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Robust DDoS Attack Detection
with Adaptive Transfer Learning

Mulualem Bitew Anley , Angelo Genovese ∗, Davide Agostinello , Vincenzo Piuri
Department of Computer Science, Università degli Studi di Milano, Italy

ving cybersecurity landscape, the rising frequency of Distributed Denial of Service (DDoS) attacks requires
chanisms to safeguard network infrastructure availability and integrity. Deep Learning (DL) models have emerge
pproach for DDoS attack detection and mitigation due to their capability of automatically learning feature represen
uishing complex patterns within network traffic data. However, the effectiveness of DL models in protecting a
acks depends also on the design of adaptive architectures, through the combination of appropriate models, qualit

gh hyperparameter optimizations, which are scarcely performed in the literature. Also, within adaptive archite
etection, no method has yet addressed how to transfer knowledge between different datasets to improve classifi

In this paper, we propose an innovative approach for DDoS detection by leveraging Convolutional Neural Ne
ptive architectures, and transfer learning techniques. Experimental results on publicly available datasets show th
aptive transfer learning method effectively identifies benign and malicious activities and specific attack categorie

DDoS, Cyber Security, Deep Learning, Transfer Learning.

ction

ted Denial of Service (DDoS) attacks are a signif-
to organizations worldwide (Chadd, 2018). These

e the potential to paralyze networks, making them
to legitimate users and causing severe disruptions

vailability and integrity. The ability to detect and
oS attacks has therefore become vital to ensuring

ce and security of critical infrastructure. Given the
ency and complexity of DDoS attacks in the cyber-
dscape, it is imperative to develop effective intru-

ion systems (IDS) to ensure network infrastructure
d availability. Deep learning (DL) models have
a promising approach for detecting and mitigating

s by automatically learning complex patterns from
ffic data (Diro and Chilamkurti, 2018), (Gümüşbaş
) and various DL models are being developed to
detection of DDoS attacks. However, mainly due

mic nature of attackers’ behavior and evolving cyber
ntaining up-to-date models can be a challenging task
l., 2017). Furthermore, developing DL models for
tection faces another significant challenge due to the
ilability of data required for effective training, with
ence that the scarcity of adequately sized and high-
ing datasets hinders the widespread adoption of DL
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in IDSs. To mitigate this aspect, transfer learning appr
have been considered to train DL models by leveragin
originating from different sources and increasing detecti
curacy (Das et al., 2022). However, no method in the lite
has yet considered the design of DL models trained using
fer learning that can adapt to evolving attacks by using ad
architectures.

This paper proposes a novel methodology based on D
DDoS detection that leverages adaptive architectures in a
fer learning modality, to achieve an accurate classificat
benign vs malicious networks in evolving scenarios. O
proach employs customized CNN models with diverse
configurations, in addition to several publicly available m
such as VGG16, VGG19, and ResNet50. We train the
els, considering both a binary and a multi-label classifi
by adopting transfer learning techniques while adaptive
timizing hyperparameters, introducing a dynamic and fl
approach that enhances the robustness and efficiency of
attack detection.

The remainder of the paper is structured as follows
tion 2 provides an overview of related works in the field
and transfer learning-based DDoS detection and hyperpa
ter tuning. Section 3 presents the methodology and fram
employed in our proposed approach. Section 4 discuss
results and performance analysis of our proposed method
Finally, Section 5 concludes the paper.

itted to Computer & Security May 2
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Works

ext of DDoS attack detection, various studies have
L techniques with significant success. The pa-
beel et al., 2019) and (Cil et al., 2021) evaluate
eness of DL techniques to improve the detection
f DDoS attacks. The work presented in (Shaaban
) delves into the application of the CNN models for
DDoS attack detection within software-defined net-

). Furthermore, (Chen et al., 2019) and (Nugraha
, 2020) introduced multi-channel CNN and hybrid

(Long Short-Term Memory) models. Another
m et al., 2022) introduced a collaborative LSTM-
S detection framework to address the challenges of
affic patterns. These studies showed the promising
CNN-based DL models for the efficient detection of
ks.
tly from the approaches presented above, which only
ingle DL model, the method described in (Elsaeidy
) combines the strengths of various models to en-
the accuracy and the robustness of detection sys-
ermore, (Wei et al., 2021) demonstrated the effec-
integrating a Multilayer Perceptron (MLP) with an
r (AE) for DDoS detection and classification. Com-
these advancements, (Hnamte and Hussain, 2023)
hybrid model combining CNNs and Bidirectional
-Term Memory (BiLSTM) networks. This approach
NNs’ ability in feature extraction and pattern recog-
gside BiLSTMs’ capability to understand sequence
al dependencies in the data streams.
ring the complex landscape of DDoS attacks, it is es-
cognize the heterogeneity of these threats and gain a
sive understanding of the advanced defensive mech-
ired for protecting cloud-based infrastructures. To

e, the work in (Agrawal and Tapaswi, 2019) high-
various DDoS attacks and their corresponding de-
roaches to protect cloud infrastructures. Moreover,
(Venkatesan et al., 2016) presented a moving tar-
technique, shifting proxy servers and remapping

