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Abstract
We propose a new semiclassical approach to the calculation of molecular IR spectra. The

method employs Kaledin and Miller’s time averaging technique upon symmetrization of

the quantum dipole-dipole autocorrelation function. Spectra at high and low temperature

are investigated. In the first case we are able to point out the possible presence of hot

bands in the molecular absorption lineshape. In the second case we are able to reproduce

accurate IR spectra as demonstrated by a calculation of the IR spectrum of the water

molecule, which is within 4% of the exact intensity. Our time averaged IR spectra can be

directly compared to time averaged semiclassical power spectra as shown in an application

to the CO2 molecule, which points out the differences between IR and power spectra and

demonstrates that our new approach can identify active IR transitions correctly. Overall

the method features excellent accuracy in calculating absorption intensities and provides

estimates for the frequencies of vibrations in agreement with the corresponding power

spectra. In perspective this work opens up the possibility to interface the new method with

the semiclassical techniques developed for power spectra, such as the divide-and-conquer

one, to get accurate IR spectra of complex and high dimensional molecular systems.
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I. INTRODUCTION

Infrared (IR) spectroscopy is a widely used technique in chemistry, often em-

ployed for pivotal goals like characterization of synthesis intermediates, investigation

of molecular interactions and structure, evaluation of the degree of polymerization,

quantitative measurement of molecular concentrations, and improvement of the re-

cycling process.[1–3] However, an experimental IR spectrum is characterized by a

large number of features due to fundamental transitions, overtones, and combination

bands, which are often close to each other in energy and difficult to identify. Fur-

thermore, the complexity of the spectrum rapidly increases with the dimensionality

of the system, making it harder and harder to experimentally assign every single

feature to specific vibrational molecular motions.

The main goal of a theoretical approach to IR spectroscopy is to reproduce exper-

imental spectra adding some physical insights. These include (but are not limited

to) characterization of the observed spectral transitions in terms of decomposition of

the signal on simple basic molecular motions,[4, 5] ability to discern between signals

lying close to each other, determination of relaxation processes based on the calcu-

lated absorption lineshape,[6] possibility to study localized interactions between a

molecule and its environment in solvated systems.[7]

From a theoretical point of view, the molecular IR spectrum (here and usually in-

dicated as α(ω, T )) describes the interaction (i.e. absorption or stimulated emission

of energy) between a molecule and an incoming time-dependent electric field (E)

under the form of a pulse or a periodic field in the IR range of frequencies (ω). The

IR range of frequencies is commonly divided into the far-, mid-, or near- infrared

regions according to their wavelengths compared to the visible radiation. Molecular

vibrations typically involve the 400-4000 cm-1 region, which is the mid-infrared one.

The IR spectrum α(ω, T ) can be theoretically obtained either from first order

time-dependent perturbation theory as a sum over states expression involving tran-

sition dipole moments, or as the Fourier transform of a quantum dipole-dipole au-

tocorrelation function.[8] Another possible approach consists in looking at the time

dependence of the initial state population under the radiation field E, which leads

to link α(ω, T ) to the imaginary part of the Fourier transform of the instantaneous
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dipole displacement (i.e. fluctuation) from equilibrium.[9] Temperature is included

by means of the Boltzmann probability of populating the initial and final states in-

volved in the vibrational transitions. It influences the intensity of absorption, which

is related to the difference in population between the two involved vibrational states,

but it does not affect the energy (i.e. frequency) of the transition.

Several theoretical methods have been developed to calculate quantum me-

chanically IR spectra, involving both time-independent and time-dependent

approaches.[10–18] In this manuscript we focus on a specific type of time-dependent

approach known as the semiclassical (SC) dynamics approach.[19–21] Semiclassi-

cal dynamics is a quite general approach, which has been employed in a vari-

ety of problems other than spectroscopy, including, for instance, kinetics,[22–28]

wavefunction determination,[29, 30] and dissipative dynamics,[31–33] where it can

be cast in a mixed quantum-classical framework.[34–39] When dealing with spec-

troscopy, the main goal of SC dynamics is to get quantum effects at an affordable

computational cost starting from classical trajectories evolved under the molecular

Hamiltonian.[34, 40–46] The flexibility of the SC approach to spectroscopy is evident:

being based on classical trajectories it is amenable to be applied to large molecular

systems; it can be interfaced to ab initio molecular dynamics; it provides a way to

connect spectroscopic signals directly to molecular motions; being a time-dependent

approach it can account for relaxation processes. However, several issues needed to

be overcome over the years before making SC spectroscopy doable in practice.

The theory of SC spectroscopy has been mainly developed for power spectra, i.e.

spectra obtained upon Fourier transforming the survival amplitude of a reference

and arbitrary wavepacket. In this way it is possible to determine all the energy levels

of the system and, by difference, the frequencies related to the corresponding tran-

sitions. The first issue to be solved concerned the convergence of the semiclassical

calculation. This is what encouraged development of the time average technique.

