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A B S T R A C T   

The challenges posed by climate change and increasing world population are stimulating renewed efforts for 
improving the sustainability of animal production. To meet such challenges, the contribution of genomic se-
lection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving 
animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation 
interval. This review provides an overview of the current status and progress of advanced ARTs that could be 
applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of 
juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced 
embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and 
acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal 
derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic 
quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in 
ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm 
or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful 
use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to 
complete the entire process in few months. However, these approaches have been successfully applied to human 
and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is 
also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round 
spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward 
a significant reduction of the generational interval in livestock animals that could have a considerable impact on 
agriculture sustainability.   

1. Introduction 

In the last 30 years, animal breeding has been facing perhaps the 
most serious challenges since the so-called green revolution [1] trying to 
balance, on one hand, the increasing demand of food to feed an 
ever-growing world population [2], on the other, the need for a rapid 
adaptation to global warming, and for meeting the new selection criteria 
that favor animal wellbeing and disease resistance [3]. To meet these 

challenges, in livestock breeding programs, genomic selection (GS) has 
been widely used to increase the rate of genetic gain, improving live-
stock production efficiency and ultimately the sustainability of animal 
agriculture. GS has the advantage to shape modern breeding programs 
by using genomic information to estimate breeding values and rank 
selection candidates [4–6]. Over traditional phenotype-based selection, 
GS takes into account any trait that is recorded in the reference popu-
lation. This approach allows to obtain increased selection intensity and 
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greater selection accuracies, not limited to sex [7,8]. When GS strategies 
are used in combination with ARTs, the largest increase in genetic gain is 
obtained by shortening the generation interval [9]. This is possible since 
the convergence of GS, multiple ovulation embryo transfer (MOET), 
ovarian stimulation, ultrasound-guided transvaginal ovum pickup 
(OPU), in vitro maturation (IVM), in vitro fertilization (IVF), and in vitro 
embryo production (IVEP), gives the opportunity to increase the female 
selective pressure reducing the generation interval within a timeframe 
of approximately one year [10]. Among ARTs, MOET allows a heifer to 
produce multiple living offspring only a few months after her first 
estrous cycle and can be performed every 6–8 weeks [11,12] whereas 
OPU can be performed every 2 weeks, further increasing the number of 
embryos produced per oocyte donor [13,14]. 

Further reductions in the generation interval can be achieved by 
using an advanced ART known as juvenile in vitro embryo transfer 
(JIVET) to produce offspring after the transfer of in vitro produced em-
bryos derived from oocytes of prepubertal animals. However, the effi-
ciency of this technique is still unsatisfactory, and more improvements 
are required before it can be used on a large-scale level. The greatest 
limitation of JIVET is the lower production of embryos compared to 
embryo development of oocytes from adult females. Furthermore, the 
new frontier of creating female and male functional gametes in vitro 
from neonatal gonads or embryonic cells is laying the foundations to an 
in vitro breeding approach that could shorten the generational intervals 
to a few weeks [15–17]. This includes the use of immature cells, such as 
round spermatids, for intracytoplasmic injection (ROSI) into IVM oo-
cytes from adult and prepubertal animals that could remarkably shorten 
the generation time on the paternal side. 

Aim of this review is to outline the current status, progress and po-
tential in the use of advanced ARTs which can be applied to shorten the 
generational interval in both female and male of domestic ruminants. In 
particular, in the female section, we will present an overview of stra-
tegies for improving juvenile IVEP with regards to IVM systems of oo-
cytes recovered from prepubertal ruminants. In the male section, we will 
discuss the methodologies to obtain the spermatogenesis in vitro. We will 
then focus on the methodologies used to isolate and characterize round 
spermatids, including their application to produce embryos in vitro by 
their injection into matured oocytes. In both cases, we will discuss the 
potential directions for future studies. 

2. Reproductive biotecnologies to shorten the generational 
interval in the female 

Particular interest has been focused on the IVEP by fertilizing oocytes 
recovered from prepubertal females. Following transfer of these em-
bryos into adult recipient animals, offspring can be obtained from 
valuable animals before they reach sexual maturity, thereby reducing 
the generation interval and speeding the rate of genetic improvement. 
Normally, in ruminants, traditional MOET schemes result in a genera-
tional interval of about 12 months. Using oocytes obtained from 3- to 4- 
week-old donors it can be reduced this generation gap to 6 months only. 

Although the birth of lambs and calves has been already documented, 
the efficiency of juvenile IVEP is still low and variable [18–20]. There-
fore, the current challenges are focused on improving the use of this 
technique. The limitations that still exist and new approaches to 
enhancing IVEP outcomes are discussed in the sections below. 

2.1. In vitro embryo production from prepubertal donors 

The procedure commonly applied to generate embryos from prepu-
bertal derived-oocytes (Fig. 1) in domestic ruminants [21] includes 
different phases: i) the collection of oocytes from living unstimulated or 
hormonal stimulated donors (through vaginal or laparoscopic ovum 
pickup) or from slaughterhouse ovaries; ii) the selection of good quality 
oocytes and their culture under specific condition for IVM; iii) 
co-incubation of matured oocytes with in vitro capacitated spermatozoa 
for IVF; iv) in vitro culture (IVC) of presumptive zygotes up to the 
blastocyst stage. The use of prepubertal animals as oocyte donors allows 
to take advantage of the large pool of oocytes present in the ovaries of 
young animals for IVEP in livestock breeding programs to accelerate the 
propagation of superior, valuable animals. Indeed, a larger number of 
oocytes can be collected from prepubertal donors compared to their 
adult counterpart [22–24]. Despite this potential, juvenile IVEP is not 
yet efficient. The key factor limiting the success of IVEP is the poor 
developmental competence of prepubertal oocytes. Although 
species-specific variations in oocyte competency exist, oocytes collected 
from prepubertal domestic ruminants typically yield a lower blastocyst 
rate when compared with that obtained using oocytes from adult ani-
mals (10–30 % versus 40–60 %) [23,25–29]. 

Multiple studies underlined that different factors may influence the 
IVEP outcome including experiments and laboratory procedures along 
with the oocyte source (i.e. slaughterhouse or in vivo derived), hormone 
stimulation of donors before oocyte collection, donor’s age [24,30–32]. 
Hormone stimulation prior to oocyte collection has been applied in 
prepubertal domestic donors to increase both the size of ovarian follicles 
and the number of follicles appropriate for aspiration and to enhance 
oocyte developmental in vitro [30,32–39]. Our experience [32] as well 
as results from multiple studies [27,40] indicate no variations in the in 
vitro developmental capabilities of oocytes from stimulated and unsti-
mulated prepubertal ewes at 3–6 week of age. Moreover, the ovarian 
response upon gonadotropin stimulation was widely variable among 
prepubertal ruminants [41,42]. Plasma concentrations of anti-Müllerian 
hormone (AMH), a glycoprotein expressed by granulosa cells of small 
antral follicles, have been suggested as a good predictive marker of the 
ovarian response to gonadotropin treatment and in vitro embryo pro-
duction in prepubertal heifers and lambs [43,44]. Hormonal stimulation 
regimes, as well as benefits and drawbacks, have been previously 
described in prepubertal domestic ruminants [33,39,45]. Therefore, this 
review will not address that topic. 

Numerous studies examined the relationship between the age of 
prepubertal donors and the ability of the oocytes to develop, showing 
that, as the prepubertal donor approaches puberty, the oocytes ability to 

Fig. 1. Schematic sequence of steps in IVEP from prepubertal ewes (30–40 days old): ovaries with different morphology obtained from slaughtered lambs (A), 
ovarian slicing for oocytes collection (B); in vitro maturation (IVM) of oocytes cultured for 24 h: cumulus-oocyte complex (COC) (C), cumulus expansion after 24 h of 
incubation with gonadotropins (D); in vitro fertilization (IVF) with frozen-thawed ram semen (E); in vitro culture (IVC) of zygotes for 7 days: 2 cell-stage embryo (F), 
morula (G) and blastocyst (H). 
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respond to hormone stimulation and to develop increased [24,40,46]. 
Among the multiple steps of IVEP, IVM is the most crucial, because it 

is when oocytes acquire the potential to be fertilized and to sustain 
subsequent embryonic development. The goal of IVM is to support the 
complex process involving both the progression of the meiotic cycle and 
the reprogramming of cytoplasmic events which are necessary for the 
acquisition of the oocyte developmental competence [47]. The overall 
results in domestic ruminants indicated that prepubertal oocytes were 
able to reach the metaphase II stage at high rate (range 70–90 %) 
following 24 h IVM [48–50]. However, working with ovine oocytes, we 
found that the kinetic of maturation differs between adult and prepu-
bertal oocytes, as well as prepubertal oocytes showed higher rates of 
spontaneous parthenogenetic activation [25,51]. On the other hands, 
with regards to cytoplasmic maturation, numerous studies evidenced 
that in vitro matured prepubertal oocytes had structural [52–55], 
biochemical [25,56,57] and molecular [58–66] abnormalities that are 
likely responsible for their decreased ability to undergo further embryo 
development. According to our research, in vitro matured prepubertal 
ovine oocytes differed significantly in their cytoplasm. In particular, 
compared to their adult counterparts, lamb oocytes showed altered 
distribution and activity of mitochondria [25,53], lower activity of the 
Mitogen-Activated Protein Kinase (MAPK) and the Maturation Promot-
ing Factor (MPF) which could be responsible for the delayed kinetics of 
maturation and the high parthenogenetic activation [67]. Furthermore, 
we found that prepubertal oocytes had fewer and less functional trans-
zonal projections (TZPs) [53,67], which are responsible for maintaining 
bidirectional communication between oocytes and cumulus cells 
(Fig. 2). These findings could indicate a reduced passage of molecules 
between somatic and germinal compartments, which is likely the cause 
of the prepubertal oocytes’ poor metabolic and molecular condition [67, 

68]. Indeed, amino acid uptake and protein synthesis deficiencies [25, 
68] such as the expression of several genes related to metabolism and 
structural functionality were altered in prepubertal lamb oocytes 
compared to the adult counterpart [61]. 

