the z-map theoretical improvement becomes unnoticeable.
Hardware-supported CRCs are ideal hash functions. Software-based CRCs are too slow
(indeed, by far the worst-performing hashing strategy). Ideally, a 64-bit wide hardware-
supported CRC would induce fewer collisions, but even in the presence of collisions (which
sometimes requires a full comparison of the pattern) hardware-supported CRCs are still
the fastest option.
Standard hash functions are sufficient for practical purposes. While CRCs are ideal in
general, unless we consider pathological counterexamples, such as our Fibonacci dataset,
using a standard, highly optimized hash function yields good results and sometimes
provides a shorter construction time than CRCs. Construction time is theoretically
quadratic, but on realistic datasets node names (and thus handles) are quite short, and
modern hash functions are very fast.
The signature approach is not useful. For the same reason (short names) the signature
approach is (maybe surprisingly) slower than the memcmp approach. The problem here
is that when performing the comparison, one has to hash the entire pattern, and since
precomputed hash states are generated lazily, almost all the work is done at the time of
the comparison, so in reality the check is closer to use time that is linear in the pattern
length, rather than constant; at that point, memcmp is faster.
Size depends on structure. The size of the z-map depends heavily on the structure of the
text, in particular for large alphabets: while the number of internal nodes of a binary
trie is equal to the number of leaves minus one, in the case of large alphabets it depends
strictly on the structure of the text. The z-map is smaller in the case of few internal
nodes with many children, which is exactly the case in which the enhanced suffix array is
slower.

10 Conclusions

We have presented a detailed and carefully engineered implementation of zuffix arrays based
on enhanced suffix arrays. We have shown that the z-map can improve by several times the
performance of an enhanced suffix array on patterns of medium length, reaching a sevenfold
speed increase in the case of large alphabets. While the space occupied by the z-map is
comparable to that of the enhanced suffix array, we believe that if space is available zuffix
arrays provide an interesting tradeoff between time and space, providing the practically
fastest pattern lookup time.

As we remarked in the introduction, the z-map should be thought of as a speed-up gadget
that can be superposed to different trie-based data structures: in the future, we plan to
experiment with its application to further underlying data structures, provided that they
make it possible to navigate the suffix tree.

Another interesting line of research is that of reaching different points of the space-time
tradeoff by pruning the longer handles of the z-map. Indeed, the z-map works as long as it
is built on a prefix of the suffix tree, but in that case, completing the search might require
more than one access to the suffix tree, as it is in the case of this paper. Depending on
the underlying structure, which could be, for example, compressed but very slow, choosing
different prefixes would provide different tradeoffs between space and time.

P. Boldi, S. Marchini, and S. Vigna 2:17

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. J. Discrete Algorithms, 2(1):53–86, 2004.
2 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone minimal

perfect hashing: Searching a sorted table with O(1) accesses. In Proceedings of the 20th Annual
ACM-SIAM Symposium On Discrete Mathematics (SODA), pages 785–794, New York, 2009.
ACM Press.

3 Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Edgar
Chávez and Stefano Lonardi, editors, String Processing and Information Retrieval - 17th
International Symposium, SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceedings,
volume 6393 of Lecture Notes in Computer Science, pages 159–172. Springer, 2010.

4 Jean Berstel. Fibonacci words—A survey. In G. Rozenberg and A. Salomaa, editors, The
Book of L, pages 13–27. Springer–Verlag, 1986.

5 Paolo Boldi and Sebastiano Vigna. Kings, name days, lazy servants and magic. In Hiro Ito,
Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe, editors, 9th International Conference
on Fun with Algorithms (FUN 2018), volume 100 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 10:1–10:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

6 Manuel Cáceres and Gonzalo Navarro. Faster repetition-aware compressed suffix trees based
on block trees. In Nieves R. Brisaboa and Simon J. Puglisi, editors, String Processing and
Information Retrieval - 26th International Symposium, SPIRE 2019, Segovia, Spain, October
7-9, 2019, Proceedings, volume 11811 of Lecture Notes in Computer Science, pages 434–451.
Springer, 2019. doi:10.1007/978-3-030-32686-9_31.

