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A B S T R A C T

The numerical simulation of cardiac electrophysiology is a highly challenging problem in
scientific computing. The Bidomain system is the most complete mathematical model of cardiac
bioelectrical activity. It consists of an elliptic and a parabolic partial differential equation (PDE),
of reaction–diffusion type, describing the spread of electrical excitation in the cardiac tissue. The
two PDEs are coupled with a stiff system of ordinary differential equations (ODEs), representing
ionic currents through the cardiac membrane. Developing efficient and scalable preconditioners
for the linear systems arising from the discretization of such computationally challenging model
is crucial in order to reduce the computational costs required by the numerical simulations
of cardiac electrophysiology. In this work, focusing on the Bidomain system as a model
problem, we have benchmarked two popular implementations of the Algebraic Multigrid
(AMG) preconditioner embedded in the PETSc library and we have studied the performance
on the calibration of specific parameters. We have conducted our analysis on modern HPC
architectures, performing scalability tests on multi-core and multi-GPUs settings. The results
have shown that, for our problem, although scalability is verified on CPUs, GPUs are the optimal
choice, since they yield the best performance in terms of solution time.

1. Introduction

Developing physiologically and morphologically realistic and detailed computer models of integrated cardiac function is an
important research area, which may lead to the development of personalized diagnostic techniques and targeted therapies, see
e.g. [1–6]. Also multiscale data available to research can be included in these in-silico models in order to reach such an ambitious
goal. The main drawback to this approach consists in the associated computational cost, which can rapidly become important in
terms of solution time of the linear (or non linear) systems deriving from the discretization of the mathematical models employed
to this purpose. High-performance computing (HPC) resources are crucial in facing this kind of problems, but great effort is still
necessary to maximize their efficiency and ensure their sustainable utilization, minimizing waste and environmental impact. In
particular, over the last decade, General-Purpose Graphic Processing Units (GPGPUs) have shown an extraordinary computational
power with respect to using a large number of CPUs (𝑂(102)-𝑂(104)) to solve large scale (about 𝑂(106) −𝑂(107) DOFs) sparse linear
systems. This has led to GPUs being a significant item in the budgets of companies and institutions interested in assembling an HPC
cluster. Apart from computational resources, remarkable efforts have been made also in the development of efficient numerical
schemes and techniques aimed at reducing the number of iterations of an iterative method employed to solve a large linear system.
This is the case of the preconditioners, which can be tailored according to the problem to be addressed. The Algebraic Multigrid

∗ Corresponding author at: Dipartimento di Matematica, Università di Pavia, Via Adolfo Ferrata, 5, Pavia, 27100, Italy.
E-mail address: edoardo.centofanti01@universitadipavia.it (E. Centofanti).
vailable online 27 February 2024
045-7825/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cma.2024.116875
Received 17 November 2023; Received in revised form 23 January 2024; Accepted 21 February 2024

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
mailto:edoardo.centofanti01@universitadipavia.it
https://doi.org/10.1016/j.cma.2024.116875
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.116875&domain=pdf
https://doi.org/10.1016/j.cma.2024.116875
http://creativecommons.org/licenses/by/4.0/


Computer Methods in Applied Mechanics and Engineering 423 (2024) 116875E. Centofanti and S. Scacchi

e
f
f

(AMG) [7] is a versatile method that can be employed as an effective preconditioner for reducing Conjugate Gradient (CG) iterations
when solving particularly expensive linear systems arising from the discretization of elliptic partial differential equations (PDEs),
which are largely employed in the mathematical modeling of cardiac electrophysiology. In this work, we focused our efforts on
solving efficiently the cardiac Bidomain model, a macroscopic representation of the cardiac tissue modeling the spatio-temporal
evolution of the intra- and extracellular electric potentials. In the formulation considered throughout the work, it consists of two
PDEs, an elliptic and a parabolic one, coupled with a system of ordinary differential equations (ODEs) representing the ionic currents
through the cellular membrane. The model homogenizes both the intra- and the extracellular space, namely in each physical
degree of freedom (DOF) both spaces coexist. Previous work on solvers involving AMG applied to the Bidomain system are [8–
12], but other well known preconditioners for elliptic systems have been successfully tested and employed for this problem, such
as geometric multigrid and domain decomposition preconditioners, as Multilevel Schwarz [13,14], Neumann Neumann [15,16]
and BDDC [17,18]. The novelty of this work consists in having chosen and tested two different implementations of the AMG
preconditioner and having benchmarked their performances on an HPC architecture involving both CPUs and GPUs, in order to
verify if GPUs are effective for this particular problem and setup. A previous work on this topic [19] has shown a speedup of
roughly a factor 10 when employing GPUs with respect to the best performance on CPU, but the benchmark is limited up to 20
GPUs and the Hypre implementation of AMG considered, BoomerAMG, was not yet implemented in order to run on GPUs. In this
work we will also expand some of those results exploiting our in-house codebase, which considers a slightly different numerical
scheme.

The rest of the paper is organized as follows: In Section 2 the Bidomain model is presented and the numerical schemes employed
are explained and commented; in Section 3 we present the parameters related to our problem; in Section 4 we describe the AMG
implementations and the importance of two different threshold parameters employed; in Section 5 we present the simulation setup
and the HPC architectures considered; in Sections 6 and 7 we present the numerical tests performed and the corresponding results.

2. Model

The model studied in the following is the macroscopic Bidomain model of electrocardiology in the parabolic–elliptic formula-
tion [20–23]. Denoting by 𝛺 ⊂ R3 the open, connected and bounded physical region occupied by the portion of myocardium of our
interest, we represent the tissue as the superimposition of two anisotropic continuous media, called intra- and extracellular media.
In this model, it is assumed that they coexist at every point and are separated by a distributed continuous cellular membrane.
Given 𝛺 and a time interval (0, 𝑇 ) ∈ R+, 𝑇 ∈ R+, our problem consists of finding the extracellular potential 𝑢𝑒 ∶ 𝛺 × (0, 𝑇 ) → R,
the transmembrane potential 𝑣 ∶ 𝛺 × (0, 𝑇 ) → R and the gating and ionic concentration variables 𝐰 ∶ 𝛺 × (0, 𝑇 ) → R𝑁𝑤 and
𝐜 ∶ 𝛺 × (0, 𝑇 ) → R𝑁𝑐 , respectively, such that:

⎧

⎪

⎪

⎪

⎪
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⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜒𝐶𝑚
𝜕𝑣
𝜕𝑣