Another significant difference between prepubertal and adult oo-
cytes is their lipid content. Fatty acids are stored as triglycerides within 
different sized lipid droplets (LDs) that are located throughout the entire 
cytoplasm and play an essential role in oocyte development providing an 
endogenous energy reservoir [69]. Abazarikia et al. [70] described 
difference in characteristics and changes in the number and distribution 
of intracellular LDs in young and adult ovine oocytes. A lower LDs 
number has been reported in heifer vs cow oocytes after IVM [71]. Lipid 
accumulation is more evident in vitro than in vivo matured oocytes [72] 
and high-quality oocytes have high oleic acid levels, while low-quality 
oocytes have high stearic acid levels [73]. Variations of lipid contents 
in prepuberal oocytes, compared to adult, could be indicative of their 
importance in oocyte quality. Further work is warranted to understand 
the relation between lipids content and oocyte developmental compe-
tence and to explore the potential for utilizing IVM media supplemented 
with nutrients to increase the accumulation of lipids, thus supporting the 
successful maturation of prepubertal oocytes. 

2.2. Emerging approaches for improving in vitro maturation and 
competence of prepubertal oocytes 

The two main factors influencing the success of IVEP are the intrinsic 
quality of the oocytes and the culture systems for IVM [74]. A better 
understanding of the differences between oocytes from adult and pre-
pubertal animals, the development of assays for the identification of 
competent oocytes, and the optimization of culture condition during 

Fig. 2. Functional and structural intercellular communications in the cumulus–oocyte complexes (COCs) of adult and prepubertal ovine oocytes. Injection of the 
fluorescent dye Lucifer Yellow (LY) into oocyte cytoplasm by a microneedle (A). Junctional diffusion of LY from oocyte to cumulus cells (CCs): immediately after the 
injection the fluorescent dye is diffused in the oocyte cytoplasm in both adult (B0) and prepubertal (C0) COCs. After 30 min of culture LY is diffused into CCs 
compartment in the adult (B30) while no diffusion was observed in the prepubertal CCs (C30). Transmission electron microscope (TEM) section of adult (BTEM) and 
prepubertal (CTEM) oocytes for examination of transzonal projections (TZPs) of CCs through the zona pellucida (ZP). Laser scanning confocal microscopy (CLSM) 
images illustrating a detail of adult (BCLSM) and prepubertal (CCLSM) immature COCs following staining for F-actin (Rhodamine phalloidin, red), DNA (Hoechst 33358, 
blue). Transzonal actin fibers are visible in TZPs connecting CCs to the oocyte (OO). Scale bar = 20 μm. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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IVM are all essential to improve the juvenile IVEP outcome. In the sec-
tions below we discuss in vitro approaches for identifying competent 
oocytes and for developing a customized IVM system to enhance the 
developmental competence of prepubertal oocytes from domestic 
ruminants. 

2.2.1. Non–invasive methods of oocyte competence assessment 
Traditional methods for selecting oocytes for IVEP programs are 

based on morphological criteria, including ovarian morphology assess-
ment during the collection of oocytes from slaughterhouse material, 
follicle selection based on size, evaluation of COC morphology, (i.e. 
number and appearance of cumulus layers, oocyte size, cytoplasmic 
features by light microscopy [52,75–78]. However, morphological 
evaluation is not sufficient to predict oocyte competence. In recent 
years, high-throughput molecular technologies and novel non-invasive 
methods have been used for screening the ideal oocytes. Studies that 
performed molecular analyses of follicular fluid (FF), proteomic and 
transcriptomic evaluation of cumulus/granulosa cells and identification 
of biochemical components in oocytes have shown promising results. 

2.2.1.1. Follicular fluid. FF provides an important microenvironment 
for oocyte growth and maturation and its composition varies according 
to physiological status of follicles and reflects oocyte quality [79,80]. FF 
is easily available during oocyte collection and it can be analyzed for 
identifying biochemical markers of oocyte quality [81,82]. Research has 
been performed to detect FF proteins in adult ruminants using various 
proteomic techniques [83–85]. Several FF proteins have been shown to 
affect the oocyte developmental competence [86,87]. The FF of prepu-
bertal animals showed downregulation of several proteins associated 
with follicular development and oocyte competence [88,89], indicating 
the significance of proteomics in identifying markers associated with the 
low developmental competence of prepubertal oocytes. A metabolomic 
approach revealed numerous compounds in prepubertal FF indicators of 
the oocyte quality. For instance, a high Estradiol (E2) to Progesterone 
(P4) ratio in FF was related to a higher ATP content and a higher 
developmental competence in prepubertal sheep [90]; a lower FF 
glucose concentration and a high fatty acids concentration have been 
linked to low developmental competence of prepubertal goat oocytes 
[91–94]. 

Besides proteomic and metabolomic FF analysis, spectroscopic 
techniques such as Fourier transform infrared spectroscopy and Raman 
spectroscopy [95] may help to profile biochemical FF fingerprints [96] 
and to identify differences in FF between adult and prepubertal animals. 

Also microRNAs (miRNAs), contained in FF extracellular vesicles 
(EVs) [97], has been shown to play a role in the follicle development 
[98] by regulating the expression of several genes in follicular cells [59, 
99–102]. Therefore, several miRNAs differentially expressed in FF of 
adult and prepubertal ewes have been proposed as markers of oocyte 
quality [103]. Da Silveira et al. [104] demonstrated that the supple-
mentation of culture media with EVs isolated from FF increased blas-
tocyst rates in cattle. Therefore, it is possible that adding EVs derived 
from adult FF to IVM medium of prepubertal oocytes may enhance IVEP 
outcome. 

Collectively, these types of analyses constitute a key step in identi-
fying the variation in FF composition between prepubertal and adult 
stage as well the specific substances or factors that may have beneficial 
impacts on oocyte competence. These insights could help design 
specialized IVM conditions that better meet the needs of prepubertal 
oocytes and improve nuclear and cytoplasmic maturation, fertilization 
and embryo development to the blastocyst stage. This topic will be 
discussed in the paragraph 2.2.3. 

2.2.1.2. Cumulus cells. CCs surround the oocyte, and the bidirectional 
cross-talk between these compartments modulates the development of 
both cell types [105,106]. Changes in oocyte developmental 

competence affected cumulus cell phenotype and gene expression [107]. 
The analysis of CCs, which are normally discarded during IVF treat-
ments, allows for the non-invasive evaluation of molecular markers that 
affect the quality and developmental potential of oocytes. Increased CCs 
apoptosis is a predictive indicator of impaired oocyte maturation, 
fertilization [108], preimplantation embryo development [109,110] 
and reduced pregnancy outcome after IVF [111]. The high incidence of 
apoptosis in CCs of prepubertal goat oocytes has been linked to the lower 
development to blastocyst stage compared to the adult counterpart 
[112]. The prognostic significance of the CC apoptotic rate in predicting 
the oocyte quality and outcome of IVF and embryo transfer, however, is 
debated [108,113]. 

Transcriptomic approaches can be used to assess the gene expression 
level in follicular cells to identify oocyte competence-predictive mo-
lecular markers and to clarify their functional significance [114]. 
Changes in the gene expression of CCs and granulosa cells have been 
linked to a variety of outcome parameters, including in vitro embryo 
development and pregnancy [115–118]. Hundreds of genes and proteins 
with differential expression between adult and prepubertal sheep were 
discovered by transcriptomic and proteomic analysis of CCs and gran-
ulosa cells [119–121]. These genes and proteins were connected to a 
number of pathways, including hormone biosynthesis, cell-cell adhe-
sion, the insulin-like growth factor pathway, and embryo development 
[49]. Many of them have been selected as markers of developmental 
competence in lambs [107,122]. These findings indicate that there are 
notable differences in gene expression and protein patterns between 
prepubertal and adult CCs and granulosa cells, which partially explain 
the reasons for the reduced development competence of prepubertal 
oocytes. IVM approaches based on co-culturing prepubertal oocytes 
with adult granulosa/CCs or their supernatant may help to enhance 
oocyte developmental competence. Furthermore, bioengineering tech-
niques designed to mimic physiological follicular structure (see section 
2.2.4) may be used as a means of improving the CCs function and pro-
moting interactions between the somatic and germinal compartments, 
both of which can enhance the IVEP outcome. 

2.2.1.3. Oocyte. Several attempts have been made to develop non- 
invasive techniques that can be combined with the conventional 
morphological selection to predict the structural, molecular, and 
biochemical characteristics of oocytes [102,123]. The measurement of 
oocyte metabolism by the analysis of spent oocyte culture medium has 
been proposed to select oocytes with high developmental capacity. 
Indeed, several oocyte metabolism-related factors, such as ammino acid 
turnover, glucose, oxygen, and pyruvate have been evaluated and linked 
to oocytes quality [124–127]. Novel methods such as hyperspectral 
microscopy, laser confocal imaging, and fluorescence lifetime-imaging 
microscopy [128–136] have recently been applied to the optical mea-
sures of the oocyte metabolic signature. Furthermore, vibrational 
microspectroscopies such as Raman microspectroscopy and Coherent 
anti-Stokes Raman scattering microscopy have been effectively used to 
investigate the global biochemical profile of mammalian female gametes 
and to identify at sub cellular level structural and molecular features 
that are associated with the quality of the oocytes [128–141]. To date, 
there have been no reports of using these techniques on prepubertal 
oocytes. These techniques involve expensive and sophisticated equip-
ment, and more research is necessary to determine whether they are safe 
to use on reproductive cells [134,142]. 