7 Guy Castagnoli, Stefan Brauer, and Martin Herrmann. Optimization of cyclic redundancy-
check codes with 24 and 32 parity bits. IEEE Trans. Commun., 41(6):883–892, 1993. doi:
10.1109/26.231911.

8 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
July 2005.

9 Paolo Ferragina and Gonzalo Navarro. The pizza & chili corpus, 2007. URL: http://
pizzachili.dcc.uchile.cl/texts.html.

10 Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-bounded compressed
suffix trees. Theor. Comput. Sci., 410(51):5354–5364, 2009. doi:10.1016/J.TCS.2009.09.012.

11 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, January 2012.

12 Jean-Loup Gailly and Mark Adler. Zlib compression library. Technical report, Apollo -
University of Cambridge Repository, 2004. URL: http://www.dspace.cam.ac.uk/handle/
1810/3486.

13 Ilya Grebnov. libsais. https://github.com/IlyaGrebnov/libsais, 2021.
14 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with

applications to text indexing and string matching. SIAM Journal on Computing, 35(2):378–
407, 2005.

15 Shay Gueron and Michael E. Kounavis. Efficient implementation of the Galois counter mode
using a carry-less multiplier and a fast reduction algorithm. Inf. Process. Lett., 110(14-15):549–
553, 2010. doi:10.1016/J.IPL.2010.04.011.

16 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006.

17 Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, second edition, 1997.

18 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. J.
Discrete Algorithms, 3(2-4):143–156, 2005.

19 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

SEA 2024

https://doi.org/10.1007/978-3-030-32686-9_31
https://doi.org/10.1109/26.231911
https://doi.org/10.1109/26.231911
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html
https://doi.org/10.1016/J.TCS.2009.09.012
http://www.dspace.cam.ac.uk/handle/1810/3486
http://www.dspace.cam.ac.uk/handle/1810/3486
https://github.com/IlyaGrebnov/libsais
https://doi.org/10.1016/J.IPL.2010.04.011

2:18 Engineering Zuffix Arrays

20 Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix
array construction. IEEE Transactions on Computers, 60(10):1471–1484, 2011.

21 Enno Ohlebusch, Johannes Fischer, and Simon Gog. CST++. In Edgar Chávez and Stefano
Lonardi, editors, String Processing and Information Retrieval - 17th International Symposium,
SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceedings, volume 6393 of Lecture
Notes in Computer Science, pages 322–333. Springer, 2010. doi:10.1007/978-3-642-16321-0_
34.

22 Kunihiko Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
Algorithms, 48(2):294–313, 2003. doi:10.1016/S0196-6774(03)00087-7.

23 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/S00224-006-1198-X.

24 Peter Weiner. Linear pattern matching algorithms. In Switching and Automata Theory, 1973.
SWAT’08. IEEE Conference Record of 14th Annual Symposium on, pages 1–11. IEEE, 1973.

https://doi.org/10.1007/978-3-642-16321-0_34
https://doi.org/10.1007/978-3-642-16321-0_34
https://doi.org/10.1016/S0196-6774(03)00087-7
https://doi.org/10.1007/S00224-006-1198-X

	1 Introduction
	2 Notation and Tools
	2.1 Notation
	2.2 Machine model
	2.3 Tries

	3 Z-fast tries
	3.1 Short strings
	3.2 Long strings

	4 Suffix Trees, Suffix Arrays, and Zuffification
	5 Constant Time Prefix Hashing
	6 Constant Time Substring Hashing
	7 Collision Detection during Fat Binary Search
	8 Experimental Evaluation
	8.1 Variants
	8.2 Statistics
	8.3 Suffix tree
	8.4 Hash functions
	8.5 Space
	8.6 Performance
	8.7 Construction
	8.8 Search queries

	9 Lessons Learned
	10 Conclusions

