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Abstract

We initiate the design and the analysis of stabilization-free Virtual Element Meth-
ods for the laplacian problem written in mixed form. A Virtual Element version of the
lowest order Raviart-Thomas Finite Element is considered. To reduce the computa-
tional costs, a suitable projection on the gradients of harmonic polynomials is employed.
A complete theoretical analysis of stability and convergence is developed in the case
of quadrilateral meshes. Some numerical tests highlighting the actual behaviour of the
scheme are also provided.

1 Introduction
In these years, the study of numerical methods for solving partial differential equations
on polygonal/polytopal meshes has been experiencing a growing interest in the scientific
community. In particular, one of the most recent developments in this field is represented
by the Virtual Element Method (VEM). This technology was first introduced in the primal
conforming Poisson problem in [2] as a generalization of H1-conforming Finite Element
Method. Successively, the extension to the H(div)-conforming vector fields, generalizing
Mixed Finite Elements [18], has been introduced in [22] and developed in [4, 3, 27]. Thanks
to the great flexibility of the method, both primal and mixed formulation of VEM have been
applied to a large range of applications, such as elastic and inelastic problems [7, 1, 25, 28],
simulations in fractured media [8, 9, 10, 15] and in porous media mechanics [19, 16, 14], just
to mention a few of them.

The key ideas of VEM may be summarised as follows.

• The local approximation spaces are defined as the solutions to suitable local partial
differential problems. Therefore, VEM functions are not explicitly known, but only
a limited information is available. However, the local approximation spaces contain
polynomials up to a suitable degree.

• A computable projection onto a polynomial space is involved. Typically, the projection
is valued onto the polynomials contained in the approximation spaces.

• The discrete bilinear forms are characterized by the sum of a singular part maintaining
consistency on polynomials, and a stabilizing form enforcing coercivity.

However, in general the stabilising form mentioned above is designed without a clear
physical meaning, but only requiring minimal assumptions to make the method stable.
Though efficient recipes to tune the stabilisation term have been proposed (see for instance

1

ar
X

iv
:2

31
0.

09
26

0v
1 

 [
m

at
h.

N
A

] 
 1

3 
O

ct
 2

02
3



[6, 26]), in certain complex situations it might be preferable to avoid dealing with the choice
of such forms. As examples, we mention highly non-linear problems; problems where highly
anisotropic meshes occurs; advection-diffusion problems. In addition, the stabilization term
could be problematic in connection with the analysis of a-posteriori error estimates [23, 11]
(however, the recent work [5] presents a first study which provides stabilization-free upper
and lower a-posteriori bounds for triangular meshes with hanging nodes).

Virtual Element schemes for which no stabilisation form is required have been recently
presented, in different 2D frameworks, in [12, 13, 30, 31]. These approaches share the idea
to employ a projection onto a polynomial space of higher degree than the one usually taken
in standard VEM. It is worth noticing that the polynomial degree depends on the number
of edges of each polygon: as expected, it increases as the edge number gets larger. As a
consequence, the quadrature computational cost significantly grows in presence of elements
with many edges, without any improvement in the convergence rate.

This paper follows similar lines of the above-mentioned stabilisation-free attempts [12, 13,
30, 31], but for the Laplacian problem written in the usual H(div)−L2 mixed formulation. In
particular, we consider a VEM version of the lowest order Raviart-Thomas Finite Element
Method, see [4]. To reduce the computational cost connected to quadrature, a suitable
projection operator onto the gradients of harmonic polynomials is selected, similarly to the
scheme introduced for the primal formulation in [17]. The resulting scheme has the following
features.

• It is a conforming mixed VEM method for which no stabilization term is needed.

• The method shows first order convergence rate for the natural norms and, in most
cases, a behaviour comparable with the standard lowest order Raviart-Thomas VEM
for which the stabilisation term is suitably tuned. However, for highly anisotropic
meshes, our method seems to display a better performance.

• Despite a projection over higher-order polynomial spaces is employed, the use of har-
monic polynomials greatly alleviate the additional computational costs.

These properties indicate that the present approach could be a valid alternative to the lowest
order Raviart-Thomas Virtual Element Methods, especially in those complex situations
where, for the latter scheme, a particular care in the treatment of the stabilising form is
required.

From a theoretical point of view, the present paper can be considered as a first con-
tribution, since we present a rigorous analysis only for the quadrilateral case (of course,
the similar arguments could be applied also for triangular elements). However, the general
theory for polygons with an arbitrary number of edges is not currently available and will be
treated in a future work.