A simple method that proved to have predictive potential for oocyte 
quality evaluation is the measurement of glucose-6-phosphate dehy-
drogenase (G6PDH) activity using brilliant cresyl blue (BCB) staining. 
BCB is a blue compound which is reduced by G6PDH in a colorless 
substance [143]. G6PDH activity is high in growing oocytes and de-
creases in fully grown oocytes. As a result, the oocytes that have finished 
the growth phase are blue (BCB+), whereas the oocytes that are still 
growing are colorless (BCB-). This technique has been used for the 
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selection of immature oocytes before IVEP in various species [144]. Goat 
and sheep prepubertal oocytes’ G6PDH activity was assessed by BCB 
staining, which revealed that BCB+ oocytes had a greater capacity for 
development [145–147]. In a previous study, we found that the inte-
gration of the BCB test and the addition of resveratrol in the protocol of 
IVEP improved the blastocyst production from prepubertal lamb oocytes 
[50]. 

These techniques may be useful in determining the molecular 
composition of the oocyte in relation to its developmental potential. 
Combining the morphological classification with the easy-to-use and 
low cost BCB test can be an effective method in the IVEP procedure for 
differentiating oocytes with good and poor developmental competence. 
This will enable to apply IVM conditions that are specifically tailored to 
the oocyte quality. 

2.2.2. Pre-maturation culture of oocytes to enhance cytoplasmic 
maturation 

At the time of collection for IVEP, prepubertal oocytes are still in the 
process of acquiring developmental competence within growing antral 
follicles. Intra-oocyte levels of cyclic adenosine 3,5 -monophosphate 
(cAMP) and cyclic guanosine 3,5 -monophosphate (cGMP), two key 
regulators of oocyte meiotic maturation [148] decrease when oocytes 
are removed from their follicles, causing the spontaneous resumption of 
meiosis and desynchronization between nuclear modification and 
structural/molecular cytoplasmic changes which are fundamental for 
the acquisition of the developmental competence [149]. A short ‘pre--
maturation’ (Pre-IVM) culture period in presence of meiotic inhibitors 
prior to IVM might help to synchronize oocyte nuclear and cytoplasmic 
maturation stages [150]. So far, this approach, also known as bi-phasic 
maturation, has been successfully applied in IVEP programs in adult 
domestic ruminants [57,151–161]. Several pharmacological and phys-
iological agents (cGMP/cAMP modulators, inhibitors of phosphodies-
terase, proteins synthesis and MPF) were tested in various pre-IVM 
systems to modulate intra-oocyte cAMP/cGMP concentration and to 
control meiotic arrest and resumption [148,150]. To date, only few 
studies explored the potential of pre-maturation culture in juvenile 
IVEP. A biphasic IVM, including a pre-IVM with c-type natriuretic 
peptide (CNP), the physiological meiosis-inhibiting regulator [162], 
plus estradiol (E2) allowed maintaining meiotic arrest for 6 h in pre-
pubertal goat oocytes, improved the oocyte protection against oxidative 
stress, up-regulated genes related to DNA methylation and extracellular 
matrix formation while maintaining cumulus-oocyte communication 
and enhanced the embryo developmental competence to the blastocyst 
stage after IVF (CNP + E2: 29.9% vs control: 18.1 %) [163]. Similarly, 
pre-IVM of lamb oocytes in media containing CNP and E2 and subse-
quent standard IVM improved the percentage of blastocysts developed 
(CNP + E2: 44.0 % vs control: 32.6 %) [164]. In another study, Wang 
et al., 2016 found that culturing low quality lamb oocytes (BCB- selected 
oocyte) with a phosphodiesterase 3 (PDE3) inhibitor, milrinone, yielded 
higher proportion of blastocysts (25 %) than the control system (2.7 %) 
[165]. 

These results, although preliminary, indicated that pre-IVM is a 
promising step that might be included to IVEP schemes when using 
oocytes from prepubertal animal. Additional research should be con-
ducted to extend the transient meiotic arrest for more than 6–8 h and to 
implement the pre-IVM medium with other meiotic-inhibitors and other 
factors such as hormones and growth factors, which could further 
improve the competence of prepubertal oocytes. In prepubertal mice, 
the blastocyst rate of oocytes pre-IVM for 24–28 h with CNP in medium 
containing FSH and GDF9 was similar compared to IVEP of ovulated 
oocytes [166]. 

2.2.3. Formulation of tailored IVM culture media 
Culture conditions for IVM of prepubertal oocytes have long been 

developed based on those typically used for adult oocytes. Recently, 
thanks to the knowledge gained from studies on FF, CCs and oocytes, 

various attempts have been devoted to design specific culture media for 
IVM of prepubertal oocytes to better meet their need and to ameliorate 
cytoplasmic maturation, proper fertilization, and embryo development 
to the blastocyst stage. In domestic ruminants, a variety of compounds 
have been added to the culture medium for IVM of prepubertal oocytes, 
including antioxidants, cytokines, and growth factors, either alone or in 
combination. In the following paragraphs and in Table 1 we summarized 
the results obtained in recent years with the use of the most effective 
additives in IVM media for enhancing IVEP in prepubertal domestic 
ruminants. 

2.2.3.1. Antioxidants supplementation to counteract oxidative damage. 
One of the well-known key factor which may contribute to the overall 
poor quality of in vitro matured oocytes is oxidative stress (OS) which 
generates from an imbalance on the production and elimination of intra- 
oocyte reactive oxygen species (ROS) and causes damage to oocyte 
structures [167]. This issue is considerably more relevant for prepu-
bertal oocytes because they are less able to maintain an appropriate 
redox homeostasis in response to OS generated by the in vitro condition 
compared to those from adult oocytes. This may be caused by the 
impaired synthesis of endogenous antioxidants in prepubertal oocytes 
[168,169] like glutathione (GSH) that is the main non-enzymatic de-
fense system against oxidative stress in oocytes [170]. Due to its ability 
to increase cysteine uptake and to promote intra-oocyte GSH synthesis, 
low molecular weight thiol such as cysteamine is regarded as the stan-
dard antioxidant in the IVM of adult animal oocytes [171]. Beneficial 
effects of the addition of cysteamine to the IVM medium have been re-
ported in IVEP from prepubertal goats and lambs [146,172,173]. Other 
antioxidants used in IVM of adult oocytes in various species have been 
tested to attenuate the deleterious effect of OS on the developmental 
competence of prepubertal oocytes, including hormones, and com-
pounds of natural origin. 

Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine syn-
thesized in the pineal gland and other organs such as the ovary, deserves 
special attention due to its powerful free radical scavenger activity and 
its wide-ranging antioxidant action [174]. It has been demonstrated that 
melatonin supplementation during IVM reduced ROS levels and 
enhanced mitochondrial activity and ATP content in prepubertal goat 
oocytes [175] and increased rate and cell number of blastocysts in both 
prepubertal goats and calves [175,176]. On the other hand, Tian et al. 
[177] did not find positive effect of melatonin supplementation during 
IVM on development rates of oocytes retrieved from 4–5-week-old 
lambs. 

Due to their efficiency and low cost, using compounds of natural 
origin might also offer a good option to counteract deleterious effect of 
OS in prepubertal oocytes. Among them, resveratrol (Res), a non- 
flavonoid polyphenol naturally presents in several plants, such as nuts, 
mulberry and grapes is one of the most studied [178]. This compound 
functions as a chemical activator for mitochondrial biogenesis in addi-
tion to being a potent ROS scavenger [179]. In prepubertal goats, the 
supplementation of IVM with Res increased intra-oocyte GSH content, 
modified the mitochondrial distribution and lead to higher blastocyst 
yield than control IVM without the antioxidant [50]. The screening of 
higher intrinsic quality prepubertal goat oocytes (positive to the BCB 
stain, BCB+) and IVM in the presence of Res led to a further increase in 
development to the blastocyst stage. Our group (Bogliolo L. unpublished 
data) also evidenced a positive effect of Res addition during IVM of lamb 
oocytes resulting in enhanced embryo development up to the blastocyst 
stage (31.5 %) compared to non-treated group (15.7 %). In prepubertal 
bovine oocytes, Res treatment during IVM did not affected blastocyst 
yield while enhancing the percentage of expanded blastocysts [180]. 

Another interesting polyphenol is verbascoside (Vb) which is present 
in olive oil and can be obtained from the oil production wastewater 
[181]. Compared to other antioxidants which act at micromolar con-
centrations, Vb exerted positive effects at much lower levels. Indeed, 
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Martino et al. [182] documented that supplementation with Vb nano-
molar concentrations during IVM improved blastocyst formation and 
quality by protecting lamb oocyte against OS. However, a Vb 
pro-oxidant activity during IVM of prepubertal ovine oocytes has been 
evidenced depending on concentration and exposure times [183]. 

Sericin, a water-soluble natural protein from the silkworm, with 
antioxidant action [184,185], supplemented during IVM significantly 
increased the rate of blastocyst obtained from lamb oocytes [177]. 

Beside the use of compounds of natural origin, engineered nano-
particles of cerium dioxide (CeO2 NPs) have also been tested for their 
powerful redox activity. A low concentration of CeO2 NPs in the matu-
ration medium enhanced IVEP of prepubertal ovine oocytes and resulted 
in blastocyst rates comparable to those of adults [186]. However, the 
safety of these compounds needs to be extensively investigated before 
being used in IVEP programs. Overall, these findings may help to 
determine the most effective antioxidant and its appropriate concen-
tration for improving prepubertal oocyte development competence. 

2.2.3.2. Follicular fluid components: cytokines, growth factors, fatty 
acids. FF composition of prepubertal and adult animals differed [92, 
187,188]. The variations in FF composition may partially explain the 
lower developmental competence of prepubertal oocytes compared to 
adults’ ones. 

In this context, Tian and at [189]. performed a study maturing lamb 
oocytes in medium supplemented with 20 % adult FF from 
FSH-stimulated ewes or adult FF from abattoir-derived ovaries and 
yielded higher blastocyst rates than that from the control medium. 

