
1

Multi-Dimensional Flat Indexing
for Encrypted Data

Sabrina De Capitani di Vimercati, Senior Member, IEEE, Dario Facchinetti, Member, IEEE,
Sara Foresti, Senior Member, IEEE, Gianluca Oldani, Member, IEEE, Stefano Paraboschi, Member, IEEE,

Matthew Rossi, Member, IEEE, Pierangela Samarati, Fellow, IEEE

Abstract—We address the problem of indexing encrypted data outsourced to an external cloud server to support server-side execution
of multi-attribute queries. Our approach partitions the dataset in groups with the same number of tuples, and associates all tuples in a
group with the same combination of index values, so to guarantee protection against static inferences. Our indexing approach does not
require any modifications to the server-side software stack, and requires limited storage at the client for query support. The
experimental evaluation considers, for the storage of the encrypted and indexed dataset, both a relational database (PostgreSQL) and
a key-value database (Redis). We carried out extensive experiments evaluating client-storage requirements and query performance.
The experimental results confirm the efficiency of our solution. The proposal is supported by an open source implementation.

Index Terms—Data outsourcing, multi-dimensional index, encrypted data, efficient query execution

✦

1 INTRODUCTION

The use of external cloud providers for storing and manag-
ing databases is no more an emerging direction, but a widely
adopted solution for many individual and business scenar-
ios. Since information in the database to be outsourced can
be sensitive, proprietary, or company-confidential, encryp-
tion is typically used to protect data confidentiality against
the cloud server storing and managing the data.

In this so called, honest-but-curious scenario, data remain
unintelligible from the cloud server that can only operate on
their encrypted representation. However, encryption affects
the functionality and the efficient support for fine-grained
access and retrieval of data. This problem has been under
investigation for more than twenty years and many interest-
ing directions have been investigated, including searchable
encryption (e.g., [1]), trusted hardware (e.g., [2], [3]), and
coded metadata working as indexes for the evaluation of
conditions (e.g., [4], [5]). All these approaches represent
valid alternatives depending on the application scenario,
but each bears open problems and challenges, and the
level of their application in practice is still below the ex-
pectations of the research community. Important obstacles
to their wide adoption are the performance impact, the
limited integration with classical database technology and
limited support for query functionality. At the same time,
a new push to the development of practical solutions for
effectively supporting queries over encrypted data is rep-
resented by recent significant technological advancements,
including the wide availability of high-bandwidth inexpen-
sive network connections, novel efficient data management

• S. De Capitani di Vimercati, S. Foresti, and P. Samarati are with the
Università degli Studi di Milano, Italy.
E-mail: firstname.lastname@unimi.it

• D. Facchinetti, G. Oldani, S. Paraboschi, and M. Rossi are with the
Università degli Studi di Bergamo, Italy.
E-mail: firstname.lastname@unibg.it

solutions for server-side storage, and the increase in the
memory and computational capacity available on clients.
These advancements introduce novel opportunities for the
design of indexing structures for supporting query execu-
tion on encrypted data, offering flexibility and performance.
In this paper, we leverage such technological advancements
to design an indexing structure for effective and efficient
execution of queries over encrypted data, which does not
require modifications to the server-side software stack and
is independent from the nature of server-side storage plat-
forms (i.e., relational or key-value).

Indexes over encrypted data provide a coding for the at-
tributes, so to enable evaluation of conditions on them while
not exposing actual values to the storing server. Indexing
must however be done carefully to ensure it does not leak
information. For instance, while coding protects actual val-
ues, a one-to-one correspondence between plaintext values
and indexes clearly makes indexes exposed to frequency-
based attacks (exploiting profile of occurrences of values or
their combination, which would be indeed maintained in
a one-to-one indexing). Also, an order-preserving index to
support range queries would maintain the order of values
in the indexing, hence again leaking information that can
enable reconstructing the values behind the indexes. Hence,
indexes should not leak, in their values, any order.

Frequency-based attacks can be counteracted by destroy-
ing the frequency-based correlation between values and
indexes. The extreme case for this is a one-to-many corre-
spondence (i.e., mapping different occurrences of the same
value to multiple indexes) with no index value appearing
more than once. While destroying frequencies in the index
values, such an approach would clearly prove to be cum-
bersome in query execution. Confusion of frequencies ob-
tained through collision with a many-to-one correspondence
(mapping different plaintext values to the same index) is
by itself not sufficient since high-occurring values would
remain exposed.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

An effective solution to the problem of protecting against
frequency-based attacks is to provide indexing while ensur-
ing a completely flat occurrence of index values through
both multiple index values for the same plaintext value
as well as collision, that is, through a many-to-many cor-
respondence between plaintext values and indexes with
flat index occurrences so to provide confusion and indis-
tinguishability. Importantly, to provide effective protection,
not only individual attributes, but also any combination of
them, should enjoy a flat frequency distribution Unfortu-
nately, the design of such privacy-preserving indexes over
encrypted data is far from being trivial and entails several
interrelated challenges. First, as noted, not only individ-
ual attributes, but also any combination of them, should
be designed to ensure protection against inferences, hence
introducing an inevitable curse of dimensionality. Second,
there is the need to guarantee effectiveness of indexes (in
terms of queries supported and limited overhead caused
by spurious tuples returned to the client due to index
collisions) and efficiency (in terms of low performance over-
head) for query execution. Third, there is the need to limit
the storage required at the client for the indexes supporting
query evaluation.

In this paper, we address the challenges above and
present a novel approach for multi-dimensional indexing that:
is robust against static inference exposure, performs well in
query execution (with support for point and range queries
even involving multiple attributes), and requires limited
storage at the client side.

The remainder of the paper is organized as follows.
Section 2 describes the considered scenario and the rationale
of our approach. Section 3 illustrates our approach to cluster
tuples for indexing based on flat horizontal partitioning of
the original relation. Section 4 presents the definition of
indexes and of the data to be stored at the server and at
the client to enable query evaluation. Section 5 illustrates
the implementation and the extensive experimental evalua-
tion, confirming the effectiveness and applicability of our
approach. Section 6 discusses related work. Finally, Sec-
tion 7 concludes the paper. Appendixes A and B, available
as supplementary material, present the procedure used to
guarantee a valid flat partitioning of the original relation,
and the proofs of theorems, respectively. The artifact of the
software and the scripts that permit the reproduction of all
the experiments reported in the paper are available open-
source at https://github.com/unibg-seclab/flat-index.

2 SCENARIO AND RATIONALE OF THE APPROACH

We frame our work in the context of relational database
systems, the most common and well-known technology for
the management of large data collections, and illustrate our
approach with reference to the outsourcing to the cloud
of a relation r over schema R(a1, . . . , am), with aj an
attribute of r, j = 1, . . . ,m. Our problem is the definition
of privacy-preserving indexes for enabling execution of
queries involving evaluation of conditions over attributes,
considering point (i.e., =) as well as range (i.e., >,≥, <,≤)
conditions. As running example, we consider the problem
of outsourcing the relation in Figure 1(a), where queries
may need to evaluate conditions over attributes State

Name Age State
t1 Abe 34 Ne
t2 Bud 34 Tx
t3 Coy 40 Ne
t4 Doc 34 Wy
t5 Edd 37 Ca
t6 Fox 40 Ak
t7 Gus 43 Ca
t8 Hae 46 Ca
t9 Isa 49 Oh
t10 Jim 55 Wy
t11 Ken 46 Mi
t12 Luc 52 Tx

(a)

IAge IState Tuple
ϵ α t1
ϵ α t2
ϵ α t3
ζ β t4
ζ β t5
ζ β t6
η λ t7
η λ t8
η λ t9
θ δ t10
θ δ t11
θ δ t12

(b)

IAge IState Encblock
ϵ α t1t2t3
ζ β t4t5t6
η λ t7t8t9
θ δ t10t11t12

(c)

Fig. 1: Plaintext relation (a), corresponding encrypted and
indexed version (b), and relation stored at the server (c)

(the domain is the set of the two-letter codes for states in
the USA), and Age. A query we want to support is, for
example, “SELECT Name, Age FROM r WHERE State=“Ca”
AND Age>38”. Figure 1(b) shows a flat indexing with col-
lisions for the relation in Figure 1(a), where index values
are represented with Greek letters. Figure 1(c) shows the
encrypted and indexed version of the relation in Figure 1(a)
to be outsourced at the cloud server, where the encrypted
groups of tuples are represented with a gray background.

The goal of our approach is therefore to define an in-
dexing with collision that both: i) enjoys flat frequencies of
occurrences of index values and combinations thereof and
ii) performs well for query execution, providing support for
both point and range queries, also when multiple attributes
are involved. Such protection and efficiency are achieved by
the careful grouping of tuples for index definition which
employs a recursive multi-dimensional process. Collision
and flattening of indexes produces groups of tuples that
remain indistinguishable one from the other. Such indistin-
guishability is maintained at the physical level by operating
encryption at the level of groups of tuples through a seman-
tically secure encryption and the application of padding to
produce groups all of identical size. The efficiency of the
approach is maintained and favored by a careful realization
of the index at the server.