A brief outline of the paper is as follows. In Section 2 we define the model problem.
Section 3 contains the statement of the discrete problems, introducing all the bilinear and
linear forms involved. In section 4, we prove the well-posedness of the discrete problem in the
quadrilateral case. For the same kind of meshes, we derive optimal error estimates in Section
5 and, finally, in Section 6 we present some numerical results that assess the convergence
rate of the method; a comparison with the standard lowest order Raviart-Thomas VEM is
also provided.
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2 Model problem
Let Ω ⊂ R2 be a computational domain. We are interested in studying the following mixed
formulation of the Poisson problem:

−divσ = f in Ω

σ = ∇u in Ω

u = 0 on ∂Ω

, (1)

where the forcing term f ∈ L2(Ω). We consider homogeneous natural boundary condi-
tions only for sake of simplicity: the extension to non-homogeneous or essential boundary
conditions can be treated with the same techniques used for other more classical Galerkin
methods, such as the FEM. Let (·, ·)Ω denote the L2 scalar product and a(σσσ, τττ ) := (σσσ, τττ )Ω,
then the mixed variational formulation of (1) is given by: find (σ, u) ∈ Σ × U , where
Σ := H(div,Ω) and U := L2(Ω) such that{

a(σσσ, τττ ) + (div τ , u)Ω = 0 ∀ τ ∈ Σ ,

(divσ, v)Ω = − (f, v)Ω ∀ v ∈ U.
(2)

Well posedness of the above problem (2) is standard and the details can be found, for
instance, in [18].

3 VEM discrete formulation
In order to state the discrete formulation of (2), let Mh be a polygonal tessellation of Ω.
For every element E ∈ Mh, its area and diameter are denoted by |E| and hE , respectively.
As usual, the maximum of the diameters hE for E ∈ Mh is the mesh size, denoted by h,
i.e. h = maxE∈Mh

hE . We assume that each E ∈ Mh is such that

A.1 E is star-shaped with respect to a ball of radius ≥ γhE ,

A.2 for any edge e of ∂E, |e| ≥ γhE ,

where γ is a positive constant.
To continue, for any given E ∈ Mh and non-negative integer k, Pk(E) denotes the space

of polynomials of degree up to k defined on E. Moreover, we introduce PH
k (E) ⊆ Pk(E) as

the space of harmonic polynomials of degree up to k defined on E; the dimension of this
latter space is 2k + 1.

3.1 The local spaces
In this section we introduce the discrete local space and their interpolation properties. Given
a generic quadrilateral E ∈ Mh, we introduce the following local VEM space:

Σh(E) :=
{
τh ∈ H(div, E) : ∃v ∈ H1(E) s.t. τh = ∇v ,

τh · ne ∈ P0(e) ∀e ∈ ∂E , div τh ∈ P0(E)} .
(3)

Accordingly, for the local space Σh(E) the following degrees of freedom can be taken:

τh → 1

|e|

∫
e

τh · ne de = τh · ne, ∀e ∈ ∂E. (4)
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The unisolvence of the above degrees of freedom is proved, e.g., as in [3], so that dim(Σh(E)) =
4. We remark that, once τh · ne = ce ∈ P0(E) is given for all e ∈ ∂E, the quantity
div τh ∈ P0(E) is uniquely determined. Since div τh ∈ P0(E) then

div τh =
1

|E|

∫
E

div τh dE =
1

|E|
∑
e∈∂E

∫
e

τττh · ne de =
1

|E|
∑
e∈∂E

|e|ce. (5)

The local approximation space for U is simply defined as follows

Uh(E) :=
{
uh ∈ L2(E) : uh ∈ P0(E)

}
. (6)

Accordingly, for the local space Uh(E) the following degrees of freedom can be taken:

uh → 1

|E|

∫
E

uh dE. (7)

It follows that dim(Uh(E)) = 1.

3.2 Approximation in Σh and Uh

Let us consider the space W (Ω) = H(div,Ω) ∩ [Lr(Ω)]
2 (r > 2), equipped with the natural

norm. We define an interpolation operator

Ih : W (Ω) −→ Σh (8)

by requiring ∫
e

(ς − Ihς) · ne de = 0, ∀ edge e of the elements in Mh . (9)

Using the unisolvence of the degrees of freedom, e.g. see [3], it is not difficult to check that
such a Ihς exists and it is unique in Σh. This definition implies that for each E ∈ Mh∫

E

div (ς − Ihς) dE = 0 . (10)

Hence, since for each E ∈ Mh div Ihς ∈ P0(E), we obtain the commuting diagram property

div Ihς = Π0
0,E div ς, (11)

where Π0
0,E : L2(E) → P0(E) is the L2 projection operator onto constants. We now remark

that (Ihς)|E = ∇φ∗, φ∗ being the solution to the local (compatible) Neumann problem{
∆φ∗ = Π0

0,E div ς in E

∇φ∗ · ne = Π0
0,e(ς · ne) on every e side of ∂E,

(12)

where Π0
0,e denotes the L2 projection operator onto the constant functions on e. Regularity

results of elliptic equations and Sobolev embedding theorems shows that there exists r∗ > 2
such that for r ∈ (2, r∗] it holds

∥Ihς∥0,E ≤ Cr∗ ||ς||W (E) . (13)
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Moreover assuming ς ∈
[
H1(Ω)

]2 and div ς ∈ H1(Ω), the following approximation results
hold: for each h, for each E ∈ Mh

∥div(ς − Ihς)∥0,E ≤ Cdh
s
E |div ς|s,E , s = 0, 1 (14)

and
∥ς − Ihς∥0,E ≤ CςhE |ς|1,E . (15)

Above, Cr∗ , Cd and Cς are positive constants depending only on the constant γ of the mesh
assumptions A.1 and A.2.