By applying a time average to the SC propagator, Kaledin and Miller showed that

it is possible to come up with a positive-definite integrand and a much easier and

faster convergence of results.[47, 48] Their technique is known as the Time Averaged

Semiclassical Initial Value Representation (TA SCIVR). In spite of the advance in-
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troduced by TA SCIVR, SC vibrational spectroscopy was still far from the possibility

to be employed with ab initio molecular dynamics, a fundamental step to have the

method applicable to large molecular systems. This goal was reached by one of us

with the Multiple Coherent Semiclassical Initial Value Representation (MC SCIVR),

based on a tailored choice of the reference state and trajectory energy.[49] At this

point, a final problem was to be faced due to the progressive deterioration of the

signal to noise ratio as the dimensionality of the system increases. This was solved

by means of a divide-and-conquer technique successfully developed in our group.[50]

The Divide-and-Conquer Semiclassical Initial Value Representation (DC SCIVR) al-

lows one to deal with large dimensional systems by partitioning the full-dimensional

vibrational space into smaller subspaces made of the modes more strongly cou-

pled to each other. Interactions between modes belonging to different subspaces

are still approximately taken into account thanks to the full-dimensional dynam-

ics employed in the DC-SCIVR calculation. DC SCIVR has allowed us to study

the vibrational spectroscopy of systems in solution, condensed phase, or adsorbed

on solid surfaces.[7, 51–53] Very recently, accuracy and efficiency of SC vibrational

spectroscopy have been increased by the development in our group of a technique

able to improve the sampling of initial conditions for the semiclassical runs. This

technique adopts an adiabatic switching procedure and is known as adiabatically

switched semiclassical initial value representation (AS SCIVR).[54–56] It is worth

noticing that a recent alternative and effective approach to calculate semiclassical

power spectra is based on filter diagonalization of the survival amplitude. This

method is based on very short trajectory evolution, it does not rely on time average,

and it has been shown to be able to get reliable results on fitted potential energy

surfaces.[57]

The advances described above have been undertaken for the calculation of power

spectra. However, for comparison to experimental IR spectra both intensities and

selection rules must be accurately reproduced by the calculation. On this regard,

calculations of semiclassical vibronic spectra, which involve transitions at energies

higher than those found in IR spectra, able to account for transition energies and

intensities have been successfully performed in the Vanicek group by means of im-
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proved SC thawed Gaussian techniques.[58–60] As for semiclassical IR spectroscopy,

two methods have already been developed in our group. In one case, it is shown how

to calculate SC wavefunctions starting from SC power spectra, and from there the

IR spectrum is constructed.[61] In the second approach the lineshape of the power

spectrum is the starting point to reconstruct the IR spectrum with the need to cal-

culate only the ground state wavefunction for a fully anharmonic IR spectrum or no

wavefunction at all if a semi-anharmonic IR spectrum is sufficient.[62] Both meth-

ods have been successfully applied to a few relevant molecular systems, but they

generally are more elaborated and less user-friendly than an SC power spectrum

calculation.

In this paper our goal is to introduce a new SC approach to IR spectroscopy show-

ing how it is possible to take advantage of the time average technique to calculate

IR spectra with computational cost and theoretical complexity similar to those of a

power spectrum calculation. The paper is structured as follows: First we elaborate

on our new semiclassical theory for IR spectra; then, we present applications to a

model Morse oscillator and calculate IR spectra for the water molecule and the CO2

molecule; eventually the paper ends with some comments and future perspectives.

II. THEORY

We start from the general definition of the IR spectrum of any isotropic and

homogeneous molecular system, which is derived from the quantum first-order per-

turbation theory [8]

α(ω, T ) ∝
∑
i ̸=f

ωfi [pi(T )− pf (T )] |⟨Ψi|µ̂|Ψf⟩|2 δ(ωfi − ω), (1)

where the proportionality symbol means we avoid reporting some constant terms

that cancel out when looking at the relative intensities of the molecular absorption

peaks. Therefore these constant terms will be neglected from now on.

In Eq. 1 pi = e−βEi/Z, with β = (kBT )
−1 and Z =

∑
n e

−βEn , represents the

probability of occupying the vibrational eigenstate Ψi at temperature T . µ̂ is the

transition dipole moment operator, and ωfi = (Ef−Ei)/ℏ is the transition frequency

corresponding to the difference between the eigenenergies of the vibrational states
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involved in the transition. By exploiting the definition of pi, one can separate α(ω, T )

into a product of terms, one of which describing the so-called absorption lineshape

σ(ω, T ). The transition frequencies appearing in the terms multiplying σ(ω, T ) can

be set equal to ω due to the Dirac delta that implies ωfi = ω. In formulae

α(ω, T ) = ω(1− e−βℏω)σ(ω, T ) (2a)

σ(ω, T ) =
∑
i ̸=f

pi(T ) |⟨Ψi|µ̂|Ψf⟩|2 δ(ωfi − ω). (2b)

The absorption lineshape can be also calculated as Fourier transform of the

dipole-dipole quantum autocorrelation function Cµµ(t, T ).

σ(ω, T ) =
1

2π

∫ +∞

−∞
dt e−iωtCµµ(t, T ). (3)

The expression of Cµµ(t, T ), by making the quantum mechanical expression of

the average over the density matrix explicit and considering the Heisenberg picture

of the transition dipole moment operator at time t, µ̂(t) = eiĤt/ℏ µ̂ e−iĤt/ℏ, is

Cµµ(t, T ) = ⟨µ̂(0)µ̂(t)⟩ = Tr
[
B̂(β) µ̂ eiĤt/ℏ µ̂ e−iĤt/ℏ

]
, (4)

where B̂(β) = e−βĤ/Z is the Boltzmann operator and we have introduced the

notation µ̂ = µ̂(0). At this point, in order to obtain a somehow symmetrized form

of Cµµ(t, T ),[63] we express the Boltzmann operator as the product of two B̂(β/2)

terms; then, we perform a cyclic permutation within the trace elements and use the

property of commutation between B̂(β/2) and the time evolution operator e−iĤt/ℏ.