Other studies aimed at improving the developmental competence of 
prepubertal oocytes by supplementing IVM medium with cytokines and 
growth factors which are important component of FF and have funda-
mental regulatory effect on cumulus-oocyte complexes. Tian et al. [189] 
assessed the impact of adding the FLI cocktail, containing fibroblast 
growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and 
insulin-like growth factor (IGF1), to IVM media for lamb oocytes and 
observed a significant increase in blastocyst formation. FA are other 
important components of the FF because they provide a significant 
source of energy for the developing and maturing oocytes [79]. The 
effect of omega-3 a-linolenic acid (ALA) addition to the IVM medium on 
embryo development of prepubertal sheep oocytes has been explored 

[190]. Although no differences were observed in blastocyst develop-
ment, ALA treatment improved the quality of blastocyst improving their 
total cell number and reducing the number of apoptotic cells [190]. 
These improvements of the IVM conditions are particularly promising 
for further optimizing the efficiency of IVEP in prepubertal animals. 

2.2.4. Bioengineering approaches that mimic the physiological follicle 
environment 

In addition to identify the best chemical composition of the IVM 
culture media, reproducing the physiological follicular architecture and 
microenvironment is crucial to drive proper oocyte nuclear and cyto-
plasmic maturation. 

Bioengineering strategies tailored to mimic physiological follicular 
structure have garnered a lot of interest in the recent years [191]. These 
approaches focused on i) preserving the cumulus oocyte complexes’ 
three-dimensional (3D) structure to enable bidirectional communication 
between the oocytes and the surrounding granulosa cells; ii) establishing 
dynamic culture systems to allow fluid chemical compositions to change 
in order to mimic more accurately the in vivo environment; iii) recre-
ating the composition of the follicular extracellular matrix to promote 
interactions between the COC and granulosa cells thus improving the 
efficacy of signaling pathways of oocyte maturation. 

Specific culture methods and matrices have been developed for 3D 
IVM culture of oocytes in various species including agarose matrix 
[192], glass scaffolds [193] and alginate microbeads [194,195]. These 
techniques made it possible to avoid 2D culture disadvantages including 
COCs flattening at the bottom of the culture plate, which significantly 
reduced the amount of cell surface exposed to media and reduced the 
relationship between regulatory factors and their receptor sites, thus 
improving the efficacy of the signaling pathways that regulate meiotic 
maturation and improved blastocyst production. Recently, Mastrorocco 
et al. [194] developed an automated one-step bioprinting method for 
preparation of COC- alginate microbeads that was highly reproducible 
and capable of controlling cumulus size and integrity, addressing the 
limitation and variability of two-step or manual procedures mentioned 
in previous studies. This technique was successfully used for IVM of 
prepubertal ovine oocytes. Indeed, the 3D system supported oocyte 
nuclear maturation more efficiently than the 2D control, increased 
ooplasmic mitochondrial activity and ROS generation ability, up 

Table 1 
List, concentrations, and effects of compounds that have been proven to enhance the developmental competence of oocytes when added to the IVM medium in do-
mestic prepubertal ruminants in recent years.  

Antioxidants Species Optimal Dose Effect Blastocyst rate vs 
(control) 

REF 

Melatonin bovine 0.01 nM ↑blastocyst yeld/cell 
number 

23.1 % (11.1 %) [176] 

goat 0.1 μM ↑blastocyst yield/cell 
number 

28.9 % (11.7 %) [333] 

Resveratrol goat 1 μM ↑blastocyst yield 20.1 %(6.8 %)% [50] 
28.3 % (13.0 %)a 

bovine 1 μM ↑expanded blastocyst 
rate 

63.8 % (42.8 %)b [180] 

sheep 1 μM ↑blastocyst yield 31.5 % (15.7 %) Bogliolo et al. 
(unpublished data) 

Verbascoside sheep 1 nM ↑blastocyst yield/cell 
number 

20.5 % (13.2 %) [182] 

Sericin  0.5 % ↑blastocyst yield 31.2 %(15.1 %) [177] 
Cerium dioxide nanoparticles 

(CeO2 NPs) 
sheep 44 μg/ml ↑blastocyst yield/cell 

number 
22.8 % (7.0 %) [186]  

Cytokines/Growth factors  

Follicular Fluids sheep 20 % FF from FSH stimulated sheep ↑blastocyst yield 31.4 % (20.7 %) [189] 
ITS + FLI sheep ITS: 1.0 mg/ml insulin, 0.55 mg/ml transferrin, 

0.5 μg/ml selenium: 
↑blastocyst yield 34.9 % (18.5 %) [177] 

FLI: 40 ng/ml FGF2, 20 ng/ml LIF, 20 ng/ml IGF1  

a BCB + selected oocytes. 
b Percentage of expanded blastocyst/total embryos. 
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regulated maternal-impact genes and improved blastocyst quality. The 
same group reported that the addition of granulosa cells and type I 
collagen in the alginate COC-microbeads or the culture of 
COC-microbeads under dynamic IVM conditions in a millifluidic biore-
actor further improved lamb oocytes IVM [196,197]. Such methods 
more accurately mimicked the physiological follicle structure and flow 
conditions, which had a positive impact on the nuclear maturation and 
bioenergetic state of IVM lamb oocytes. 

Another 3D strategy for oocytes IVM is based on the production of 
microbioreactor polytetrafluoroethylene (PTFE) micro-bioreactors, also 
known as liquid Marbles (LM) [198], which consists in a drop of IVM 
medium enclosed in hydrophobic PTFE confining the oocytes in a small 
space and encouraging them to freely interact with each other while, at 
the same time, allowing the gas exchange between the medium inside 
the reactor and that in the holding culture vessel. Bebbere et al. [199], 
recently, proved that LM provided a suitable environment for IVM of 
lamb oocytes as demonstrated by modulating the expression of 
oocyte-secreted factors such GDF9, of enzymes involved in DNA 
methylation reprogramming and of the subcortical maternal complex as 
well as increasing the blastocyst rate compared to the traditional 2D 
culture system. Preliminary studies of our group found that using LM for 
a biphasic IVM of lamb oocytes (pre-IVM with CNP and E2) prolonged 
the persistence of CCs-oocyte communications and reduced the OS 
(unpublished data). 

3. Assisted reproductive technologies to shorten the 
generational interval in the male 

Male puberty consists of physical changes leading to sexual dimor-
phism through the development of the secondary sex characteristics. 
This period has been correlated with the pulse and surge modes of 
gonadotrophin secretion, generated by the gonadotrophin-releasing 
hormone (GnRH) neuronal network [200]. 

In cattle, the achievement of male puberty is defined as the bull 
ability to produce an ejaculate containing 5.0 × 107 spermatozoa with at 
least the 10 % of spermatozoa characterized by progressively linear 
motility [201]. Several studies also correlated puberty with scrotal 
circumference, sperm quality (concentration, motility and morphology) 
and circulating blood concentrations of reproductive hormones with the 
timing of the early transient rise in Luteinizing hormone (LH) pulse 
being a critical factor in determining the age at which puberty is reached 
[202]. The average age of bull puberty is about 315 days, with a range of 
292–327 days for beef bulls [203–205] and an overage of 320 days with 
a range of 283–369 days for dairy bulls [206–208]. Therefore, the 
generation interval could be shortened breeding males as early as 
possible after birth, or, even more, in case functional gametes could be 
obtained even before birth. It will be now discussed how this could be 
achieved and how far away is this goal in domestic ruminants and in 
cattle in particular. 

3.1. Recreating spermatogenesis in vitro 

Several studies tried to develop culture systems that allow sper-
matogenesis and spermiogenesis to occur outside the body. The various 
attempts were based on the use of both 2D and 3D culture systems. 
However, the results obtained so far show that it is challenging to 
recreate the entire process in vitro and only a partial differentiation has 
been achieved. In 2D culture systems, the co-culture of a feeder layer, of 
Sertoli or Vero cells, promoted the differentiation of SSCs and sper-
matocytes towards haploid spermatids [209–213] both in humans and 
mouse [214]. However, the differentiation of SSCs into mature sper-
matozoa has been rarely observed. 

In cattle, 2D culture systems have been applied using the same ap-
proaches developed in humans and mouse. Several research groups re-
ported that it is possible to isolate SSCs from bull testis and keep them 
alive in culture. It has also been shown that bovine spermatogonia form 

large colonies [215,216] in which groups of differentiating cells can 
acquire characteristics of haploid spermatids. The use of feeder layers 
has also been used in this species; however, the results are controversial. 
While some authors compared different feeder layers showing that STO 
cells are suitable for short-term propagation of bovine SSCs that main-
tained their ability to propagate as well as the expression of SSC major 
markers [217]. Oaetly and colleagues [218] developed a feeder-free 
system with bovine fetal fibroblast-conditioned medium that sustained 
bovine undifferentiated spermatogonia for at least one month in vitro. 

While in cattle there is a high interest in developing these method-
ologies due to the economic impact of the applications that could derive, 
few studies have been reported also in other farm species such as pig 
[219], horse [220] and Mediterranean buffaloes [221]. In the latter, it 
was possible to isolate SSCs which survived, proliferated and differen-
tiated towards elongated spermatids, characterized by morphological 
features of flagellum and expression of the PRM2 gene, but not by the 
expression of the TP1 genes [221]. 

