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Abstract

In this work, we introduce Basilisk, a high-level architectural pattern designed to facilitate interoperability among various languages,
platforms, and ecosystems. The pursuit of language-independent software development is highly desirable, enabling developers to
utilize existing software products with most programming languages. Achieving platform independence is equally advantageous,
allowing code deployment on different platforms effortlessly. While the development community has often aimed for either language
or platform independence, Basilisk aims to combine both into a single product. To realize this dual objective, Basilisk employs
two fundamental components. The first is a transpilation infrastructure used to render software products language-independent.
The second is an abstraction layer over platforms, enabling the creation of platform-independent software products. To illustrate
Basilisk’s potential, we introduce Hydra, a one-to-many, declarative transpilation infrastructure. Hydra has been utilized to develop
transpilers from HydraKernel (source language) to various target languages, including D, C++, C#, Scala, Ruby, Hy, and Python.
Additionally, we instantiate the abstraction layer in Wyvern, a low-level embedded domain-specific language for GPU programming,
supporting any Vulkan-compatible GPU. With the Hydra transpilation infrastructure, Wyvern becomes available for D, C++, C#,
Scala, Ruby, Hy, and Python. We evaluate Basilisk through the instantiation of Hydra and Wyvern, writing five algorithms from the
Rodinia suite for the seven available languages, totaling 35 benchmarks. These benchmarks are executed on four different hardware
platforms.
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1. Introduction

Problem Statement. Programming libraries stand as pivotal
elements in a language’s ecosystem [39]. Unfortunately, these
libraries are often limited to a handful of languages, exemplified
by the popular scientific computing library NumPy [22], exclu-
sive to Python. Consequently, when selecting a development
language, developers must consider library availability, creating
a situation where language choice is driven more by ecosystem
considerations than intrinsic language characteristics [39].

Introducing new languages to the developer community be-
comes a daunting task due to the years required for ecosystem
maturity. Additionally, as language ecosystems evolve inde-
pendently, the presence of overlapping libraries with high repli-
cation levels is common. For instance, various programming
languages offer libraries for random number generation, each
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with its unique features and bugs. Python’s random1 module
supports various distributions, while Java’s Random2 class only
covers the normal distribution. Consequently, transitioning be-
tween languages involves grappling with these differences.

As the community gravitates toward newer languages, older
software becomes obsolete, leading to the loss and replication
of functionally useful software in newer ecosystems. Simulta-
neously, programming libraries should strive for independence
from the execution platform, whether it is a hardware architec-
ture (CPU/GPU/TPU), an operating system (OS), or any other
software platform like a DBMS (as different DBMS could be-
come more appropriate as both the DBMS and software prod-
uct evolve [40]). For example, Python’s os3 library provides
a mostly OS-independent API to interact with the host OS.
Platform-independent software empowers user developers to
create a single product running seamlessly across various plat-
forms [34]. This approach allows developers to interact with
different platforms through a homogeneous interface, mitigating
the peculiarities of each platform.

While both language and platform independence are highly
desirable, achieving these properties is extremely challenging [8,

1https://docs.python.org/3.10/library/random.html
2https://docs.oracle.com/en/java/javase/17/docs/api/java.

base/java/util/Random.html
3https://docs.python.org/3/library/os.html
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23]. Despite their relevance, software products designed to attain
at least one of these properties remain scarce.
State-of-the-Art. While discussions regarding platform-inde-
pendent software are often domain-specific [15, 59, 62], pro-
gramming languages themselves consistently aim for platform
independence. This objective is typically achieved through the
use of a virtual machine or a middleware layer. Examples include
GraalVM [61, 60] and the .NET common language runtime [10].

The ongoing conversation about language interoperability
lacks a framework that effortlessly decouples software products
from both the underlying platform and user-end programming
languages. Existing approaches often focus solely on translat-
ing one language into another, e.g., Albrecht et al. [2] translate
Ada to Pascal, Coco et al. [13] translate Java to Python, and
Seymour and Dongarra [52] translate Fortran to JVM bytecode.
Alternatively, inter-process communication is explored in works
like [57, 54], but this method introduces data marshaling be-
tween cross-language calls, limiting performance [21]. Multi-
language run-times such as [10, 21] provide environments to
allow for a high degree of interoperability between different
languages using the concept of virtual machines. However, this
approach while effective is often constrained by the respective
virtual machines. For example, the JVM provides interoperabil-
ity only between those programming languages running on the
JVM as Java, Kotlin, and Scala.

A more comprehensive approach to the problem is demon-
strated by HaXe [41], capable of performing source-to-source
translation to multiple languages. However, it lacks a mechanism
for easily extending the pool of supported target languages.
Proposed Solution. In this work, we introduce Basilisk, a
high-level architectural pattern designed to address the challenge
of creating language- and platform-independent software. To
contextualize the problem, we focus on two primary interactions
of a software product: i) interaction with a user and ii) interaction
with the platform.Our focus is on software products that engage
through programming languages. Such products expose two
interfaces: i) the user-to-product interface, and ii) the product-
to-platform interface.

The user-to-product interface enables users to interact with
the software product, and the product-to-platform interface is
used by the software product to communicate with platforms.
Notably, the product-to-platform interface serves as an abstrac-
tion layer, effectively decoupling the software product from the
underlying platform. This abstraction can be implemented using
established software design patterns like the adapter pattern [19]
or other formalisms such as [51].

Instead, the user-to-product interface is crucial for user com-
munication. To avoid tying the software system to a specific
programming language, the user-to-product interface is trans-
lated into various languages using a transpiler. This transpiler,
reusable across different scenarios, underscores the necessity for
a source-to-source transpilation infrastructure such as [42, 26, 7].
Implementations. To illustrate the potentiality of the Basilisk
architectural pattern, we instantiate its components into three
distinct entities: Hydra, Wyvern, and MinPy.

Hydra is a source-to-source, one-to-many, and extensible

transpilation infrastructure implemented in Scala. Utilizing a
declarative approach, Hydra simplifies the definition of transpila-
tions from HydraKernel to various programming languages. We
demonstrate Hydra’s capabilities by developing seven transpilers
from HydraKernel to D, C++, C#, Scala, Ruby, and Hy, as well
as Python.

Wyvern is a simple embedded domain specific language
(EDSL) [38, 16] for GPGPU programming. Or, in other words,
Wyvern is a domain specific language [32, 31] accessible from a
library API for the GPGPU programming application domain.
Wyvern considers different GPUs and CPUs as distinct platforms
for executing Wyvern programs. Consequently, Wyvern acts as
an abstraction layer for low-level GPU programming with CPU
support. Notably, Wyvern is natively available only for Rust,
limiting its usability to Rust programmers.