Moreover, we recall that, given w ∈ H1(Ω) ∩ L2(Ω), for its L2 projection Π0
0,Ew ∈ Uh it

holds for each h, for each E ∈ Mh∥∥w −Π0
0,Ew

∥∥
0,E

≤ Chs
E |w|s,E , s = 0, 1 , (16)

where C > 0 depends only on the constant γ of the mesh assumptions A.1 and A.2.

3.3 The local forms
In this section we introduce the VEM counterparts of the local forms associated with the
continuous problem.

The local mixed term Given E ∈ Mh, we notice that the term

(div τh, vh)E =

∫
E

vh div τh dE

is computable for every τττh ∈ Σh(E) and vh ∈ Uh(E) via degrees of freedom. For this
reason, we do not need to introduce any approximation of the continuous terms (div τττ , u)
and (div σσσ, v) in problem (2).

The local bilinear form aE(·, ·) The local bilinear form

aE(σσσh, τh) =

∫
E

σσσh · τττh dE

is not computable for a general pair (σσσh, τττh) ∈ Σh(E)× Σh(E). Here, instead of using the
standard VEM procedure (cf. [4]), we introduce a local self-stabilized discrete bilinear form.
Let

Π̂0
k−1,E :

[
L2(E)

]2 → ∇PH
k (E) (17)

be the L2(E)-projection operator onto the space ∇PH
k (E), i.e. the space of gradients of

harmonic polynomials of degree at most k, with k ≥ 1. More precisely, Π̂0
E is defined by

the orthogonality condition: for each τ ∈
[
L2(E)

]2, it holds(
Π̂0

k−1,Eτ ,∇p
)
E
= (τ ,∇p)E , ∀ p ∈ PH

k (E) . (18)

In order to attain stability, the approximation of aE(·, ·) depends on the number of edges of
E, denoted by nE . More precisely, [·] being the integer part, we select

k =

[
nE + 1

2

]
(19)
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(i.e. k is the smallest integer such that 2k ≥ nE). We then use the corresponding projection
Π̂0

E , see (17) and (18), to define

aEh (σh, τh) =
(
Π̂0

k−1,Eσh, Π̂
0
k−1,Eτh

)
E

∀σh, τh ∈ Σh(E). (20)

Remark 1. We remark that, although a rigorous analysis is still missing for general poly-
gons, the numerical tests (see Section 6.1) seem to suggest that the choice (19) always leads
to a stable scheme.

Remark 2. Given τττ ∈ Σh(E), to compute Π̂0
k−1,Eτh one has solve, from (18) and inte-

grating by parts:

(
Π̂0

k−1,Eτh,∇p
)
E
= − (div τh, p)E +

∫
∂E

(τττh · n)p de, ∀ p ∈ PH
k (E) , (21)

which is clearly computable, as div τττh is computable and constant. Moreover, integrating
by parts also the left-hand side and taking into account that the involved polynomials are
harmonic, one realizes that the integral over E can be computed as an integral over ∂E;
therefore, only 1D quadrature rules are required to compute the left-hand side of (21). Fur-
thermore, since div τττh is constant, the first term in the right-hand side requires only to
evaluate the integral of a harmonic polynomial of degree at most k. Hence, the computation
of Π̂0

k−1,Eτh is not as cumbersome as it may appear at a first sight.

The local right-hand side term We split the right-hand side term on each quadrilateral
and we have

(f, vh)E =

∫
E

fvh dE.

Since vh ∈ Uh(E) = P0(E), we have that

(f, vh) =
∑

E∈Mh

vh

∫
E

f dE,

which is computable via quadrature rules for polygonal domains, see for instance [32].

3.4 The discrete scheme
Starting from the local spaces and local terms introduced in the previous sections, we can
set the global self-stabilized problem. More specifically, we introduce these two global ap-
proximation spaces, by gluing the local approximation spaces, see (3) and (6):

Σh =
{
τh ∈ H(div,Ω) : τh|E ∈ Σh(E), ∀E ∈ Mh

}
(22)

and
Uh =

{
uh ∈ U : uh|E ∈ Uh(E), ∀E ∈ Mh

}
. (23)

Now, given a local approximation of aE(·, ·), see (20), ∀σh, τh ∈ Σh we set

ah (σh, τh) :=
∑

E∈Mh

aEh (σh, τh) . (24)
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Figure 1: A general quadrilateral E ∈ Mh

We can state the discrete problem as: find (σh, uh) ∈ Σh × Uh such that{
ah (σh, τh) + (div τh, uh)Ω = 0 ∀τh ∈ Σh

(divσh, vh)Ω = (f, vh)Ω ∀vh ∈ Uh

. (25)

In the next section we focus on the well-posedness of this discrete scheme, in the case of
quadrilateral meshes, which requires in particular the coercivity-on-the-kernel condition for
the bilinear form ah (·, ·) (also called ellipticity-on-the-kernel condition).