Overall, although these studies indicate that 2D culture systems can 
only be used to obtain an incomplete spermatogenesis, they identified 
specific supplements such as bone morphogenic marrow 4 [222], 
epidermal growth factor [223], retinoic acid [224], rFSH [214], insulin 
transferrin selenium [225] that constitute the signaling mechanisms 
responsible for spermatogonia differentiation providing valuable in-
sights for developing a fully defined stepwise in vitro spermatogenesis 
system. Several 3D platforms for in vitro spermatogenesis in humans and 
mouse have been developed to counteract infertility problems. One of 
these systems are the organotypic cultures developed for mimicking the 
natural microenvironment of the complete testicular niche [226]. An 
example is the hydrogel bioreactor made of a hollow chitosan cylinder 
[227]. However, one of the limitations of these systems is the difficulty 
to keep the tissues viable and functional without a bodily support, 
including delivery of oxygen, vitamins, nutrients and trophic factors 
through diffusion from the local vascular system. An alternative system 
is the bioengineering of the testicular niche [228]. This method is based 
on recreating the physiological tissue structure using 3D scaffolds, 
organoids or 3D bio-printed systems, to increase intercellular connec-
tions and diffusion of cell-secreted factors by recapitulating the tissue 
morphology. The advantage of this approach compared to organotypic 
culture systems is that it mimics not only the tissue organization, but 
also its cellular composition. Moreover, cell viability is improved by the 
nutrient and oxygen diffusion from the medium through porous 
scaffolding. 

In cattle, a 3D scaffold was developed to culture and differentiate 
SSCs isolated from neonatal bull testis. After tissue dissociation, the 
different cell types, including spermatogonia and Sertoli cells, were 
reaggregated and encapsulated in calcium alginate [229]. This system 
improved the long-term culture conditions of germ cell differentiation 
compared to the results obtained with 2D systems when starting with the 
testis of a pre-puberal subject [229]. Another 3D testicular culture 
model uses a decellularized scaffold generated eliminating the cellular 
component of the tissue while preserving the extracellular matrix 
(ECM). The rationale of this approach is based on previous studies that 
demonstrated the effect of the ECM on the preservation and differenti-
ation of various stem cells [230–233]. On this basis, Movassagh and 
colleagues [234], recently demonstrated that the culture of SSC cells on 
a decellularized sheep testicular matrix provided the conditions suitable 
for their preservation and proliferation. 

The most advanced frontier in recreating spermatogenesis in vitro has 
seen the use of mouse pluripotent stem cells (PSCs), including embry-
onic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) derived 
from somatic cells, to generate germ cells in vitro and differentiate them 
towards fully mature spermatozoa. Hayashi and colleagues [235] re-
ported the generation of primordial germ cell-like cells (PGCLCs) in mice 
with robust capacity for spermatogenesis. PGCLCs were generated from 
ESCs and induced iPSCs through epiblast-like cells (EpiLCs), a cellular 
state highly similar to pre-gastrulating epiblasts but distinct from 
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epiblast stem cells (EpiSCs). However, in this work, they recreated 
spermatogenesis only partially. Ishikura and colleagues [236] were then 
able to derive spermatogonia-like cells from PGCLCs after their aggre-
gation and subsequent culture with fetal testicular cells. In this work, the 
authors were able to further differentiate spermatogonia-like cells into 
spermatids which were used to obtain live and fertile offsprings not only 
following transplantation into testes in vivo but also culturing testis 
transplants in vitro [236]. Similarly, co-culture of PGCLCs with neonatal 
testicular somatic cells and addition to culture media of morphogenic 
and sexual hormones allowed to recapitulate male gametogenesis in vitro 
with resulting spermatid-like cell generation. Their intracytoplasmic 
injection into mature oocytes produced viable and fertile offspring 
[237]. 

Interesting results came from a study where male mice, pigs, and 
goats rendered genetically sterile by CRISPR-Cas9 editing of the 
NANOS2 gene supported donor-derived spermatogenesis following 
allogeneic stem cell transplantation [238]. In the same work, it was 
shown that CRISPR-Cas9 editing of the NANOS2 gene in cattle leads to 
male germline ablation. Collectively, these advancements represent a 
major step toward realizing the enormous potential of surrogate sires as 
a tool for dissemination and regeneration of germplasm in all mamma-
lian species [238]. Similar results were also obtained in sheep where 
germ cell transplantation was successfully obtained between different 
rams of different breeds [239]. However, in this work, it was important 
to use a single dose of irradiation 6 weeks before transplantation for 
preparing recipient testis at a puberal stage [239]. 

Among domestic animals, stable ESCs have been established in cattle 
only. These ESCs showed a stable morphology and karyotype, and 
expression of pluripotency markers as observed for in mouse and human 
ESCs. However, the plasticity of ESC and iPS in cattle, despite some 
recent advances [240], is still much more limited than in mouse [241] 
thereby preventing the replication of such achievements. At present, 
these results have not been replicated in any other species. However, the 
results achievable by their application to bulls would be useful. If 
spermatogonia could be derived from embryonic or induced pluripotent 
stem cells, spermatozoa generated in vitro from embryos that, in turn, 
could generate other embryos. Repeating this cycle for a few times, the 
generation interval could be reduced to a few weeks. This could open the 
way for rapid improvement in a wide range of traits, especially low 
heritable traits that control key features like disease resistance and 
environmental adaptation. 

3.2. How not to wait for puberty anyway 

Even if the scenario described here it is still not applicable to rumi-
nants, there is still a lot of work that can be done in order to bring it 
closer to reality. The first and realistic step to make possible the use of 
spermatids for fertilizing an oocyte bypassing the need for a full differ-
entiation into a functional spermatozoon. The procedure is known as 
Round Spermatid Sperm Injection (ROSI) and is widely used in humans 
and mouse to overcome lack of a functional tail and led to the generation 
of full-term individuals in both species. Assuming that an IVF procedure 
followed by ESC establishment takes about 4 weeks in cattle, and germ 
cell differentiation takes about 2 or 3 months in mice, the use of in vitro 
breeding could be completed in around 3–4 months. Moreover, if sper-
matids could be used for fertilizing mature oocytes, this would mean a 
huge reduction in the generational interval. Notably, in vitro breeding 
might be associated with the modern techniques of GS to have a greater 
effect on genetic improvement in a reduced amount of time. 

Unfortunately, in livestock species, on the contrary, ROSI although 
possible, it has a very low success rate, and no offspring have been born 
so far. It will be now analyzed the possible reasons for this difference and 
how we can overcome the problems. 

3.2.1. The isolation of round spermatids 
The methods for isolating round spermatids have been mainly 

developed in mouse and include velocity sedimentation, density 
gradient [200–202], centrifugal elution [242,243], immunoselection 
panning technique [244]. Among these, the use of Percoll density 
gradient, which is routinely applied to isolate motile spermatozoa, has 
been also applied in cattle to simultaneously separate the different cell 
types found in the seminiferous tubules, which include spermatogonia, 
spermatocytes and spermatids [245]. However, in cattle, Ock and col-
leagues [245] obtained only a total of 30–40 % of presumptive round 
spermatids on the total cells isolated, showing that the isolated round 
spermatids were contaminated by several other cell populations 
including Sertoli and somatic cells, while a pure round spermatid pop-
ulation was not obtained [245]. Recently, in mouse, Kim and colleagues 
[246] reported a simple method to isolate spermatid fractions from 
mouse testes using unit gravity sedimentation in a BSA density gradient. 
However, they too reported issues on the purity of the obtained cell 
population since each fraction contained several somatic and sper-
matogenic cell types [246]. 

Flow cytometry combined with cell sorting has been also used for 
isolating round spermatids. This method is based on the different DNA 
content of haploid spermatids compared to the other spermatogenic 
cells, such as spermatogonia and spermatocytes, which are character-
ized by a diploid genome [247]. In mouse, haploid round spermatids 
were isolated after staining with Hoechst 33342 or Dye Cycle Violet) or 
by cell diameter and granularity using flow cytometric cell sorting 
[248]. 

Recently, Simard and colleagues showed that using syto16, another 
intercalating DNA dye, it was possible to isolate not only a pure popu-
lation of mouse spermatids but also to separate different spermatid 
stages using the variable fluorescence intensity [249]. The isolated 
spermatid population were characterized by a different nuclear reor-
ganization. In this work, the authors hypothesised that the observed 
differences could be due to the different chromatin remodeling of the 
spermatids which occurs during the formation of their peculiar chro-
matin structure transition where histones are replaced by protamines 
[249]. Although the round spermatids isolated using this method cannot 
be used for ART applications, such as ROSI, due to the persistence of syto 
16 within the DNA, these methodologies could be used to perform mo-
lecular analysis on the isolated spermatid populations to unravel the 
mechanisms and the molecular pathways at play during spermatogen-
esis. In conclusion, while in mouse and humans several methods have 
been developed for isolating pure populations of round spermatids, 
these approaches have not yet been fully applied to domestic animals 
including ruminants. Moreover, in all the mammals, the development of 
a minimally invasive selection of round spermatids may yield high pu-
rity populations for ARTs not only in humans and mouse but also in 
domestic animals as well. 

3.2.2. Distinctive morphological features of round spermatids 
Spermatid morphological features and size can be different among 

species [213,250]. The presence of nucleoli is a distinctive feature of 
round spermatids (Fig. 3). These are identified in all mammals, 
including humans [251] and mouse [252]. However, while in humans 
and mouse, spermatid diameter is from 6.0 μm to 11.0 μm [246,253], in 
cattle, it ranges from 7.6 to 13.4 μm [254,255]. 

Another typical feature characterizing round spermatid is the acro-
some. Among species, acrosome size and shape can be different in the 
spermatozoa. In humans, the acrosome is very thin and closely wraps the 
nucleus. In rabbit the anterior margin is clearly evident [256]. Whereas, 
on the bull spermatozoa, the acrosome is characterized by a distinct 
smooth crescent shape of the apical ridge and a smooth surface [257]. 

Taken together, the heterogeneity of round spermatids may explain 
why it can be difficult to identify competent round spermatids to inject 
into the mature oocytes using only phase contrast microscopy. 

Therefore, it is necessary to establish a criterion for their correct 
selection. 