To further illustrate the pattern, we developed MinPy, a
small array computing library. MinPy can be executed on two
different back-ends: NumPy and Torch, representing different
platforms.
Research Questions. To understand whether the Basilisk
architecture enables the desired language- and platform-indepen-
dence, we will try to answer the following research questions:

RQ1. Is the Basilisk architectural pattern successful
in rendering a software product language-independent?

The answer should be yes only if the software product can
be extended to support new languages via the Basilisk pattern.

RQ2. Is the Basilisk architectural pattern successful
in rendering a software product platform-independent?

The answer should be yes only if the software product can
be extended to support new platforms via the Basilisk pattern.

RQ3. What is the cost of introducing new languages
and/or platforms?

Answered in terms of lines of code and number of files
required. As Basilisk is a pattern build around the software
product, its code impact should be minimal.
Contributions. Our contribution is summarized in the follow-
ing three points:
• the Basilisk architectural pattern for the development of

language- and platform-independent software, and
• the instantiation of the Basilisk architectural pattern to

address issues in the GPGPU programming domain,
• an evaluation of the Basilisk architectural pattern through

the answering of the research questions.
The remaining of this work is organized as follows. Sec-

tion 2 presents the overall Basilisk architecture. Section 3 in-
stantiates one of the Basilisk components—the transpilation
infrastructure. Section 4 instantiates the abstraction layer for a
small array computing library—MinPy. Section 5 instantiates
the abstraction layer for a GPGPU EDSL—Wyvern. We eval-
uate the resulting instantiations of the Basilisk (Hydra+MinPy
and Hydra+Wyvern) pattern in Section 6. Results and research
questions are discussed in Section 7. Section 9 discusses related
works in the field. Finally, in Sect. 10 we draw our conclusions.
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2. Basilisk Architectural Pattern

Basilisk is an architectural pattern to ease the development
of language- and platform-independent software products. It
achieves this by enabling the use of the development environ-
ment from other programming languages and abstracting away
from specific platforms. Where the language represents how
users interact with the software product, and the platform repre-
sents the way the software product interacts with the ecosystems.
Software products that are language- and platform-independent:
• broader user base: they attract a larger user base com-

pared to competitors by accommodating the language and
platform preferences/constraints of more users;
• survivability in technological shifts: these products can

endure technological shifts, where older languages and
platforms are replaced by newer ones;
• enhanced stability: the larger user base provides a sub-

stantial pool of testers, contributing to the product’s sta-
bility;
• automated interface alignment: these products elimi-

nate the need to manually align exposed interfaces across
implementations, as any changes automatically propagate.

Given these advantages, language- and platform-independent
software products become compelling. Nonetheless, their de-
velopment presents many challenges that require a high-level
degree of decoupling and extensibility.

2.1. Architectural Pattern Overview

A software product encompasses applications or libraries
designed for language- and platform-independence. It exposes
its functionality through the user-to-product interface, accessible
to users—entities that can be either human or other software
entities. The software product’s capabilities are built upon the
functionality provided by a platform, which could be an operat-
ing system, hardware architecture, or another software product.
Access to necessary functionalities occurs through the product-
to-platform interface, implemented by various back-ends. Each
back-end connects platform-specific functionalities to those re-
quired by the product-to-platform interface. Together, these in-
terfaces and different back-ends form the abstraction layer. The
user-to-product interface encapsulates the software product’s
capabilities. Availability in multiple programming languages is
ensured through a transpilation infrastructure.

Fig. 1 illustrates the Basilisk architectural pattern and its
components. Users access an interface tailored to their preferred
language, generated from the user-to-product interface. The
software product implements the user-to-product interface and
relies on the product-to-platform interface. This interface is im-
plemented by a back-end designed for a specific platform. From
the user’s perspective, interacting with the software product in
their preferred language is seamless, and they are not required
to manually create bindings. Simultaneously, the software prod-
uct transparently accesses the underlying platform. It is worth
noting that while user-side interfaces can be manually crafted,
this process is mechanical and prone to errors. Additionally,
changes in the user-to-product interface must be propagated to
all user-side interfaces, a task that can be challenging to manage

back-end back-end back-end

platform platform platform

ecosystem ecosystem ecosystem

software product

product-to-platform interface

user-to-product interface

interface interface interface

user user user

abstraction
layer

transpilation
infrastructure

Figure 1: The Basilisk architecture involves users choosing their preferred
language interface. All language interfaces are consistently generated from
the user-to-product interface through the language infrastructure. The software
product provides the actual functionalities, which may require functionalities
from different platforms. These functionalities are declared by the product-
to-platform interface, implemented by a back-end. Each back-end utilizes
platform-dependent functionalities, effectively decoupling the software product
from the language interfaces and the platforms.

manually. Leveraging a transpilation infrastructure automates
the availability of the user-to-product interface in multiple lan-
guages and ensures seamless propagation of changes. However,
changes in the product-to-platform interfaces necessitate man-
ual handling due to the diverse behaviors of different platforms.
Each change may require a unique approach depending on the
specific platform involved.

2.2. Abstraction Layer

The abstraction layer serves the crucial role of decoupling the
software product from the platforms, each offering its unique set
of functionalities. Platforms may differ significantly in the ways
they provide essential functionalities, requiring the software
product to adapt accordingly. For instance, a logging library
may need to interact with the underlying filesystem for read
and/or write operations, but the implementation details vary
across different operating systems. To bridge these differences,
an abstraction layer is introduced over the available platforms,
consolidating variability into a unified interface. The software
product exclusively interacts with platforms through the product-
to-platform interface, which, in turn, relies on a back-end to
access platform-specific functionality.
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Consider the example of a logging library with a product-
to-platform interface containing abstract methods like read and
write. Each back-end then implements these operations for the
corresponding platform (e.g., operating system), ensuring the
software product accesses the appropriate implementation when
using read or write operations.

In cases where an existing abstraction layer, such as Python’s
pathlib, is available, it can be leveraged instead of developing
a new one. However, a product-to-platform interface and the
required back-ends must be developed when no abstraction layer
exists. For effective abstraction layer development, it is advisable
to create small product-to-platform interfaces to reduce back-end
size, avoid overlap with other back-ends for the same platform,
and facilitate composition with functionality requested by other
product-to-platform interfaces.