ections, effectively disrupting attackers’ efforts to
d exploit network vulnerabilities. Similarly, (Kansal
017) introduced a method that uses load-balancing

alongside attack proxies to differentiate between ma-
ers and genuine clients, adding an extra layer of se-

hermore, (Jia et al., 2014) developed a cloud-enabled
chanism that employs selective server replication and
lient reassignment, effectively turning victim servers
ic targets to isolate attacks.
nse to the prevalent challenges of scarce labeled data

ng DL models for DDoS detection, current research
the integration of transfer learning techniques. This
roach leverages knowledge from pre-trained mod-

have been trained on extensive datasets, to enhance
ciency and accuracy in tasks constrained by limited

a availability (Masum and Shahriar, 2021). Such
od described in (Wu et al., 2019), which demon-
ffectiveness of transfer learning in IDS, leveraging

knowledge from pre-trained models. Transfer learning h
been applied for DDoS attack detection in IoT environ
For example, the work by (Okey et al., 2023), (Zhang
2021), (Rodrı́guez et al., 2022), (Xue et al., 2022) and (Vu
2020) has demonstrated the adaptation of pre-trained DL
els for IDS in IoT. Furthermore, the works presented in
and Shami, 2022) proposed a CNN-based transfer learni
proach specifically tailored for IDS in the Internet of Ve
(IoV).

Although DL models have demonstrated proficiency in
tifying known cyber threats, they often face challenges in d
ing new or evolving DDoS attack patterns. To address thi
lenge, adaptive DL techniques have been proposed for
attack detection. As an example, the work described in (
et al., 2018) introduced a method based on multiple-kernel
ing, while (Kushwah and Ranga, 2021) employed an im
self-adaptive evolutionary extreme learning approach. F
more, the method introduced in (Agostinello et al., 2023
sists of a DL approach for DDoS attack detection using ad
architectures with an optimized number of neurons.

While DL-based approaches for DDoS detection using
fer learning or adaptive architectures have been proposed
literature, to the best of our knowledge, no approach has y
sidered adaptive architectures in a transfer learning modal
address these gaps, our paper proposes an adaptive DL ap
for DDoS detection within a transfer learning framework

3. Methodology

This section explains our proposed framework for DDoS
tion using DL models trained using the adaptive transfer
ing procedure. The methodology comprises five steps:
preprocessing, ii) CNN models, iii) transfer learning, iv)
parameter optimization, and v) model evaluation and sel
Figure 1 outlines the proposed methodological framewor

3.1. Data Preprocessing

Data preprocessing consists of i) data cleaning, ii) data tra
mation, iii) data dimensionality reduction, and iv) data c
sion

Data cleaning. We initially focused on validating and c
ing inconsistencies and errors within the dataset to ens
integrity for model training. First, we removed columns l
useful values, including socket-related features, and those
solely with zeros. We then eliminated duplicate rows an
containing NaN values. Finally, we replaced all infinite an
values with -1.

Data transformation. This task encompasses dataset
formation aimed at ensuring consistent numerical values
diverse datasets. Initially, we achieve this by normalizi
merical values within the [0, 1] range through the mi
method. Additionally, categorical features undergo label e
ing, which converts categorical values into numerical co
parts. This process utilizes two methods: a label encoder,

2
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N
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omprehensive methodology framework for robust transfer
oS attack detection, encompassing A) data preprocessing,
el, C) transfer learning and fine-tuning, D) hyperparameter
, and E) model evaluation and selection.

ch label into a unique numerical value, and a one-
(OHE), which transforms labels into n-dimensional

ors, where n is the number of labels.

nsionality reduction. This step aims to reduce the
features to decrease noise, accelerate training, and
nsistent number of features across diverse datasets.
this reduction, we apply the PCA technique by de-
he optimal number of principal components using
m likelihood estimation (MLE) method, a statistical
r estimating the parameters of a probability distri-
best describes a set of observed data (Ogbuanya,

rsion. The pre-trained CNN models that we con-
paper, VGG16, VGG19, and ResNet50, have been

trained on image datasets. However, network traffic d
are typically captured in non-image formats, such as .
.pcap formats. To enhance the effectiveness of DDoS
detection through the application of transfer learning, it
portant to transform this non-image network traffic data i
image-compatible format suitable for CNNs.

We first scale the numeric features of each dataset to a
of [0, 1] to normalize the data. Following this initia
malization, we apply the quantile transform technique t
feature. This method involves discretizing the normalize
ues into quantiles, which are then mapped onto a new
ranging from 0 to 255. This adjustment aligns the data
with the standard range of pixel intensities used in imag
cessing, facilitating their interpretation as image pixels.
this quantile-scaled data, we generate images for each ca
within the datasets, including various types of network a
and benign traffic.