− div(𝐷𝑖∇𝑣) − div(𝐷𝑖∇𝑢𝑒) + 𝐼𝑖𝑜𝑛(𝑣,𝐰, 𝐜) = 𝐼 𝑖𝑎𝑝𝑝 in 𝛺 × (0, 𝑇 ),

−div(𝐷𝑖∇𝑣) − div((𝐷𝑖 +𝐷𝑒)∇𝑢𝑒) = 𝐼 𝑖𝑎𝑝𝑝 + 𝐼
𝑒
𝑎𝑝𝑝 in 𝛺 × (0, 𝑇 ),

𝜕𝐰
𝜕𝑡

− 𝐑(𝑣,𝐰) = 0 in 𝛺 × (0, 𝑇 ),

𝜕𝐜
𝜕𝑡

− 𝐂(𝑣,𝐰, 𝐜) = 0 in 𝛺 × (0, 𝑇 ),

𝐧⊤𝐷𝑖∇(𝑣 + 𝑢𝑒) = 0 in 𝜕𝛺 × (0, 𝑇 ),

𝐧⊤𝐷𝑒∇𝑢𝑒 = 0 in 𝜕𝛺 × (0, 𝑇 ),

𝑣(𝐱, 0) = 𝑣0(𝐱), 𝐰(𝐱), 0 = 𝐰0(𝐱), 𝐜(𝐱), 0 = 𝐜0(𝐱) in 𝛺,

(1)

where 𝐼𝑖𝑜𝑛 is the ionic current related to the ionic model. In this work we have employed the ten Tusscher–Panfilov [24] model
(TP06). The functions 𝐑 and 𝐂 describe the dynamics of the gating and ionic concentration variables 𝐰 and 𝐜, respectively. 𝐼 𝑖𝑎𝑝𝑝 and
𝐼𝑒𝑎𝑝𝑝 denote the applied currents in the intra- and extracellular region, respectively, that must satisfy the compatibility condition

∫𝛺
(𝐼 𝑖𝑎𝑝𝑝 + 𝐼

𝑒
𝑎𝑝𝑝) 𝑑𝐱 = 0.

The anisotropy of the tissue, due to the fiber arrangement of cardiac myocytes (see e.g. [25]), is described by the conductivity
tensors 𝐷𝑖,𝑒(𝐱) at any point 𝐱 ∈ 𝛺, which have the following definition:

𝐷𝑖,𝑒(𝐱) = 𝜎𝑖,𝑒𝑙 𝐚𝑙(𝐱)𝐚⊤𝑙 (𝐱) + 𝜎
𝑖,𝑒
𝑡 𝐚𝑡(𝐱)𝐚⊤𝑡 (𝐱) + 𝜎

𝑖,𝑒
𝑛 𝐚𝑛(𝐱)𝐚⊤𝑛 (𝐱)

= 𝜎𝑖,𝑒𝑡 𝐼 + (𝜎𝑖,𝑒𝑙 − 𝜎𝑖,𝑒𝑡 )𝐚𝑙(𝐱)𝐚⊤𝑙 (𝐱) + (𝜎𝑖,𝑒𝑛 − 𝜎𝑖,𝑒𝑡 )𝐚𝑛(𝐱)𝐚⊤𝑛 (𝐱),
(2)

where 𝐚𝑙, 𝐚𝑡 and 𝐚𝑛 ∈ [𝐿∞(𝛺)]3 represent a triple of orthonormal principal axes, with 𝐚𝑙 parallel to the local fiber direction, 𝐚𝑛 and
𝐚𝑡 orthogonal and tangent to the radial laminae, respectively, and both transversal to the fiber axis. Furthermore, we have denoted
as 𝜎𝑖,𝑒𝑙 , 𝜎𝑖,𝑒𝑡 and 𝜎𝑖,𝑒𝑛 the conductivity coefficients for the intra- and extracellular media along the corresponding directions 𝐚𝑙, 𝐚𝑡 and
𝐚𝑛. Since the conductivity coefficients 𝜎𝑖,𝑒∗ , ∗= 𝑙, 𝑡, 𝑛, are positive scalars, by definition of 𝐷𝑖,𝑒 the operators 𝐷𝑖,𝑒(𝑥)∇(⋅) are uniformly
lliptic. We recall that these tensors model the structure of the cardiac tissue, i.e. an ensemble of fibers rotating counterclockwise
rom epi- (the outermost protective layer of the heart) to endocardium (the innermost), organized as muscle foils running radially
2

rom epi- to endocardium.
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2.1. Variational formulation

Let us define 𝑉 ∶= 𝐻1(𝛺) the usual Sobolev space and then define

𝑉 = {𝜓 ∈ 𝑉 ∶ ∫𝛺
𝜓 = 0},

𝑈 = 𝑉 × 𝑉 = {𝑢 = (𝜙, 𝜓) ∶ 𝜙 ∈ 𝑉 , 𝜓 ∈ 𝑉 },

the 𝐿2-inner product (𝜙, 𝜓) = ∫𝛺 𝜙𝜓𝑑𝐱 ∀𝜙, 𝜓 ∈ 𝐿2(𝛺), and the bilinear forms

𝑎𝑖,𝑒(𝜙, 𝜓) = ∫𝛺
(∇𝜙)⊤𝐷𝑖,𝑒(𝐱)∇𝜓𝑑𝐱,

𝑎(𝜙, 𝜓) = ∫𝛺
(∇𝜙)⊤𝐷(𝐱)∇𝜓𝑑𝐱, ∀𝜙, 𝜓 ∈ 𝐻1(𝛺),

where 𝐷 = 𝐷𝑖 +𝐷𝑒 is the bulk conductivity tensor.
The variational formulation of the Bidomain model reads as follows: given 𝑣0 ∈ 𝐿2(𝛺), 𝐰0 ∈ [𝐿2(𝛺)]𝑁𝑤 , 𝐜0 ∈ [𝐿2(𝛺)]𝑁𝑐 ,

𝐼 𝑖,𝑒𝑎𝑝𝑝 ∈ 𝐿2(𝛺 × (0, 𝑇 )), find 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑉 ), 𝑢𝑒 ∈ 𝐿2(0, 𝑇 ;𝑉 ), 𝐰 ∈ 𝐿2(0, 𝑇 ; [𝐿2(𝛺)]𝑁𝑤 ) and 𝐜 ∈ 𝐿2(0, 𝑇 ; [𝐿2(𝛺)]𝑁𝑐 ) such that for all
𝑡 ∈ (0, 𝑇 )

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐𝑚
𝜕
𝜕𝑡
(𝑣, 𝑣̂) + 𝑎𝑖(𝑣 + 𝑢𝑒, 𝑣̂) + (𝐼𝑖𝑜𝑛(𝑣,𝐰, 𝐜), 𝑣̂) = (𝐼 𝑖𝑎𝑝𝑝, 𝑣̂) ∀𝑣̂ ∈ 𝑉

𝑎𝑖(𝑣, 𝑢̂𝑒) + 𝑎(𝑢𝑒, 𝑢̂𝑒) = 0 ∀𝑢̂𝑒 ∈ 𝑉
𝜕
𝜕𝑡
(𝑤𝑗 , 𝑤̂) − (𝑅𝑗 (𝑣,𝐰), 𝑤̂) = 0, ∀𝑤̂ ∈ 𝑉 , 𝑗 = 1,… , 𝑁𝑤

𝜕
𝜕𝑡
(𝑐𝑗 , 𝑐) − (𝐶𝑗 (𝑣,𝐰, 𝐜), 𝑐) = 0, ∀𝑐 ∈ 𝑉 , 𝑗 = 1,… , 𝑁𝑐

with initial conditions 𝑣 = 𝑣0, 𝐰 = 𝐰0 and 𝐜 = 𝐜0 and where we have imposed 𝐼𝑒𝑎𝑝𝑝 = −𝐼 𝑖𝑎𝑝𝑝.