The key points of the abstraction layer development are:
1. to build the product-to-platform interface, i.e., to identify

a set of minimal and necessary operations to build the
software product;

2. to implement the back-ends implementing the product-to-
platform interface for platforms to be supported;

3. to develop (or to adapt) the software product accessing
platform functionality only via the product-to-platform
interface;

4. to maintain, to integrate with other platforms, and to add
new functionality.

To summarize, the abstraction layer represents the interface
through which the software product interacts with the existing
ecosystem.

2.3. Transpilation Infrastructure

The transpilation infrastructure plays a pivotal role in decou-
pling the software product from the programming language used
to access it. While the software product is primarily developed
in a specific programming language to offer a set of functionali-
ties, these functionalities are inherently tied to that language. To
ensure widespread accessibility, these functionalities should be
available to users in various programming languages.

Consider a logging library, initially designed for Java users,
but now sought after by Python users. By creating a user-to-
product interface and transpiling it into different languages, we
can provide the same interface for diverse ecosystems. This
ensures that users from different programming languages can
seamlessly access the same software product.

It is important to note that with a full language-to-language
transpiler, it is possible to transpile the entire stack, including
back-ends, the product-to-platform interface, the software prod-
uct, and the user-to-product interface. However, such transpilers
are complex and challenging tools to develop. On the other
hand, if the user-to-product interface is designed as bindings to
access the software product, the translation process simplifies to
transpiling these bindings. This approach significantly eases the
development of transpilers, as bindings can be written using a
simple, bare-bones language.

Moreover, a transpiler is agnostic to the application domain
in which it is deployed, making it highly reusable. For instance,

a Java-to-Python transpiler developed for a Java logging library
can be applied not only to translate this library into Python
but also to other Java Basilisk-compliant software products,
showcasing its versatility across different scenarios.
Basilisk. To summarize, using an abstraction layer allows us
to make the software product platform-independent. Simultane-
ously, language-independent software products can be achieved
through transpilation, necessitating an infrastructure for building
transpilers. Together, these elements enable the development of
software that satisfies both properties. It is also worth noting
the intrinsic recursiveness of the Basilisk framework. The ab-
straction layer in the Basilisk framework could itself be another
Basilisk-compliant software product, using as its abstraction
layer yet another Basilisk-compliant software product, and so
on. More precisely, the product-to-platform interface used by
a software product may align with the transpilation of the user-
to-product interface of another software product. Therefore,
Basilisk-compliant software products can be stacked on each
other, achieving a higher level of functionality compared to the
product on which they are built.

3. The Transpilation Infrastructure: Hydra

Hydra is an extensible, one-to-many, source-to-source, tran-
spilation infrastructure. The transpilation infrastructure’s main
purpose is to ease the development of transpilers for the user-
to-product interface. Source-to-source as the translations are
performed from one source file to another. One-to-many as new
target languages are always defined starting from an existing
source language. Extensible as new target languages can be
supported through a declarative approach.

A Hydra transpiler is composed of three components: Hy-
draKernel, Hydra templates, and Hydra plugins. The HydraKer-
nel is the source language used to implement the user-to-product
interface. The HydraKernel language features can be extended
or changed by adding or removing Hydra plugins. Hydra plugins
handle the transpilation of the declared language features. Hydra
templates fill the language-dependent knowledge needed by the
plugin to perform the translation. For example, a Hydra plugin
may declare the while language feature so that a HydraKernel
source can use the while loop. The Hydra template extending
the while Hydra plugin needs to declare the while syntax of
the target language, so that, the plugin can perform the trans-
lation. Overall, we develop Hydra plugins necessary to have
a simple yet Turing-complete HydraKernel. Next, we develop
Hydra templates for D, C++, C#, Scala, Ruby, Hy, and Python
languages.
HydraKernel. The HydraKernel, inspired by the concept of
RPython [5], represents a restricted subset of the Scala language
and serves as the source language for Hydra (as depicted in
Fig. 3). It is intentionally designed to incorporate only those
language features that are commonly found across a broad range
of programming languages. This intentional restriction aims to
simplify the translation process for HydraKernel programs. In
the current implementation, it supports:
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Figure 2: Hydra architecture overview. ❶ represents the hydra inputs: a language template and a HydraKernel source. The Hydra Kernel source represents the
developed user-to-product interface. The Hydra template is a Scala source file filling information required by Hydra Plugins in other to perform the transpilation in
a specific target language. ❸-❹ is a customizable chain of plugins. Each plugin represents a small transpilers for a set of language features of the HydraKernel
language. Language language-dependent knowledge required by the plugins can be filled from the Hydra templates. ❷ is responsible for parsing and translating the
application configuration following the language configuration. ❺ represents the translated source.

Hydra Kernel

D

C++

C# Scala

Ruby

Python

Figure 3: HydraKernel (source language) can be translated into several other
target languages (D, C++, C#, Scala, Ruby, Python).

• a few types: int, float, boolean, unit (i.e., Scala void

type), string, and any pointer to the previous types;
• a minimum set of operations: addition, subtraction, mul-

tiplication, power, and division on int and float types;
logical and, or, and not on boolean types;
• a few type conversions routines: int-to-string, int-to-

float, float-to-string;
• string operations: concatenation, length, and equality;
• control-flow statements: if, if-else, and while-do; fi-

nally
• a basic object orientation abstraction—classes.

These components represent a small set of language features
that ensures Turing completeness while providing a convenient
programming language.
Code conditioning directives. Additionally, HydraKernel
allows code-conditioning directives (using C-style comments).
These directives are analogous to C directives and allow for con-
ditional code compilation. For example, consider the following
snippet using the code conditioning directives:

/* IF STATIC_ARITH */
def add(op1: T, op2: T): T = return new T(add_(op1,op2))
def sub(op1: T, op2: T): T = return new T(sub_(op1,op2))
def mul(op1: T, op2: T): T = return new T(mul_(op1,op2))
def div(op1: T, op2: T): T = return new T(div_(op1,op2))
/* ELSE */
def add(op: T): T = return new T(add_(T.this.value,op))
def sub(op: T): T = return new T(sub_(T.this.value,op))
def mul(op: T): T = return new T(mul_(T.this.value,op))
def div(op: T): T = return new T(div_(T.this.value,op))
/* ENDIF */

In this context, if a language supports operator overloading
(e.g., Python), the code-generation process will execute the first
branch. Conversely, in languages that do not support operator
overloading (e.g., C or Java), the second branch is executed
during code generation.