In this way, we get

Cµµ(t, T ) = Tr
[
B̂(β/2) µ̂ eiĤt/ℏ µ̂ B̂(β/2) e−iĤt/ℏ

]
. (5)

We now move to the treatment of the time evolution operators in Eq. 5, which

cannot be evaluated exactly for most real systems. In this work, we employ the

Heller-Herman-Kluk-Kay (HHKK) approximation to the quantum propagator, of

wide use in the field of semiclassical dynamics.[64–66] The HHKK propagator was

originally developed by combining the initial value representation (IVR) proposed

by Miller[43, 67–69] and the use of coherent state basis, as suggested by Heller.[66]
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This semiclassical propagator, for a system consisting of Nv vibrational degrees of

freedom, in fact, makes use of coherent states of the kind

⟨x|ptQt⟩ =
(

det(Γ)
πNν

)Nν
4

e−
1
2
(x−Qt)

TΓ(x−Qt)+
i
ℏp

T
t (x−Qt), (6)

where pt and Qt are the instantaneous linear momenta and normal mode displace-

ments Qt = qt − qeq, respectively, and Γ is the matrix of the coherent state widths,

which we choose to be diagonal with time-independent elements equal to the har-

monic vibrational frequencies (ωj) of the system.

The HHKK propagator reads as

e−
i
ℏ Ĥt ≈

(
1

2πℏ

)Nν
∫∫

dp0dQ0 Ct(p0,Q0)e
iSt(p0,Q0)/ℏ |ptQt⟩ ⟨p0Q0| , (7)

where (p0,Q0) are the initial linear momenta and normal mode displacements which

are evolved in time under the classical vibrational Hamiltonian H(p,Q) = p2/2m+

V (Q), St(p0,Q0) is the corresponding classical action evaluated at time t, and

Ct(p0,Q0) is the pre-exponential factor (indicated, as common practice in the field,

with the same symbol (C) of the autocorrelation function above, but not to be

confused with it)

Ct(p0,Q0) =

√
det
[
1

2

(
MQQ + Γ−1MppΓ− iℏMQpΓ+

i

ℏ
Γ−1MpQ

)]
, (8)

with Mij being the elements of the monodromy (or stability) matrix, defined as

Mij =
∂it
∂j0

(i, j=p,Q). Due to inaccuracies in the numerical integration which build

up during the simulation, the magnitude of the determinant of the stability matrix

elements (expected to be of constant value equal to 1 during the entire simulation)

tends to increase with the chaoticity of the trajectories, leading to unphysical values

of the pre-exponential factor. To avoid this issue, in this work we adopt a well-

established procedure consisting in eliminating those chaotic trajectories for which

the determinant of the monodromy matrix diverges from unity more than a fixed

threshold.

One of the reasons why the HHKK formulation of the propagator was originally

introduced is that it allows the use of Monte Carlo integration techniques to speed

up the convergence of the multi-dimensional phase space integration. Nevertheless,
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when dealing with systems having already a small number of degrees of freedom, the

evolution of a high number of classical trajectories is required to reach convergence.

Therefore, some filtering procedures are usually employed to further speed up con-

vergence. In this work we make use of the time average (TA) technique developed

by Kaledin and Miller,[47, 48] a well-known procedure which allows to rearrange the

integrand of the phase-space average of Eq. 7 to make it positive-definite, hence

much more easily integrable, with no loss in accuracy.

Indeed, starting from

Cµµ(t, T ) =

∫∫
dp0dQ0

(2πℏ)Nν

∫∫
dp′

0dQ
′
0

(2πℏ)Nν
C∗

t (p0,Q0)Ct(p
′
0,Q

′
0)e

−iSt(p0,Q0)/ℏ

× eiSt(p′
0,Q

′
0)/ℏ ⟨p′

0Q
′
0|B̂(β/2)µ̂|p0Q0⟩ ⟨ptQt|µ̂B̂(β/2)|p′

tQ
′
t⟩ ,

(9)

obtained by inserting Eq. 7 into Eq. 5 twice, following Kaledin and Miller, one can

proceed by adding a time average based on the total simulation time Ts coming up

with the following expression for the absorption lineshape

σ(ω, T ) =

∫∫
dp0dQ0

(2πℏ)Nν

∫∫
dp′

0dQ
′
0

(2πℏ)Nν

1

Ts

∫ Ts

0

dt1
Re

π

∫ +∞

0

dt e−iωt

× C∗
t+t1

(pt1 ,Qt1)Ct+t1(p
′
t1
,Q′

t1
)e−iSt+t1 (pt1

,Qt1
)/ℏeiSt+t1 (p

′
t1
,Q′

t1
)/ℏ

× ⟨p′
t1
Q′

t1
|B̂(β/2)µ̂|pt1Qt1⟩ ⟨pt+t1Qt+t1|µ̂B̂(β/2)|p′

t+t1
Q′

t+t1
⟩ , (10)

where (pt1 ,Qt1) and (pt+t1 ,Qt+t1) represent the momenta and displacements at

time t1 and t + t1, respectively, evolving from the initial conditions (p0,Q0), and

analogously for (p′
t1
,Q′

t1
) and (p′

t+t1
,Q′

t+t1
), starting from (p′

0,Q
′
0). At this point,

we can introduce the change in time variables t2 = t+ t1, or t = t2− t1 and consider

that the action

St+t1(pt1 ,Qt1) = St2(pt1 ,Qt1) =

∫ t2

t1

dt′L(t′) , (11)

with L being the Lagrangian p2/2m− V (Q), can be recast as∫ t2

t1

dt′L(t′) =

∫ t2

0

dt′L(t′)−
∫ t1

0

dt′L(t′) = St2(p0,Q0)− St1(p0,Q0) . (12)

The same stands for St+t1(p
′
t1
,Q′

t1
), which is equal to St2(p

′
0,Q

′
0) − St1(p

′
0,Q

′
0) .