.2. Space and time discretization

Let ℎ be a quasi-uniform tessellation of 𝛺 having maximal diameter ℎ and 𝑉ℎ be an associated conforming finite element space.
et us select a finite element basis {𝜙𝑝}𝑁𝑝=1 of 𝑉ℎ, evaluate 𝑀 = {𝑚𝑝𝑗}, the diagonal mass matrix, with the usual mass-lumping

technique and 𝐴𝑖,𝑒 = {𝑎𝑖,𝑒(𝜙𝑗 , 𝜙𝑝)} the symmetric intra- and extracellular stiffness matrices, having elements

𝑎𝑖,𝑒(𝜙𝑗 , 𝜙𝑝) = ∫𝛺
𝐷𝑖,𝑒∇𝜙𝑗 ⋅ ∇𝜙𝑝𝑑𝑥

By means of a standard Galerkin procedure, we can rewrite the semi-discrete Bidomain problem, discretized in space, in the following
compact form:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐𝑚
𝑑
𝑑𝑡

[

𝐯
𝐮𝑒

]

+

[

𝐯
𝐮𝑒

]

+

[

𝑀𝐼𝑖𝑜𝑛(𝐯,𝐰, 𝐜)
𝟎

]

=

[

𝑀𝐈𝑖𝑎𝑝𝑝
𝟎

]

𝑑𝐰
𝑑𝑡

= 𝐑(𝐯,𝐰)

𝑑𝐜
𝑑𝑡

= 𝐂(𝐯,𝐰, 𝐜)

(3)

here we denote the block mass and stiffness matrices as

 =
[

𝑀 0
0 0

]

 =
[

𝐴𝑖 𝐴𝑖
𝐴𝑖 𝐴𝑖 + 𝐴𝑒

]

nd we define 𝐯, 𝐮𝑒, 𝐰 = (𝐰1,… ,𝐰𝑁𝑤 )
⊤, 𝐜 = (𝐜1,… , 𝐜𝑁𝑐 )

⊤, 𝑅(𝐯,𝐰) = (𝑅1(𝐯,𝐰),… , 𝑅𝑁𝑤 (𝐯,𝐰))
⊤, 𝐶(𝐯,𝐰, 𝐜) =

𝐶1(𝐯,𝐰, 𝐜),… , 𝐶𝑁𝑐 (𝐯,𝐰, 𝐜))
⊤, 𝐈𝑖𝑜𝑛(𝐯,𝐰) and 𝐈𝑒𝑎𝑝𝑝 as the coefficient vectors of finite element approximations of 𝑢𝑖, 𝑢𝑒, 𝑣, 𝑤𝑟,

𝑟(𝑣,𝑤1,… , 𝑤𝑁𝑤 ), 𝐶𝑟(𝑣,𝑤1,… , 𝑤𝑁𝑤 , 𝑐1,… , 𝑐𝑁𝑐 ), 𝐼𝑖𝑜𝑛(𝑣,𝑤1,… , 𝑤𝑁𝑤 ) and 𝐼 𝑖,𝑒𝑎𝑝𝑝 respectively. For this work in particular, we have
discretized the equation through Q1 elements.

For the time discretization, we consider an implicit–explicit (IMEX) strategy, which consists of decoupling the ODEs from the
PDEs and of treating the linear diffusion terms implicitly and the non-linear reaction terms explicitly. We then solve uncoupled the
two Eqs. (3) in discretized form.

In particular, considering 𝐯𝑛 and 𝐮𝑛𝑒 at the timestep 𝑛, we solve the elliptic equation evaluating 𝐮𝑛+1𝑒 , and then we solve the
𝑛+1 𝑛+1 𝑛+1
3

parabolic equation in order to update the transmembrane potential 𝐯 . 𝐰 and 𝐜 are evaluated implicitly. We summarize the
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Table 1
Geometric parameters of idealized LV domain.
Parameter Value Parameter Value

𝑎1 2.2 𝜃min − 3𝜋
2

𝑎2 3.3 𝜃max
𝜋
2

𝑏1 2.2 𝜙min − 3𝜋
8

𝑏2 3.3 𝜙max
𝜋
8

𝑐1 5.9
𝑐2 6.4

Table 2
Number of points and elements for the ‘‘U-mesh’’ geometry.
Name Physical DOFs Elements

U-mesh 1 35,725 30,108
U-mesh 2 258,415 240,864
U-mesh 3 1,987,285 1,926,912

scheme, given 𝐰𝑛, 𝐯𝑛, 𝐮𝑛𝑒 , as

𝐰𝑛+1 + 𝛥𝑡𝐑(𝐯𝑛,𝐰𝑛+1) = 𝐰𝑛

𝐜𝑛+1 + 𝛥𝑡𝐂(𝐯𝑛,𝐰𝑛+1, 𝐜𝑛+1) = 𝐜𝑛

(𝐴𝑖 + 𝐴𝑒)𝐮𝑛𝑒 = −𝐴𝑖𝐯𝑛
( 𝑐𝑚
𝛥𝑡
𝑀 + 𝐴𝑖

)

𝐯𝑛+1 =
𝑐𝑚
𝛥𝑡
𝑀𝐯𝑛 − 𝐴𝑖𝐮𝑛𝑒+

+𝑀𝐈𝑖𝑜𝑛(𝐯𝑛,𝐰𝑛+1, 𝐜𝑛+1) +𝑀𝐈𝑖,𝑛𝑎𝑝𝑝.

Overall, at each timestep we solve once the linear system with matrix 𝐴𝑖 +𝐴𝑒, i.e. the discrete form of the elliptic equation, and
nce the linear system with matrix 𝑐𝑚

𝛥𝑡𝑀 + 𝐴𝑖 deriving from the parabolic equation. Being the resulting systems very large, due to
he number of DOFs considered, they must be solved with an iterative method. We have chosen in particular the Preconditioned
onjugate Gradient (PCG) method, since the matrix arising from the parabolic equation is symmetric positive definite whereas that
rising from the elliptic equation is symmetric positive semi-definite. The preconditioners used for the parabolic and elliptic systems
ill be discussed in the next sections.