Our approach tackles the different challenges involved
in the definition and construction of indexing as well as its
realization, addressing the involved challenges in different
steps.

• Partitioning. The first step of our approach is to par-
tition tuples for indexing. Aiming at a flat indexing,
the challenge is providing a partitioning suitable for
query execution (tuples in the same group will be
mapped to the same combination of index values)
and that enjoys flat cardinality of groups, that is,
all groups have the same number of tuples (with
the difference of at most one tuple). The cardinality
of the groups is a parameter (k) of the partition-
ing process that can be arbitrarily set by the data
owner (intuitively, it corresponds to a privacy de-
gree provided by the fact that more tuples collide
in a same group). Our approach to partition tuples
for indexing, ensuring effective and efficient query
execution, leverages a spatial representation of the

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

tuples in a multi-dimensional space. Partitioning is
enforced recursively, operating at each a step a cut
along one dimension of the multi-dimensional space,
and proceeding recursively on each of the subspaces
so produced until all subspaces contain k (or k + 1)
tuples.

• Index construction. With the partitioning producing
groups taking into account multi-attribute values so
to accommodate query execution, the next challenge
is the realization of the indexing taking into account
the overhead in terms of storage and computation at
the client side for maintaining indexing information
and for processing queries. Our solution for the
definition of indexes to be associated with groups
comprises two alternatives: value-based and group-
based indexing, both enjoying limited overhead and
each potentially to be preferred over the other one
depending on architectural considerations. For both
solutions, at the client side, only a compact map
needs to be maintained for translating queries on
plaintext data into queries operating on indexes
stored at the server.

• Seamless realization. The third challenge we address
is the seamless realization of the approach over
current architectural solutions, to enable the use of
privacy-preserving indexing over existing storage
and computational cloud services. We support and
evaluate both relational (PostgreSQL) as well as key-
value (Redis) data management technologies. For
both, we illustrate the organization of the storage and
the execution of queries. Our extensive experimental
evaluation demonstrates the effectiveness and the
efficiency of our approach.

The remainder of the paper is organized following the
steps above, illustrating partitioning (Section 3), index con-
struction and their seamless realization (Section 4), and our
implementation and experimental evaluation (Section 5).

3 PARTITIONING

Our approach for the construction of index values is based
on a partitioning of the tuples in the original relation into
groups of a fixed number of tuples. All the tuples in the
same group are then associated with the same combination
of index values. The number of tuples that must be included
in each group, denoted k, is a parameter that can be arbi-
trarily set. Clearly, a larger k provides more protection, but
also increases the potential overhead of query execution (we
will elaborate more on this in Section 5). In the following,
we introduce the concept of k-flat partitioning (Section 3.1),
illustrate how to recursively partition a relation (Section 3.2),
and present our approach for the computation of a k-flat
partitioning (Section 3.3).

3.1 k-flat partition
The first step of our approach is the partitioning of tuples
in groups of the same size k. Since the cardinality of the
relation may not be a multiple of k, we need to account for
the remainders, which we accommodate by allowing groups
to include at most one tuple more than the k requested (as

needed to fully cover the set of tuples to be partitioned).
Our definition of k-flat partition captures the partitioning
of tuples to produce a maximal flattening of groups with
cardinality k as follows.

Definition 3.1 (k-flat partition) Let r be a relation, and k
be a natural number. A k-flat partition of r, denoted P, is a
partition P = {g1, . . . , gp} of tuples in r such that:

1) ∀g ∈ P, k ≤ card(g) ≤ k + 1;
2) p = ⌊card(r)/k⌋.

The first condition expresses the requirement on the
cardinality of the groups (allowing groups to have either
k or k + 1 tuples, this latter being needed to accommodate
remainders), and the second condition dictates the number
of groups to be the maximum among those that satisfy
condition 1, or - equivalently - the number of groups with
k + 1 tuples to be minimum. By dictating the number of
groups in the partition, the second condition forces exactly
h=(card(r) mod k) of the groups to have k + 1 tuples,
while all the others will have k tuples. In other words, the
condition rules out from consideration partitions that do
not enjoy maximum flattening, that is, that have a number
of groups of cardinality k + 1 larger than the number
of remainders to be accommodated. For instance, assume
card(r)=231 and k=10. Condition 2 would accept only a
partition composed of 23 groups (one of which composed
of 11 tuples, all the others being of 10 tuples) ruling out
of consideration partitions composed of 22 groups (eleven
of which composed of 11 tuples) or 21 groups (all with 11
tuples), which - although satisfying condition 1 - do not
maximize the required flattening of k = 10.

Clearly, for a relation r to have a k-flat partition, the
number of remainders to be accommodated (i.e., the extra
tuples to allocate to groups) must be not greater than the
number of groups composing the partition. For instance,
trivially, no k-flat partition for k = 10 can exist for a relation
with 23 tuples. In other words, with h=(card(r) mod k) and
p = ⌊card(r)/k⌋, it must be that h ≤ p, which is also a
sufficient condition for a k-flat partition to exist, as stated
by the following theorem.

Theorem 1 (Existence of a k-flat partition) Let r be a relation
and k be a natural number such that card(r)≥k. A k-flat
partition P of r exists iff h ≤ p, with h=(card(r) mod k) and
p=⌊card(r)/k⌋.

Given a relation r and a natural number k, we say that r
is k-valid if a k-flat partition exists for r. This is captured by
the following definition.

Definition 3.2 (Validity) Let r be a relation, and k be a
natural number. Relation r is said to be k-valid iff h ≤ p,
with h=(card(r) mod k) and p=⌊card(r)/k⌋.

While the observation in Theorem 1 may seem a non-
issue for the computation of a k-flat partition of r since the
cardinality of r is extremely large and k is very small, it is
an important aspect to take into account in the partitioning
process, which, if not done properly, may easily degenerate.

Our approach to compute a k-flat partition is via a
process recursively cutting a relation in two groups at each
step, until a k-flat partition is reached. In the following,

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

34 40 46 5249

34 37 40 43 46 49 52 55

Oh
Mi
Ak
Tx
Wy
Ne
Ca

34 37 43 46 49 52 5540

34 37 40 43 46 55

Age <= 41.5 Age > 41.5

State
IN

{Ne,Tx}

State
IN

{Ak,Ca,Wy}

State
IN

{Ca,Oh}

State
IN

{Mi,Tx,Wy}

Ak
Ca
Wy
Tx
Ne

Tx
Mi
Wy
Oh
Ca

Tx
Ne

Ak
Ca
Wy

Oh
Ca

Tx
Mi
Wy

Fig. 2: Graphical representation of the cuts performed by
procedure Cut over the relation in Figure 1(a)

when clear from the context, we will use the terms relation
and group interchangeably.

To ensure that our recursive process terminates with the
computation of a k-flat partition, we force the cut at each
step to produce only k-valid relations and to not increase the
number of groups with cardinality k+1. We then introduce
the notion of cut validity as follows.

Definition 3.3 (Cut validity) Let r be a relation and k be a
natural number. A cut (rl,rr), partitioning r into two groups,
is valid iff both rl and rr are k-valid (Definition 3.2) and
h = hl + hr, with h=(card(r) mod k), hl=(card(rl) mod k),
and hr=(card(rr) mod k)

Intuitively, a cut is valid if the two relations resulting
from it are k-valid, that is, a k-flat partition exists for them,
and the total number of groups of cardinality k + 1 is
not increased by the cut. For instance, consider a relation
composed of 233 tuples, and k=10. A cut partitioning it into
two relations of 23 and 210 tuples, respectively, is not valid
due to the non validity of the first relation (which cannot
have a 10-flat partition). Also, a cut partitioning it into two
relations of 117 and 116 tuples, respectively, is not valid
since their k-flat partitions, having respectively seven and
six groups of 11 tuples, cannot represent a k-flat partition
of the original relation. We note that each relation r with
more than k tuples has at least a valid cut, as stated by the
following theorem.

Theorem 2 (Valid cut existence) Let r be a k-valid relation
with card(r)≥k. There always exists a valid cut for r.

Also, any k-flat partition of the relations resulting from
a valid cut of r represents a k-flat partition for r, as stated
by the following theorem.

Theorem 3 (k-flat composition) Let r be a k-valid relation
for a natural number k, (rl,rr) a valid cut for it, Prl a k-flat
partition of rl, and Prr a k-flat partition of rr. P=Prl∪Prr is
a k-flat partition for r.

Since our problem is to group tuples for index construc-
tion, it is important not only to partition tuples as a k-flat
partition to ensure flat indexing, but also to group them in
a way that performs well with respect to query execution.
Intuitively, a partitioning maintaining tuples with the same
or close values for an attribute within the same group as
much as possible behaves better, meaning it introduces less
performance overhead in the execution of queries involving
that attribute, than an approach scattering such values in
different groups. However, as already noted, with multiple
attributes involved, the problem is far from being trivial, as
each dimension represents a candidate to consider.