Then, in order to further simplify the integrand of Eq. 10 and advance with the time
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averaging procedure, we take advantage of the so-called separable approximation to

the pre-exponential factors

Ct2(pt1 ,Qt1) ≈ eiϕ(t2)/ℏe−iϕ(t1)/ℏ, (13)

where ϕ(t) = ϕt(p0,Q0) and it is calculated from its definition which is ϕt(p0,Q0) =

phase
[
Ct(pt0 ,Qt0)

]
. In other words, the complex quantity Ct(pt0 ,Qt0) is calculated

at each time-step and its phase is obtained. In this way, we can approximate the

product of the two pre-exponential factors as follows

C∗
t2
(pt1 ,Qt1)Ct2(p

′
t1
,Q′

t1
) ≈ ei[ϕ

′(t2)−ϕ(t2)]/ℏ
{
ei[ϕ

′(t1)−ϕ(t1)]/ℏ
}∗

. (14)

The expression for the TA semiclassical absorption lineshape reads now as

σ(ω, T ) =

∫∫
dp0dQ0

(2πℏ)Nν

∫∫
dp′

0dQ
′
0

(2πℏ)Nν

Re

πTs

∫ Ts

0

dt1

∫ ∞

t1

dt2

× ei[St2 (p
′
0,Q

′
0)−St2 (p0,Q0)−ℏωt2+ϕ′(t2)−ϕ(t2)]/ℏ ⟨pt2Qt2|µ̂B̂(β/2)|p′

t2
Q′

t2
⟩

×
{
ei[St1 (p

′
0,Q

′
0)−St1 (p0,Q0)−ℏωt1+ϕ′(t1)−ϕ(t1)]/ℏ ⟨pt1Qt1|µ̂B̂(β/2)|p′

t1
Q′

t1
⟩
}∗

.

(15)

Finally, setting the upper limit of the integral in t2 equal to Ts, we easily get to

the final expression

σ(ω, T ) =
(2πℏ)−2Nν

2πTs

∫∫
dp0dQ0

∫∫
dp′

0dQ
′
0

×
∣∣∣∣∫ Ts

0

dt ei[St(p′
0,Q

′
0)−St(p0,Q0)−ℏωt+ϕ′(t)−ϕ(t)]/ℏ ⟨ptQt|µ̂B̂(β/2)|p′

tQ
′
t⟩
∣∣∣∣2 .
(16)

Therefore, according to Eq. 16, in order to calculate a semiclassical absorption

lineshape, one first has to generate two sets of initial momenta and normal mode

displacements, (p0,Q0) and (p′
0,Q

′
0); then, pairs of trajectories starting from the

two sets are run independently of one another under the classical Hamiltonian, for

a total simulation time Ts. Finally, the squared modulus in Eq. 16 is evaluated

for every pair of trajectories and summed together to give the global absorption

lineshape. Starting from the expression of σ(ω, T ), the semiclassical absorption

spectrum α(ω, T ) can be readily recovered by means of Eq. 2a.
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In this work, we investigate the expression of the semiclassical absorption spec-

trum for two limit cases: T → 0 (β → +∞), and T → +∞ (β → 0). At low

temperatures, when T → 0 (β → +∞), we can approximate the partition function

as follows

Z =
∑
n

e−βEn = e−βE0 + e−βE1 + ...+ e−βEn

= e−βE0(1 + e−β(E1−E0) + ...+ e−β(En−E0)) ≈ e−βE0 . (17)

As a consequence, the Boltzmann operator B̂(β) is represented as the projector on

the vibrational ground state (the same clearly stands also for B̂(β/2))

B̂(β) =
e−βĤ

Z
≈
∑
n

e−β(En−E0) |Ψn⟩ ⟨Ψn|

= |Ψ0⟩ ⟨Ψ0|+
∑
n=1

e−β(En−E0) |Ψn⟩ ⟨Ψn| ≈ |Ψ0⟩ ⟨Ψ0| , (18)

where we have expanded e−βĤ on the complete orthonormal basis set given by the

vibrational eigenstates. The bra-ket from Eq. 16 can then be rewritten as

⟨ptQt|µ̂B̂(β/2)|p′
tQ

′
t⟩ = ⟨ptQt|µ̂|Ψ0⟩ ⟨Ψ0|p′

tQ
′
t⟩ . (19)

At this point, we focus on the dipole moment operator. We employ the common

linearization approximation to the molecular dipole moment

µ(q)− µ(qeq) ≃
Nν∑
j=1

∂µ

∂qj

∣∣∣∣
qeq

(qj − qeq,j), (20)

where the sum runs over the Nν vibrational normal modes of the N-atom system

(3N − 5 for linear molecules, 3N − 6 otherwise). µ(q) stands for the total dipole

moment, meant as the sum of a nuclear contribution, µN(R) =
∑

i ZiRi, where

Zi are nuclear charges, and an electronic part, µe(R) =
∫
dr|φ0(r;R)|2µe(r), with

φ0(r;R) being the adiabatic electronic ground state wavefunction for a given nuclear

configuration. The introduction of the linearization approximation is particularly

convenient since it allows one to avoid the direct computation of the electronic term

µe(R), which would require a challenging Monte Carlo estimate.[61]

In order to be able to calculate the bra-ket of Eq. 19 analytically, we approx-

imate the vibrational ground state eigenfunction |Ψ0⟩ as the Hartree product of
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one-dimensional ground state harmonic states

|Ψ0⟩ ≈ |ϕ0⟩ = |ϕ(1)
0 , ϕ

(2)
0 , ..., ϕ

(Nν)
0 ⟩ = |ϕ(1)

0 ⟩ ... |ϕ(Nν)
0 ⟩ , (21)

where

ϕ
(j)
0 (Qj) = ⟨Qj|ϕ(j)

0 ⟩ =
(ωj

πℏ

) 1
4
e−

ωj
2ℏ Q

2
j . (22)

Hence, by inserting Eq. 20, 21 and 22 in Eq. 19, we get the following expression,

employed in our calculations of low-temperature absorption spectra

⟨ptQt|µ̂|Ψ0⟩ ⟨Ψ0|p′
tQ

′
t⟩ ≈

[
Nν∑
j=1

∂µ

∂qj

∣∣∣∣
qeq

(
Q

(j)
t

2
− i

2ωα

p
(j)
t

)]
⟨ptQt|Ψ0⟩ ⟨Ψ0|p′

tQ
′
t⟩ .