. Parameters and setting

We have focused our study on two geometries: a truncated ellipsoid, modeling an idealized left ventricle (LV) and a realistic
eometry, representing a patient specific LV at three different resolutions. The idealized LV is discretized by a structured hexahedral
esh, whereas the patient specific LV is discretized by an unstructured mesh consisting of irregular hexahedra.

The truncated ellipsoid is built following the parametric equations:

⎧

⎪

⎨

⎪

⎩

𝑥 = 𝑎(𝑟) cos 𝜃 cos𝜙, 𝜃min ≤ 𝜃 ≤ 𝜃max

𝑦 = 𝑏(𝑟) cos 𝜃 sin𝜙, 𝜙min ≤ 𝜙 ≤ 𝜙max

𝑧 = 𝑐(𝑟) sin𝜙, 0 ≤ 𝑟 ≤ 1,

(4)

here 𝑎(𝑟) = 𝑎1 + 𝑟(𝑎2 − 𝑎1), 𝑏(𝑟) = 𝑏1 + 𝑟(𝑏2 − 𝑏1) and 𝑐(𝑟) = 𝑐1 + 𝑟(𝑐2 − 𝑐1), with 𝑎1,2, 𝑏1,2, 𝑐1,2 coefficients defining the main axes of
the ellipsoid. The geometric parameters are reported in Table 1.

For what concerns the patient specific LV geometry, denoted in the following as ‘‘U-mesh’’ we have considered three different
refinements, which are reported in Table 2. The mesh has been provided us by Marco Fedele at Mox Laboratory, Politecnico di
Milano, and the fibers have been generated using the open-source code lifex-fiber [26], developed at Mox Laboratory, Politecnico
di Milano; see also [4,27].

The ionic membrane model considered is the ten Tusscher-Panfilov model (TP06) [24,28]. The stimulus is applied for 1 ms with
intensity of 350 mA∕cm3. Depending on the numerical tests performed, the simulation spans the first 5 ms of the excitation phase
as well as 500 ms, corresponding to almost a full heartbeat, both with timestep of 0.05 ms.

4. Algebraic multigrid

We are interested in solving a problem of the form

𝐴𝐱 = 𝐟 , (5)

with 𝐴 ∈ R𝑛×𝑛, 𝐱, 𝐟 ∈ R𝑛.
4



Computer Methods in Applied Mechanics and Engineering 423 (2024) 116875E. Centofanti and S. Scacchi

m

a

(
s

b

F

w
c
p

d
c
I

Being these kind of systems usually very large, using direct methods to solve them would mean employ an high complexity
ethod (at most 𝑂(𝑛3)) which can take an unnecessary high amount of time.

As previously motivated, it is necessary to employ iterative methods and other strategies in order to get a faster, albeit
pproximate solution.

The main idea of the Algebraic Multigrid (AMG) algorithm is solving (5) by cycling through levels composed of coarse
i.e. smaller) linear systems and finding updates that, interpolated on the original space, improve the solution. In this way, the
o called ‘smooth error’ 𝑒 that is not eliminated through iterative relaxations, is removed by coarse-grid correction.

The idea is implemented by solving the residual equation 𝐴𝑒 = 𝑟 on a coarser grid, then through interpolation the solution is
rought back to the finer grid and finally the fine-grid approximation is updated 𝑢⟵ 𝑢 + 𝑒.

Given the matrix 𝐴 with entries 𝑎𝑖𝑗 , for convenience sake, the matrix indices 𝑖, 𝑗 are identified with grid points on a grid 𝛤 , such
that 𝑥𝑖 denotes the value of 𝐱 in (5) at the point 𝑖. The components playing a role in the AMG are the following:

1. 𝑀 ‘‘grids’’, i.e. index sets 𝛤 = 𝛤 1 ⊃ 𝛤 2 ⊃ ... ⊃ 𝛤𝑀 .
2. 𝑀 grid operators 𝐴1, 𝐴2,… , 𝐴𝑀 .
3. 𝑀 − 1 Interpolation operators 𝑃 1, 𝑃 2,… , 𝑃𝑀−1.
4. 𝑀 − 1 Restriction operators 𝑅1, 𝑅2,… , 𝑅𝑀−1.
5. 𝑀 − 1 Smoothers 𝑆1, 𝑆2,… , 𝑆𝑀−1.

All these components are defined in the setup phase of the algorithm:

Algorithm 1 AMG setup phase

Set 𝛤 1 = 𝛤
for 𝑘 = 1; 𝑘 < 𝑀 ; 𝑘 + + do

Partition 𝛤 𝑘 into disjoint sets 𝐶𝑘 and 𝐹 𝑘.
Set 𝛤 𝑘+1 = 𝐶𝑘.
Define interpolation 𝑃 𝑘.
Define restriction 𝑅𝑘 (often 𝑅𝑘 = (𝑃 𝑘)⊤).
𝐴𝑘+1 ← 𝑅𝑘𝐴𝑘𝑃 𝑘

Set up 𝑆𝑘.
end for

When the setup phase is completed, the algorithm proceeds with a recursively defined cycle.
Following the notation in [29], we call this phase ‘MGV’, since it is often addressed as ‘Multigrid V-Cycle’. Other cycles (W and

) are possible, but in this work we will focus only on V. The steps are the following:

Algorithm 2 MGV(𝐴𝑘, 𝑅𝑘, 𝑃 𝑘, 𝑆𝑘, 𝑢𝑘, 𝑓𝑘)
if 𝑘 ==𝑀 then

solve 𝐴𝑀𝑢𝑀 = 𝑓𝑀 with a direct solver.
else

apply the smoother 𝑆𝑘 𝜇1 times to 𝐴𝑘𝑢𝑘 = 𝑓𝑘.
𝑟𝑘 ← 𝑓𝑘 − 𝐴𝑘𝑢𝑘 ⊳ Coarse grid correction step
𝑟𝑘+1 ← 𝑅𝑘𝑟𝑘

apply MGV(𝐴𝑘+1, 𝑅𝑘+1, 𝑃 𝑘+1, 𝑆𝑘+1, 𝑒𝑘+1, 𝑟𝑘+1) ⊳ Recursive step
𝑒𝑘 ← 𝑃 𝑘𝑒𝑘+1 ⊳ Interpolation step
𝑢𝑘 ← 𝑢𝑘 + 𝑒𝑘 ⊳ Correction
apply the smoother 𝑆𝑘 𝜇2 times to 𝐴𝑘𝑢𝑘 = 𝑓𝑘.