4 Well-posedness in the quadrilateral case
From now on we focus on the case where the mesh Mh is made up by quadrilaterals. This
implies that we choose k = 2, so that we use the local projection Π̂0

1,E , see (19). Hence,
we project onto the gradients of quadratic harmonic polynomials, a space of dimension 4.
For each quadrilateral E ∈ Mh, Vi (for i = 1, . . . , 4) denote its vertices counterclockwise
ordered and ei the edge connecting Vi to Vi+1, where V5 = V1 (see Figure. 1). Let ni, be
the unit normal vector of the edges ei for i = 1, . . . , 4. This section is devoted to prove the
well-posedness of the discrete problem stated by (25).

We introduce the following two useful spaces RT0(E) and H(E), and we prove some
properties of their functions.

Definition 1 (Raviart-Thomas space RT0(E)). It is the space of the polynomial functions
defined as follows:

RT0(E) :=

{
r ∈

[
L2(E)

]2
: r =

(
c1
c2

)
+ c3

(
x
y

)
, s.t. c1, c2, c3 ∈ R

}
, (26)

whose dimension is equal to 3.
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Definition 2 (Hourglass space H(E)). Let ξ ∈ Σh(E) be the function such that

ξ · nj =
(−1)j

|ej |
∀j = 1, . . . , 4, (27)

then we introduce the following one dimensional virtual space

H(E) := span (ξ) . (28)

Using the divergence theorem, it is straightforward to see that a function τ̃h ∈ H(E) satisfies
div τ̃h = 0.

Remark 3. We notice that the two spaces above are two subspaces of Σh(E).

Proposition 1. Let RT0(E) be the space defined in (26) and let H(E) be the space defined
in (28), then

Σh(E) = RT0(E)⊕H(E) . (29)

Moreover, let us define the local divergence-free subspace:

Σ0
h(E) = {τh ∈ Σh(E) : div τh = 0} . (30)

Then it holds
Σ0

h(E) = (P0(E))2 ⊕H(E) (31)

and the decomposition is L2-orthogonal.

Proof. Notice that, according to the dimension of RT0(E) and H(E), to get (29) we only
have to prove that RT0(E)∩H(E) = {0}, that is ξ /∈ RT0(E). By contradiction, we suppose
that ξ ∈ RT0(E). Notice that by definition of ξ, div ξ = 0, hence ξ ∈ (P0(E))2. Take now
a = ∇(a · x), where a ∈ (P0(E))2. We have, using integration by parts and (27):

(ξ,a)E = (ξ,∇(a · x))E =

∫
∂E

(ξ · nE)(a · x) =
4∑

i=1

∫
ej

(−1)j

|ej |
(a · x) , (32)

for every a ∈ (P0(E))2. An application of the trapezoidal rule gives

(ξ,a)E = a ·

1

2

4∑
j=1

(−1)j(Vj + Vj+1)

 = 0 ∀a ∈ (P0(E))2. (33)

Recalling that ξ is constant, from (33) we infer ξ = 0, a contradiction since ξ ̸= 0. Further-
more, decomposition (31) follows from a dimensional count, while the L2-orthogonality is
simply (33).

Lemma 1. Let E ∈ Mh and let ξ be the hourglass function defined on E by (27). Then
∃Cξ > 0 independent of hE such that

∥ξ∥0 ≤ Cξ . (34)
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Proof. Since ξ ∈ Σh(E), by (3) ∃v ∈ H1(E) such that ξ = ∇v. It is clear that v is defined
up to a constant, so we choose v such that

∫
E
v = 0. This implies that ∃C > 0 independent

of hE such that
∥v∥0 ≤ ChE ∥∇v∥0 = ChE ∥ξ∥0 , (35)

by Poincaré’s inequality. Moreover, since div ξ = 0, it holds ∆v = 0. Then, by Green’s
theorem and a Cauchy-Schwarz inequality we have

∥ξ∥20 = (ξ,∇v)E = (ξ · n, v)∂E ≤ ∥ξ · n∥0,∂E ∥v∥0,∂E . (36)

We can apply a standard trace inequality to the last norm and obtain, by exploiting also
(35),

∥v∥0,∂E ≤ h
1
2

E

(
h−2
E ∥v∥20 + ∥∇v∥20

) 1
2 ≤ Ch

1
2

E ∥ξ∥0 . (37)

On the other hand, an explicit computation exploiting the definition of ξ given by (27)
yields

∥ξ · n∥20,∂E =

4∑
j=1

∫
ej

[
(−1)j

|ej |

]2
=

4∑
j=1

|ej |−1 ≤ 4γ−1h−1
E , (38)

where the last inequality is obtained by exploiting the mesh assumption A.2. Using (37)
and (38) into (36), we get

∥ξ∥20 ≤ ∥ξ · n∥0,∂E ∥v∥0,∂E ≤ 2γ− 1
2h

− 1
2

E · Ch
1
2

E ∥ξ∥0 ≤ C ∥ξ∥0 ,

which yields the thesis.