Reyes and colleagues [258] used karyotyping and fluorescence in 
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situ hybridization (FISH) to identify exactly the haploid spermatids, 
however this procedure is invasive and selected spermatids cannot be 
used for ROSI [258]. In 1999, Sutovsky and colleagues [259] demon-
strated that bovine and rhesus round spermatids contain highly polar-
ized mitochondria [259]. These results were also confirmed in humans 
where spermatogenic cells were categorized based on stage-specific 
mitochondrial location and morphologic change [260]. Following 
these studies, Hikichi and colleagues [261] used mitochondria polari-
zation for identifying the different mouse spermatogenic cells. In 
particular, round spermatids mitochondria were distributed either 
across the whole cell or localized to the cell rim around the nuclear 
membrane [261]. In the same work the authors showed that, using this 
selection criteria, embryo developmental rate was the same when pro-
duced by ROSI and when produced by ICSI [261]. Although these 
studies suggest that mitochondria could have a possible role in deter-
mining the competence of round spermatids to fertilize the oocytes, a 
clear correlation with round spermatid quality has not been defined yet. 
However, all these methods are invasive as they are based on the use of a 
staining procedure. Therefore, this represents an impediment for 
applicability of these procedures to IVEP as they can affects spermatid 
quality and viability. As a consequence, they cannot be applied yet in the 
selection of round spermatids for ROSI. In conclusion, one of the possible 
limitations for the low efficiency of ROSI is the ambiguous definition of a 
round spermatid that makes its selection difficult. Additional studies are 
therefore needed to standardize the selection criteria. 

3.2.3. Stage-specific molecular markers of round spermatids 
Extensive work has been performed on the identification of stage- 

specific markers of round spermatids in different species [262–265] 
for studying the molecular mechanisms regulating spermatogenesis and 
spermatozoa differentiation, which involve substantial morphological 
and cellular transformations. However, the mechanisms driving this 
process has not been well established yet. Moreover, although it has 
been shown that gene expression decreases during spermiogenesis, the 
current findings are still misleading. Some researchers reported that 
transcription does not occur in round spermatids [266] and that internal 
transcripts are merely a residue from spermatogenesis [267]. On the 
contrary, it has been recently showed that even though the transcription 
of several genes was downregulated, other genes were upregulated 
during the passage from round spermatids to elongating and from 
elongated spermatids to epididymal sperm in both mouse and cattle 
[268]. Furthermore, many mRNAs encoding proteins needed for the 
construction of the specialized organelles of spermatozoa are stored in 
the round spermatid cytoplasm and seem to be translationally repressed. 
These finding are also supported by the presence of free messenger ri-
bonucleoproteins in round spermatids. On the contrary, the stored 
mRNAs are actively translated in elongating and elongated spermatids 
[269]. However, the factors that repress translation in round spermatids, 

have been not defined yet. It will be now described the nuclear and 
cytoplasmic potential markers of round spermatids that could be applied 
to confirm their proper identification and selection. 

Since nuclear DNA undergoes a complete chromatin remodeling 
during spermatogenesis, most of the spermatid potential markers 
localized in the nucleus are protein involved in the replacement of his-
tone with protamines (Table 2). In particular, while some histone vari-
ants are detected at all the stages of spermatogenesis, others are present 
only in the early meiotic spermatocytes until the stage of elongated 
spermatids. Moreover, few others are not detected in the spermatids 
[270], Among the different histone variants, H3.3 is detected in all types 
of germ cells. Its role is to contribute to the open chromatin structure, 
modulating spermatid transition protein 1 (TP1) removal and protamine 
1 (PRM1) incorporation [271–276]. Histone variant TH2B completely 
replaces somatic H2B variant during meiosis and remains the main type 
of H2B detected in round and elongating spermatids [277–279], sug-
gesting that TH2B might be important for meiotic and post-meiotic germ 
cells. 

H1 subtype variant (H1T) is exclusively transcribed in mid- and late- 
pachytene spermatocytes [280–282]. Studies carried out in vitro showed 
that H1T binds to H1-depleted oligo-nucleosomes significantly less 

Fig. 3. Representative pictures showing cell and nuclear morphology of round spermatids (indicated with red arrows) in the seminiferous tubule of post-puberal 
bovine testis. The images were produced using 5 μm-thick histological sections of formalin fixed, paraffin embedded testicular tissues which were stained using 
hematoxylin and eosin (left side) or 4′,6-diamidino-2-phenylindole (DAPI, right side). Scale bar = 20 μm. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 2 
Summary of nuclear and cytoplasm spermatid markers. For each marker, name, 
localization, function and reference are reported.  

Marker name Cell 
localization 

Function References 

Histone variant 
H3.3 

Nucleus Chromatin remodeling and 
histone replacement 

[271–276] 

Histone variant 
TH2B 

Nucleus Replace somatic H2B variant 
during meiosis 

[242,278, 
279] 

Histone variant 
H1T 

Nucleus Chromatin remodeling and 
histone replacement 

[283,284] 

Histone variant 
H1T2 

Nucleus Histone replacement and 
chromatin condensation 

[288,289] 

PRM1 Nucleus Chromatin condensation [295] 
BRTD Nucleus Chromatin structure 

organization 
[299,300] 

29,000 Mr 
protein 

Cytoplasm protein secretion in Sertoli 
cells 

[303] 

SUN4 Cytoplasm Nuclear remodeling [304,305] 
SPAG4L-2 Cytoplasm acrosome biogenesis [307] 
Gcse factors Cytoplasm acrosome development [308] 
FAM71F1 and 

FAM71F2O 
Cytoplasm acrosome biogenesis [309] 

TMCO2 Cytoplasm acrosome biogenesis [310] 
PRAMEY Cytoplasm acrosome biogenesis [311] 
TEX101 Cytoplasm acromosome function [312, 

314–316] 
SPERT Cytoplasm Cytosplam elimination 

during spermiogenesis 
[318]  
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tightly than other somatic H1 subtypes. This is correlated with a rela-
tively open and decondensed chromatin conformation, necessary for 
meiotic recombination and histone replacement [283,284]. Interest-
ingly, H1t protein is found from pachytene spermatocytes to elongating 
spermatids [283–286], in which it constitutes up to 55 % of the total H1 
linker histone found in the chromatin [286]. 

Another testis specific H1 variant is H1T2, which is detected only in 
the nucleus of round and elongated spermatids [287]. H1T2 is specif-
ically localized in the apical area of polarised spermatid nuclei, sug-
gesting a critical role in the replacement of histones by protamines and 
the processes of chromatin condensation [288,289]. 

Specific linker histone H1-like protein (HILS1) is another histone 
variant, whose expression changes along spermatid differentiation. 
Differently to what observed for H1T2, this histone was detected in the 
nucleus of elongating and elongated but not in that of round spermatids 
[290]. 

Protamine 1 (PRM1) [291], and protamine 2 (PRM2) [292–294] are 
known to be replaced to histones to increase chromatin compaction in 
mature sperm. are the most popular markers of spermatid stages. Their 
transcription starts at the spermatid stage for both prm1 and prm2 
transcripts which are then stored until the late stage of elongated sper-
matids in ribosomal protein granules of cytoplasm, followed by trans-
lation into proteins [295]. This stage-specific pattern makes these 
proteins potential markers of round, elongating and elongated sperma-
tids. It is also interesting to note that, in several species, including 
humans and cattle, scientists observed that aberrant expression of PRM1 
or ratio of PRM1/PRM2 created disrupted sperm shape or impaired 
sperm function, negatively impacting on male fertility [296]. 

Recently, Liu et al. showed that Bromodomain and extra terminal 
motif family protein (BRTD) was prevalently expressed in round sper-
matids [297]. BRDT regulates the mechanisms of 3′-UTR truncation of 
transcripts expressed in the post-meiotic spermatid transcriptome [298]. 
Moreover, BRTD seems to be also involved in the chromatin structure 
organization as it can bind acetylated histones [299,300]. This hy-
pothesis is supported by recent findings on Smarce 1, which is a member 
of the SWI/SNF family [301]. Smarce 1 has been identified as novel 
BRDT interacting partner in spermatids due to the colocalization of 
BRTD with acetylated H4 in elongating spermatids [301]. Therefore, 
BRTD is a crucial protein necessary for the normal progression of sper-
matogenesis. Manterola and colleagues demonstrated that loss of BRDT 
function disrupts the epigenetic state of the meiotic sex chromosome 
inactivation in spermatocytes, affecting the synapsis and silencing of the 
X and Y chromosomes [302]. 

The molecular markers of round spermatids represented by tran-
scripts and proteins localized in the cytoplasm are mainly involved in 
controlling Sertoli cell protein secretion, acrosome biogenesis and 
function (Table 2). 

Onoda and colleagues observed for the first time, that the 29,000 Mr 
protein was specifically localised in the cytosolic fraction of rat round 
spermatids, while was absent from the nuclear, mitochondrial, lyso-
somal and microsomal fractions [303]. In the same work, it was also 
established that the 29,000 Mr protein was involved in stimulating the 
secretion of various proteins, including transferrin, in Sertoli cells. 

The SUN proteins are integral nuclear membrane protein charac-
terized by a transmembrane domain constituting a bridge in between 
nucleus and cytoplasm [304,305]. Among SUN proteins, SUN4 was 
recently determined to be important for directing the shaping of the 
spermatid nucleus. The C-terminal SUN domain of SUN4 localizes to the 
perinuclear space, whereas the N-terminus is directed towards the 
nucleoplasm, interacting with the spermiogenesis-specific lamin B3 
[306] and forms heteromeric assemblies with SUN3 regulating its 
expression [306]. Another SUN protein that characterizes the mecha-
nisms underlying spermatogenesis is SPAG4L-2. This protein, discovered 
in 2011, was specifically detected in the testes of adult mice where its 
expression increases as spermatogenesis progresses [307]. This protein 
seems to be involved in the acrosome biogenesis. In the round spermatid 

it is localized in the nuclear apical region where acrosomic vesicle starts 
to form [307]. 