(23)

The overlap between the harmonic ground state and a coherent state can be calcu-

lated analytically, since

⟨Ψ0|ptQt⟩ =
Nν∏
j=1

⟨Ψ(j)
0 |p(j)t Q

(j)
t ⟩ , (24)

with

⟨Ψ(j)
0 |p(j)t Q

(j)
t ⟩ = exp

{
−ωj

4ℏ

[
Q

(j)
t

]2
− 1

4ℏωj

[
p
(j)
t

]2
− i

2ℏ
p
(j)
t Q

(j)
t

}
. (25)

If we move to the high temperature limit (T → ∞) the Boltzmann operator

becomes equivalent to the identity operator

B̂(β) =
e−βĤ

Z
=

∑
n e

−βEn |Ψn⟩ ⟨Ψn|∑
n e

−βEn
=
∑
n

|Ψn⟩ ⟨Ψn| = 1̂, (26)

where we have used the fact that e−βEn → 1 ∀n (since β → 0) and the complete

basis set given by the vibrational eigenstates |Ψn⟩.

Therefore, the bra-ket from the final expression of the vibrational lineshape (see

Eq. 16) reduces, in the high temperature limit, to ⟨ptQt|µ̂|p′
tQ

′
t⟩, which can be

computed by means of Eq. 20

⟨ptQt|µ̂|p′
tQ

′
t⟩ ≈

[
Nν∑
j=1

∂µ

∂qj

∣∣∣∣
qeq

(
Q

(j)
t +Q′

t
(j)

2
− i

ωj

p
(j)
t − p′t

(j)

2

)]
⟨ptQt|p′

tQ
′
t⟩ . (27)

The coherent state overlap in Eq. 27 can be evaluated analytically

⟨ptQt|p′
tQ

′
t⟩ =

Nν∏
j=1

⟨p(j)t Q
(j)
t |p′t(j)Q′

t
(j)⟩ , (28)
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with

⟨p(j)t Q
(j)
t |p′t(j)Q′(j)

t ⟩ = exp
[
−ωj

4ℏ

(
Q

(j)
t −Q′

t
(j)
)2

− 1

4ℏωj

(
p
(j)
t − p′t

(j)
)2]

× exp
[
i

2ℏ

(
Q

(j)
t −Q′

t
(j)
)(

p
(j)
t + p′t

(j)
)]

. (29)

We point out that in the case of very high (namely infinite) temperature the eval-

uation of the absorption spectrum α(ω, T ) is meaningless because every eigenstate

is equally populated, leading to a spectrum with null absorbance at all frequencies.

Nevertheless, the absorption lineshape σ(ω, T → ∞) still contains all the absorp-

tion frequencies of the system and we employ it to clarify some theoretical aspects

of vibrational spectroscopy.

III. RESULTS

A. Morse oscillator

To test our approach we start from the study of a 1D Morse potential of the form

V (Q) = De

[
1− e−

√
ω2/2DeQ

]2
. (30)

The harmonic frequency and the dissociation energy are set as ω = 4400 cm−1 and

De = 38293 cm−1, respectively, mimicking the internal motion of an H2 molecule.

To select the initial conditions of the trajectories for the Monte Carlo phase-space

integration (see Eq. 16), two Husimi distribution functions [70] are employed, both

centered at the harmonic zero point energy (ZPE). 10000 pairs of trajectories are

hence generated and evolved for 605 fs each (2500 time steps with ∆t = 10 a.u.),

with a rejection rate of 9.6%. For this analytical system both the IR spectrum at

low temperature and the absorption lineshape at high T are calculated.
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SC IR spectrum
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Figure 1: Semiclassical IR spectrum in the limit of low temperature (upper panel)

and absorption lineshape at high temperature (bottom panel) for a 1D Morse os-

cillator. The dashed line corresponds to the harmonic estimate of the fundamental

frequency of vibration. Quantum DVR estimate [61] of the same frequency is given

by the vertical solid line.

The results reported in Figure 1 demonstrate an excellent agreement between our

SC estimate and the one obtained by means of the Discrete Value Representation

(DVR) technique, for both our simulations. In particular, the low temperature IR

spectrum (panel (a) of Figure 1) shows an intense peak centered at 4157 cm−1, cor-

responding to the fundamental 0 → 1 transition, and its weak quantum anharmonic

overtone, centered at 8050 cm−1. The high temperature absorption lineshape in the

lower panel of Figure 1 presents, in addition to the main signal at 4155 cm−1, a

series of hot bands at increasingly lower frequencies. This happens because at high

temperatures excited eigenstates get populated too, and transitions not involving

the ground state are possible. The frequencies of these signals are compared to DVR

analytical results in Table I, showing a very good level of agreement. An impor-

tant aspect to point out is that the signal of the fundamental transition maintains

(within expected numerical accuracy) the same frequency when switching from low

to high temperature (4157 vs 4155 cm−1). This evidence proves our method to
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be temperature independent as far as frequency evaluation is concerned as any ap-

proach based on quantum mechanics is expected to be, given that temperature does

not enter the Schroedinger equation (conversely absorption intensities are indeed

temperature dependent).[71] As an aside, we notice that for this simple 1D system

an exact DVR calculation of the intensity of hot bands is doable. We report it in

the Supplementary Material file, where it is shown that, as predicted from the SC

theory, agreement between SC and DVR calculations for hot bands improves as we

move the center of the sampling of trajectory energies from the harmonic ZPE to

values closer to the energy of the states involved in the hot band transitions.