Initially, these images are created with dimensions o
pixels and are encoded in three color channels (RGB),
allows us to capture and distinguish a broad spectrum
ture variations through color differentiation. If the num
features is lower, we add padding to maintain consisten
ensure that these images are compatible with commonl
pre-trained models such as VGG16, VGG19, and Res
we standardize the dimensions of these initial 9 × 9 ima
224 × 224 pixels, maintaining a three-channel (RGB) for

3.2. CNN Models
In our work, we consider three different customized CN
architectures to evaluate the behavior under CNNs with
ing depths for one-dimensional input vectors, namely i) C
ii) Conv8, and iii) Conv18 and three pre-trained models, s
cally VGG16, VGG19 and ResNet50. For each architectu
explore two variants of classification types: one conducts
classification, distinguishing benign from DDoS attacks, a
other performs multi-label classification, aiding in the id
cation of each specific type of attack. Below, we elabor
the configurations of these customized CNN architecture

Conv4. The customized four-layer CNN applies convolu
processing to the input data, enhances the model’s non-lin
with ReLU activation functions after the first and third
lutional layers, and utilizes max-pooling operations to
sample the data for improved feature extraction.

In this paper, a 1D CNN architecture with 4 layers
signed to meet our task’s demands. Illustrated in Figure
model begins with an input layer (N, 1), followed by C
operations (Convi) using F filters, K-sized kernels, and rel
vation. After the convolution operation, global average p
actively reduces the spatial dimensions. To prevent over
and improve generalization, dropout and regularization
niques (L1/L2) are incorporated into the architecture. D
layers with rates between 0.1 and 0.5 are inserted afte
Conv1D layer, and regularization is applied to the convolu
layers. A dense layer with output dimension H and rel
vation is next. The final layer is a dense layer with O
classes and softmax activation.

3
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K = 3, S = 1, F = 256
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ure 2: Overview of custom 1D CNN models: (A) Conv4, (B) Conv8, and (C) Conv18. These models feature ReLU activation
heir internal layers to introduce non-linearity and use either Softmax (for multi-class classification) or Sigmoid (for binary
sification) in the output layer. Designed to manage varying complexities, the models range from 4 to 18 convolutional layers,

imizing them for efficient feature extraction from a 1D input dataset. Tailored for both simple and complex DDoS attack
sifications, the models are defined by the kernel (K), stride (S), and feature map size (F) and have undergone hyperparameter

imization.

uilding upon Conv4, we extend our model with 8
layers. This expansion enables us to capture more

d abstract patterns within the data. The architec-
d in Figure 2 includes added layers that facilitate a
re extraction process, empowering the model to ex-

that demand a higher level of complexity and feature
on.

e extend Conv4 and Conv8 by incorporating 18 con-
ers. This model, with its increased depth, captures
er hierarchy of features in the dataset representations
2).

er Learning and Fine-Tuning
r, we utilize transfer learning, accompanied by fine-
improve model adaptability and convergence, en-
ient knowledge transfer from a source dataset to a

target dataset. Fine tuning is applied to models pre-train
large datasets to effectively adapt and perform well even
tuned with comparatively smaller datasets. In this way, we
age the learned features from the large dataset, applying
to a smaller, possibly more specific dataset, to enhance le
efficiency and performance.

In our methodology, the optimization process begin
training the source model, which is formalized as follows

Θ∗s = argminΘs
L(Ms(Θs), S ) .

Equation 1 describes the process of iteratively updati
parameters Θs of the source model Ms to minimize th
function L over the source dataset S . The best param
Θ∗s are achieved at the end of this training phase and se
the initial settings for the subsequent deep tuning phase a
to the target model. This sequential approach ensures th
source model’s insights are not discarded but rather enh

4
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ew data context represented by dataset T . Thus, the
om the source model to the target model involves an
eter transfer followed by fine-tuning, as outlined in

Θ∗t = argminΘt
L(Mt(Θt),T ) . (2)

resents the target dataset, and L is the loss function
adapted to the target’s requirements. In Equation 2,
ing starts from the parameter set Θ∗s, thus leveraging
ed state to accelerate and refine the learning process
method is particularly effective for scenarios where
nd target datasets are related but distinct enough to
-tuning, such as in domain adaptation tasks.
ally, for binary classification scenarios, we employ
ss-entropy loss:

, y′) = −[y · log(y′) + (1 − y) · log(1 − y′)]
]
, (3)

the ground truth label (0 for benign, 1 for DDoS)
e predicted probability of DDoS by the model. In
classification, we have employed a categorical cross-
s:
[
L(y, y′) = −

∑
[y · log(y′)]

]
, (4)

y′) is the categorical cross-entropy loss, y is a one-
vector representing the true class labels, and y′ is a

edicted class probabilities produced by the model.

parameter Optimization
eters play a critical role in determining the model’s

e and effectiveness. The following hyperparame-
lected and tuned for optimal results: learning rate,

dropout rate, regularization parameters (L1 and L2),
r of layers. The rationale behind the selection of
-parameters stems from their significant impact on
s performance and generalization ability. By tun-
perparameters, we aim to achieve the best trade-off

curacy, computational efficiency, and model robust-
itionally, we consider the specific requirements of
ction in cybersecurity, including the diverse range
enarios and the distinct characteristics of network

n determining the optimal hyperparameter values.
comes to hyperparameter optimization, several tech-
be employed, including random search, grid search,
timization, and hyperband. Hyperband improves on
rch by efficiently prioritizing configurations using
loit principles, allocating resources more effectively
best settings. In this paper, we have used the hy-
ras library for hyperparameter tuning. We opted for
ch due to its well-balanced trade-off between time,
ilization, and performance.
paper, we have employed a four-step approach for
and hyperparameter optimization in our models.
finition. We select and define the specific DL ar-

ailored to our dataset, establishing the foundation for

Algorithm 1: Adaptive hyperparameter optimization
for DDoS attack detection

Input: Preprocessed dataset df
Output: Optimized model with the best hyperparameter

combinations
Initialization: Initialize the model;
Define Search Space and Tuner: Hyperband tuner;
Hyperparameter Tuning: Perform hyperparameter tuning
for i in specified epoch range do

for batch size (bs) from 16 to 512 do
for dropout rate (dr) from 0.1 to 0.5 do

Learning Rate Variation: If learning rate (L
is between 0.001 and 0.1;