The predefined plugin HydraOperatorOverloading defines
several code conditioning directives to enable the exploiting of
operator overloading language capability. Some of these direc-
tives are: STATIC_ARITH for arithmetic (e.g., addition and sub-
traction), STATIC_BITOP for bitwise, STATIC_UNARY for unary,
and STATIC_LOAD and STATIC_STORE indexing operators.

The Hydra template informs the plugin about language-
dependent information. For instance, the Python Hydra template
will declare support for STATIC_ARITH. It will also specify how
the overloading of arithmetic operators is defined in Python,
such as by implementing the method __add__, as shown by the
following snippet:

// ...
override val has_static_arith_operator_overloading = true
override def add_constants(

class_name : String,
params : String,
return_type : String,
body : String) : String =

s"def __add__($params):\n${indent(body)}\n"
// ...

In general, code conditioning directives are treated as simple
preprocessing instructions. These support only basic expressions
and if-else statements. After the first parsing step, if-else code
conditioning directives are evaluated. The result of the evalu-
ation depends on the target language definition (declared in a
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Hydra template). Next, the portion of HydraKernel code irrele-
vant to the target language is simply dropped. In the previous
example, we would maintain only the first 4 functions when tran-
spiling HydraKernel towards C. Instead and the last 4 functions
when transpiling HydraKernel towards Python.
Hydra Plugin. Hydra plugins are the extension points of Hy-
dra. Each Hydra plugin is responsible for identifying and trans-
lating a specific language feature. For example, HydraBase (see
Fig. 2-❹) is responsible for translating and identifying the basic
imperative programming constructs, such as assignments and
control statements. Another plugin, HydraNativeCalls is re-
sponsible for generating foreign function interfaces (FFIs). Each
Hydra plugin is composed of two separate modules: a Hydra
module, and a language module. Given an abstract syntax tree
(AST) as input, a Hydra module identifies the AST nodes of inter-
est for the plugin and the language module translates the identi-
fied AST nodes according to a Hydra template. For example, the
HydraNativeCalls Hydra module identifies all classes extend-
ing com.sun.jna.Library. Whereas, the HydraNativeCalls

language module translates all the class methods as if they were
foreign functions. Instead, the Hydra module of HydraBase iden-
tifies if and while AST nodes. Whereas, the language module
of HydraBase translates such nodes by using the information
provided by the Hydra templates.
Hydra Template. A Hydra template is a Scala class represent-
ing a target language. A Hydra template declares which language
features are available and, if necessary their translation pattern.
Features are defined in a declarative way, so that, introducing
new target languages into the system requires minimal effort.
Moreover, target languages can be reused through inheritance.
Thus reducing the required development effort. Language fea-
tures are dictated by Hydra plugins. While Hydra plugins expose
a general interface for a given language feature. Hydra templates
are responsible for specializing features in their languages. For
example, the following snippet declares the translation pattern
for the while-do and if statements for the Python language. It
implements the HydraBase plugin (Fig. 2-❹) which exposes the
method while_do(cond, body) and if_def(cond, body).

def while_do(cond: String, body: String) :
String = s"while $cond:\n${indent(body)}\n"

def if_def(cond: String, body: String) :
String = s"if $cond:\n${indent(body)}\n"

A Hydra template should be mostly independent of the ap-
plication. However, through inheritance, Hydra templates can
be easily customized to adapt to specific situations.
Hydra Evaluator. Consider Fig. 2. The code generation is
performed by setting the plugin chain (Fig 2-❸) and by feed-
ing Hydra with a language template and a HydraKernel source
(Fig. 2-❶). The Hydra evaluator module reads, parses, and trans-
lates the HydraKernel source following the given Hydra template
(Fig. 2-❷). The translation is AST-driven, node-by-node, and
delegated to one of the plugins (Fig. 2-❸-❹). Each Hydra plugin
is supposed to implement one or more language features. By
stacking Hydra plugins together, one may add functionality to
HydraKernel. For example, HydraNativeCalls add an FFI ex-

tension. Each template implementing HydraNativeCalls will
extend the capabilities of the translation to support FFI. Once
the AST is translated, it is transcribed into an output file repre-
senting the translation. E.g., the following HydraKernel snippet
implementing the bubble sort:

var i: Int = 0
var j: Int = 0
while (i < array.size) {
while (j < array.size) {
if(array(j) > array(j+1)) {
swap(array,i,j)

}
}

}

is translated into the Python snippet:

i = 0
j = 0
while i < array.__len__():
while j < array.__len__():
if array[j] > array[j + 1]:
swap(array, i, j)

and into the C++ snippet:

int i = 0;
int j = 0;
while (i < array.size()) {
while(j < array.size()) {
if(array[j] > array[j + 1]) {
swap(array, i, j)

}
}

}

Example. Consider Fig. 4. On top, a HydraKernel snippet is
shown. This snippet declares the add operator (Fig. 4-➀) for
both C++ style operator overloading and Python style operator
overloading. Again, the distinction is rendered explicit through
code conditioning directives (in the form of comments). Mean-
while, a Hydra plugin declares that methods named add are
overloadable (Fig. 4-➂). Alongside the Hydra plugin, the Hy-
dra template for the Python language is shown (Fig. 4-➁). This
Hydra template first declares that Python uses a static operator
overloading approach. Next, it declares the translation pattern
which is the same as the standard Python method definition,
with the name __add__. Finally, the Hydra evaluator is respon-
sible for using the information provided by Hydra templates,
Hydra plugins, and source HydraKernel. Which results in the
translation shown in Fig. 4-➃.

4. A First Example: MinPy

For the sake of explanation, consider the NumPy library [22],
a popular array computing library. Despite its popularity, NumPy
is only available to Python users. However, all developers could
potentially benefit from a NumPy-like library available in their
language of choice. In this section, we instantiate the Basilisk
architectural pattern for a small subset of NumPy, which we
will refer to as MinPy. The same approach could be applied

6



/* IF STATIC_ARITH */
def add(op1: MyInt, op2: MyInt): MyInt = return new MyInt(op1.value+op2.value)
/* ELSE */
def add(op: MyInt): MyInt = return new MyInt(MyInt.this.value,op.value)
/* ENDIF */

override val has_static_arith_operator_overloading : Boolean = false

override def add_constants(class_name : String,
params : String,
return_type: String,
body : String): String =

method_def(class_name, "", "__add__", params, return_type, body)

private def is_overloadable_operation(name: String): Boolean = name match {
case "add" | "sub" | "mul" | "div" | "rem"

| "shr" | "shl" | "bit_and" | "bit_or" | "bit_xor"
| "eq" | "ne" | "lt" | "le" | "gt" | "ge"
| "neg" | "not"
| "load" | "store_variable" | "at" | "array_length" | "array_store" => true

case _ => false
}

HydraEvaluator

def __add__(self, other):
return self.value + other.value

Python Source Code ➃

Python Template ➁
Overloading Plugin ➂

Hydra Kernel Source Code ➀

Figure 4: Code conditioning example. A HydraKernel source is fed to the Hydra evaluator. The Python templates override from a Hydra plugin to declare the type of
overloading. Thus, the code conditioning is resolved and the output is a Python snippet.