Table I: Absorption frequencies in cm−1 for the indicated transitions (i → f) of the

1D Morse oscillator.

i → f Semiclassical DVR

0 → 1 4155 4147.33

1 → 2 3901 3894.92

2 → 3 3669 3643.07

3 → 4 3395 3391.95

0 → 2 8050 8042.26

MAE 10 -

B. H2O

Increasing the number of degrees of freedom, we apply our method to the non-

rotating water molecule in vacuum. This system is characterized by 3N − 6 = 3

normal modes of vibration, namely the bending mode (νb), the symmetric stretch

(νss), and the asymmetric stretch (νas). In our calculations we employ a pre-existing

analytical potential energy surface (PES) based on a quartic force field.[72] As for

the dipole derivatives at the equilibrium geometry appearing in Eq. 20, instead, we
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employ the values employed in a previous work [62], in which the dipole derivatives

were calculated by means of an analytical dipole moment surface.[73]

For the water molecule, we focus on the calculation of the semiclassical low-

temperature IR spectrum. To this end, 105 pairs of trajectories are selected through

two Husimi distribution functions centered at the harmonic ZPE, and evolved for

605 fs (2500 steps with ∆t = 10 a.u.). The final rejection rate is 23.7%.

Figure 2: Panel (a): Semiclassical IR spectrum of the water molecule in vacuum

in the low temperature limit. Panels (b) and (c): zoom on the bending signal,

and the fundamental signals related to the symmetric and asymmetric stretches,

respectively, with harmonic frequency estimates (dashed lines) and DVR frequency

and intensity benchmarks [62] (full orange lines). Panel (d): zoom on the bending

overtone.

Panel (a) of Figure 2 shows the absorption spectrum obtained from our calcula-

tion. It is made of several features, namely the fundamental peaks related to the

bending mode and symmetric and asymmetric stretches, located at 1591, 3715 and

3804 cm−1 respectively, a combination band at 5294 cm−1, due to the simultaneous

excitation of the bending and one stretching mode, and the overtone signals, cen-

tered at 3166 cm−1 for the bending and at 7416 and 7490 cm−1 for the stretching

modes. In panels (b) and (c) we report a zoom on the three fundamental tran-
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sitions, to compare both their frequencies and intensities with the DVR reference

values (taken from Ref 62).

The results show that our method is able to reproduce the DVR values with an excel-

lent level of accuracy, considering both the frequencies, with a maximum deviation

of 4 cm−1, and the relative intensities of the peaks. Indeed, upon normalization of

the spectral intensities to the peak of maximum intensity, i.e. the bending, we find

that the intensities of the symmetric and asymmetric fundamental signals match

the DVR reference ones with percentage errors of 1.2% and 4.0%, respectively. The

slightly higher error involving the asymmetric stretch signal may be due to the fact

that the two Husimi distribution functions employed to select the initial conditions

of the trajectories are both centered at the harmonic zero point energy, hence further

away in energy from the first excited state of this normal mode than they are for

the symmetric stretch. Panel (d) of Figure 2 shows a zoom on the bending over-

tone, resonating at 3166 cm−1. Its intensity can be compared to the one calculated

by Micciarelli et al. by means of a more elaborated semiclassical approach based

on the preliminar computation of semiclassical wavefunctions.[62] A good level of

agreement is found, since in both cases the signal intensity is in the order of mag-

nitude of 10−3 : 1 relative to the fundamental transition associated to the bending

absorption peak.

By carefully inspecting the IR spectrum in panel (a) of Figure 2, one finds out

that it also presents a signal at 2157 cm−1, whose frequency does not correspond to

any fundamental, combination or overtone band of the system. In fact, its frequency

can be identified as the difference between the symmetric stretch and the bending

frequencies. This signal, however, does not appear in the experimental IR spec-

tra, since the (1,0,0) excited state is not sizeably populated for the isolated water

molecule at low (and also room!) temperature. Hence, to investigate the origin of

this signal we perform an additional set of calculations with increasing simulation

time. The results are reported in Figure 3, and show how the relative intensity of

the peak tends to decrease by evolving longer trajectories, proving that its presence

is not related to any actual physical effect of the system, but it is simply a numerical

artifact due to the finite duration of our simulations. More on this will be discussed
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in the final Summary, Conclusions, and Perspectives Section.

2000 2100 2200 2300

Frequency / cm
-1

0

0.005

0.01

α
(ω

,Τ
→

0
) 

/ 
a

rb
. 

u
.

605 fs

1.21 ps

2.42 ps

Figure 3: Zoom on the peak centered at 2147 - 2158 cm−1 from the semiclassical

IR spectra of the non-rotating water molecule in vacuum, obtained by evolving 104

couples of trajectories with increasing time-length (2500, 5000 and 10000 au). The

corresponding rejection rates are 24%, 49% and 74%, respectively. The spectra are

shown upon normalization to the maximum of the bending absorption.