Test different learning rates within the
specified range;

Unit Variation: For each number of units [32
64, 128, 256, 512];

Experiment with different unit
configurations;

Hyperband Search: Apply Hyperband searc
algorithm to identify best model configuratio

Best Hyperparameter Combination: Retrieve the best
hyperparameter combination that resulted in the highest
performance;

Train Model with Best Hyperparameters: Retrain the
model using the identified best hyperparameter combinati

Save Optimized DL Model: Store the optimized model fo
future use;

our optimization process. ii) Hyperparameter selection
identify the hyperparameters for tuning, specific to the c
DL architecture. iii) Search space definition. We establ
search space for each hyperparameter by specifying the
sible range or values, iv) Search algorithm specification
apply the hyperband search algorithm to efficiently navig
hyperparameter space.

We executed the algorithm specified in Algorithm 1
lizing the defined search space. In this context, units r
the number of neurons in a given layer of our neural ne
model.

4. Experimental Results

4.1. Databases used and Preprocessing
To evaluate the performance of our proposed adaptive tr
learning models, we selected four well-known datasets
ber security: KDDCup’99 (Bay et al., 2000), UNSW-
(Moustafa and Slay, 2015), CSE-CIC-IDS2018 (Shara
et al., 2018), and CIC-DDoS2019 (Sharafaldin et al.,
These datasets are widely recognized as industry benchm
the domain of cybersecurity (Gümüşbaş et al., 2020; Shara
et al., 2017). They encompass a wide spectrum of attack s
ios, providing us with the means to effectively train DL m
to detect a variety of attack types. Specifically, we chose U
NB15 for its realistic network traffic patterns, KDDCup’
its comprehensive set of network intrusions, CSE-CIC-ID
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ffic types and their cardinality from the preprocessed CIC-DDoS2019, CSE-CIC-IDS2018, UNSW-NB15, and KDDcup’99 d
DDoS2019 CSE-CIC-IDS2018 UNSW-NB15 KDDCup’99
e Cardinality Traffic Type Cardinality Traffic Type Cardinality Traffic Type Cardin

4,396,770 Benign 6,412,040 Benign 321,283 Benign 97
2,510,574 DoS attacks-GoldenEye 41,406 Generic 215,481 DoS 391
1,112,902 DoS attacks Slowloris 9,908 Exploits 44,525 U2R

891,220 DDoS attacks-LOIC-HTTP 575,364 DoS 16,353 R2L 1
687,524 DDoS attacks-LOIC-UDP 1,730 Reconnaissance 13,987 Probe 4
484,070 DDoS attacks-HOIC 198,861 Fuzzers 24,246 -
114,179 DDOS attacks-slowHTTP Test 55 Analysis 2,677 -
113,252 DoS attacks-HULK 145,199 Backdoor 2,329 -
99,154 - - Shellcode 1,511 -
48,469 - - Worms 174 -
31,052 - - - - -
1,638 - - - - -

414 - - - - -

10,491,218 Total 7,384,563 Total 642,566 Total 494

ern attack and traffic types, and CIC-DDoS2019 for
DDoS attack scenarios. This diversity allows us to
robustness and efficacy of models across different

twork environments and attack vectors. In the fol-
delve into detailed explanations of these datasets and
onding preprocessing.

9 dataset (Bay et al., 2000). The KDDCup’99
specifically created for the KDDcup 1999 compe-
aimed to develop effective methods for detecting

d access and malicious activities in computer net-
is dataset includes an extensive collection of net-
ction records, approximately 5 million entries. This
prehensively includes both normal connections and
cyber-attacks, classified into four major categories.

ks consist of DoS-based (back, LAND, ping of death,
eptune, and smurf attacks), U2R (buffer overflow,
e, perl, and rootkit attacks), R2L (ftp-write, guess-
map, multihop, PHF, spy, warezclient, and warez-
ks), and probe-based (port sweep, IP sweep, NMAP,
ttacks). Each network connection record is charac-
2 features (Aggarwal and Sharma, 2015).
ormed data preprocessing for this dataset following
res outlined in Section 3. Initially, we converted the
data into numeric values. Next, we normalized the
et using the min-max normalization method to scale
thin a standardized range of 0 to 1. To enhance data

identified and removed duplicate rows, NaN val-
g values, and columns containing only zero values.
cting normalization and data quality enhancement
the dataset consists of 494,020 rows and 42 features.