end if

We note that the smoothing step is performed through a Richardson iteration of the form 𝑢𝑘𝑗+1 = 𝑢𝑘𝑗 +𝜔(𝑆
𝑘)−1(𝑓 −𝐴𝑢𝑘𝑗 ), with 𝑆𝑘

such that 𝑆 can be 𝑑𝑖𝑎𝑔(𝐴) (Jacobi), the lower part of 𝐴 (Gauss–Seidel) or the ILU approx of 𝐴, and 𝜔 relaxation factor.
Throughout this work, we will employ two popular AMG implementations in the field of HPC and many-core systems: GAMG,

hich is the built-in AMG solver in the PETSc library [30] and BoomerAMG, provided within the Hypre library [31]. They are both
ontained in the PETSc library, the Portable, Extensible Toolkit for Scientific Computation, which includes a large suite of scalable
arallel linear and nonlinear equation solvers, ODE integrators, and optimization algorithms [30].

A critical step consists of the construction of the restriction matrices 𝑅𝑘, which are involved in the coarsening phase.
Since algorithm 2 should not rely directly on the geometry of the domain, many algebraic techniques have been explored and

eveloped over the years. Although many coarsening algorithms are available for the implementations employed [32–35], we have
onsidered the ones suggested as default options which are, for GAMG, PETSc default AMG implementation, a modified Maximal
ndependent Set (MIS) algorithm [36,37], while for Hypre a Hybrid Maximal Independent Set (HMIS) algorithm [38].
5
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Table 3
Technical data for Marconi100.

Theoretical peak performance
CPU (nominal/peak freq.) 691/791 GFlops
GPU 31.2 TFlops
Total 32 TFlops

Memory Bandwidth (nominal/peak freq.) 220/300 GB/s

In the first phase of the modified MIS, A weighted graph is built from the nodes of the grid 𝛤 , with weight on the edge between
nodes 𝑖 and 𝑗 defined as 𝑤𝑖𝑗 =

𝑎𝑖𝑗
√𝑎𝑖𝑖𝑎𝑗𝑗

.

A threshold on the weight is thus set such that at each coarsening step all the edges with weight less that the threshold are cut.
hen, a greedy MIS or an equivalent parallel implementation (for example Luby’s algorithm [39]) is applied to the modified graph.
e call 𝑆 the resulting set. Clusters 𝐶𝑗 are defined with the following procedure: for each 𝑖 ∉ 𝑆, 𝑗 ∈ 𝑆, 𝑖 ∈ 𝐶𝑗 if 𝑤𝑖𝑗 = max𝑗∈𝑆 𝑤𝑖𝑗 .

Finally, prolongators for AMG are defined as

𝑃𝑖𝑗 =

{

|𝐶𝑗 |
− 1

2 if 𝑖 ∈ 𝐶𝑗
0 otherwise

(6)

n the first phase of HMIS instead, 𝐴 is explored and for each row the coarsening nodes are chosen between the ones satisfying the
ondition

|𝑎𝑖𝑗 | ≥ 𝛼max
𝑘≠𝑖

|𝑎𝑖𝑘| (7)

ith 𝛼 called strong threshold parameter. This brings to the definition of sets of strongly connected nodes which are used to define the
ets 𝐶𝑗 and prolongators (6).

In the following sections we will explore how the threshold and the strong threshold influence our code performances.

. Architectures and technical setup

Except where otherwise stated, the numerical experiments have been performed on the Marconi100 cluster at CINECA laboratory.
arconi100 is a Linux Cluster with 980 nodes, each one including 2 × 16 cores IBM POWER9 AC922 @ 3.1 GHz and 4 NVIDIA
olta V100 GPUs with 16 GB memory per GPU and NVlink 2.0. Each node has a memory of 256 GB. In Table 3 are reported
ore technical details about its bandwidth. Computations have been performed using up to 16 nodes considering either CPU or
PU performance. The maximum number of cores was 512, while we used up to 64 GPUs. Our in-house code is written in C with
UDA kernels for solving the membrane model on the GPUs. The numerical aspects of the code are based on the PETSc library,
hile the communications between parallel processors is handled by MPI. Tests have been focused mainly on the performance and

he behavior at different scales of the preconditioners used for the elliptic equation of the model. Therefore, we have tested two
mplementations of the AMG preconditioner, available in PETSc:

• The GAMG preconditioner, the default implementation in PETSc, on CPU (up to 512 cores, 16 nodes). We have also performed
a few tests on GPU (up to 4 devices, 1 node), but our current setup did not allow to perform an exhaustive analysis on GPUs.
In particular we have observed out of memory issues and a general suboptimal use of the device (GPU) resources with our
implementation, likely related to high matrix–matrix product memory consumption on GPU with GAMG.

• The Hypre BoomerAMG preconditioner, on CPU (up to 512 cores, 16 nodes) and on GPU (up to 64 devices, 16 nodes).

egarding the parabolic equation in the formulation considered, we have employed Block Jacobi preconditioner on CPU, while we
ave left the system unpreconditioned on GPU, since the Block Jacobi implementation on the device did not show a significant
eduction in CG iterations and solution time compared to the unpreconditioned system. For the PETSc options employed in this
ork, refer to Appendix A. We have divided the results into subsections: For the structured mesh, in Test 1 we tune the AMG

hreshold hyperparameter both for Hypre BoomerAMG and GAMG, in Test 2 we have performed a strong scaling test, fixing a global
imension for the problem while changing the number of the CPUs and GPUs employed, while in Test 3 we have performed a weak
caling test, keeping the local size (i.e. the size per processor or per GPU) of the problem unchanged, while varying the number of
rocessors or GPUs.

For the unstructured mesh, in Test 1 we have tuned the threshold like in the structured case, while in Test 2 we have performed
strong scaling test, fixing the global size of the problem while varying the number of processors or GPUs for the three refinements
f the mesh.

. Numerical results on structured meshes

We have first considered the structured mesh, discretizing the truncated ellipsoid described in Section 2. Snapshots of the
6

umerical solutions for the potentials on the epicardial surface as a structured mesh are shown in Fig. 5.
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Table 4
AMG threshold calibration, structured mesh. Results for Hypre GPU solver. Itellip, mean: average CG iterations per timestep for the
elliptic solver. 𝑇ellip, mean: average CG solution time (in s) per timestep for the elliptic solver.