to the entirety of NumPy but this would not add much to the
discussion.
Language Interfaces. With MinPy, we aim to offer a consis-
tent array-based library for D, C++, C#, Scala, Ruby, Hy, and
Python programming languages. Of course, the interface needs
to be adapted to the specific language capabilities. For example,
whenever possible, array addition should be defined with the
appropriate overloading operator.
Platforms. In this example, the different platforms are repre-
sented by different array-computing libraries. For example, one
platform is represented by the NumPy C API itself which we
reuse to implement the most common array operations. Another
platform is represented by the torch library which is accessed
through the Python C API.
The product-to-platform interface. In this case, the product-
to-platform interface coincides with a battery of functions to
handle array generation and several array operations.
The user-to-product interface. The user-to-product interface
provided by MinPy draws heavy inspiration from NumPy itself.
It introduces a NpyArray class, which manages arrays (creation,
destruction, and operators), and a NumPy class to handle array
methods (e.g., zeros, ones, arange, and linspace). To gain a
better understanding of the user-to-product interface, consider
the following code snippet that implements a Mandelbrot set
using MinPy with its Python interface:

size = 1024

x = mnp.linspace(-2, 1, size, npytype=mnp.FLOAT64)
.reshape((1, size))
.repeat(size, 0)

y = mnp.linspace(-1, 1, size, npytype=mnp.FLOAT64)
.reshape((size, 1))
.repeat(size, 1)

c = x+mnp.complex_(0,1)*y
z = mnp.zeros((size, size), npytype=mnp.COMPLEX128)
m = mnp.ones((size, size), npytype=mnp.BOOLEAN)

for i in range(100):
z[m] = z[m] * z[m] + c[m]
m[z.abs() > mnp.float_(2.0)] = mnp.bool_(False)

In this example, functions like linspace, repeat, zeros,
and ones exhibit a behavior similar to the one of the NumPy
Python API. Additionally, methods such as complex_, float_,
and bool_ perform an explicit cast from the input to the cor-
responding array type. This ensures that operations maintain
consistent types.

The user-to-product interface is defined using a small subset
of Scala—HydraKernel. Here, we write the library as we would
write any other library, then by means of transpilation, we obtain
the same interface written for different programming languages.
For example, consider the following HydraKernel snippet:

trait Minpy extends com.sun.jna.Library {
// ...
def arange(
start : NativeFloat,
stop : NativeFloat,
step : NativeFloat,
npytype: Int): VoidPointer

// ...
}

Here, we are simply defining one extern function—arange—
that will be accessed through one of the available back-ends.
These functions will be rendered accessible through the NumPy
class, as shown in the following code snippet:
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object Numpy {
// ...
def arange(start:Float, stop:Float, step:Float,
npytype:Int): NpyArray = {
return new NpyArray(
Minpy.INSTANCE.c_arange(

start.toNativeFloat,
stop.toNativeFloat,
step.toNativeFloat,
npytype.toNativeInt)

)
}
// ...

}

The HydraKernel library will also need to handle special
cases such as operator overloading. For example, as mentioned
earlier, one language may support operator overloading (such
as Python), while another may not support it (such as C). If we
wish to support the indexing operator for MinPy arrays whenever
possible, we need to provide two different implementations:

class NpyArray(npyarray:VoidPointer) {
//...
/* IF STATIC_LOAD_ARRAY */
def at(arr: NpyArray, idx: NpyArray): NpyArray = {
return NpyArray(getitem(arr, idx.pointer))

}
/* ELSE */
def at(idx: NpyArray): NpyArray = {
return NpyArray(getitem(this.pointer, idx.pointer))

}
/* ENDIF */
//...

}

The first implementation supports the indexing overloading,
while the second implementation is used whenever the index-
ing overloading is disabled. As a result, when generating the
interface for different languages we obtain different generation
behaviors. For example, when generating the Python interface
we obtain:

class NpyArray:
# ...
def __getitem__(self,index):

return NpyArray(getitem(self.pointer, index.pointer))
# ...

Meanwhile, when generating the Scala interface, that does
not support the indexing operator overloading, we obtain:

class NpyArray(npyarray: Long) {
// ...
def loc(arr:NpyArray, idx:NpyArray): NpyArray = {

return new NpyArray(getitem(arr.pointer, key.pointer))
}
// ...

}

The translation of the at method for different languages
is specified in the Hydra template corresponding to each lan-
guage. For instance, the Python template outlines the following
translation:

class Python3Lang() extends ObjectOrientedLang {
// ...
override def at(
clsname : String,
params : String,
rettype : String,
body : String) : String = {
methodDef(clsname, "__getitem__", params, rettype, body)

}
// ...

}

This means that the at method for Python should be trans-
lated into a method definition where the name is changed to
__getitem__, meanwhile, the rest of the method remains un-
changed. Similarly, the Scala template does simply rename the
method at, however, the chosen method name has no special
meaning wrt. the Python __getitem__, as shown in the follow-
ing snippet:

class ScalaLang() extends ObjectOrientedLang {
// ...
override def at(
clsname : String,
params : String,
rettype : String,
body : String) : String = {
methodDef(clsname, "loc", params, rettype, body)

}
// ...

}

Note that, the Hydra template is not directly responsible for
the translation of HydraKernel at method into the respective
Scala (or Python) code. The actual translation is handled by
the HydraOperatorOverloading plugin. By overloading the at
method the various templates can customize the code generation
of the plugin depending on their specific needs.
The abstraction layer. The abstraction layer aims to render
the usage of one platform transparent compared to another. With
MinPy, our objective is to achieve transparency in the usage of
one array-computing library compared to another. We have im-
plemented back-ends for accessing the NumPy C API platform
and the back-end for accessing the Torch API. Since both back-
ends satisfy the same interface, changing the back-end allows
reliance on one platform or the other. In this case, the back-ends
are encapsulated in different shared objects one using NumPy
and one using Torch. The back-ends can be swapped by swap-
ping one shared object with another. However, it is essential to
note that there is not a significant benefit in choosing the NumPy
API over the Torch API in this scenario, but we consider such a
case for the sake of the explanation.