Another class of protein involved in the acrosome development is the 
germ cell specific gene (GCSE) factors [308]. Two main transcripts of 
these proteins have been identified in the testis: Gcse-L (1589 bp) and 
Gcse-S (906 bp). Gcse-S was expressed from the late stage of pachytene 
spermatocytes until the stage of round spermatids. Gcse-L expression 
was detected only in round spermatids. GCSE protein expression is 
different from that of its transcripts. The subcellular localization of 
GCSE-L proteins is dependent on the cell stage: it is in the nucleus of late 
pachytene spermatocytes, while, during meiosis, it is transported to the 
spermatid acrosome region. Whereas GCSE-S proteins are only 
expressed in the spermatid nucleus. 

FAM71F1 and FAM71F2O are other factors involved in the acrosome 
biogenesis. They are testis-enriched proteins that include a RAB2B- 
binding domain, a small GTPase, implicated in membrane bound 
transport vesicles. In particular, in a recent work in mutant mice, it was 
observed that FAM71F1 interacts with RAB2A and RAB2B, two mem-
brane transport-related proteins, and regulates the formation of acro-
some in spermatids [309]. In Fam71f1-mutant mice, the acrosome was 
abnormally expanded at the round spermatid stage, likely because of 
enhanced vesicle transport [309]. 

The TMCO family consists of seven membrane proteins, named 
TMCO1 toTMCO7. Among these, recently, in the rat, TMCO2 was 
associated with the developing acrosome of spermatids in the vicinity of 
round spermatid nuclei and as curved lines associated with nuclei of 
elongated spermatids and caput epididymal spermatozoa [310]. These 
findings suggest that TMCO2 might be involved in the process of acro-
some biogenesis, especially binding the acrosome to the nucleus, during 
spermiogenesis. 

In cattle, few factors involved in spermatogenesis have been char-
acterized in the spermatid cytoplasm. Among these, preferentially 
expressed antigen in melanoma Y-linked (PRAMEY) isoform (30 kDa) 
was highly expressed only in testes after puberty and in epididymal 
spermatozoa in bull [311]. In the same work, it was established that 
PRAMEY was predominantly located in the acrosome granule of sper-
matids, and in acrosome and flagellum of spermatozoa. Using electron 
microscopy, PRAMEY protein complex was specifically localized to the 
nucleus and to several cytoplasmic organelles, including the rough 
endoplasmic reticulum, some small vesicles, the inter-mitochondrial 
cement, the chromatid body and the centrioles, in spermatogonia, 
spermatocytes, spermatids and/or spermatozoa [311]. Among these 
spermatogenic stages, PRAMEY was highly enriched in and structurally 
associated with the matrix of the acrosomal granule in round spermatids 
and migrated with its expansion during acrosomal biogenesis. While the 
function of PRAMEY during spermatogenesis remains unclear, these 
findings suggest that PRAMEY may play an essential role in acrosome 
biogenesis and spermatogenesis in the bull [311]. Another potential 
marker of spermatids due to its role in the acrosome function is TEX101 
[312,313]. This was initially identified in mice and showed a limited 
distribution with high expression in testis [314–316], and was found to 
be involved in the acrosome reaction during fertilization [317]. More-
over, because of its specific significance in the testis, TEX101 has been 
utilized as a biomarker for male human infertility. High expression of 
TEX101 was observed in spermatocytes and spermatids, but relatively 
lower staining was detected in spermatogonia. Moreover, this molecule 
was not detected in seminomas. These findings suggest that TEX101 is 
related to the maturation of germ cells and could be used for assessing 
spermatid quality once these cells are isolated from the testis before 
proceeding with ROSI. 

Recently [318], Spermatid associated protein (SPERT), also named 
NURIT and CBY2, was found to be transcribed by round spermatids until 
their but it was absent in mature spermatozoa. Interestingly, immuno-
gold electron microscopy revealed that the protein is restricted, since its 
first detectable appearance, to a unique spermatid organelle called the 
’flower-like structure’. Although the precise function of this protein is 
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unknown, it may be involved in transporting proteins designated to be 
discarded via the residual bodies regulating the elimination of spermatid 
cytoplasm during spermiogenesis, enabling the sperm to acquire its 
streamlined architecture. Moreover, SPERT homologues are found in 
primates, pig and rodents. These findings reveal that, if the expression of 
SPERT will be confirmed to be exclusively detected at the spermatid 
stages in livestock species as well, this protein could be used as 
distinctive marker of these cell type. 

Overall, several potential biomarkers, both at nuclear and cyto-
plasmic level, have been established for identification of round sper-
matids. Additional studies are needed to determine whether they can be 
effectively applied for identification of competent round spermatids and 
assessment of their quality before ROSI. 

3.2.4. Viability of ROSI produced embryos: how far can we go? 
ROSI can be successfully applied in humans and mouse [319,320]. 

However, in both species, pregnancy and birth rates are still low [321] 
[228,318,319]. Many studies evidenced that mice oocytes fertilized 
with ROSI need to be artificially activated because of the lack of 
oocyte-activating capacity in round spermatids of this species [322]. It 
has been also possible to obtain normal blastocysts and live offspring by 
spermatids injection without the bulk of the surrounding cytoplasm 
[323]. This indicates that spermatid genome is competent enough to 
support full-term development like mature spermatozoa in mouse. 
Ogonuki and colleagues [322] reported that when round spermatids 
were frozen/thawed, many of injected oocytes developed to 2 cell em-
bryos without any artificial activation. Moreover, some of the embryos 
transferred into the oviduct of pseudo-pregnant females developed into 
full-term offspring [322]. This is maybe due to the fact that spermatids 
may need to somehow acquire SOAF (sperm-borne oocyte-activating 
factor) from spermatozoa and elongated spermatids in the same testic-
ular suspension [322]. Finally, Lei et al. proved that normal mice pups 
can be obtained also after microinjection of round spermatids into oo-
cytes stored at room temperature for 24 h [324] suggesting that these 
cells can be preserved before ROSI. 

In domestic animals, the interest in producing embryos by ROSI 
substantially blow up between the end of the ‘90s and the beginning of 
the ‘20s. However, due to the low success rate, this technique is not 
considered yet among the reliable ARTs. Moreover, in these species, 
fully term subjects have not been delivered yet. In cattle, the first 
attempt was reported by Goto and colleagues [255] who obtained a 
relatively low blastocyst rate following injection of various type of male 
germ cells including spermatids into the oocytes [255]. Later, Ock and 
colleagues [325] improved the blastocyst formation rate reaching a level 
comparable to that obtained by ICSI. In the same work, the authors 
showed that it is possible to use frozen–thawed presumptive round 
spermatids to produce blastocyst in vitro. However, freezing steps and 
complexity in method separation negatively affect the success rate of 
ROSI. These results demonstrate that round spermatids can be easily 
injected into mature oocytes however these cells are fragile and the 
procedures used for the isolation and preparation seem to be detrimental 
for their quality. 

In pig, the first attempts of ROSI was correlated with embryos that 
developed to the 2-cell stage only, although the authors demonstrated 
that round spermatid nuclei of the pig can develop into a morphologi-
cally normal pronucleus in matured porcine oocytes and are competent 
to participate in syngamy with the ootid chromatin [326]. In the same 
period, another group reported for the first time the development of 
porcine oocytes to blastocyst stage following ROSI. The authors also 
evidenced that it was necessary to perform an oocyte activation pro-
cedure before ROSI into the oocytes as in mice [327], humans [328] and 
cattle [255]. This was further investigated by Choi and colleague that 
proved that a 2 h oocyte activation after the round spermatid injection 
improved the normal fertilization and early embryo developmental rate 
[329]. These findings were also demonstrated in rabbit. Electrical 
stimulation of oocytes before spermatid injections had beneficial effects 

on oocytes activation. Using this procedure, the authors obtained em-
bryos in vitro that developed normally through implantation and were 
carried successfully through complete gestation in the recipient does 
[328]. Recently, a systematic study was conducted on goat. In this study, 
the authors clearly showed that artificial activation of oocytes is 
essential in this species as well, since goat round spermatids can orga-
nize functional microtubular asters in activated oocytes. It is interesting 
to note that, in this study, the authors show that centrosome is of 
paternal origin because both round spermatid and sperm asters orga-
nized an extensive microtubule network after intra-oocyte injection 
[330]. Last but not least, nuclear DNA of round spermatids has been 
associated with chromatin that is less accessible and leads to impaired 
gene expression in the embryos [331]. Moreover, embryos have 
reprogramming defects at the pronuclear stages associated with the 
misexpression of a cohort of the genes responsible for minor zygotic 
genome activation [332]. 

Overall, these results show that ROSI cannot be applied to domestic 
animals, including ruminants, due to its poor success and reproduc-
ibility. This is correlated with different factors, which include the lack of 
a standardised protocol, the problem of oocyte activation and molecular 
differences of round spermatids with mature sperm. Additional studies 
are therefore necessary not only to improve the current protocols but 
also to broaden the knowledges of some aspects related to the sperma-
tids and oocyte itself before ROSI can be successfully applied in do-
mestics animals as a technique useful to shorten generational intervals. 

4. Conclusions 

Advancements in ARTs have allowed to develop several methodol-
ogies that could potentially be used to reduce the generation time in 
both male and female in domestic ruminants. 

In females, the applications of omics technologies combined with 
ARTs is providing an opportunity to gain a deeper to better understand 
the difference between adult and prepubertal oocytes. Besides, the 
establishment of new IVM protocols tailored for promoting acquisition 
of competence, including strategies for delaying nuclear maturation and 
enhancing cytoplasmic maturation, the generation of 3D IVM systems 
have showed the potential for improving oocyte quality. 

In males, several 2D and 3D culture system approaches have been 
developed to recreate the spermatogenesis in vitro. However, none have 
been successful so far in ruminants. Moreover, ROSI and consequent 
IVEP is still an unsuccessful technique in farm animals not only because 
of round spermatids inadequate isolation and selection procedures but 
also for molecular aspects related to spermatid and inefficient oocyte 
activation. 