We introduce our approach by first describing how
we take into consideration the values within tuples so to
provide a partitioning performing well for query execution,
and then describing its tweaking to enforce partitioning to
ensure k-flatness.

3.2 Recursive partitioning
Our approach to partition leverages a representation of
the dataset in a multi-dimensional space and enforces
partitioning through recursive cuts, similarly to what is
done in multi-dimensional anonymization approaches (e.g.,
Mondrian [6]) and in some multi-dimensional indexing ap-
proaches, like quad trees, k-d trees and R-trees. Our problem
and solution bears however several important differences.
As a matter of fact, we need to cluster tuples to produce
indexing performing well for query execution (in contrast
to cluster tuples for data generalization), while ensuring
groups with flat occurrences (in contrast to just require a
minimum group cardinality). Our approach performs re-
cursive cuts considering then a flexible and dynamic order
of values in the different dimensions, and also enforcing
controls and adjustments to ensure flat partitioning as per
Definition 3.1.

Our partitioning process works then in a multi-
dimensional space, with one dimension for each attribute
to be indexed, and where each tuple is the point in such
a space where its coordinate values (i.e., the values of its
attributes) meet. As an example, the space appearing at
the top of Figure 2 is the multi-dimensional representation
of attributes State and Age for the tuples in Figure 1(a).
For the attributes to be indexed, a point in the multi-
dimensional space can correspond to more tuples, which
can be represented as a counter associated with the point.
Since in our example such a value is always 1, we simply
omit it. Note that the tree in Figure 2 is just a representation
of the recursive calls of the cutting process and of the
subspaces it produces, and does not represent the indexing
structure itself, which is defined in a subsequent step over
the subspaces in the leaves.

For the partitioning process and index construction, we
classify attributes to be indexed into two categories:

• continuous attributes (e.g., Age in Figure 1(a)), char-
acterized by a total order relationship on their do-
main, and on which range conditions need to be
supported;

• nominal attributes (e.g., State in Figure 1(a)), which
do not have an order in their domain and hence on
which only equality conditions apply. The domain

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

can support queries for a set of values, all explicitly
represented in the condition.

While the spatial representation conveys an order of
values along a dimension, we maintain such an order fixed,
and corresponding to the order dictated by the domain, only
for continuous attributes, so that partitioning will cluster
together same or close values. By contrast, we adjust the
order of nominal attributes as best suited for the process, as
we elaborate next.

The partitioning process works by cutting at each step
the tuples along one dimension (attribute) in the space
and recursively calling itself on each of the two produced
subspaces. At each iteration, the dimension along which
a cut is to be performed is chosen to be an attribute that
enjoys the highest number of distinct values. If the attribute
is a continuous attribute, the cut divides the tuples into two
groups depending on their value with respect to the median:
tuples with values lower than or equal to the median in
one group and tuples with values higher than the median
in the other group. Should the median correspond to the
maximum value for the attribute in the relation, the values
equal to the median will be put into the second group
(which would otherwise be empty) instead of the first one. If
the attribute is a nominal attribute, the cut divides the tuples
into two groups with a “first-fit decreasing” bin packing
strategy [7], considering values of the attribute in decreasing
order of their frequencies and placing tuples that have the
value under consideration in the smaller group. Figure 2
illustrates the working of the partitioning process for our
running example aiming at a 3-flat partition. The first cut
operates on attribute Age (which has 8 distinct values),
splitting tuples in two groups, the left group has the tuples
with Age lower than or equal to the median (which is 41.5)
and the right group has the tuples with Age higher than
the median. On each of the two spaces, the subsequent
cut operates on attribute State, dividing tuples into two
groups, considering State values in decreasing order of
occurrences and, for each State value under consideration,
placing tuples with such value in the group that is smaller.
In the figure, the order of values in the State dimension
has been rearranged at each step to better represent the cut
graphically (starting from the origin, they always appear
in decreasing order of occurrences). The resulting groups,
reported at the bottom of Figure 2, have all cardinality 3,
and hence no further cut needs to be performed.

3.3 Computing a k-flat partition

Our approach to compute a k-flat partition of a relation r
uses recursive partitioning as illustrated above, enriched to
ensure the validity of the cut performed at each step and the
enforcement of possible adjustments if the cut is not valid.
Figure 3 illustrates the pseudocode of the process, which
comprises three procedures: Partition, Cut, and Check.

Partition. It performs the partitioning recursively calling
itself and calling procedure Cut for performing the cutting
process described above, eventually determining a k-flat
partition P. When called, Partition(r) first evaluates the
cardinality of r (line 1). If such a cardinality is not greater
than k + 1 (i.e., it is either k or k + 1), no further cut needs

INPUT: (r, A, k) /* relation r to partition; attributes A to index; global var. k */
OUTPUT: P /* k-flat partition P of r */
PARTITION(r)
1: if card(r) ≤ k + 1 then P := P ∪ {r}
2: elseif count(distinct A) = 1 then /* all tuples over A are equal */
3: p := ⌊card(r)/k⌋
4: h := card(r) mod k
5: Let {g1, . . . , gp} be a partition of r in h groups of k+1 tuples
6: and p−h groups of k tuples
7: P := P ∪ {g1} ∪ . . . ∪ {gp}
8: else
9: Choose a ∈ A s.t. count(distinct a) is maximum

10: (rl, rr) := Cut(r,a)
11: Partition(rl)
12: Partition(rr)

CUT(r,a) /* cut relation r over attribute a in two k-valid relations rl, rr */
1: if a is continuous then
2: med := median(r[a]) /* compute the median of a */
3: if med = max(r[a]) then
4: rl := {t∈r | t[a]<med}; rr := {t∈r | t[a]≥med}
5: else rl := {t∈r | t[a]≤med}; rr := {t∈r | t[a]>med}
6: m := Check(r,rl,rr)
7: case m of /* move m tuples to produce two k-valid relations rl, rr */
8: > 0: Move m tuples with values for a closest to med from rl to rr
9: < 0: Move m tuples with values for a closest to med from rr to rl

10: else /* a is nominal */
11: ∀v ∈ r[a], cv := count(r[a]=v) /* count cv to be priority of v */
12: Let Q be a max priority queue with the distinct values in r[a]
13: rl := ∅; rr := ∅
14: while NOTEMPTY(Q)
15: v := POP(Q)
16: if card(rl) < card(rr) then rl := rl ∪ {t∈r | t[a] = v}
17: else rr := rr ∪ {t∈r | t[a] = v}
18: m := Check(r,rl,rr)
19: case m of /* move m tuples to produce two k-valid relations rl, rr */
20: > 0: Move m tuples with the minimum count from rl to rr
21: < 0: Move m tuples with the minimum count from rr to rl
22: return rl,rr

Fig. 3: Algorithm for computing a k-flat partition

to be performed and r is added to P. Else, if all the tuples
in r have the same values for all the attributes in the set
A of attributes to index (line 2), it simply splits the tuples
in ⌊card(r)/k⌋ groups each containing either k or k + 1
tuples (as per Definition 3.1). Otherwise (line 8) it picks
an attribute a with the highest number of distinct values
and calls procedure Cut to split the tuples in the relation
along a’s dimension, then recursively calling itself on the
two returned groups.

Cut. Called with a relation r and attribute a as parame-
ters, procedure Cut partitions the tuples in r based on the
values of a, enforcing the process described in Section 3.2,
distinguishing the cases where a is continuous (lines 1-9) or
nominal (lines 10-21). After producing the two groups rl and
rr, it calls procedure Check (lines 6 and 18), which checks
the validity of the computed cut and returns the number m
of tuples to be moved from a group to the other to make the
cut valid (in case it is not), while minimizing the number
of tuples to be moved. The sign (+ or −) of the returned
number indicates the direction of the movement: a positive
number indicates that tuples need to be moved from rl to
rr, while a negative number indicates that tuples need to
be moved from rr to rl (while 0 is returned if the cut is
already valid). To maintain the quality of the computed cut,
the m tuples to be moved from one group to the other are
those close to the median if the cut was on a continuous
attribute (lines 7-9), or those with a value v for a with a
lower number of occurrences if the cut was on a nominal
attribute (lines 19-21).