Lemma 2. Under the mesh assumptions A.1 and A.2, for every E ∈ Mh, there exists a
positive constant C∗, independent of hE, such that∥∥∥Π̂0

1,E τ̃ττh

∥∥∥
0
≥ C∗ ∥τ̃ττh∥0 ∀τ̃ττh ∈ H(E). (39)

Proof. Since H(E) = span(ξ), it is sufficient to prove (39) for τ̃ττh = ξ. Using the definition
of the norm of the operator Π̂0

E and (18), we have

∥∥∥Π̂0
1,Eξ

∥∥∥
0
= sup

q∈∇PH
2 (E)

(
Π̂0

1,Eξ,q
)

∥q∥0
= sup

q∈∇PH
2 (E)

(ξ,q)

∥q∥0
. (40)

By Varignon’s theorem [24], for each element E ∈ Mh, the quadrilateral KE whose
vertices are the edge midpoints Mj (j = 1, . . . , 4) of E, is a parallelogram. With the usual
abuse of notation that V5 = V1 we have

Mj =
Vj + Vj+1

2
,

and the area of KE satisfies |KE | = |E|
2 . Under the mesh assumptions A.1 and A.2, it is

not hard to show that the parallelogram is not degenerate, i.e. assumptions A.1 and A.2
hold for KE as well. We now construct p∗ ∈ PH

2 (E) such that

p∗ (Mj) = (−1)j , for each j = 1, . . . , 4. (41)
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To this aim, it is useful to resort to complex numbers z = x+ iy. Hence, up to a translation,
we can identify M1 as 0 ∈ C; accordingly, we also set M2 = z1, M4 = z2 and M3 = z1 + z2.
A direct computation shows that the complex-valued polynomial

q(z) = −1 + 2
z1 + z2
z1z2

z − 2

z1z2
z2

satisfies conditions (41) (with the above-mentioned identifications of Mj). We now set
p∗(x, y) = Re(q(z)), where z = x + iy and Re(·) denotes the real part. The real-valued
polynomial p∗ is harmonic and satisfies conditions (41) as well. Let p∗ := ∇p∗; from (40)
we get ∥∥∥Π̂0

1,Eξ
∥∥∥
0
≥ (ξ,p∗)

∥p∗∥0
. (42)

By an explicit computation using Cavalieri-Simpson’s quadrature rule and (41), we have
that

(ξ,p∗) =

∫
E

ξ · ∇p∗ dE =

∫
∂E

(ξ · n)p∗ de =
4∑

j=1

(−1)j

|ej |

∫
ej

p∗ de

=

4∑
j=1

(−1)j

6
(p∗ (Vj) + 4p∗ (Mj) + p∗ (Vj+1))

=

4∑
j=1

2

3
(−1)jp∗ (Mj) =

8

3
.

(43)

We now notice that, due to assumptions A.1 and A.2, there exists Cp∗ > 0, independent
of hE , such that ∥p∗∥0 = ∥∇p∗∥0 ≤ Cp∗ . Therefore, using Lemma 1 we have∥∥∥Π̂0

1,Eξ
∥∥∥
0
≥ 8

3 ∥p∗∥0
=

8 ∥ξ∥0
3 ∥ξ∥0 ∥p∗∥0

≥ 8

3CξCp∗
∥ξ∥0 . (44)

Then, (39) holds with C∗ = 8
3CξCp∗ .

4.1 Continuity and coercivity of the local bilinear form aEh (·, ·)
In this section, applying the above preliminary results, in particular Lemma 2, we prove
the continuity and coercivity (on the divergence operator kernel) of the local bilinear form
aEh (·, ·) in the L2-norm.

Theorem 1. Under the mesh assumptions A.1 and A.2, for every E ∈ Mh, the discrete
bilinear form aEh (·, ·), defined in (20), is L2 continuous and coercive-on-the kernel, namely
there exist two positive constants α∗ and α∗, independent of hE, such that

aEh (τττh, σσσh) ≤ α∗ ∥τττh∥0 ∥σσσh∥0 , ∀τττh, σσσh ∈ Σh(E) (45)

and
aEh (τττh, τττh) ≥ α∗ ∥τττh∥20 , ∀τττh ∈ Σ0

h(E) , (46)

where Σ0
h is the divergence-free subspace defined in (30).
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Proof. Fixed an element E ∈ Mh, we first check the continuity. For every τττh, σσσh ∈ Σh(E),
applying the definition of Π̂0

E , its continuity and the Cauchy-Schwarz inequality, we obvi-
ously obtain

aEh (τττh, σσσh) = (Π̂0
1,Eτττh, Π̂

0
1,Eσσσh) ≤ ∥τττh∥0 ∥σσσh∥0 . (47)

Then (45) holds with α∗ = 1.
Now, we prove the Σ0

h-coercivity of the bilinear form aEh (·, ·). From Proposition 1, we
get that every τττh ∈ Σ0

h can be written by means of the orthogonal decomposition

τττh = τττ 0 + τ̃ττh ,

where τττ 0 ∈ (P0(E))2 and τ̃ττh ∈ H(E). Moreover, one has

||τττh||20 = ||τττ 0||20 + ||τ̃ττh||20 .