15 dataset (Moustafa and Slay, 2015). This dataset
nique attack types and 49 features. The attack cate-
ist of Analysis, Fuzzers, Backdoors, DoS, Exploits,
ance, Generic, Shellcode, and Worms. These attack
a wide range of cyber threats, enabling a thorough
of IDS. After preprocessing, we retained 642,566
features for further analysis.

CSE-CIC IDS2018 dataset (Sharafaldin et al., 2018)
dataset records network traffic in a controlled lab environ
capturing both benign traffic and seven distinct cyberattac
narios. The attacking infrastructure involves 50 machines
the victim organization consists of 5 departments, comp
420 machines and 50 servers. The dataset consists of ca
network traffic and system logs from each machine (Shara
et al., 2018). This dataset encompasses diverse attack s
ios, including DoS, DDoS, port scanning, and maliciou
activities. To support ML algorithms, the dataset creator
specifically processed a version tailored for this purpose
processed version is accessible as a set of CSV files,
porating 80 features extracted from the captured traffic
CICFlowMeter-V3. This paper focuses specifically on seg
of the dataset related to DDoS and benign traffic. The d
contains information about seven types of DDoS attacks:
enEye, Slowloris, Hulk, SlowHTTPTest, LOIC-HTTP,
LOIC-UDP, and benign network traffic.

We performed the preprocessing and discovered a
moved duplicate rows in the dataset, eliminating 3,708,1
dundant entries. Additionally, we removed 17 columns,
comprised socket-related features and only zero values.
conducting normalization and data quality enhancement
dures, the dataset consists of 7,384,563 rows and 66 fe
Figure 3 presents samples of the converted images from
class, ranging from Class C0 to C7. Class C0 represents b
traffic, while classes C1 to C7 represent different types of
traffic.

CIC-DDoS2019 dataset (Sharafaldin et al., 2019). The
offers comprehensive data on various DDoS attack vecto
cluding UDP flood, TCP SYN flood, and HTTP flood.
specifics facilitate a nuanced analysis of distinct attack c
teristics. The CIC-DDoS2019 dataset encompasses 18
of attacks, including both reflection- and exploitation-ba
tacks such as DrDoS-LDAP, DrDoS-MSSQL, DrDoS-Net
DrDoS-NMP, DrDoS-SSDP, DrDoS-UDP, UDP-lag, W
DoS, Syn, TFTP, DrDoS-DNS, DrDoS-NTP, Portmap

6
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Figure 3: Representative samples showcasing converted images from each category, ranging from Class 0 to Class 7,
derived from the CSE-CIC-IDS2018 dataset. The classes include: Benign Traffic (C0), DDoS Attacks - LOIC-HTTP
(C1), DDoS Attack - HOIC (C2), DoS Attacks - Hulk (C3), DoS Attacks - GoldenEye (C4), DoS Attacks - Slowloris (C5),
DDoS Attack - LOIC-UDP (C6), and DoS Attacks - SlowHTTPTest (C7).

P, MSSQL, UDP, and UDPLag. To streamline the
multi-class classification, we merged similar attacks
eir attack techniques, network behaviors, and nam-
tions. For instance, different types of UDP-based
rDoS-UDP, UDP, UDP-lag, and UDPLag—were grouped
shared characteristic of overwhelming the target with
quests. This merging process, which aligns with ex-
ices in the literature (Akgun et al., 2022) simplifies
without compromising the integrity of the attack

ereby enhancing the manageability and training effi-
odels.
uently, the dataset now profiles 12 distinct attack
P, UDP, NTP, SSDP, SYN, MSSQL, SNMP, DNS,
DAP, NetBIOS, Portmap, and WebDDoS. Table 1

dataset’s cardinality, while Figure 4 illustrates sam-
converted images from each class in these datasets.
preprocessing, we removed 59,936,580 rows and
filled predominantly with zero values and socket-

ures, which lacked variability, reducing the dataset
n rows and 66 columns.

Evaluation and Selection
owing evaluation metrics were applied in this study.

(ERR). The proportion of incorrect classifications
al observations

ERR =
FP + FN

T P + T N + FP + FN
. (5)

racy (ACC). The percentage of exact predictions out

of the total instances.

ACC =
T P + T N

T P + T N + FP + FN
= 1 − ERR .

• Precision (PR). Also known as false negative rate (
it is the ratio of correct positive predictions (TP)
total positive predictions of the model.

PR =
T P

T P + FP
.

• Recall (REC). Also known as detection rate (DR)
positive rate (TPR), it is the percentage of correct p
predictions (TP) on the total of positive instances.

REC =
T P

T P + FN
.

• F-Score (FS). Also known as f1-score, it is the har
mean of the precision and recall metrics. It is esp
useful when class distribution is imbalanced:

FS =
2 · REC · PR
REC + PR

.