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

34 37 40 43 46 49 52 55
Ne
Tx
Mi

Wy
Ak
Ca
Oh

g1

g2

g3

g4

MAP
Gid Age State Tuples
g1 [34,40] NeTx t1t2t3
g2 [34,40] AkCaWy t4t5t6
g3 [43,49] CaOh t7t8t9
g4 [46,55] MiTxWy t10t11t12

IAge IState Tuples
ϵ α t1t2t3
ζ β t4t5t6
η λ t7t8t9
θ δ t10t11t12

IG Tuples
γ1 t1t2t3
γ2 t4t5t6
γ3 t7t8t9
γ4 t10t11t12

(a) Spatial representation (b) MAP (c) Value-based (d) Group-based

Fig. 4: Spatial representation of the coverages of the running example (a), corresponding MAP (b), and its value-based (c)
and group-based (d) indexing

Value-based Group-based

SALT
Att Salt
Age σAge
State σState

INDEX Age
Coverage Freq Token
[34,40] 2 τ[34,40]

[43,49] 1 τ[43,49]

[46,55] 1 τ[46,55]

INDEX Age
Coverage Gid
[34,40] g1, g2
[43,49] g3
[46,55] g4

INDEX State
Coverage Freq Token
AkCaWy 1 τAkCaWy

CaOh 1 τCaOh

MiTxWy 1 τMiTxWy

NeTx 1 τNeTx

INDEX State
Coverage Gid
AkCaWy g2
CaOh g3
MiTxWy g4
NeTx g1

Fig. 5: Information stored at the client

The pseudocode of procedure Check and a detailed
description of its working, distinguishing the different cases
of non-validity for a cut and hence of minimum number
of tuples to be moved from one group to the other (and
viceversa) to make it valid, are illustrated in Appendix A.

Theorem 4 (k-flat partition computation correctness) Let r
be a k-valid relation for a natural number k. Partition(r)
terminates and computes a k-flat partition for r.

4 INDEXING AND ENCRYPTION

At the end of the partitioning process, each group in the
k-flat partition contains tuples that must be mapped to the
same combination of index values. The next step is then the
definition of such indexes (Section 4.1), the construction of
the data structures to be maintained at the client for sup-
porting query evaluation (Section 4.2), and the organization
of the encrypted and indexed data to be stored at the cloud
server (Section 4.3).

4.1 Map construction
We start by identifying, for each attribute and each group
of tuples in the partition, the attribute values that the group
covers, specified as an interval for a continuous attribute
and as a set of values for a nominal attribute.

Definition 4.1 (Coverage) Let P be a k-flat partition of a
relation r, a∈A be an attribute to index, and g be a group in
P. The coverage of a in g, denoted g[a], is defined as:

• g[a]=[vl,vu], with vl=min{t[a] | t∈g} and
vu=max{t[a] | t∈g}, if a is a continuous attribute;

• g[a]={t[a] | t∈g}, if a is a nominal attribute.

For instance, with reference to the partitioning pro-
cess in Figure 2, whose result is graphically illustrated by
the spatial representation in Figure 4(a), g1[Age]=[34,40],
g1[State]={Ne,Tx}. We refer to the groups in a k-flat
partition, together with their coverages for the attributes
to index and the tuples in each group, as the MAP of the
partition, formally defined as follows.

Definition 4.2 (Map) Let P be a k-flat partition of a re-
lation r and A = {a1, . . . , an} be a set of attributes
to index. The MAP of P over A is the set of tuples
{⟨g[gid],g[a1],. . .,g[an],g[tuples]⟩ | g∈P}, with g[gid] the
unique group identifier of g, and g[tuples] the set of tuples
in g.

Figure 4(b) reports the MAP for the partition in Fig-
ure 4(a). For simplicity, in the figure and in the remainder
of the paper, we omit the brackets and commas in the
coverage of nominal attributes. For instance, NeTx stands
for {Ne,Tx}.

In the following, we use notation MAP[gid] to denote
the set of all gid of the groups in P, MAP[a] to denote
the support of multiset

⋃p

i=1
gi[a], and µa(c) to denote the

multiplicity of coverage c of a in the multiset. For instance,
with reference to Figure 4(b), MAP[gid]={g1, g2, g3, g4},
MAP[Age]={[34,40], [43,49], [46,55]}, with µAge([34, 40])=2
and µAge([43, 49])=µAge([46, 55])=1.

To define indexes at the level of group of tuples (all
tuples in a group are to be associated with the same
combination of indexes), we define indexes over the MAP.
We investigate two approaches to indexing: value-based
(indexing coverages) and group-based (indexing group ids),
which we then evaluate with respect to the size of the
storage required for the client and the performance in query
evaluation (Section 5).

With value-based indexing, indexes are computed with
respect to coverages (hence producing the same combina-
tion of index values for the tuples in each group), while
mapping different occurrences of the same coverage to
different index values.

Definition 4.3 (Value-based indexing) Let MAP be a map of
a k-flat partition P of relation r over a set A of attributes to
index. A value-based indexing over MAP is a set of functions,
one for each attribute a in A, defined as ιa :MAP[a]→ 2Ia ,
with Ia the domain for a of index values, such that:

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

Value-based Group-based

R
el

at
io

na
l IAge IState Encblock

ϵ α t1t2t3
ζ β t4t5t6
η λ t7t8t9
θ δ t10t11t12

IG Encblock
γ1 t1t2t3
γ2 t4t5t6
γ3 t7t8t9
γ4 t10t11t12

K
ey

-v
al

ue

IAge I IState I I Encblock
ϵ 1 α 1 1 t1t2t3
ζ 2 β 2 2 t4t5t6
η 3 λ 3 3 t7t5t6
θ 4 δ 4 4 t10t11t12

IG Encblock
γ1 t1t2t3
γ2 t4t5t6
γ3 t7t8t9
γ4 t10t11t12

Fig. 6: Information stored at the server

1) ∀c ∈ MAP[a], |ιa(c)| = µa(c);
2) ∀c, c′ ∈ MAP[a], with c ̸= c′, ιa(c) ∩ ιa(c

′) = ∅;
3) ∀a′ ∈ A, with a ̸= a′, Ia ∩ Ia′ = ∅.

In other words, there is a function for each attribute to in-
dex, mapping coverages to sets of indexes such that: 1) each
coverage is mapped to as many indexes as the multiplicity
of the coverage; 2) the sets of indexes of different coverages
are disjoint, and 3) the sets of indexes of different attributes
are disjoint. Figure 4(c) illustrates an example of value-based
indexing for the MAP in Figure 4(b). At the practical level,
value-based indexing for an attribute a can be realized by
using a salt σa for the attribute and a random token τc for
each of its coverages c, and encrypting (with CBC mode)
the token using the salt as initialization vector. Index values
are extracted from the result of encryption as fixed-length
non-overlapping strings of bits.

With group-based indexing, indexes are computed with
respect to group identifiers (hence producing the same index
value for the tuples in each group) while mapping different
group identifiers to different index values.

Definition 4.4 (Group-based indexing) Let MAP be a map
of a k-flat partition P of relation r over a set A of attributes.
A group-based indexing over MAP is an injective function
ιgid:MAP[gid] → Igid, with Igid the domain of index values.

Figure 4(d) illustrates an example of group-based in-
dexing for the MAP in Figure 4(b). At the practical level,
group-based indexing can be realized by simply assigning a
sequential number to each group and then applying a ran-
dom shuffling on all the values; groups are then uploaded
to the cloud server in the order of the group identifier.
This solution guarantees absence of collisions and the most
compact representation of the group identifiers.

4.2 Client-side storage
At the client, a data structure (which we refer to as client
map) needs to be maintained to enable translation of condi-
tions on plaintext values in the queries into conditions to be
executed on the indexed dataset at the server.

For value-based indexing, the client needs to store, for
each attribute a to index, the salt σa to be used as ini-
tialization vector for index generation, and, for each of its
coverages c, the multiplicity of the coverage µa(c) (which
dictates how many index values the coverage maps to) and
the initialization token τc. For group-based indexing, the

maps

4)7) plaintext
 result of q

Query
Translator

6) qc

SERVER

encrypted & indexed relation

1) q

USER

Query Executor

3) qs

5) encrypted
 result of qs

DATA
OWNER

CLIENT

Query Executor

2)

 10101
 11111
 00010
 101010110

 101011100
 111010010
 101011100
 010100101

Fig. 7: Query execution process

client needs to store, for each attribute, the set of coverages
and their corresponding group ids. Figure 5 illustrates the
client map for the value-based and group-based indexing of
our running example.

Translating plaintext conditions into conditions on in-
dex values requires determining the coverages involved
in the query evaluation, that is, including plaintext values
involved in the query. Depending on the conditions ex-
pected to be evaluated, the client map can be organized at
the physical level for providing efficient retrieval of such
coverages. For instance, coverages for continuous attributes
can be stored sorted with respect to their minimum (maxi-
mum, resp.) interval value to support efficient evaluation of
conditions of the form a ≤ v (a ≥ v, resp.) or as interval
trees hence offering a logarithmic cost for searches, at the
price however of more storage space (up to three times as
much).

For nominal attributes, mapping of plaintext values to
coverages can be realized via a bitmap representation of
coverages, with a row for each plaintext value in the actual
domain of the attribute and a bit for each coverage. Since
bitmaps are expected to be sparse, it is advantageous to
consider the use of roaring bitmaps [8], a recent technique
with associated open-source implementation that offers
good performance in terms of size and speed for sparse
bitmaps. Bitmaps and roaring bitmaps allow the efficient
(constant cost) retrieval of all coverages including a value
of interest. Since the cost required for the construction of all
these alternative structures is low (a few seconds for tables
containing millions of tuples) and their size depends on the
distribution of data for a given dataset, all the alternative
structures can be built and the most compact one chosen.