Using Lemma 2, the definition of the projection operator (18) and noticing that Π̂0
1,Eτττ 0 =

τττ 0 , we have

aEh (τττh, τττh) =
(
Π̂0

1,Eτττh, Π̂
0
1,Eτττh

)
=
(
Π̂0

1,Eτττ 0 + Π̂0
1,E τ̃ττh, Π̂

0
1,Eτττ 0 + Π̂0

1,E τ̃ττh

)
= (τττ 0, τττ 0) + 2 (τττ 0, τ̃ττh) +

(
Π̂0

1,E τ̃ττh, Π̂
0
1,E τ̃ττh

)
= (τττ 0, τττ 0) +

(
Π̂0

1,E τ̃ττh, Π̂
0
1,E τ̃ττh

)
≥ (τττ 0, τττ 0) + C∗ (τ̃ττh, τ̃ττh)

≥ min {1, C∗}
[
||τττ 0||20 + ||τ̃ττh||20

]
= C∗ ∥τττh∥20 ,

(48)

which yields the thesis, with α∗ = C∗.

4.2 Ellipticity-on-the-kernel condition and inf-sup condition
In this section, we consider the two conditions, i.e. the coercivity of the bilinear form
aEh (·, ·) on the kernel of the mixed term and the LBB inf-sup condition, that imply the
well-posedness of the discrete problem (25).

Let us introduce the discrete kernel space given by

Kh := {τh ∈ Σh : (div τh, vh) = 0 ∀ vh ∈ Uh} . (49)

Notice that ∀τh ∈ Kh we have that div τh = 0, so that τττh|E ∈ Σ0
h and ∥τh∥Σ = ∥τh∥0.

Hence, applying the local coercivity property (46) stated in Theorem 1 and the definition
of the bilinear form ah (·, ·) (24), we obtain that ∃C∗ > 0, independent of h, such that

ah (τττh, τττh) ≥ C∗ ∥τττh∥2Σ , ∀τττh ∈ Kh. (50)

Furthermore, the inf-sup condition, i.e. ∃β > 0, independent of h, such that

inf
v∈Uh

sup
τh∈Σh

(div τh, v)Ω
∥v∥0 ∥τh∥Σ

≥ β . (51)

is a consequence of the so-called Fortin’s trick, cf. [18], when the interpolation operator Ih
of Section 3.2 is considered (see in particular (10), (13) and (14) with s = 0).
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5 Error estimates in the quadrilateral case
We prove optimal a priori error estimates for the method presented in this work, when the
mesh is made up by quadrilaterals. We remark that the proof follows the usual guidelines for
the VEM mixed schemes; however, we provide all the details, for the sake of completeness.

Theorem 2. Let (σ, u) ∈
[
H1(Ω)

]2 × H1
0(Ω) and f ∈ H1(Ω) be respectively solution and

forcing term of (2). Then ∃C > 0, independent of h, such that the unique solution (σh, uh) ∈
Σh × Uh of (25) satisfies the following error estimates:

∥σ − σh∥0 ≤ Ch |σ|1 , (52)
∥div(σ − σh)∥0 ≤ Ch |f |1 , (53)

∥u− uh∥0 ≤ Ch (|u|1 + |σ|1) . (54)

Proof. In order to prove (52), let σI := Ihσ ∈ Σh be the interpolant of σ defined in Section
3.2. Then, applying the triangle inequality we obtain

∥σ − σh∥0 ≤ ∥σ − σI∥0 + ∥σI − σh∥0 . (55)

Let us focus on the term ∥σI − σh∥0. Notice that, applying the second equation of discrete
problem (25) and the property of the interpolant (11), we have for each E ∈ Mh

divσh = −Π0
0,Ef = Π0

0,E divσ = divσI =⇒ div (σI − σh) = 0 , (56)

hence (σI −σh)|E ∈ Σ0
h for each E ∈ Mh (therefore (σI −σh) ∈ Kh). Notice that applying

this relation to the first equation of the discrete problem (25) and to the first equation of
the continuous problem (2) we obtain that ah (σh,σI − σh) = 0 and a(σσσ,σI − σh) = 0.
Then, since σI − σh ∈ Kh we can apply Theorem (1), in particular (46), and obtain the
estimate