The result is that the same code can be executed with dif-
ferent platforms and, with minimal differences, can also be
executed in different programming languages. For example,
consider the Scala implementation of the previously presented
Mandelbrot set:
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val size : Int = 1024

var x = Numpy.linspace(-2, 1, size, Numpy.FLOAT64)
.reshape(Array(1, size))
.repeat(size,0)

var y = Numpy.linspace(-1, 1, size, Numpy.FLOAT64)
.reshape(Array(size, 1))
.repeat(size,1)

var c = x+Numpy.complex_(0,1)*y
var z = Numpy.zeros(Array(size, size), Numpy.COMPLEX128)
var m = Numpy.ones(Array(size, size), Numpy.BOOLEAN)

for(i <- 1 to 100) {
z.put(m, z.loc(m) * z.loc(m) + c.loc(m))
m.put(z.abs() > Numpy.float_(2.0f), Numpy.bool_(false))

}

Both Python and Scala implementation share the same struc-
ture with an almost identical interface. The few noticeable
differences pertain to the distinctions between the Python and
Scala languages. For example, Scala does not support the over-
loading of the indexing operator; therefore, array indexing is
done through the methods loc and put.

5. Wyvern

Overview. Let’s delve into a concrete application and moti-
vating example for the Basilisk architectural pattern—Wyvern.
Wyvern is a simple EDSL that can be deployed in most program-
ming languages. The Wyvern EDSL offers a low-level inter-
face supporting the single instruction, multiple threads (SIMT)
paradigm [63]. Code written using the Wyvern EDSL is trans-
lated into a Wyvern intermediate representation—referred to
as WIR. The WIR represents the interface through which the
EDSL interacts with the GPU. The WIR code can have several
back-ends implementing its operations, and adding new back-
ends will extend the range of supported hardware. Currently,
there are two back-ends for WIR: 1) a CPU back-end, and 2) a
Vulkan4 back-end. The CPU back-end enables the execution
of Wyvern EDSL on CPUs. In such scenarios, parallelism is
only virtual, and the supposed parallel operations are properly
sequentialized to be executed on the CPU while maintaining the
expected semantics. The Vulkan back-end instead allows the
execution of the WIR code on GPUs.
GPU Programming Background. Usually, a program for
GPU computing is composed of two different portions of code:
the host code and the device code. The host code is executed
on the CPU. It handles data loading/preparation for the device
code. For example, this snippet of CUDA code:

4Vulkan is a low-level graphics API developed by the Khronos Group. It
provides a cross-platform and high-performance interface for rendering graphics,
widely used in applications ranging from video games to professional graphics
software.

// Allocate memory on the device
cudaMalloc(&d_a, size);
cudaMalloc(&d_b, size);
cudaMalloc(&d_c, size);

// Copy host vectors to device
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);

// Call a kernel function to be executed on the device
add<<<gridSize, blockSize>>>(d_a, d_b, d_c, n);

shows the allocation and initialization of three device vectors
alongside a kernel function call—add. Instead, the device code
is executed on the GPU. This is composed of one or more kernel
functions, i.e., functions that will run on the GPU.

One of the widely used programming languages for GPGPU
is CUDA. CUDA [29, 55] is an extension of the C program-
ming language that introduces syntax for interacting with GPU
hardware (the device). Despite its efficiency, CUDA has two
significant limitations: it is essentially closed source, and it is
exclusive to NVIDIA GPUs.

For example, this snippet of CUDA code:

__global__ void add( int* a, int* b, int* c, int n ) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
if ( id < n ) c[id] = a[id] + b[id];

}

declares a kernel function to sum two vectors (a and b) into a
third one (c).

Of course, different frameworks handle the definition of
the device code differently. For example, CUDA supports only
NVIDIA GPUs with C, C++, and Fortran as host code. OpenCL,
by the Khronos group, supports a wide range of GPUs, but it
only supports C and C++ for the host code (OpenCL-C and
OpenCL-C++ [20]). Whereas, PyCUDA [30] is a third-party
binding for CUDA in Python. In PyCUDA, the host code is
written in Python whereas the device code is written in CUDA.
PyCUDA supports only NVIDIA GPUs. Unfortunately, both in
OpenCL and in PyCUDA, the device code is encoded as a string
with all the well-known limitations for similar approaches, e.g.,
lack of static analysis and type checking [28, 44].
Code As Text. Both OpenCL and PyCUDA encode device
code into a string, which heavily limits the static analysis of the
device code [17]. This situation leads to cases where running the
same program with different frameworks yields different results.
Listings 1(a) and 1(c), and 2(a) present the same GPGPU pro-
gram developed with different frameworks: PyCUDA, OpenCL,
and CUDA, respectively. The device code consists of a single
kernel function: lines 9–16 in Listing 1(a), lines 3–11 in List-
ing 1(c), and lines 3–8 in Listing 2(a). All kernels perform vector
addition between arrays a and b, storing the result in the array
c. Let N be the array size. The host code, for all frameworks,
allocates and initializes array a with −107 to −(107 + N) entries
and array b with 107 to 107 + N entries. One would expect
the array c to be made up of 0 entries after addition, as shown
in Listing 2(c). However, the results are quite different. Both
PyCUDA and OpenCL frameworks result in an array c of −107

to −(107 + N) entries. Notice that neither an error nor a warn-
ing is issued by either PyCUDA or OpenCL. Only the CUDA
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1 import pycuda.driver as cuda
2 import pycuda.autoinit
3 from pycuda.compiler import SourceModule
4 from array import array
5 import numpy as np

7 program = SourceModule('''
8 typedef unsigned u32;
9 __global__ void add(u32 n, const float* a,

10 const float* b, float* c) {
11 u32 tid = blockDim.x * blockIdx.x + threadIdx.x;
12 u32 tsize = blockDim.x * gridDim.x;
13 for(; tid < n; tid += tsize) {
14 c[tid] = a[tid] + b[tid];
15 }
16 }
17 ''')

19 N = 4
20 host_a = array('i', [-(i+10**7) for i in range(N)])
21 host_b = array('i', [ (i+10**7) for i in range(N)])
22 host_c = array('i', [0 for _ in range(N)])
23 dev_a = cuda.mem_alloc(4 * N)
24 dev_b = cuda.mem_alloc(4 * N)
25 dev_c = cuda.mem_alloc(4 * N)
26 cuda.memcpy_htod(device_a, host_a)
27 cuda.memcpy_htod(device_b, host_b)
28 add = program.get_function("add")
29 N = np.uint32(N)
30 add(N, dev_a, dev_b, dev_c, block=(256, 1, 1))
31 cuda.memcpy_dtoh(host_c, dev_c)
32 print(" ".join(map(str, host_c.tolist())))

(a) A Python program using PyCUDA to add two vectors. The variable program
declares the device code to be run. The rest of the program handles data initialization and
preparation for the execution of the device code.