4.3. Results and Discussion
In this section, we evaluate the performance of our ad
transfer learning approach across different datasets DL m
including CNN architectures, along with fine-tuning pre-t
models for DDoS attack detection. We thoroughly exam
results of the capabilities of both DL and transfer learning
els in DDoS attack detection. The experiments were perf

7
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Figure 4: Representative samples showcasing converted images from each category ranging from Class 0 to Class 11,
including benign traffic from the CIC-DDoS2019 dataset. The classifications are as follows: Benign (C0), NTP (C1),
TFTP (C2), Syn (C3), UDP (C4), MSSQL (C5), DNS (C6), LDAP (C7), DrDoS SNMP (C8), NetBIOS (C9), SSDP
(C10), and WebDDoS (C11).

ned hyperparameters and search space ranges for hyper-
ning strategies
rameters Hyperparameter Values / Search Space

function ReLU, Tanh, Sigmoid
its 32, 64, 128, 512
ut rate 0.1 – 0.5
ng rate [1e-3, 1e-4, 1e-5]
ch [10, 20, 30, 40]
size 16 – 512

ization L1, L2

le Colab Pro, with GPU enabled and RAM set to
r data preprocessing and experimentation, we used
h libraries PIL, Dask, Pandas, Keras, and Sci-Kit
partitioned the dataset into three segments: 40% for
% for validation, and the remaining 40% for testing.
n in Table 2, we define the search space for hyper-

earning rates as [1e-3, 1e-4, 1e-5], to find the value
efficient convergence without causing overshooting

vergence. For batch size, common values range from
nd finding the optimal batch size can impact training

eight updates. We tune the dropout rate between

0.1 and 0.5 to prevent overfitting while preserving useful
mation. Moreover, we test different activation functions,
Sigmoid, or Tanh, to identify the one that allows the mo
capture non-linear relationships. We adjust the number o
den layers and neurons in each layer to find the optimal b
between model complexity and generalization ability. W
sidered layer configurations [32, 64, 128] or [64, 128, 256
and evaluated their impact on performance. We also cons
L1 and L2 regularization techniques to find the best tra
between reducing over-fitting and model performance.

4.4. Customized CNN and Pre-trained Models Transfer L
ing Results

CNN customized model. We trained the custom CNN
els using the Adam optimizer. The loss functions we
egorical cross-entropy for multiclass classification and
cross-entropy for binary classification.

Conv4 achieved an accuracy of 99.90%, Conv8 rec
99.94%, and Conv18 reached 99.88% in identifying benig
sus DDoS attack traffic within the CIC-DDoS2019 datas
multi-class classification of specific attack types, Conv
Conv8 demonstrated accuracies of 99.84% and 99.82
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uracy results of transfer learning source model for binary
ss classification

Accuracy
Dataset Conv4 Conv8 Conv18

CIC-DDoS2019 99.90 99.94 99.88
CSE-CIC-IDS2018 99.82 99.81 99.73

UNSW-NB15 98.78 98.71 98.35
KDDCup’99 99.42 99.67 99.59

CIC-DDoS2019 91.99 91.84 91.76
CSE-CIC-IDS2018 99.84 99.82 96.98

UNSW-NB15 97.51 97.55 97.61
KDDCup’99 95.12 95.95 95.95

uracy evaluation of models in detecting benign to attack
ion tasks transferred to various target datasets.

Target dataset
el CIC-DDoS2019 CSE-CIC-IDS2018 UNSW-NB15 KDDCup’99

4 99.81 99.78 99.73
8 99.92 99.67 99.88
8 99.99 99.92 99.94

4 99.67 99.32 99.48
8 99.81 99.46 99.74
8 99.88 99.46 99.78

4 98.82 99.21 98.24
8 98.88 99.23 98.46
8 98.73 99.42 98.33

4 96.25 99.04 95.24
8 97.02 98.33 96.34
8 96.66 98.13 98.46

uracy evaluation of models in multiclass attack detection
rred to various target datasets.

Target dataset
el CIC-DDoS2019 CSE-CIC-IDS2018 UNSW-NB15 KDDCup’99

4 99.83 98.04 96.98
8 99.91 98.23 98.76
8 99.92 99.42 98.88

4 89.92 99.34 99.84
8 89.52 99.42 99.91
8 93.62 99.84 99.96

4 83.42 92.34 94.24
8 86.78 93.64 94.46
8 88.92 93.86 94.33

4 85.25 95.04 96.84
8 85.54 95.33 96.04
8 85.66 95.13 96.81

on the CSE-CIC-IDS2018 dataset, while Conv18
.61% on the UNSW-NB15 dataset.
ore the transferability and adaptability of models
pecific networks or datasets to new and diverse en-
, we assess their performance by applying them to
et datasets. The target datasets used in this eval-
-CIC-IDS2018, CIC-DDoS2019, KDDCup’99, and
15 enable a comprehensive assessment of the mod-
ility across diverse network environments.
trained on the CIC-DDoS2019 dataset, the source

onstrated robust adaptability across various target

datasets. In binary classification tasks, the Conv18 model
ferred from CIC-DDoS2019 to the CSE-CIC-IDS2018 d
achieved an impressive 99.99% accuracy in distinguishi
nign from DDoS network traffic. Refer to Table 4 for d
results.

The proposed model exhibits a consistent adaptation
source to target dataset transfers, demonstrating minimal
ences in binary classification performance. This under
the model’s robust adaptability across various datasets.
tionally, the model achieves better results compared to s
domain training. These findings explicitly confirm th
approach permits the achievement of greater accuracy r
to single-domain training.