α∗ ∥σI − σh∥20 ≤ ah (σI − σh,σI − σh)

= ah (σI ,σI − σh)

=
∑

E∈Mh

(
aEh

(
σI − Π̂0

1,Eσ,σI − σh

)
+ aEh

(
Π̂0

1,Eσ,σI − σh

))
=

∑
E∈Mh

(
aEh

(
σI − Π̂0

1,Eσ,σI − σh

)
+ aE

(
Π̂0

1,Eσ,σI − σh

))
=

∑
E∈Mh

(
aEh

(
σI − Π̂0

1,Eσ,σI − σh

)
+ aE

(
Π̂0

1,Eσ − σ,σI − σh

))
,

(57)

where the projector Π̂0
1,E is defined by the orthogonality condition (18) and satisfies, for

each E ∈ Mh, aEh
(
Π̂0

1,Eσ, τh

)
= aE

(
Π̂0

1,Eσ, τh

)
∀τh ∈ Σh. We now notice that, since

σ = ∇u and Π̂0
1,E projects onto the space ∇PH

2 (E), it holds∥∥∥σ − Π̂0
1,Eσ

∥∥∥
0,E

=
∥∥∥∇u− Π̂0

1,E(∇u)
∥∥∥
0,E

= inf
p∈PH

2 (E)
|u− p|1,E ≤ ChE |σ|1,E , (58)

12



where the last estimate follows from the standard approximation theory, see [20, 29, 21].
Then, by the continuity of aEh (·, ·) and aE (·, ·), applying estimates (15) and (58), we obtain

∥σI − σh∥0 ≤ C
∑

E∈Mh

(∥∥∥σI − Π̂0
1,Eσ

∥∥∥
0,E

+
∥∥∥σ − Π̂0

1,Eσ
∥∥∥
0,E

)

≤ C

(
∥σ − σI∥0 +

∑
E∈Mh

∥∥∥σ − Π̂0
1,Eσ

∥∥∥
0,E

)
≤ Ch |σ|1 .

(59)

Applying this relation and the interpolation estimate (15) to (55),estimate (52) is proved.
Moreover, to prove (53) we apply (56), the interpolation estimate (14) and the equation
divσ = −f , to obtain

∥divσ − divσh∥0 ≤ ∥divσ − divσI∥0 ≤ Ch |f |1 . (60)

Finally, we have to prove (54). Let uI := Π0
0,hu ∈ Uh. Notice that by its definition uI

satisfies (u− uI ,div τh)Ω = 0 for each τh ∈ Σh. By triangle inequality we have

∥u− uh∥0 ≤ ∥u− uI∥0 + ∥uI − uh∥0 . (61)

First, let us consider the term ∥uI − uh∥0. Since uI − uh ∈ Uh, according to the inf-sup
condition (51), there exists τ ⋆

h ∈ Σh be such that div τ ⋆
h = uI − uh and

∥τ ⋆
h∥0 ≤ 1

β
∥uI − uh∥0 . (62)

Then, applying the continuous problem (2), the discrete one (25) and adding and subtracting
Π̂0

Eσ, we obtain

∥uI − uh∥20 = (uI − uh,div τ
⋆
h)Ω

= (u− uh,div τ
⋆
h)Ω

= a(σ, τ ⋆
h)− ah (σh, τ

⋆
h)

=
∑

E∈Mh

aE
(
σ − Π̂0

1,Eσ, τ
⋆
h

)
+ aEh

(
Π̂0

1,Eσ − σh, τ
⋆
h

)
≤ C

∑
E∈Mh

(∥∥∥σ − Π̂0
1,Eσ

∥∥∥
0,E

+ ∥σ − σh∥0,E

)
∥uI − uh∥0

(63)

where in the last step we exploit the continuity of the bilinear forms together with (62).
Finally, applying (63) to (61), the interpolation estimate (16) and the error estimate of σ
(52) already proved, we obtain

∥u− uh∥0 ≤ ∥u− uI∥0 + C

( ∑
E∈Mh

∥∥∥σ − Π̂0
1,Eσ

∥∥∥
0,E

+ ∥σ − σh∥0

)
≤ Ch (|u|1 + |σ|1) .

(64)
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(a) Cartesian (b) ConvexConcave (c) Distorted (d) Random

Figure 2: Meshes.

6 Numerical Tests

6.1 Convergence tests
In this section, we numerically assess the behaviour of our scheme with respect to mesh
refinement. We consider Ω = (0, 1)2 and solve Problem (25) choosing f such that

u(x, y) = x(1− x)y(1− y) ,

σ(x, y) = ∇u(x, y) =

(
(1− 2x)y(1− y)
x(1− x)(1− 2y)

)
.