C. CO2

The last application we propose is the non-rotating CO2 molecule in vacuum, a

linear molecule characterized by 3N − 5 = 4 vibrational degrees of freedom. They

are a symmetric stretching mode (νss), two degenerate bending modes (νb and ν̄b)

and an asymmetric stretching mode (νas). Also in this case, a pre-existing ab-initio

quartic PES[74] is employed in our calculations. It is common to label quantum

states of the CO2 molecule by means of a triplet of quantum numbers (nss, nb, nas)

referred to symmetric stretch, bending, and asymmetric stretch, respectively.

We do not have an analytical dipole moment surface available for this system, so

we evaluate the dipole derivatives of Eq. 20 by performing a DFT B3LYP-D3/aug-

cc-pvdz geometry optimization and frequency calculation on the NWChem ab-initio

software,[75] starting from the equilibrium geometry of the PES as an initial guess.
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We then calculate the low-temperature (rigorously 0K) semiclassical IR spectrum

by evolving 104 pairs of trajectories 1.2 ps long (5000 steps with ∆t = 10 a.u.) on

the PES, with a final rejection rate of 4.5%. Also in this case, we select the initial

conditions of the dynamics by means of two Husimi distribution functions centered at

the harmonic ZPE. For the purpose of making a direct comparison we also calculate

the vibrational power spectrum of this molecule, by means of a TA-SCIVR approach

based on the same computational setup (PES, number, initial conditions, and time

length of the trajectories). The results of the two calculations are reported in Figure

4, where the reference QM frequencies, which we label as “exact QM frequencies”,

were calculated through a vibrational full configuration interaction method in a finite

basis representation (see Ref. 76).

Figure 4: Panels (a) and (d): Semiclassical low-temperature IR spectrum (full blue

line) and vibrational power spectrum (green area) for the CO2 molecule in vacuum.

ZPE signal in the power spectrum has been shifted to zero for direct comparison.

The left y-axis refers to the IR spectrum, while the right one to the power spectrum.

Panels (b) and (c): zoom on the fundamental IR bands of the degenerate bending

modes and the asymmetric stretch, respectively, together with the harmonic (dashed

line) and the reference QM (full red line) frequency values. [76]
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By comparing the signals of the two spectra, we demonstrate that the semi-

classical IR spectrum is able to select only the transitions that are allowed by

the symmetry-based quantum selection rules, differently from the power spectrum,

which, by definition, determines all energy levels and, therefore, can be used to show

all the possible transitions from the ground vibrational state to the excited ones.

The linear CO2 molecule belongs to the D∞h point group, hence the only IR active

(combinations of) normal modes are those characterized by the Πu or Σ+
u symmetry

species. In particular, we point out that motions symmetrical with respect to the

inversion center of the molecule (those indicated by the g subscript) are IR inactive.

The first signal found in the power spectrum after the ZPE is the fundamental

transition of the degenerate bending modes, labeled as (0,1,0). At the same fre-

quency, 653 cm−1, a peak in the IR spectrum is also present, and this is justified by

the fact that this motion possesses a Πu symmetry. Then, in the region between 1200

and 1400 cm−1 the power spectrum shows three bands: the first one, centered at

1268 cm−1, is assigned to the fundamental of the symmetric stretch mode (1,0,0); its

symmetry species is Σ+
g and, correctly, no IR signal is found at that frequency. The

two peaks at 1308 and 1370 cm−1, instead, are both labeled as bending overtones

(0,2,0), since they arise from the direct product of the two Πu symmetry species.

These are two signals slightly split in frequency due to different vibrational angular

momentum, with symmetry Σ+
g and ∆g, and therefore both IR inactive. Between

1900 and 2050 cm−1 the power spectrum shows the (1,1,0) combination band and

two split signals of the triple bending overtone, (0,3,0). According to the selection

rules, the former and one of the latter signals are IR active, being characterized

by the Πu symmetry . However, given the nature of the two signals, it is reason-

able to assume that their intensity is extremely low and cannot clearly emerge from

the baseline of the IR spectrum. At 2348 cm−1 the fundamental transition of the

asymmetric stretch (0,0,1) appears both in the power and in the infrared spectra,

as expected given the Σ+
u symmetry of this normal mode. The combination band

given by the simultaneous absorption of the bending and the asymmetric stretch

modes (0,1,1), centered at 2988 cm−1 in the power spectrum, is IR inactive, given

its Πg symmetry, and indeed does not appear in the IR spectrum. Finally, as shown
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in panel (d) of Figure 4, three peaks are observed in the power spectrum between

3500 and 3800 cm−1. The first one is assigned to the symmetric and asymmetric

stretch mode combination band (1,0,1) of Σ+
u symmetry, and therefore it is also

visible in our IR spectrum. The other two signals are due to the (0,2,1) absorption,

which, analogously to the (0,2,0) and (0,3,0) cases reviewed above, is split due to

vibrational angular momentum reasons. The first one of these, with symmetry ∆u,

is IR inactive, while the second one, of symmetry Σ+
u , is IR active and resonates at

a slightly higher frequency. This explains why in the IR spectrum two signals are

present in this region, while three signals can be observed in the power spectrum. A

Table in the Supplementary Material collects all mentioned data about symmetries

of CO2 vibrational motions.

Therefore, at the end of this analysis, we are able to verify that the method we

propose for the calculation of semiclassical IR spectra is able to fully abide by the

quantum selection rules, not showing those transitions which are inactive according

to their symmetry. On the other hand, as shown above, not all the IR active

absorptions appear as visible signals in the spectrum, but this can be explained by

considering that the intensity of any IR band is also related to the magnitude of the

corresponding transition dipole moment, which, if low, can quench the intensity of

the signal.