4.3 Server-side storage
At the server side, the relation to be outsourced can be
stored with tuples encrypted and associated with the com-
puted indexes. Since all tuples in a group share the same
indexes, tuples within a group are indistinguishable from
the indexes, and hence query execution always operates at
the granularity of group (either none or all tuples in a group
are to be returned). Given this, encryption can be applied
at the group level, producing a single encrypted block for
the whole group. Thanks to the k-flatness of the partition,
encryption at the level of group enjoys a corresponding

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

flatness on the size of encrypted blocks (provided a small
padding).

At the physical level, the organization of the encrypted
and indexed data depends on the database supported at
the server (e.g., relational vs key-value). Figure 6 illustrates
the encrypted and indexed representation for the relation in
our running example, considering value-based and group-
based indexing, assuming the adoption of a relational and
of a key-value database.

With a relational database, data can be simply stored as
a relation with an attribute for the encrypted block, and an
attribute for each index to be supported (see Figure 6).

With a key-value database, value-based indexing re-
quires storing different key-value structures: a primary one
for the encrypted block and a secondary one for each of
the indexed attributes to be supported, all connected via
a common id. The common id works as a key for the
structure storing the encrypted blocks and as value for the
structures reporting the indexes, with each index working as
key for the corresponding structure. Group-based indexing
is simply realized with a single structure, with as key the
index of the group id and as value the encrypted block (see
Figure 6). The key-value model turns out to offer a natural
mapping for group-based indexing.

Once the encrypted and indexed relation has been stored
at the server, each query q formulated at the client side on
relation r can be translated into a query qs working on the
outsourced relation. Figure 7 illustrates the query execution
process. The translation of q in qs is performed using the
client map. The encrypted tuples retrieved as result of query
qs are sent to the client, decrypted, and filtered through the
execution of a query qc that eliminates possible spurious
tuples (i.e., tuples satisfying qs but not q). Query qc is the
same query as q with the only difference that is executed
over the result of qs and not over relation r.

5 IMPLEMENTATION AND EXPERIMENTS

To verify the effectiveness of our approach, we have realized
a prototype and run a series of experiments. In the remain-
der of this section, we first illustrate the description of the
prototype, which supports both a relational (Postgres) and
a key-value (Redis) realization of our approach. We then
illustrate the experimental results aimed at evaluating the
storage required at the client for the client map (Section 5.1)
and the impact on performance in query evaluation due to
the grouping of tuples (Section 5.2).

Prototype description. Given a dataset to be outsourced,
the prototype computes a k-flat partition (Section 3), builds
the client map, and generates the encrypted and indexed
dataset (Section 4) for its outsourcing at a server supporting
either a relational or a key-value database. The prototype is
written in Python. The computation of the k-flat partition
is realized through a multi-container Docker application
leveraging Apache Spark, using Pandas [9] and Arrow [10]
for improving its efficiency. The client map is made per-
sistent on disk, serialized using Pickle [11], compressed
using the open source Bzip2 library [12], and encrypted
using a non-deterministic authenticated encryption cipher.
The encryption of each group of tuples in the outsourced
relation is obtained by serializing the tuples in JSON format,

1 10
Bandwidth (Mbit)

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

baseline
S=json, C=lz4
S=json, C=none
S=json, C=snappy
S=json, C=zstd
S=msgpack, C=lz4
S=msgpack, C=none

S=msgpack, C=snappy
S=msgpack, C=zstd
S=pickle, C=lz4
S=pickle, C=none
S=pickle, C=snappy
S=pickle, C=zstd

(a) Point queries

1 10
Bandwidth (Mbit)

0

5

10

15

20

Ti
m

e
(s

)

baseline
S=json, C=lz4
S=json, C=none
S=json, C=snappy
S=json, C=zstd
S=msgpack, C=lz4
S=msgpack, C=none

S=msgpack, C=snappy
S=msgpack, C=zstd
S=pickle, C=lz4
S=pickle, C=none
S=pickle, C=snappy
S=pickle, C=zstd

(b) Range queries

Fig. 8: Performance of serialization and compression alter-
natives

encoding them in utf-8 and compressing them using the
open source Zstandard library [13]. Such combination was
chosen after experimenting with various alternatives (JSON,
MessagePack and Pickle for serialization and LZ4, Snappy
and Zstandard for compression) as it proved to to have the
best performance (see Figure 8). The binary object is then
padded and encrypted using a non-deterministic authenti-
cated encryption cipher. We rely on Docker Compose [14]
to automatically build, install, and run the application. As
anticipated at the end of Section 1, all the software is open-
source and available on Github.

The client application focuses on the management of
queries. The client application rewrites queries expressed
over the plaintext relation in queries operating on the en-
crypted and indexed dataset. The rewritten query is sent to
the server application, which is implemented as a separate
container. PostgreSQL is used for the relational database
implementation and Redis for the key-value implementa-
tion. Since Redis does not support key-value stores with
composite keys, to implement our value-based approach we
relied on the execution of a LUA script on the Redis instance.
This script is responsible of retrieving the values of the field
connecting all the key-value structures (working as key for
the structure storing the encrypted blocks and as value for
the structures storing index values) for each attribute in the
query. This request is processed in a single interaction, with
communication latency equal to a single RTT.

The transmission of the query from the client to the
server is implemented using SQLAlchemy [15] or Redis-
py [16], respectively for PostgreSQL and Redis. A SQLite
in-memory database, empty at the start of the application,
post processes the result returned by the server to remove
spurious tuples (i.e., tuples returned by the server due to
index collision but not belonging to the result of the original
query).

Dataset and experiment settings. We have performed ex-
periments on the usa2019 dataset [17], a publicly avail-
able large dataset from U.S. Census Bureau comprising
more than 3M tuples for a total size of 65MB. For the
experiments, we considered a projection of the dataset on
nominal attributes State (ST) and Occupation (OCCP),
and continuous attributes Age (AGEP) and Wage (WAGP).

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

By
te

s p
er

 tu
pl

e

10 25 50 75 100
k

0
200
400
600
800

1000
1200

M
ap

 si
ze

 (K
iB

)
OCCP ST WAGP AGEP

(a) Value-based

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

By
te

s p
er

 tu
pl

e

10 25 50 75 100
k

0

500

1000

1500

2000

2500

M
ap

 si
ze

 (K
iB

)

OCCP ST WAGP AGEP

(b) Group-based

Fig. 9: Size of client maps for each attribute, varying k
(left axis: overall; right axis: bytes per tuple)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

By
te

s p
er

 tu
pl

e

0.5 1.0 1.5 2.0 2.5 3.0
Millions of tuples

0
1
2
3
4
5
6
7
8
9

M
ap

 si
ze

 (%
 o

f p
la

in
te

xt
)

k=10 k=25 k=50 k=75 k=100

(a) Value-based

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

By
te

s p
er

 tu
pl

e

0.5 1.0 1.5 2.0 2.5 3.0
Millions of tuples

0
1
2
3
4
5
6
7
8
9

M
ap

 si
ze

 (%
 o

f p
la

in
te

xt
)

k=10 k=25 k=50 k=75 k=100

(b) Group-based

Fig. 10: Size of client map, varying the size of the dataset
(left axis: % of plaintext; right axis: bytes per tuple)

5.1 Client storage

The size of the client-side map is affected by three factors: 1)
the type (i.e., continuous vs nominal), size, and distribution
of values of the indexed attributes; 2) the indexing approach
(i.e., value-based vs group-based); and 3) the value of k.
For the first factor, the attributes considered from usa2019
represent different characteristics. We then run experiments
for both value-based and group-based indexing, varying the
value of k.

Figure 9 shows the size of the client map for each of
the four attributes of the usa2019 dataset considering the
value-based and group-based indexing, varying the value
of k. The figure also reports, on the right axis, the average
size of the map expressed as bytes per tuple. For both
value-based and group-based indexing, the map size for
continuous attributes (WAGP and AGEP) is smaller than the
one for nominal attributes (OCCP and ST). Furthermore, we
can observe a significant reduction in the size of the map
as k increases, which however implies a higher number of
spurious tuples (see next section).