First, we consider the four families of meshes depicted in Figure 2. We assess the method
behaviour by computing the following relative errors:

erru =
1

∥u∥0

( ∑
E∈Mh

∥u− uh∥20,E

) 1
2

,

errdiv =
1

∥divσ∥0

∑
E∈Mh

(
∥divσ − divσh∥20,E

) 1
2

,

errσ =
1

∥σ∥0

( ∑
E∈Mh

∥∥∥σ − Π̂0
k−1,Eσh

∥∥∥2
0,E

) 1
2

,

errσ·n =

(∑
e∈Eh

he ∥(σ − σh) · ne∥0,e
) 1

2

(∑
e∈Eh

he ∥σ · ne∥0,e
) 1

2

,

where Eh denotes the set all edges of Mh. We also solve the test problem with the standard
VEM method [4]. We recall that for this latter method, the local discrete bilinear form
ah(·, ·) is given by

aEh (σh, τh) =
(
Π0

0,Eσh,Π
0
0,Eτh

)
E
+ sE

(
(I −Π0

0,E)σh, (I −Π0
0,E)τh

)
, (65)

where sE(·, ·) is the local stabilization term. In matrix form, the stabilization term we
choose is given by

14



(a) Cartesian, erru (b) ConvexConcave, erru (c) Distorted, erru

(d) Cartesian, errdiv (e) ConvexConcave, errdiv (f) Distorted, errdiv

(g) Cartesian, errσ (h) ConvexConcave, errσ (i) Distorted, errσ

(j) Cartesian, errσ·n (k) ConvexConcave, errσ·n (l) Distorted, errσ·n

Figure 3: Convergence curves on quadrilateral meshes. The left vertical axis refers to the
values of the errors (dotted lines). The right vertical axis refers to the ratio between the
error made by the standard VEM method and the error of the proposed method (orange
dots).
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(a) erru

(b) errσ (c) errσ·n

Figure 4: Convergence curves on Random mesh. The left vertical axis refers to the values of
the errors (dotted lines). The right vertical axis refers to the ratio between the error made
by the standard VEM method and the error of the proposed method (orange dots).
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Figure 5: Rhomboidal mesh

S = (I−Π0)TD (I−Π0), (66)

where the matrix Π0 represents the projection onto the constant vector functions. Moreover,
D is a diagonal matrix defined as

Dii = max
(
hE |ei|,

(
Π0

0,Eφi,Π
0
0,Eφi

)
E

)
. (67)

Above, the functions φi denote the elements of the Lagrangian basis corresponding to the
local degrees of freedom (4). This choice is known as D-recipe stabilization, and it is inspired
by the numerical assessment in [6, 26]. We also notice that in computing the error errσ, for
the standard VEM we use the projection onto constants.

In Figure 3, we consider the quadrilateral meshes of Figures 2a, 2b and 2c, respectively
named Cartesian, ConvexConcave and Distorted. The computed errors obtained by the
two methods are compared with respect to the maximum diameter of the mesh, denoted by
h, and the asymptotical convergence rates are reported in the legend. The results show that
the two methods behave equivalently on all meshes with respect to all the computed errors.
We also remark that on all the meshes, both methods return exactly the same results for
errdiv. This is not surprising, since for all the meshes and both methods, from the second
equation of (25) we get divσh = −Π0

0,Ef , while div σσσ = −f . Hence errdiv is always the L2

error when the load term f is approximated by piecewise constant functions. Accordingly,
from now on we will not display that error quantity.

In Figure 2d we consider the family of meshes named Random, i.e. polygonal meshes ob-
tained using Polymesher [33], whose elements are not only quadrilaterals. On each polygon,
we construct the local bilinear form aEh (·, ·) (20) choosing k as in (19) (see Remark 1). As
we can see in Figure 4, the proposed method is stable and exhibits the expected convergence
rates.

6.2 Comparison with standard VEM on an anisotropic refinement
test

In this section, we consider the problem presented in the previous section with a Rhomboidal
mesh, as depicted in Figure 5. This mesh is refined applying an anisotropic rule. In par-
ticular, at each step the mesh is refined by a factor α in the x-direction and by a factor
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(a) erru (b) errσ (c) errσ·n

Figure 6: Convergence curves on Rhomboidal mesh. The left vertical axis refers to the
values of the errors (dotted lines). The right vertical axis refers to the ratio between the
error made by the standard VEM method and the error of the proposed method (orange
dots).

α2 in the y-direction. In Figure 6, we present the convergence plots. We observe that the
standard VEM method is not properly converging, while the proposed scheme exhibit the
expected convergence behaviour.

7 Conclusions
We have presented a self-stabilized Virtual Element Method for the Poisson problem in
mixed form. One of the main features of our approach is the employment of a projection
operator over the gradients of harmonic polynomials of suitable degree. This choice allevi-
ates the computational costs arising from the numerical quadrature. Despite the scheme is
designed for arbitrary polygons, the theoretical analysis has been developed only for quadri-
lateral meshes. The method convergence and stability have been computationally confirmed.
Moreover, the numerical results show that our scheme is a valid alternative to the standard
lowest-order mixed VEM.

A possible future development of the present study is the extension of the analysis to
general polygonal meshes.
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