$ ./add.cuda.py
-10000000 -10000001 -10000002 -10000003

(b) Result of the execution of listing 1(a).

1 const char* source =

3 "__kernel void add(const uint n, "
4 " __global const float* a,"
5 " __global const float* b,"
6 " __global float* c) { "
7 " size_t tid = get_global_id(0); "
8 " size_t tsize = get_global_size(0); "
9 " for(; tid < n; tid += tsize) "

10 " c[tid] = a[tid] + b[tid]; "
11 "} ";

13 int main(int argc, char* argv[]) {

15 const unsigned N = 4;
16 int* host_a = calloc(N, sizeof(int));
17 int* host_b = calloc(N, sizeof(int));
18 int* host_c = calloc(N, sizeof(int));
19 for(int i = 0; i < N; i++) {
20 host_a[i] = -(i + 10000000);
21 host_b[i] = (i + 10000000);
22 }
23 cl_mem dev_a = clCreateBuffer(/* arguments */);
24 cl_mem dev_b = clCreateBuffer(/* arguments */);
25 cl_mem dev_c = clCreateBuffer(/* arguments */);

27 // Copy memory from host_{a,b,c} to dev_{a,b,c}
28 clEnqueueNDRangeKernel(/* call add */);

30 // Copy memory from dev_{a,b,c} to host_{a,b,c}
31 for(int i = 0; i < N; i++) printf("%d ", host_c[i]);
32 printf("\n");
33 return 0;
34 }

(c) A C program using OpenCL to add two vectors. The variable source declares the
device code to be run. The rest of the program handles data initialization and preparation
for the execution of the device code.

$ gcc add.opencl.c -lOpenCL -o add.opencl.bin && ./opencl.bin
-10000000 -10000001 -10000002 -10000003

(d) Result of the compilation of listing 1(c).

Listing 1: Both PyCUDA and OpenCL fail to detect type mismatch between host and device code.

version issues an error about type incompatibility, shown in List-
ing 2(b). Without such an error, one may incorrectly assume
that PyCUDA and OpenCL perform automatic casting from the
host-declared type (int) to the device-declared type (float).
However, upon close inspection, the int representation of 107 is
interpreted as float numbers as 1.40130 × 10−38. Meanwhile,
the int representation of −107 is interpreted as float numbers
as −3.07599 × 1038. The sum of the float representation is
practically identical to the latter (−3.07599 × 1038). Converting
back to the int representation, we recover the obtained result.
Additionally, using consistent types fixes the issue in all frame-
works, returning the correct results shown in Listing 2(c). While
this situation is extremely undesirable as it can lead to disastrous
outcomes, it could have been avoided by simply using an extra
layer of abstraction on the device code declaration instead of
simple strings.
Language Interfaces. With Wyvern, we aim to offer a consis-
tent GPGPU programming EDSL library for D, C++, C#, Scala,
Ruby, Hy, and Python programming languages. Of course, the
interface needs to be adapted to the specific language capabil-
ities. For example, whenever possible, operations should be
overloaded with the appropriate operator.
Platforms. In this context, different platforms are represented

by various processing hardware. For example, a CPU represents
one possible platform. Additionally, GPU accelerators (and pos-
sibly tensor processing units, TPUs) represent potential targeted
platforms for Wyvern.
Product-to-platform Interface. In Wyvern, the Product-
to-platform interface is represented by the WIR intermediate
representation (shown in Fig. 5-❶). WIR is a code representation
for kernel functions that stands between the high-level Wyvern
EDSL and the low-level SPIR-V code. WIR is in single static
assignment form [11], operating on variables and buffers of
types unsigned 32-bit integer (U32), signed 32-bit integer (I32),
IEEE 754 binary32 number (F32), and boolean value (Bool). It
provides logic-arithmetic operations, type conversions, indirect
buffer access, and structured control flow. Only the constructs
if and while are supported. WIR also has a well-defined JSON
serialization generated automatically by serde [49]. To support
new platforms, developers need to provide a code generation
module (composed of a Executor, Executable, and Resource)
for each of the WIR constructs. Nonetheless, Wyvern already
supports a wide range of GPUs by implementing the SPIR-
V [27] platform. SPIR-V is a standardized low-level binary
representation for GPGPU programs. Vulkan mandates all its
implementors to provide a way to compile SPIR-V programs
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Figure 5: Wyvern architecture overview. The four main modules of Wyvern: CORE module (❶), Vk module (❷), CPU module (❸) and the C ABI module (❹).

to their native GPU executable machine code. Its diffusion
combined with its high performance makes Vulkan/SPIR-V the
perfect platform target.

For example, the following code snippet provides the Vulkan
implementation for the WIR Op::Add instruction:

Op::Add(r, a, d) => {
match get_const_datatype(r) {
U32 => {vk_builder.iadd(types.u32,&r,&a,&d)}
I32 => {vk_builder.iadd(types.i32,&r,&a,&d)}
F32 => {vk_builder.fadd(types.i32,&r,&a,&d)}
_ => unreachable!(),

};
}

The implementation utilizes the rspirv builder 5 (here,
vk_builder) to construct the SPIR-V code depending on the
operand types. Here, both unsigned and signed 32bit utilize
the same SPIR-V instruction, iadd, while 32bit floating point
numbers utilize the fadd instruction. This code snippet is part
of the GPU back-end shown in Fig. 5-❷. Similarly, the CPU
back-end’s equivalent code snippet for the Add WIR instruction
has the following implementation:

Op::Add(r, a, b) => {
let v = match get_const_datatype(r) {

U32 => {U32(Add::add(x, y))}
I32 => {I32(Add::add(x, y))}
F32 => {F32(Add::add(x, y))}
_ => unreachable!(),

};
}

The main difference is the direct execution instead of the
indirect compilation toward SPIR-V. This snippet is part of the
GPU back-end shown in Fig. 5-❸.