Threshold 0.25 0.3 0.4 0.5 0.6 0.7

Itellip, mean 23.30 19.29 13.92 22.81 24.57 32.11
𝑇ellip, mean (s) 9.6E−02 7.4E−02 5.6E−02 1.0E−01 1.1E−01 1.5E−01

Table 5
AMG threshold calibration, structured mesh. Results for Hypre CPU solver. Same format as in Table 4.
Threshold 0.25 0.3 0.4 0.5 0.6 0.7

Itellip, mean 6.84 7.76 11.90 6.27 8.84 11.30
𝑇ellip, mean (s) 2.9E−02 3.1E−02 4.5E−02 2.4E−02 3.1E−02 3.6E−02

Table 6
AMG threshold calibration, structured mesh. Results for GAMG CPU solver. Same format as in Table 4.
Threshold 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Itellip, mean 143.1 66.17 64.03 52.47 44.85 42.18 9.50 9.64
𝑇ellip, mean (s) 4.4E−01 1.6E−01 1.7E−01 1.8E−01 1.8E−01 1.8E−01 6.0E−02 7.0E−02

6.1. Test 1 - AMG threshold calibration

In the first test, we have studied the behavior of the average solution time per timestep for the elliptic equation while varying
he threshold parameters, i.e. the threshold for the GAMG preconditioner and the strong threshold for Hypre. These parameters act
n the coarsening step of the algorithm and the best choices for them are problem dependent [30,31]. For each implementation of
he preconditioner employed, we have performed tests with different threshold parameters on a single node, exploiting 4 CPUs or
GPUs for each test. The geometry considered is the truncated ellipsoid discretized by a 32 × 32 × 16 hexahedral mesh. For each

multigrid implementation we have reported the CG iterations and the solution times for the elliptic system. In Tables 4–6 we have
reported the results for Hypre on GPU, Hypre on CPU and for GAMG on CPU, respectively. As expected, only CG iterations and
solution times for the elliptic equation are affected for varying the threshold parameters. Optimal results are obtained with a strong
threshold of 0.4 for Hypre on GPU, 0.5 for Hypre on CPU and 0.06 for GAMG. Different libraries for parallel matrix operations are
responsible for the slightly different results between the GPU implementation and the CPU one.

6.2. Test 2 - strong scaling

We have performed here a strong scaling test, by fixing the global size of the problem while increasing the number of GPUs or
CPUs. As in the previous test, we have studied the average solution time per timestep for the elliptic and parabolic equations and
for the membrane model (TP06). We have also reported the average number of CG iterations per time step for both the parabolic
and elliptic systems. Regarding the elliptic system, the setup of AMG is the one described in the previous section. We fix the global
size of the problem by employing a 128 × 128 × 64 mesh, leading to a total of 2 163 330 DOFs. The results reported in Figs. 1 and
2 have shown that all solvers are scalable in terms of CG iterations, which remain almost bounded when increasing the number
of the CPUs or GPUs. The solution times on GPU are not scalable (where here scalability is intended in the sense that it presents
adequate time reduction, despite not halving when the number of workers is doubled), whereas on CPU they are scalable up to
128/256 cores. However, the solution time for the elliptic system with the Hypre GPU solver is significantly lower than with the
CPU Hypre and GAMG solvers. The results reported in Fig. 3 (left panel) show that the membrane model solver is scalable both
on CPU and GPU. Moreover, the solution times on GPU are about two order of magnitude lower than on CPU. Fig. 3 (right panel)
shows that, in terms of total solution time, the best performance is obtained for GPU. This performance cannot be achieved using
CPU.

6.3. Test 3 - Weak scaling

We have performed here a weak scaling test, by fixing the local size of the problem while increasing the number of GPUs or
CPUs. In Tables 7–9 we have reported the average solution time per timestep for the elliptic and parabolic equations and for the
membrane model (TP06). We have studied also the average number of CG iterations per time step for both the parabolic and elliptic
systems. Regarding the elliptic system, the setup of AMG is the same previously described. The local size of the problem is fixed
such that each CPU/ GPU handles a local mesh of 16 × 16 × 16 elements, for a total amount of 9826 DOFs per worker.

Data reported in Tables 7–9 have shown that in terms of CG iterations the solvers are scalable, with an argument similar to the
previous section. Solution times for the elliptic equation with Hypre on GPU are not scalable, but the results seem to be affected by
a synchronization overhead due to idle threads in the GPUs. Data relative to CPU, both for GAMG and Hypre show instead good
weak scalability, with solution times which are overall comparable, increasing the number of cores, while keeping fixed the local
size of the problem. Similar comments can be made regarding the parabolic equation for both CG iterations and solution time (see
7

Fig. 4). We have also observed very good scalability with both CPUs and GPUs for the solution time of the membrane model.
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Fig. 1. Strong scaling, structured meshes. Comparison of CG iterations (left) and solution time (right) for the parabolic solver on GPU or CPU.

Fig. 2. Strong scaling, structured meshes. Comparison of CG iterations (left) and solution time (right) for the elliptic solver on GPU or CPU.

Fig. 3. Strong scaling, structured meshes. Comparison of solution time for the membrane model on GPU or CPU (left). Total solution time per timestep, given
as the sum of parabolic, elliptic and membrane solution times on GPU or CPU (right).

6.4. Test 4 - simulation of the whole heartbeat

In this test, the simulation has been ran for a whole heartbeat, namely 500 ms, on the structured mesh.
In particular, we have considered the maximum number of DOFs that can be handled by the memory (i.e. 8 487 168,

corresponding to a FEM mesh of 256 × 256 × 128 elements) when Hypre is employed as preconditioner and solved the problem
exploiting 4 GPUs, namely all the GPUs available for a single node (see Table 10). Then, we have done the same test for 32 CPUs,
all the processors available on a single node for a 128 × 128 × 64 mesh, yielding a total amount of 1 073 280 DOFs, namely the
maximum number of DOFs that can be handled by the memory (240 GB) when using GAMG as preconditioner.

We have also performed other tests on a 128 × 128 × 64 mesh with 4 GPUs and 32 CPUs with Hypre in order to compare GAMG
8

and Hypre performance on the same setup. In Figs. 6–8 we have reported for each simulation timestep the number of iterations for
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Table 7
Weak scaling on GPU, structured meshes. CG preconditioned by Hypre BoomerAMG GPU as elliptic solver and unpreconditioned
CG as parabolic solver. Membrane model solved on GPU. BoomerAMG Threshold = 0.4. Itparab, mean: average CG iterations per
timestep for the parabolic solver. Itellip, mean: average CG iterations per timestep for the elliptic solver. 𝑇memb, mean: average solution
time (in s) per timestep for the membrane model. 𝑇parab, mean: average CG solution time (in s) per timestep for the parabolic
solver. 𝑇ellip, mean: average CG solution time (in s) per timestep for the elliptic solver.