Figure 10 shows the size of the client map (summing
the size for all four attributes), in terms of percentage over
the size of the dataset (left axis) and of bytes per tuple
(right axis) for different values of k, varying the size of
the dataset (the percentage and the bytes per tuple for
a given database are linearly dependent). The datasets of
various size have been obtained extracting random samples
from usa2019. The graphs show that the size of the map
decreases at the increase of k. As visible from the graphs,
maps created for larger datasets (while being larger in
absolute size) occupy a smaller percentage of the size of the
plaintext dataset. This is maintained over all the samples,
and has been confirmed from other experiments we ran on
different datasets as representative of small and very large

datasets, namely usa2018 [18] (0.5M tuples of 12 MB) and
transactions [19] (sample of 30M tuples of 1.5 GB). For
instance, for k=25, the size of the map in terms of percentage
over the size of the dataset, reporting in the order usa2018,
usa2019, and transactions is: 4.51%, 2.10%, and 1.40%
(for value-based indexing), and 6.66%, 3.60%, and 2.10% (for
group-based indexing). Note that, as size of the dataset, we
considered the projection over the indexed attributes, while
the actual size of the dataset is much larger (containing
also all not indexed attributes). The size of the client map
compared with the size of the dataset is then in practice even
much smaller than what observed in our experiments. As
it can be observed from the reported numbers, and as also
visible from Figure 10, group-based indexing requires, in the
examined datasets, between 50% and 100% more client-side
storage than value-based indexing. However, as we will see
in the next section, it consistently offers better performance.

5.2 Performance

The indexes constructed as illustrated in the previous sec-
tions trivially guarantee that all tuples responding to the
original queries are returned in the encrypted result re-
trieved from the server. However, by design, index collision
(i.e., the fact that different values are mapped to a same
index), clearly implies retrieval of additional tuples that
do not belong to the result of the original queries. These
are removed by the client by re-applying the query locally
as a post processing step [5], [20]. Such additional tuples
bring a potential overhead in query execution due for com-
munication and processing. We discuss first the evaluation
with respect to the number of additional tuples and then
the execution time, comparing them with respect to the
realization of the queries on plaintext values (i.e., offering
no protection on the database content). We also discuss the
impact of latency and bandwidth.

For evaluating performance, we run different sets of
experiments. Each experiment executes in sequence a sam-
ple of queries randomly extracted from a pool of 5.000
queries. The queries in the pool are grouped according to
their selectivity. Our experiments consider queries with a
selectivity of up to 10% of the dataset. These are the most
interesting configurations, where indexes are useful to filter
tuples in query results; queries that return a larger portion of
the dataset may lead to a flat retrieval of the whole dataset.

Additional tuples. We have first evaluated the overhead,
in terms of additional number of tuples downloaded from
the server, for point queries (for all the four attributes of the
usa2019 dataset) as well as for range queries (for the two
continuous attributes). Figure 11 reports the ratio between
the number of tuples in the groups retrieved from the server
and the tuples actually belonging to the query result; the
horizontal baseline at value 1.0 represents the profile of
a query executed on a plaintext database. As visible from
Figure 11, the number of spurious tuples increases with the
increase of k (the larger the groups the greater the number
of tuples returned due to index collision that do not belong
to the result). However, we note that its limited value with
respect to k (the worst overhead is for WAGP reaching 15x
over the baseline for k=100), and the limited overhead for

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

10 25 50 75 100
k

0.0

2.5

5.0

7.5

10.0

12.5

15.0

#t
 d

ow
nl

oa
de

d
/ #

t i
n

re
su

lt
AGEP
baseline

OCCP ST WAGP

(a) Point queries

10 25 50 75 100
k

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

#t
 d

ow
nl

oa
de

d
/ #

t i
n

re
su

lt

AGEP
baseline

WAGP

(b) Range queries

Fig. 11: Overhead in the number of tuples downloaded

range queries thanks to the multi-dimensional space parti-
tioning used for defining groups. Most importantly, as we
will show next, the overhead in terms of number of tuples
shows a much lower impact in terms of execution time.
Current networks offer a relatively high bandwidth and
the overhead introduced by spurious tuples is dominated
by other factors. In addition, the use of data compression
in the storage of tuples significantly reduces the impact of
spurious tuples.

Execution time. We have evaluated the performance for
both value-based and group-based indexing, building both
a PostgreSQL and a Redis implementation for the server,
hence considering four different configurations for the real-
ization of our solution. The experiments aimed at comparing
performance for the different configurations with respect to
the one of the baseline configuration, which corresponds to
a plaintext dataset stored in PostgreSQL where queries are
executed on the plaintext dataset without any rewriting, and
classical indexes are defined within the database over the
attributes involved in queries. We do not present a baseline
configuration with Redis, because the key-value model does
not support queries on attributes other than the key.

We have then evaluated the execution time for point and
range single attribute queries over continuous attribute WAGP
and nominal attribute OCCP, as well as of multi-attribute
queries involving both the attributes for various configu-
rations obtained varying k (for multi-attribute queries, we
evaluate a conjunction between the selection predicates on
the attributes). We have measured both the server execution
time and the global execution time. The global execution time
measures the overall time required to: submit the query to
the client-side query translator; parse the query; generate
the index values and rewrite the query; submit the query
to the server; execute the query on the server; send the
resulting encrypted blocks to the client; decrypt the en-
crypted blocks and serialize the resulting plaintext tuples in
SQLite; remove spurious tuples. The server-side execution
time measures only the time required by the server to run
the query and retrieve the encrypted blocks. In the first
set of experiments, the network latency between client and
server is set to 10 ms (a value that assumes the server to be
relatively near to the client), and the bandwidth to 1 Gbps
(a value representative of current network connections; we
will explore next the impact of latency and bandwidth on
performance).

The results reported are the average observed execution

times, obtained as the total running time of the queries in
the sample divided by the number of queries. In the figures,
we report the curves for the different configurations but do
not report the standard deviation because in most cases it is
smaller than the size of the marker used for distinguishing
the different lines. Also, since the main objective is the com-
parison with the query execution time of the baseline rather
than the absolute times, the scale varies for the different
experiments. Note that for the baseline configuration, global
execution time corresponds to server-side execution time
with just the addition of network latency, as it is expected,
since in the baseline requires no post processing the client.

Figures 12 and 13 show the global and the server execu-
tion time for single and multi-attribute queries, varying the
value of k.

Global execution time shows a different trend for point
queries over WAGP with respect to the one observed for point
queries over OCCP: at the increase of k, the global execution
time decreases for queries over WAGP while it increases for
queries over OCCP (this latter is the trend observed also for
queries over ST and AGEP). The different behavior depends
on the interplay between a number of factors: the increase
in k leads to a greater number of spurious tuples, but it also
leads to queries that access a smaller number of groups,
which being of larger size may also benefit more from
data compression; for attribute WAGP, which is the one with
the greatest cardinality, the partitioning leads to a greater
probability of having tuples with similar values in the same
groups (testified by the low data overhead for range queries
reported in Figure 11(b)) and then an improved performance
as k grows.

Server execution time is mostly well below the server
execution time observed for the baseline and decreases at
the increase of k. This is explained by the simpler structure
of the queries, which for larger k values provide a smaller
number of index values or group ids to extract; the data
overhead is greater, but the reduced complexity of the query
leads to better server performance. Also, the Redis imple-
mentation consistently enjoys lower execution time at the
server. This derives from the greater efficiency of Redis in
the management of simple data structures. We also note that
configurations with group-based indexing are consistently
faster than the ones using the value-based indexing. The
difference in speed between group-based and value-based
indexing decreases when k increases, as larger k implies that
a smaller number of index values is generated. As a final
observation, we note that point queries exhibit lower query
processing times compared to range queries. This is justified
by the larger size of the query results of range queries.

Multi-attribute point queries with group-based indexes
show a significant improvement in the global execution
time. This happens because multi-attribute group-based
point queries are more selective than the single-attribute
ones, and then require less data transfer, thus producing
a saving in the global execution time. We also note that,
for multi-attribute point queries for the group-based index-
ing, the server-side execution time dominates the global
execution time, meaning that the time required for data
processing at the client is negligible compared to the server-
side execution time. Also, with the group-based indexing
the conjunction between the conditions on attributes OCCP

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

10 25 50 75 100
k

0.00

0.10

0.20

0.30

0.40

0.50

Ti
m

e
(s

)
Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.00

0.10

0.20

0.30

0.40

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.00

0.50

1.00

1.50

2.00

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

(a) Point queries (WAGP) (b) Range queries (WAGP) (c) Point queries (OCCP) (d) Point queries (WAGP,OCCP) (e) Range queries (WAGP,OCCP)

Fig. 12: Global execution time for single (a,b,c) and multi-attribute (d,e) queries

10 25 50 75 100
k

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.00

0.02

0.04

0.06

0.08

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.00

0.02

0.04

0.06

0.08

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

10 25 50 75 100
k

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

(a) Point queries (WAGP) (b) Range queries (WAGP) (c) Point queries (OCCP) (d) Point queries (WAGP,OCCP) (e) Range queries (WAGP,OCCP)

Fig. 13: Server execution time for single (a,b,c) and multi-attribute (d,e) queries

25 50 75 100
Latency (ms)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

25 50 75 100
Latency (ms)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

25 50 75 100
Latency (ms)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

25 50 75 100
Latency (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

25 50 75 100
Latency (ms)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Value-based, PostgreSQL
Value-based, Redis
baseline