Overall, a substantial shortening of the generation interval is still far 
away in domestic ruminants. Further work is still necessary to develop 
suitable methodologies with the aim to generate viable embryos from 
neonatal animals or even before birth. If successful, these approaches 
would exponentially increase the power of GS to accelerate the evolu-
tion of domestic breeds towards the needs of a modern agriculture. 
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[21] Izquierdo D, Catalá MG, Paramio MT. Small ruminants: prepubertal oocyte 
donors. Methods Mol Biol 2019;2006:155–63. 

[22] Currin L, Michalovic L, Bellefleur A-M, Gutierrez K, Glanzner W, Schuermann Y, 
et al. The effect of age and length of gonadotropin stimulation on the in vitro 
embryo development of Holstein calf oocytes. Theriogenology 2017;104:87–93. 

[23] Baldassarre H, Wang B, Kafidi N, Keefer C, Lazaris A, Karatzas CN. Advances in 
the production and propagation of transgenic goats using laparoscopic ovum 
pick-up and in vitro embryo production technologies. Theriogenology 2002;57: 
275–84. 

[24] Morton KM, Catt SL, Maxwell WMC, Evans G. Effects of lamb age, hormone 
stimulation and response to hormone stimulation on the yield and in vitro 

developmental competence of prepubertal lamb oocytes. Reprod Fertil Dev 2005; 
17:593–601. 

[25] Leoni GG, Palmerini MG, Satta V, Succu S, Pasciu V, Zinellu A, et al. Differences 
in the kinetic of the first meiotic division and in active mitochondrial distribution 
between prepubertal and adult oocytes mirror differences in their developmental 
competence in a sheep model. PLoS One 2015;10:e0124911. 

[26] Leoni GG, Succu S, Satta V, Paolo M, Bogliolo L, Bebbere D, et al. In vitro 
production and cryotolerance of prepubertal and adult goat blastocysts obtained 
from oocytes collected by laparoscopic oocyte-pick-up (LOPU) after FSH 
treatment. Reprod Fertil Dev 2009;21:901–8. 

[27] O’Brien JK, Beck NF, Maxwell WM, Evans G. Effect of hormone pre-treatment of 
prepubertal sheep on the production and developmental capacity of oocytes in 
vitro and in vivo. Reprod Fertil Dev 1997;9:625–31. 

[28] Revel F, Mermillod P, Peynot N, Renard JP, Heyman Y. Low developmental 
capacity of in vitro matured and fertilized oocytes from calves compared with 
that of cows. J Reprod Fertil 1995;103:115–20. 

[29] Armstrong DT, Kotaras PJ, Earl CR. Advances in production of embryos in vitro 
from juvenile and prepubertal oocytes from the calf and lamb. Reprod Fertil Dev 
1997;9:333–40. 

[30] Baruselli PS, Rodrigues CA, Ferreira RM, Sales JNS, Elliff FM, Silva LG, et al. 
Impact of oocyte donor age and breed on in vitro embryo production in cattle, 
and relationship of dairy and beef embryo recipients on pregnancy and the 
subsequent performance of offspring: a review. Reprod Fertil Dev 2021;34:36–51. 

[31] Currin L, Michalovic L, Bellefleur AM, Gutierrez K, Glanzner W, Schuermann Y, 
et al. The effect of age and length of gonadotropin stimulation on the in vitro 
embryo development of Holstein calf oocytes. Theriogenology 2017;104:87–93. 

[32] Ledda S, Bogliolo L, Leoni G, Naitana S. Production and lambing rate of 
blastocysts derived from in vitro matured oocytes after gonadotropin treatment of 
prepubertal ewes. J Anim Sci 1999;77:2234–9. 

[33] Morton KM, Catt SL, Maxwell WM, Evans G. An efficient method of ovarian 
stimulation and in vitro embryo production from prepubertal lambs. Reprod 
Fertil Dev 2005;17:701–6. 

[34] Baldassarre H, Bordignon V. Laparoscopic ovum pick-up for in vitro embryo 
production from dairy bovine and buffalo calves. Anim Reprod 2018;15:191–6. 

[35] Baldassarre H. Laparoscopic ovum pick-up followed by in vitro embryo 
production and transfer in assisted breeding programs for ruminants. Animals 
2021;11:216. 

[36] Taneja M, Bols PEJ, de Velde AV, Ju J-C, Schreiber D, Tripp MW, et al. 
Developmental competence of juvenile calf oocytes in vitro and in vivo: influence 
of donor animal variation and repeated gonadotropin stimulation. Biol Reprod 
2000;62:206–13. 
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[180] Sprícigo JF, Morató R, Arcarons N, Yeste M, Dode MA, Lopez-Bejar M, et al. 
Assessment of the effect of adding L-carnitine and/or resveratrol to maturation 
medium before vitrification on in vitro-matured calf oocytes. Theriogenology 
2017;89:47–57. 

[181] Petridis A, Therios I, Samouris G, Tananaki C. Salinity-induced changes in 
phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) 
and their relationship to antioxidant activity. Environ Exp Bot 2012;79:37–43. 

[182] Martino NA, Ariu F, Bebbere D, Uranio MF, Chirico A, Marzano G, et al. 
Supplementation with nanomolar concentrations of verbascoside during in vitro 
maturation improves embryo development by protecting the oocyte against 
oxidative stress: a large animal model study. Reprod Toxicol 2016;65:204–11. 

[183] Dell’Aquila ME, Bogliolo L, Russo R, Martino NA, Filioli Uranio M, Ariu F, et al. 
Prooxidant effects of verbascoside, a bioactive compound from olive oil mill 
wastewater, on in vitro developmental potential of ovine prepubertal oocytes and 
bioenergetic/oxidative stress parameters of fresh and vitrified oocytes. BioMed 
Res Int 2014;2014:878062. 

[184] Tao W, Li M, Xie R. Preparation and structure of porous silk sericin materials. 
Macromol Mater Eng 2005;290:188–94. 

[185] Takahashi M, Tsujimoto K, Kato Y, Yamada H, Takagi H, Nakamori S. A sericin- 
derived peptide protects sf9 insect cells from death caused by acute serum 
deprivation. Biotechnol Lett 2005;27:893–7. 

[186] Ariu F, Bogliolo L, Pinna A, Malfatti L, Innocenzi P, Falchi L, et al. Cerium oxide 
nanoparticles (CeO2 NPs) improve the developmental competence of in vitro- 
matured prepubertal ovine oocytes. Reprod Fertil Dev 2017;29:1046–56. 
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[333] Soto-Heras S, Roura M, Catalá MG, Menéndez-Blanco I, Izquierdo D, Fouladi- 
Nashta AA, et al. Beneficial effects of melatonin on in vitro embryo production 
from juvenile goat oocytes. Reprod Fertil Dev 2018;30:253–61. 

R. Pasquariello et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0093-691X(24)00200-0/sref278
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref278
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref278
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref279
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref279
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref279
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref280
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref280
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref281
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref281
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref281
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref282
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref282
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref282
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref283
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref283
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref283
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref284
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref284
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref284
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref285
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref285
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref286
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref286
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref286
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref287
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref287
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref287
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref288
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref288
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref288
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref288
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref289
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref289
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref289
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref290
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref290
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref290
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref291
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref291
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref291
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref292
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref292
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref293
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref293
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref293
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref294
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref294
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref295
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref295
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref296
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref296
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref297
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref297
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref297
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref297
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref298
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref298
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref298
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref298
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref299
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref299
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref299
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref300
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref300
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref300
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref301
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref301
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref301
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref302
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref302
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref302
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref302
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref303
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref303
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref304
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref304
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref305
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref305
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref306
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref306
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref306
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref307
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref307
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref307
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref308
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref308
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref308
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref309
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref309
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref309
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref310
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref310
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref310
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref311
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref311
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref311
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref312
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref312
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref312
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref313
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref313
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref313
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref314
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref314
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref314
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref315
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref315
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref315
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref316
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref316
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref316
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref317
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref317
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref317
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref318
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref318
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref319
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref319
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref320
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref320
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref321
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref321
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref321
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref322
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref322
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref323
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref323
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref323
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref324
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref324
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref324
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref325
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref325
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref325
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref326
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref326
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref326
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref327
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref327
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref327
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref328
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref328
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref328
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref328
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref329
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref329
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref329
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref330
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref330
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref330
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref331
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref331
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref331
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref332
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref332
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref332
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref333
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref333
http://refhub.elsevier.com/S0093-691X(24)00200-0/sref333

	Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and pers ...
	1 Introduction
	2 Reproductive biotecnologies to shorten the generational interval in the female
	2.1 In vitro embryo production from prepubertal donors
	2.2 Emerging approaches for improving in vitro maturation and competence of prepubertal oocytes
	2.2.1 Non–invasive methods of oocyte competence assessment
	2.2.1.1 Follicular fluid
	2.2.1.2 Cumulus cells
	2.2.1.3 Oocyte

	2.2.2 Pre-maturation culture of oocytes to enhance cytoplasmic maturation
	2.2.3 Formulation of tailored IVM culture media
	2.2.3.1 Antioxidants supplementation to counteract oxidative damage
	2.2.3.2 Follicular fluid components: cytokines, growth factors, fatty acids

	2.2.4 Bioengineering approaches that mimic the physiological follicle environment


	3 Assisted reproductive technologies to shorten the generational interval in the male
	3.1 Recreating spermatogenesis in vitro
	3.2 How not to wait for puberty anyway
	3.2.1 The isolation of round spermatids
	3.2.2 Distinctive morphological features of round spermatids
	3.2.3 Stage-specific molecular markers of round spermatids
	3.2.4 Viability of ROSI produced embryos: how far can we go?


	4 Conclusions
	Data availability
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	References