Finally, as far as the accuracy of our method is concerned, we can observe by

looking at panels (b) and (c) in Figure 4 that the frequencies of the bending and the

asymmetric stretch fundamentals are reasonably close to the exact values reported,

especially for the stretching mode, while for the bending a discrepancy of just 14

cm−1 is found. As for the intensities of our absorption peaks, not having any refer-

ence quantum mechanical calculation available, we report in Figure 5 a comparison

between our calculated IR spectrum and the experimental ro-vibrational spectrum

of carbon dioxide in the gas phase. Although the comparison cannot be totally

on the same level, since the peaks of the experimental spectrum correspond to ro-

vibrational transitions instead of the pure vibrational transitions simulated by us, a

good level of agreement is observed both for frequencies and the relative intensity

ratios.
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Figure 5: Panel (a): Semiclassical low-temperature IR spectrum (full blue line) and

experimental ro-vibrational spectrum (gray area) of the CO2 molecule. Panels (b)

and (c): zoom on the bending and asymmetric stretch modes fundamental tran-

sitions, respectively, reported with the corresponding harmonic (dashed line) and

exact (full red line) frequency values.

IV. SUMMARY, CONCLUSIONS, AND PERSPECTIVES

In this paper, we have demonstrated that the time average semiclassical tech-

nique, first introduced by Kaledin and Miller to deal with power spectra, can actu-

ally be employed to get a practical expression for semiclassical IR spectra. The main

difference with the power spectra expression lies in the necessity to run trajectories

in pairs for the IR spectrum (due to a double phase space integration) instead of

the single trajectories used for the power spectrum (due to a single phase space

integration). This keeps the computational overhead still affordable while allow-

ing to obtain accurate spectra in both intensities and frequencies. We were able

to study model and molecular systems of increasing dimensionality (single Morse

oscillator, H2O molecule, and CO2 molecule) describing quantitatively the relative

intensities of absorption peaks and taking into account correctly transition rules
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related to molecular symmetry. On this regard, we point out that our method is

totally general and does not rely on symmetry properties. In other words, we found

out the expected results, which were predictable on the basis of symmetry reasoning,

without enforcing symmetry in our calculations.

The application to the water molecule has allowed us to analyze an unexpected

signal at around 2150 cm-1. In liquid water that is the region of the libration-

bending combination band. Clearly, such a band cannot be present in the isolated

water molecule spectrum, since there are no librations in the isolated molecule.

We have considered several possible reasons to explain the presence of this signal,

ranging from the necessity to reach better convergence of our calculations to the

separable approximation employed for the SC prefactor, from the presence of a

small angular momentum in the trajectories leading to the observed signal to the

necessity to employ longer trajectories to deal with the Fourier transform included in

the time average. While the first three hypotheses were excluded upon calculations

not reported here, the latter has been found responsible for the observed peak. This

has been reported in Fig. 3. An interesting point about this investigation is that the

signal at about 2150 cm-1 can be interpreted as related to the frequency difference

between a stretch and the bending modes. As demonstrated in the paper, this feature

is disappearing as the simulation time is increased and a more accurate evaluation of

the Fourier transform is obtained. However, as the simulation time increases, the SC

propagator is known to lose its quantum character moving towards a (quasi-)classical

description.[77] This explains why we could not eliminate completely the 2150 cm-1

peak from our spectrum: indeed, classical simulations can be theoretically expected

to give signals at frequency differences,[78] and by increasing the simulation time our

SC simulation is moving towards a classical description. Given the weak intensity

of such signals and the fact we can easily locate them in frequency, the inability

to completely eliminate them from our IR spectra does not jeopardize the global

interpretation of our spectra. The topic of spectral differences between quantum

and classical trajectory-based approaches is a very interesting one, allowing one to

characterize the quantum or classical character of different techniques, and therefore

it will be the target of one of our future papers.
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We presented our new approach in the two limits of high (infinite) and low (0K)

temperature. In particular, the 0K spectrum is usually a realistic representation of

molecular vibrational spectra since low energy levels are well separated and popu-

lation distribution among energy levels at room temperature is basically equal to

that at 0K (i.e. only the ground state is populated). However, this approximation is

less and less accurate as the complexity and dimensionality of the molecular system

increases since energy levels get closer to each other.[79] A future development of

our approach will consist in considering finite temperature effects. A nice way to do

this is represented by thermo-field dynamics. By using thermo-field dynamics one

can incorporate finite-temperature effects in the calculation at the cost of doubling

the number of degrees of freedom. The computational cost of calculation is indepen-

dent of temperature, and the technique has been adopted together with SC thawed

Gaussian approaches.[80, 81] Another possible approach to take into account finite

temperature effects consists in including (in an approximate way) more terms in the

expansion of the Boltzmann operator on the vibrational eigenstate basis set. The

final SC expression will be a little more elaborated, but computational costs will be

similar to a 0K calculation.

Finally, it must be pointed out that this new approach to IR spectroscopy has

the advantage of preserving the theoretical framework of SC power spectra. The

natural consequence of this fact is that the several techniques developed for calcula-

tions of power spectra can be adopted for IR spectroscopy, leading to an improved

and complete semiclassical description of the vibrational spectroscopy of large and

complex molecular systems. SC power spectra have already been demonstrated as

a valuable tool to solve open experimental topics involving quantum effects in com-

plex systems, based on frequency evaluation only.[71, 82] The tool presented in this

paper will allow to look also at absorption intensities, thus much increasing the

effectiveness of a semiclassical study.

V. SUPPLEMENTARY MATERIAL

Details on an additional simulation of the semiclassical absorption lineshape of

the 1D Morse potential performed at high temperature (T → ∞) with an extended
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sampling can be found in the Supplementary Material, together with a comparison

between our calculated absorption frequencies of the water molecule and correspond-

ing reference values, and a table containing detailed data about symmetries of CO2

vibrational motions.
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