Group-based, PostgreSQL
Group-based, Redis

(a) Point queries (WAGP) (b) Range queries (WAGP) (c) Point queries (OCCP) (d) Point queries (WAGP,OCCP) (e) Range queries (WAGP,OCCP)

Fig. 14: Global execution time for single (a,b,c) and multi-attribute (d,e) queries, varying latency

1 10 100 1000
Bandwidth (Mbps)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

k=10
baseline

k=25 k=50 k=75 k=100

1 10 100 1000
Bandwidth (Mbps)

0

10

20

30

40

Ti
m

e
(s

)

k=10
baseline

k=25 k=50 k=75 k=100

1 10 100 1000
Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

k=10
baseline

k=25 k=50 k=75 k=100

1 10 100 1000
Bandwidth (Mbps)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e
(s

)

k=10
baseline

k=25 k=50 k=75 k=100

1 10 100 1000
Bandwidth (Mbps)

0

2

4

6

8

10

Ti
m

e
(s

)

k=10
baseline

k=25 k=50 k=75 k=100

(a) Point queries (WAGP) (b) Range queries (WAGP) (c) Point queries (OCCP) (d) Point queries (WAGP,OCCP) (e) Range queries (WAGP,OCCP)

Fig. 15: Global execution time for single (a,b,c) and multi-attribute (d,e) queries, varying bandwidth

and WAGP is performed at the client and this produces a
saving, since less index values are generated and communi-
cated to the server. This is visible by comparing the global
execution time for value-based indexing and for group-
based indexing.

With respect to the multi-attribute range queries, we ob-
serve similar performance between the baseline and the con-
figurations using group-based indexing (Figure 12(e)), while
there is a degradation of performance when using value-
based indexing. From the comparison between Figure 12(e)
and Figure 13(e) we can see that, for all configurations, a
non-negligible amount of time is spent to delete spurious
tuples and to transfer the data (we will evaluate bandwidth
impact on performance in the following).

Impact of latency. Since latency has a direct impact on per-
formance and usability, we have quantitatively measured
its impact repeating the set of experiments illustrated above
varying the latency. Figure 14 shows the global execution
time of single-attribute and multi-attribute queries, con-
sidering k=50 and latency values of 25, 50, 75, and 100
ms, corresponding to round-trip-times equal to twice the
latency.1 These latency values have been selected to mimic a
variety of configurations, with the server located in the same
geographic region or farther from the client (the range 25-
100 ms covers most of the scenarios where a client accesses
the servers of a cloud provider).

1. The delay is set using tc [21], a utility bundled with
iproute2 [22] that permits to control the Kernel packet scheduler.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

The trend for single-attribute and multi-attribute queries
are similar. For all five configurations, the execution time
grows linearly with the increase of latency, with Redis
configurations enjoying a lower slope with respect to Post-
greSQL ones (including the baseline, which has been im-
plemented using PostgreSQL). There are two main obser-
vations from the experiments, both supporting the appli-
cability of our approach. First, with the execution time
increasing linearly at the increase of latency, the net effect is
a proportional reduction of the overhead due to grouping.
Second, the Redis implementation, enjoying a lighter com-
munication and access protocol, is less affected by latency
increase.

Impact of bandwidth. We ran a dedicated set of experi-
ments varying the bandwidth between client and server, to
evaluate its effect on query execution time and hence the
applicability of the approach in low bandwidth scenarios.
We have then repeated the set of experiments discussed
above considering bandwidth values of 1 Mbps, 10 Mbps,
100 Mbps, and 1 Gbps (this latter being the one considered
before). Figure 15 reports the global execution time for
single-attributes and multi-attribute queries for different
values of k, varying the bandwidth. Queries are issued
using our group-based implementation for Redis. As it is
visible from the figures, the overhead is negligible for band-
width of at least 10 Mbps (which can be assumed to cover
the wide majority of configurations, given that evolution
of network technology is making available, in most sce-
narios, communication channels with bandwidth above 100
Mbps). It is to note also that for range and multi-attribute
queries, the data compression and serialization provided by
our implementation and the greater efficiency of Redis, in
scenarios with low bandwidth, produce improvements in
the overall execution time with respect to the one offered by
the baseline PostgreSQL plaintext implementation.

6 RELATED WORK

The problem of supporting query evaluation over encrypted
data stored off-premises has been widely studied. Existing
approaches that address this problem rely on the use of
specific cryptographic primitives or on the definition of
indexes.

The cryptographic primitives supporting searches over
encrypted data include property-preserving encryption
(e.g., [23], [24], [25], [26]), searchable symmetric encryption
(SSE) and range SSE (e.g., [27], [28], [29]), and fully homo-
morphic encryption (e.g., [30], [31], [32]). These approaches
provide a different trade-off among efficiency, security, and
the kind of supported queries (e.g., [33], [34]). In particular,
maintaining plaintext functionality (e.g., preserving order of
values) in the encryption makes the encryption vulnerable
to inferences, as the information carried by such function-
ality is leaked. Also, while considerable progress has been
made in the field, the computational overhead of stronger
cryptographic primitives still results too cumbersome for
most database applications. Our proposal differs from these
approaches mainly because we use an auxiliary indexing
structure on the client, and store together in a single block
groups of tuples of uniform cardinality and size. These
aspects mitigate the possible leakages deriving from the

execution of cryptographic functions [35] and from the
retrieval of single tuples.

Indexes are metadata defined over attributes frequently
involved in query evaluation (e.g., [4], [5], [36], [37], [38]).
Indexes are stored together with the encrypted data and
can be used to efficiently retrieve the data to be returned
in response to a query. Different approaches to indexing
have been investigated. Some indexing techniques are built
over a single attribute of the outsourced relation (e.g., [5]),
and therefore can only support queries defined on such
an attribute. Other solutions support indexes on multiple
attributes. These include the work in [39] that, similarly to
our proposal, provides indexes at the group level, but with
the aim to find a balance between the number of spurious
tuples and the protection given by the entropy in the query
results; hence, it considers a different setting of the problem.
Other approaches rely on tree-based structures (e.g., R-
trees and KD-trees) that have been designed to efficiently
support queries over plaintext data (e.g., nearest neighbor
searches in spatial applications [40]). The problem would
then be how to efficiently and securely traverse a tree-
based structure whose nodes are encrypted with the same
cryptographic primitives used for protecting data. Different
indexing solutions focus on different aspects of this prob-
lem, such as the definition of new search algorithms, the
definition of novel cryptographic techniques that support
the tree-traversal procedure of, for example, R-trees, or the
definition of novel tree-based structures supporting range
queries (e.g., [41], [42], [43], [44]). These proposals mainly
focus on the efficiency aspect or on the cryptographic tech-
niques and do not address the problem of protecting against
frequency-based attacks, do not support flat grouping of the
data to be protected, and do not consider the storage of data
in a key-value database.

Other lines of work in the context of ensuring some form
of confidentiality in data outsourcing includes: the use of
trusted hardware for protecting query exection [2], [3]; the
fragmentation of data for their external storage (so to avoid
or limit encryption when what is to be protected is the as-
sociation among the data rather than their values) [45], [46],
[47]; and the protection of the confidentiality of the accesses
and their patterns, with different variations of ORAM-
based solutions (e.g., Path-ORAM) typically relying on data
re-allocation to break the otherwise fixed correspondence
between data and their physical storage location (which
comes at the price of significant overhead and limitations
in query execution). While sharing the scenario of data
outsourcing to not fully trusted services, these approaches
address therefore a different problem.

7 CONCLUSIONS

We have presented an approach for the definition of multi-
attribute indexes that enables the execution of point and
range queries over encrypted data outsourced to an external
cloud provider. The proposed approach to index construc-
tion provides both flattening and collisions on any combi-
nation of index values, and ensures an effective execution of
queries. Our experimental evaluation considers the storage
of data on both an external relational database (PostgreSQL)

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

and a key-value database (Redis), and shows the effective-
ness of the proposal, thus supporting its application in real-
world scenarios.

ACKNOWLEDGEMENTS

This work was supported in part by the EC under
projects Chips JU EdgeAI (101097300) and GLACIATION
(101070141), by the Italian MUR under PRIN project POLAR
(2022LA8XBH), and by project SERICS (PE00000014) under
the MUR NRRP funded by the EU - NextGenerationEU.

REFERENCES

[1] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad, “Search-
able symmetric encryption: Designs and challenges,” ACM CSUR,
vol. 50, no. 3, pp. 1–37, 2017.

[2] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and
R. Ramamurthy, “Transaction processing on confidential data us-
ing cipherbase,” in Proc. of ICDE, 2015, pp. 435–446.

[3] S. Bajaj and R. Sion, “TrustedDB: A trusted hardware-based
database with privacy and data confidentiality,” IEEE TKDE,
vol. 26, no. 3, pp. 752–765, 2014.

[4] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati, “Balancing confidentiality and efficiency in un-
trusted relational DBMSs,” in Proc. of ACM CCS, 2003, pp. 93–102.