In multiclass classification, the transfer of the Conv18
from CIC-DDoS2019 to CSE-CIC-IDS2018 yielded a
mance of 99.92%, while the reverse transfer achieved 93
as detailed in Table 5. Comparing the present results to
findings reveals a consistently high accuracy level of the m
when transferred from CIC-DDoS2019 to other datasets, i
binary and multiclass tasks. These results suggest the m
effective adaptation to the target dataset’s characteristic
ticularly as dataset features increase.

In transferring a model from a dataset with fewer fe
and instances to a larger and more complex target datas
observed decreased accuracy values in specific attack typ
tification. For instance, Conv4 achieved a score of 8
when transferred from UNSW-NB15 to the CIC-DDo
dataset. This can be attributed to significant dissimilari
dataset characteristics, such as size and complexity, lead
challenges in the model’s adaptation to diverse patterns.
versely, when transferring a model trained on a larger and
complex dataset to a smaller and less complex target d
we observed improved accuracy. For instance, Conv18,
transferred from CIC-DDoS2019 to the KDDCup’99 d
demonstrated enhanced performance metrics.

The model’s effectiveness largely arises from its rob
pability to analyze and utilize feature patterns from the ext
source dataset. This capability enables it to adapt to the
turally simpler target dataset efficiently. Such flexibility d
strates the model’s capability to transfer knowledge effec
especially from a well-labeled, larger dataset to a smalle
This feature is precious for reducing the necessity of ext
data labeling while maintaining high accuracy in predicti
the target dataset.

Pre-trained models. In this experiment, we employed a tr
learning approach to leverage the capabilities of pre-train
ageNet CNN architectures, specifically VGG16, VGG1
ResNet50. The approach involved the transformation o
work traffic data into image representations, a process v
illustrated in Figure 3.

For the CSE-CIC-IDS2018 dataset, a subset of 41,8
ages were selected, which depicted characteristics of eith
nign or malicious traffic. We then extended our analy
distinguish between multiple types of DDoS attacks in ad
to benign traffic. This required a more comprehensive
images to adequately represent each class, resulting in t
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ormance metrics on various datasets and VGG16, VGG19,
0 pre-trained models for binary classification

Model Accuracy % Recall Precision F1-score

VGG16 99.99 99.98 99.99 99.98
VGG19 99.99 99.96 99.97 99.98

ResNet50 99.94 99.96 99.98 99.97

VGG16 99.99 99.99 99.98 99.98
VGG19 100.00 100.00 100.00 100.00

ResNet50 99.98 99.98 99.78 99.82

VGG16 98.36 97.68 98.70 98.86
VGG19 98.64 98.68 98.68 98.67

ResNet50 98.60 98.62 98.67 98.65

VGG16 99.69 99.98 99.99 99.98
VGG19 99.90 99.96 99.97 99.98

ResNet50 99.56 99.96 99.98 99.97

ormance metrics on various datasets and VGG16, VGG19,
0 pre-trained models for multi-class classification

Model Accuracy % Recall Precision F1-score

VGG16 92.19 92.56 92.30 92.28
VGG19 92.65 92.29 92.24 92.91

ResNet50 91.71 91.21 91.82 91.03

VGG16 99.21 99.21 99.21 99.21
VGG19 99.97 99.98 99.98 99.98

ResNet50 99.81 99.82 99.79 99.80

VGG16 97.58 97.92 98.68 98.42
VGG19 97.59 97.63 97.63 97.63

ResNet50 97.36 97.23 97.04 97.64

VGG16 97.46 97.23 97.49 97.98
VGG19 98.99 98.96 98.97 98.98

ResNet50 98.94 98.96 98.98 98.97

images.
ase of the CIC-DDoS2019 dataset, we had 78,368
ering 12 different attack classes for training, testing,
ion. Sample images from this dataset are displayed
. In addition, we used 12,154 images from the
9 dataset and 5,629 images from the UNSW-NB15
our experiment, we tailored pre-trained models for
multiclass DDoS attack detection. Additionally,
ur comprehensive model optimization, we applied

rparameter adjustments across all models, including
ayer ranges in our framework.
ults presented in Table 6 demonstrate the binary clas-

cacy of the VGG16, VGG19, and ResNet50 mod-
rentiating between benign and DDoS attack traffic.
e VGG19 model achieves a score of 100% in accu-
, precision, and F1-score on the CSE-CIC-IDS2018
ithin the CIC-DDoS2019 dataset, VGG16, VGG19,
t50 all demonstrate high accuracy, with scores of
.99%, and 99.94%, respectively. For the KDD-
UNSW-NB15 datasets, VGG19 outperforms the

eving accuracy rates of 99.90% and 98.64%. These
hlight VGG19’s superior binary classification capa-
ecially in precisely identifying benign versus DDoS
ack traffic in various network scenarios.
formance metrics detailed in Table 7 present a com-
evaluation of adaptive pre-trained models, including

VGG16, VGG19, and ResNet50, applied to multi-class
fication tasks across diverse datasets. Notably, VGG19 o
forms other models in multi-class classification efficienc
the CSE-CIC-IDS2018 dataset, VGG19 achieves an ac
of 99.97%. In the CIC-DDoS2019 dataset, it leads with
curacy of 92.65%. For the KDDCup’99 dataset, VGG19
with 98.99% accuracy, slightly ahead of ResNet50, which
98.94%. Similarly, on the UNSW-NB15 dataset, VGG19
tains strong performance, achieving an accuracy of 97
These outcomes underscore the adaptability and superior
tiveness of VGG19 in handling multi-class classification
lenges.