Num GPU DOFs Itparab, mean Itellip, mean 𝑇memb, mean (s) 𝑇parab, mean (s) 𝑇ellip, mean (s)

4 37,026 25.80 11.10 1.7E−04 1.4E−02 5.0E−02
8 71,874 23.04 16.32 2.3E−04 5.1E−02 3.4E−01
16 141,570 21.09 15.82 5.2E−04 9.3E−02 7.0E−01
32 278,850 17.21 7.29 1.0E−03 1.5E−01 6.8E−01
64 549,250 16.63 19.63 1.1E−03 1.5E−01 1.81

Table 8
Weak scaling on CPU, structured meshes. CG preconditioned by Hypre BoomerAMG CPU as elliptic solver and CG preconditioned
by Block Jacobi as parabolic solver. Membrane model solved on GPU. BoomerAMG Threshold 0.5. Same format as in Table 7.
Num CPU DOFs Itparab, mean Itellip, mean 𝑇memb, mean (s) 𝑇parab, mean (s) 𝑇ellip, mean (s)

4 37,026 3.00 7.45 1.7E−03 2.0E−03 2.7E−02
8 71,874 3.00 69.55 3.1E−03 2.1E−03 3.1E−01
16 141,570 3.00 36.93 6.7E−03 2.3E−03 3.2E−01
32 278,850 3.00 12.02 1.1E−02 2.8E−03 9.1E−02
64 549,250 4.90 13.84 1.4E−02 4.5E−03 1.3E−01
128 1,090,050 4.97 20.48 1.4E−02 5.2E−03 2.5E−01
256 2,163,330 5.00 10.59 1.4E−02 6.7E−03 2.2E−01
512 4,293,378 7.87 7.77 1.3E−02 1.1E−02 2.1E−01

Table 9
Weak scaling on CPU, structured meshes. CG preconditioned by PETSc GAMG CPU as elliptic solver and CG preconditioned by
Block Jacobi as parabolic solver. Membrane model solved on GPU. GAMG Threshold 0.5. Same format as in Table 7.
Num CPU DOFs Itparab, mean Itellip, mean 𝑇memb, mean (s) 𝑇parab, mean (s) 𝑇ellip, mean (s)

4 37,026 3.00 9.50 1.9E−04 2.1E−03 5.9E−02
8 71,874 3.00 10.16 7.8E−04 2.2E−03 1.8E−01
16 141,570 3.00 10.16 1.5E−03 2.3E−03 1.6E−01
32 278,850 3.00 10.27 2.9E−03 2.9E−03 1.6E−01
64 549,250 4.90 10.59 3.1E−03 4.2E−03 7.8E−01
128 1,090,050 4.97 10.36 3.5E−03 7.8E−03 7.7E−01
256 2,163,330 5.00 10.52 3.4E−03 1.1E−02 6.7E−01
512 4,293,378 7.87 13.81 3.2E−03 2.0E−02 4.02

Table 10
Mean times and iterations on a 256 × 256 × 128 mesh for a whole heartbeat. Results obtained for Hypre on 4 GPUs.

Preconditioner Itparab, mean Itellip, mean 𝑇memb, mean (s) 𝑇parab, mean (s) 𝑇ellip, mean (s)

Hypre 4 GPU 26.00 43.62 4.7E−03 7.1E−02 0.80

Table 11
Mean times and iterations for Hypre and GAMG on a 128 × 128 × 64 mesh for a whole heartbeat. On GPU the parabolic problem
is not preconditioned, thus we have an higher number of iterations.
Preconditioner Itparab, mean Itellip, mean 𝑇memb, mean (s) 𝑇parab, mean (s) 𝑇ellip, mean (s)

GAMG 32 CPU 6.53 10.18 1.7E−03 3.5E−02 1.81
Hypre 32 CPU 6.53 4.44 4.7E−03 3.3E−02 2.4E−01
Hypre 4 GPU 26.98 15.22 7.7E−04 2.5E−02 1.1E−01

the elliptic problem and the corresponding solution time, while in Table 11 we have reported the same mean values benchmarked in
the previous sections. We can observe that, at least for our implementation, using GPUs does not significantly change the profiling
9

of the solution procedure, but only reduces the solution times.
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Fig. 4. Transmembrane potential (left) and extracellular potential (right) snapshots on the epicardial surface, represented by the structured mesh. The values of
the displayed map are in mV.
10
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Fig. 5. Weak scaling, structured meshes. Comparison of CG iterations for the elliptic solvers (left) and solution time for the elliptic and parabolic solvers (right)
on CPU.

Fig. 6. Simulation of the whole heartbeat on the structured meshes. Solution time and CG iterations for the elliptic system vs. simulation time for Hypre on 4
GPUs with a mesh of 256 × 256 × 128 elements.

Fig. 7. Simulation of the whole heartbeat on the structured meshes. Iterations for the elliptic system on a whole heartbeat simulation with a mesh of
128 × 128 × 64 elements.

7. Tests on unstructured mesh

In this section we will comment the results of the parallel numerical tests performed using the unstructured mesh as geometry
for solving the Bidomain cardiac model. Snapshots of the numerical solutions for the potentials on the epicardial surface are shown
in Fig. 13.

First, in Test 1 we have studied the threshold parameters for the multigrid preconditioner exploited for the elliptic equation. Then,
in Test 2 we have performed a scaling test on three refinements of the geometry. Since the meshes considered are unstructured, a
precise subdomain decomposition with an equal number of DOFs per worker has not been possible and the local DOFs have been
calculated automatically through the PETSC_DECIDE option.
11
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Fig. 8. Simulation of the whole heartbeat on the structured meshes. Time to solve the elliptic system on a whole heartbeat simulation with a mesh of
128 × 128 × 64 elements.

Table 12
AMG threshold calibration, unstructured mesh (U-mesh 1, DOFs = 71 450). Results for Hypre GPU solver. Itellip, mean: average CG
iterations per timestep for the elliptic solver. 𝑇ellip, mean: average CG solution time (in s) per timestep for the elliptic solver.

Threshold 0.25 0.3 0.4 0.5 0.6 0.7

Itellip, mean 66.89 40.41 38.88 10.29 5.41 4.50
𝑇ellip, mean (s) 3.05E−01 1.77E−01 1.89E−01 5.24E−02 4.46E−02 4.46E−02

Table 13
AMG threshold calibration, unstructured mesh (U-mesh 1, DOFs = 71 450). Results for Hypre CPU solver. Same format as in
Table 12.
Threshold 0.25 0.3 0.4 0.5 0.6 0.7

Itellip, mean 7.77 15.51 10.46 3.06 3.95 12.61
𝑇ellip, mean (s) 5.7E−02 1.0E−01 7.5E−02 3.0E−02 3.2E−02 7.6E−02

Table 14
AMG threshold calibration, unstructured mesh (U-mesh 1, DOFs = 71 450). Results for GAMG CPU solver. Same format as in
Table 12.
Threshold 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Itellip, mean 72.08 60.55 49.28 27.80 44.80 24.49 12.03 11.77
𝑇ellip, mean (s) 1.3E−01 1.1E−01 1.5E−01 5.8E−02 1.0E−01 6.6E−02 4.0E−02 4.3E−02

7.1. Test 1 - AMG threshold calibration

For threshold tuning, we used the first mesh, U-mesh 1, for a total of 71 450 DOFs, solving the membrane model with the
GPU. The best results were obtained around 0.06–0.07 per GAMG, while for hypre, values between 0.5 and 0.6 were considered
of particular interest. Different libraries for parallel matrix operations are responsible for the slightly different results between the
GPU implementation and the CPU one.