[5] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over encrypted data in the database-service-provider model,” in
Proc. of ACM SIGMOD, 2002, pp. 216–227.

[6] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Mondrian multidi-
mensional k-anonymity,” in Proc. of ICDE, 2006, pp. 25–36.

[7] A. C. Yao, “New algorithms for bin packing,” J. ACM, vol. 27,
no. 2, pp. 207–227, 1980.

[8] D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques,
and G. S. Y. Kai, “Roaring bitmaps: Implementation of an opti-
mized software library,” Softw. Pract. Exp., vol. 48, no. 4, pp. 867–
895, 2018.

[9] The pandas development team, “Pandas-dev/pandas: Pandas,”
https://doi.org/10.5281/zenodo.3509134, 2020.

[10] The Apache Software Foundation, “Apache Arrow,”
https://arrow.apache.org/, 2021.

[11] G. Van Rossum, “The python library reference, release 3.10.4,”
https://docs.python.org/3/library/pickle.html, 2022.

[12] J. Seward, “bzip2 and libbzip2,” http://www.bzip.org, 1996.
[13] Facebook, “Zstandard,” https://facebook.github.io/zstd/, 2021.
[14] Docker inc., “Docker-compose,” https://docs.docker.com/compose/,

2021.
[15] M. Bayer, “SQLAlchemy,” in The Architecture of Open Source Ap-

plications Volume II: Structure, Scale, and a Few More Fearless Hacks,
A. Brown and G. Wilson, Eds., 2012.

[16] Redis Inc., “redis-py,” https://redis.readthedocs.io/en/latest/,
2021.

[17] U.S. Bureau of the Census, “Public use microdata
sample. individual dataset of all us. 1-year version
of acs 2019,” https://www2.census.gov/programs-
surveys/acs/data/pums/2019/1-Year, 2019.

[18] ——, “Public use microdata sample. individual dataset of all us.
1-year version of acs 2018,” https://www2.census.gov/programs-
surveys/acs/data/pums/2018/1-Year, 2019.

[19] Kaggle, “Acquire valued shoppers challenge, transactions
dataset,” https://www.kaggle.com/c/acquire-valued-shoppers-
challenge/data?select=transactions.csv.gz, 2014.

[20] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati, “Balancing confidentiality and efficiency in un-
trusted relational DBMSs,” in Proc. of ACM CCS, 2003.

[21] “tc(8) – Linux manual page,” https://man7.org/linux/man-
pages/man8/tc.8.html, 2022.

[22] “iproute2 – Ubuntu man pages,”
https://launchpad.net/ubuntu/focal/+package/iproute2, 2021.

[23] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
preserving symmetric encryption,” in Proc. of EUROCRYPT, 2009,
pp. 224–241.

[24] R. .Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol
for order-preserving encoding,” in Proc. of IEEE S&P, 2013, pp.
463–477.

[25] D. Li, S. Lv, Y. Huang, Y. Liu, T. Li, Z. Liu, and L. Guo, “Frequency-
hiding order-preserving encryption with small client storage,”
PVLDB, vol. 14, no. 14, pp. 3295–3307, 2021.

[26] A. Roy Chowdhury and P. Ramanathan, “Public order preserving
cipher generation scheme for distributed computing,” in Proc. of
CCS, 2018, pp. 2273–2275.

[27] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad, “Search-
able symmetric encryption: Designs and challenges,” ACM CSUR,
vol. 50, no. 3, pp. 1–37, 2017.

[28] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM CSUR, vol. 47, no. 2, pp. 1–51,
2015.

[29] F. Falzon, E. Markatou, Z. Espiritu, and R. Tamassia, “Attacks on
encrypted range search schemes in multiple dimensions,” Cryp-
tology ePrint Archive, 2022, https://eprint.iacr.org/2022/090.pdf.

[30] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proc. of ACM STOC, 2009, pp. 169–178.

[31] C. Gentry and S. Halevi, “Implementing Gentry’s fully-
homomorphic encryption scheme,” in Proc. of EUROCRYPT, 2011,
pp. 129–148.

[32] Microsoft, “Microsoft SEAL,” 2021,
https://www.microsoft.com/en-us/research/project/microsoft-
seal.

[33] R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query pro-
cessing,” in Proc. of SOSP, October 2011, pp. 85–100.

[34] M. Naveed, S. Kamara, and C. Wright, “Inference attacks on
property-preserving encrypted database,” in Proc. of ACM CCS,
2015, pp. 644–655.

[35] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
M. Garofalakis, and C. Papamanthou, “Practical private range
search in depth,” ACM TODS, vol. 43, no. 1, pp. 1–52, 2018.

[36] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
and M. Garofalakis, “Practical private range search revisited,” in
Proc. of ACM SIGMOD, 2016, pp. 185–198.

[37] H. Van Tran, T. Allard, L. d’Orazio, and A. El Abbadi, “FRESQUE:
A scalable ingestion framework for secure range query processing
on clouds,” in Proc. of EDBT, 2021, pp. 205–216.

[38] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index
for range queries,” in Proc. of VLDB, 2004, pp. 720–731.

[39] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure
multidimensional range queries over outsourced data,” The VLDB
Journal, vol. 21, no. 3, pp. 333–358, 2012.

[40] J. Wang, S. Wu, H. Gao, J. Li, and B. Ooi, “Indexing multi-
dimensional data in a cloud system,” in Proc. of SIGMOD, IN,
USA, June 2010.

[41] B. Wang, Y. Hou, and M. Li, “QuickN: Practical and secure nearest
neighbor search on encrypted large-scale data,” IEEE TCC, vol. 10,
no. 3, pp. 2066 – 2078, 2022.

[42] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li, “Maple: Scalable
multi-dimensional range search over encrypted cloud data with
tree-based index,” in Proc. of ACM ASIACCS, 2014, pp. 111–122.

[43] Z. Wu and K. Li, “VBTree: Forward secure conjunctive queries
over encrypted data for cloud computing,” The VLDB Journal,
vol. 28, no. 1, pp. 25–46, 2019.

[44] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “ServeDB:
Secure, verifiable, and efficient range queries on outsourced
database,” in Proc. of ICDE, 2019, pp. 626–637.

[45] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang, “Anonymizing
bipartite graph data using safe groupings,” PVLDB, vol. 1, no. 1,
pp. 833–844, 2008.

[46] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Fragments and loose associations: Respecting
privacy in data publishing,” PVLDB, vol. 3, no. 1, pp. 1370–1381,
2010.

[47] X. Xiao and Y. Tao, “Anatomy: Simple and effective privacy
preservation,” in Proc. of VLDB, 2006, pp. 139–150.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

Sabrina De Capitani di Vimercati is a profes-
sor at the Università degli Studi di Milano, Italy.
Her research interests are in data security and
privacy. She has published more than 230 pa-
pers in journals, conference proceedings, and
books. She has been a visiting researcher at
SRI International, CA, USA, and George Mason
University, VA, USA.
https://decapitani.di.unimi.it

Dario Facchinetti is a post-doctoral researcher
at the Università degli Studi di Bergamo, Italy.
His work ranges from the integration of security
features in mobile, database and cloud systems,
to policy and privacy management. He is inter-
ested in access control and sandboxing tech-
niques.

Sara Foresti is a professor at the Università
degli Studi di Milano, Italy. Her research interests
are in data security and privacy. She has pub-
lished more than 100 papers in journals, confer-
ence proceedings, and books. She has been a
visiting researcher at George Mason University,
VA, USA. She chairs the IFIP WG 11.3 on Data
and Applications Security and Privacy.
https://foresti.di.unimi.it

Gianluca Oldani is currently pursuing the Ph.D.
degree with the Università degli Studi di Berg-
amo, Italy. His research interests include web se-
curity, distributed technologies, and data privacy.

Stefano Paraboschi is a professor at the Uni-
versità degli Studi di Bergamo, Italy. His research
focuses on information security and privacy, Web
technology for data intensive applications, XML,
information systems, and database technology.
He has been a visiting researcher at Stanford
University and IBM Almaden, CA, USA, and
George Mason University, VA, USA.
https://cs.unibg.it/parabosc

Matthew Rossi is currently pursuing the Ph.D.
degree with the Università degli Studi di Berg-
amo, Italy. From 2019 to 2020, he was a Re-
search Assistant with the Department of Infor-
mation Engineering, Università degli Studi di
Bergamo. His research interest includes the in-
tegration of security features in mobile systems,
policy management and privacy of outsourced
data.

Pierangela Samarati is a professor at the Uni-
versità degli Studi di Milano, Italy. Her main re-
search interests are in data protection, security,
and privacy. She has published more than 290
papers in journals, conference proceedings, and
books. She has been a visiting researcher at
Stanford University, CA, USA, SRI International,
CA, USA, and George Mason University, VA,
USA. She is a Fellow of ACM, IEEE, and IFIP.
https://samarati.di.unimi.it

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2024.3408905

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