The VGG19 model consistently outperforms others
a range of datasets, demonstrating its adaptability in cap
complex patterns effectively. We found that VGG19’s rel
simpler and shallower architecture is particularly effec
capturing essential textural features from the image-form
data. Its use of uniformly small filter sizes might allow
efficiently identify crucial, surface-level discriminative fe
Although ResNet50 shows good performance, especially
KDDCup’99 and UNSW-NB15 datasets, they also requir
extensive training data to achieve optimal performance.

In binary classification tasks, transferred pre-trained m
VGG19 using the CSE-CIC-IDS2018 dataset have scored
accuracy results than traditional DL models. However, in
class classification, transferred custom CNN models, s
Conv18, demonstrate a distinct advantage. Moreover, the i
of transfer learning on model performance is particularly n
in the domains of IDS and DDoS attack detection.

To evaluate the efficacy of our proposed model, w
ducted a thorough comparison with state-of-the-art D
transfer learning models, across similar datasets. Ou
posed Conv18 model achieved 99.92% accuracy in ne
attack identification, compared to a VGG-16 IDS that rea
98.8% accuracy on the CSE-CIC-IDS2018 dataset, as re
by (Okey et al., 2023). Additionally, the pre-trained V
model exhibited 100% accuracy in distinguishing benign
DDoS network traffic in the CSE-CIC-IDS2018 dataset
models presented in (Agostinello et al., 2023) and (Ch
and Márquez, 2021) achieved accuracy rates of 77.29
81.77%, respectively, on the CIC-DDoS2019 dataset for
type classification. In contrast, our model surpassed th
sults, achieving an accuracy of 93.62%. Additionally, i
et al., 2019), the TL-ConvNet model for the KDDCup’99 d
demonstrated an accuracy of 93.86%, while our adaptiv
trained VGG19 model achieved a significantly higher ac
of 98.99%. Furthermore, the Deep Belief Network (
model by (Almogren, 2020) achieved a 96.34% accura
the UNSW-NB15 dataset, with our Conv18 model ach
99.84% accuracy in detecting specific attack types. A
tailed in Table 8, these findings indicate that our mod
forms well in comparison to existing approaches, partic
in DDoS attack detection and specific attack types iden
tion, demonstrating the effectiveness of our employed ad
transfer learning techniques.
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Table 8: Comparison of proposed approach metrics with state-of-the-art methods by dataset and class variants
Dataset Class variants References Model Accuracy (%)

CIC-DDoS2019

Binary Doriguzzi-Corin et al. (2020) CNN 99.87
Our model VGG19 99.99

Multi-class Chartuni and Márquez (2021) DNN 81.77
Agostinello et al. (2023) CNN 77.29
Our model Conv18 93.62

CSE-CIC-IDS2018

Binary Okey et al. (2023) VGG16 98.80
Our model VGG19 100.00

Multi-class Agostinello et al. (2023) CNN 99.88
Our model Conv18 99.92

UNSW-NB15

Binary Du et al. (2023) CNN-LSTM 94.43
Our model Conv18 99.92

Multi-class Almogren (2020) DBN 96.34
Our model Conv18 99.84

KDDCup’99

Binary Du et al. (2023) CNN-LSTM 97.40
Our model ResNet50 99.32

Multi-class Wu et al. (2019) TL-ConvNet 93.86
Our model VGG19 98.99

ions

ks pose significant challenges to organizations world-
their disruptive impact on network infrastructure
and integrity. Building attack detection systems
L holds the promise of achieving high accuracy in
ttack patterns in network traffic data. However, a
ulty in developing DL-based IDS is the scarcity of
d datasets that accurately represent today’s network
ts. In this paper, we proposed an adaptive transfer
mework with fine-tuning and hyperparameter opti-
e employed custom CNN models (Conv4, Conv8,

), along with pretrained models (VGG16, VGG19,
50), trained on cybersecurity benchmark datasets, in-
DCup’99, UNSW-NB15, CSE-CIC-IDS2018, and

2019.
eriments compared the performance of models trained
ithout transfer learning in network traffic classifica-
re-trained VGG19 model excelled in binary classi-
ectively separating benign from malicious network
custom-transferred Conv18 model achieved better

recision, recall, and F1-measure in detecting attack
cularly in multi-label classification scenarios. Com-
he current results with prior findings reveals a con-
gh accuracy level of the models when transferred
IC-DDoS2019 dataset to others, in both binary and
tasks. These results suggest the models’ effective
to the characteristics of the target dataset, especially
ber of dataset features increases. This shows that
rning proves to be a valuable approach to enhancing
k detection, even with limited labeled data.
ork will enhance the practicality and robustness of
sfer learning models by prioritizing diverse dataset
defense against adversarial attacks, real-time imple-
and scalability.
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