The tests in this section were performed on a single node, in particular, if GPUs were used, all those available on the node (4
GPUs) were used, the same procedure was applied using CPUs: in this case, each node had a maximum of 32 physical cores (see
Tables 12–14).

7.2. Test 2 - Strong scaling

In this test we have performed a strong scaling test, solving the problem on each of the three refinements considered. We have
performed tests on both CPU and GPU architectures, exploiting the algebraic multigrid implementations provided by PETSc for
preconditioning the elliptic system. Again, on CPU we have preconditioned the parabolic system using a block Jacobi preconditioner,
while on GPU the parabolic system is unpreconditioned. We notice in general good performance using GPUs instead of CPUs, with
generally lower solution times especially with an higher number of DOFs, which consent to fully exploit the potential of the GPU
acceleration, minimizing losses in time due mainly to synchronization overhead. We also noticed an out of memory error with
U-mesh 3, the finest one and more than 32 GPUs. This is probably a technical issue related to the handling of the copies for the
12
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Fig. 9. Strong scaling, unstructured meshes. Comparison of CG iterations (left) and solution time (right) for the elliptic solver on GPU (Hypre BoomerAMG).
U-mesh 3 goes out of memory with 32 and 64 GPUs.

Fig. 10. Strong scaling, unstructured meshes. Comparison of CG iterations (left) and solution time (right) for the elliptic solver on CPU (Hypre BoomerAMG).

Fig. 11. Strong scaling, unstructured meshes. Comparison of CG iterations (left) and solution time (right) for the elliptic solver on CPU (GAMG).

acceleration device and it is still under investigation. However, up to 16 GPUs, performances are about one order of magnitude
better than the CPU counterpart (see Fig. 9).

In Figs. 10 and 11 are reported the results of the strong scaling test performed on CPU. In Fig. 12 CG iterations and solution
time for all the implementations are compared for the unstructured mesh. While in the structured mesh case results showed better
performance for Hypre in comparison to GAMG, in this case the results are shifted. Also the robustness of GAMG for this case is
13

another result to highlight: its iterations are basically constant.
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Fig. 12. Strong scaling, unstructured meshes (U-mesh3). Comparison of CG iterations (left) and solution time (right) for the elliptic solver on CPU (GAMG and
Hypre BoomerAMG) and on GPU (Hypre BoomerAMG).

8. Conclusions

In this work we have performed scalability tests for the Bidomain cardiac model, focusing in particular on the performance of
the algebraic multigrid implementations provided by PETSc (GAMG and Hypre) for preconditioning the linear system arising from
the discretization of the elliptic system in the parabolic–elliptic formulation of the model.

Tests were performed on CPU and GPU on two different kind of meshes: a structured one and a more realistic unstructured one,
representing a cardiac ventricle. Overall results have shown a general better scaling properties (especially strong scaling) when the
problem is solved on CPU, even if the absolute best performance was obtained when solving the problem on GPU. In particular, in
case of structured meshes we observed that the solution of the elliptic problem on GPU is 3.6 times faster than the CPU counterpart,
whereas in case of unstructured meshes the solution of the elliptic problem is 3.2 times faster than on CPU. From the tests presented
we have also confirmed the scalability properties of AMG used as preconditioner for a more complex problem than the one considered
in [40] and we have provided an extension of the results in [19] with more GPUs, different numerical schemes and an updated
version of the software employed.
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Fig. 13. Transmembrane potential (left) and extracellular potential (right) snapshots on the epicardial surface, represented by the U-mesh. The values of the
displayed map are in mV.
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Table B.15
Technical data for Leonardo.

Theoretical peak performance
CPU (nominal/peak freq.) 1680 GFlops
GPU 73.2 TFlops
Total 74.9 TFlops

Memory bandwidth (nominal/peak freq.) 600/807 GB/s

Fig. B.14. Strong scaling, structured meshes. Comparison of CG iterations (left) and solution time (right) for the elliptic solvers.

ppendix A. PETSc options

In this section we report the PETSc options set for our numerical parallel tests.
For Hypre BoomerAMG, we have considered default options except for the following:

−dm_mat_type $MAT_TYPE # mpiaij or aijcusparse
−dm_vec_type $VEC_TYPE # mpi or cuda
−pc_hypre_boomeramg_strong_threshold $THR # Threshold value

For GAMG instead, we have considered the following non-default options

−dm_mat_type $MAT_TYPE # mpiaij or aijcusparse
−dm_vec_type $VEC_TYPE # mpi or cuda
−pc_GAMG_type agg
−pc_GAMG_agg_nsmooths 1
−pc_GAMG_coarse_eq_limit 100
−pc_GAMG_reuse_interpolation
−pc_GAMG_square_graph 1
−pc_GAMG_threshold $THR # Threshold value
−mg_levels_ksp_max_it 2
−mg_levels_ksp_type chebyshev
−mg_levels_esteig_ksp_type cg
−mg_levels_esteig_ksp_max_it 10
−mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05
−mg_levels_pc_type jacobi

ppendix B. Strong scaling on Leonardo

Strong scaling tests have been reproduced also on LEONARDO machine, which technical details are reported in Table B.15.
On this machine latency using over than 32 CPU lead to higher times if compared to MARCONI100 results and generally a bad

caling. Also, load imbalance between the CPU/GPU workers brought to scaling issues, since we considered the same problem (both
lgorithmically and in terms of memory) on a theoretically more performing machine. Anyway, up to 32 CPU times are generally
etter than the ones recorded on Marconi100 and the scaling ratio is comparable between the two machines, as expected. Also
terations are comparable between the two machines and the stability in iteration of GAMG is confirmed.

In this case, we did not experience the out of memory error on GPU for the unstructured mesh. All the unstructured mesh tests
ave been performed using the U-mesh 3 (see Figs. B.14 and B.15).
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Fig. B.15. Strong scaling, unstructured meshes. Comparison of CG iterations (left) and solution time (right) for the elliptic solvers.
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