5https://docs.rs/rspirv/latest/rspirv/dr/struct.Builder.html

User-to-product Interface. The user-to-product interface
provided by Wyvern is directly accessible to Rust users. As
mentioned earlier, this interface is represented by a concise
SIMT EDSL for executing kernel functions on both GPUs and
CPUs. For instance, the following snippet demonstrates the
addition of two arrays, a and b, into a third array, c, using the
Wyvern EDSL:

let builder = ProgramBuilder::new();
// ...
let tid = Variable::new(&builder);
tid.store(builder.worker_id());
builder.while_loop(|_| tid.load().lt(100), |_| {
let i = tid.load();
c.at(i).store(a.at(i).load() + b.at(i).load());
tid.store(i + builder.num_workers());

});

Developers interact with the EDSL via the ProgramBuilder
class. For example, here, we access the while loop through
the corresponding method while_loop. This method requires
a conditional expression and a body to be executed and imple-
ments the relative loop semantics. Parallelism is achieved by
employing multiple workers (with incremental worker_ids) that
are concurrently executed to perform the addition on different
array elements.

The main improvement, over a string kernel implementation
(for PyCUDA and OpenCL in Figures 1(a) and 1(c)), is that
the type correctness can be checked at compile time, so that,
the previous error can be reported immediately preventing from
being silently ignored.

Similarly to the previously presented case of MinPy, Wyvern
EDSL is only accessible through the Rust programming lan-
guages. Developers who wish to use Wyvern need to implement
an FFI interface for their language of choice accessing the C
ABI provided by Wyvern (Fig. 5-❺). While effective for a single
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1 typedef unsigned u32;

3 __global__ void add(u32 n, const float* a,
4 const float* b, float* c) {
5 u32 tid = blockDim.x * blockIdx.x + threadIdx.x;
6 u32 tsize = blockDim.x * gridDim.x;
7 for(; tid < n; tid += tsize)
8 c[tid] = a[tid] + b[tid];
9 }

11 __global__ void add(u32 n, const int* a
12 const int* b, int* c) {
13 u32 tid = blockDim.x * blockIdx.x + threadIdx.x;
14 u32 tsize = blockDim.x * gridDim.x;
15 for(; tid < n; tid += tsize)
16 c[tid] = a[tid] + b[tid];
17 }

19 int main(int argc, char* argv[]) {
20 const u32 N = 4;
21 // allocate host memory
22 int* host_a = (int*)calloc(N, sizeof(int));
23 int* host_b = (int*)calloc(N, sizeof(int));
24 int* host_c = (int*)calloc(N, sizeof(int));
25 // allocate device memory
26 int* dev_a,* dev_b,* dev_c;
27 cudaMalloc(&dev_a, N * sizeof(int));
28 cudaMalloc(&dev_b, N * sizeof(int));
29 cudaMalloc(&dev_c, N * sizeof(int));
30 // initialize host memory
31 for(int i = 0; i < N; i++) {
32 host_a[i] = -(i + 10000000);
33 host_b[i] = (i + 10000000);
34 }
35 // mem copy from host_{a,b,c} to dev_{a,b,c}
36 add<<<(N/256)+1, 256>>>(N, dev_a, dev_b, dev_c);
37 // mem copy from dev_{a,b,c} to host_{a,b,c}
38 for(int i = 0; i < N; i++)
39 printf("%d ", host_c[i]);
40 printf("\n");
41 // free memory
42 return 0;
43 }

(a) A CUDA code for summing two vectors. This program presents two versions of the
same device code with only one small difference. The top kernel function declares input
parameters as float*. The second one declares input parameters as int*.

$ nvcc add.cuda.cu -o add.cuda.bin
... "int *" is incompatible with ... "const float *"
... "int *" is incompatible with ... "const float *"
... "int *" is incompatible with ... "float *"

(b) Result of Listing 2(a) executed with the top add kernel function. Since the top add
has incompatible parameter types with the inputs on line 33 a compilation error is returned.
For brevity, only a portion of the error code is shown.

$ nvcc add.cuda.correct.cu -o add.cuda.correct.bin
$ ./add.cuda.correct.bin
0 0 0 0

(c) Result of Listing 2(a) executed with the second add kernel function. Since the second
add has compatible parameter types with the inputs on line 33 there is not compilation
error and the result is correct.

Listing 2: CUDA detects type mismatch correctly

programming language, such a procedure becomes mechanical
and error-prone when developers need to implement the FFI
interface for different programming languages. Furthermore,
different language interfaces may introduce different features
rendering one language interface drastically different from the
other. Instead, we use a one-to-many transpilation infrastructure,
such as Hydra, to transpile the same language interface to all the

interested programming languages.
The HydraKernel interface will need to handle all the EDSL

components, such as while_do but also, among others, the exe-
cutable components (representing the kernel programs) and the
Program/ConstantBuilder components used to build the kernel
programs.

trait Wyvern extends com.sun.jna.Library {/*...*/}
class ProgramBuilder {/*...*/}
class ConstantBuilder {/*...*/}
class Executable(executor: VoidPtr, program: String) {/*...*/}
// ...

Despite most of the heavy lifting being done by Wyvern
the resulting language interface is still demanding. Consider
that the HydraKernel code for implementing the Wyvern user-
to-product interface consists of circa 1000 lines. Thus being
able to transpile the resulting interface in different programming
languages becomes extremely valuable. For instance, the result-
ing translation for Python will produce the classes that handle
the program components, the executable components, and the
building components.

import ctypes
libwyvern = ctypes.CDLL("libwyvern.so")
# ...
class ProgramBuilder:

def add_cmd(self, op): # ...
class ConstantBuilder:

def while_do(self,cnd,body): self.program.add_cmd(...)
def if_else(self,cnd,body1,body2): self.program.add_cmd(...)
def if_then(self,cnd,body): self.program.add_cmd(...)

class Executable:
def run(self,): libwyvern.run(...)

Then, this components can be used like any other Python
library. For example, the previously discussed addition of two
vectors into a third one becomes:

builder = ProgramBuilder()
# ...

tid = Variable(builder);
tid.store(builder.worker_id());

def cond(): return tid.load() < 100
def body():

i = tid.load()
c[i] = a[i] + b[i]
i = i.load() + builder.num_workers()

builder.while_loop(cond, body)

Abstraction Layer. The Wyvern abstraction layer aims to
render the usage of one computing platform transparent to the
developers. Wyvern currently supports a back-end for Vulkan-
compatible GPGPUs and one for classical CPUs. Since both
back-ends implement the same product-to-platform interface, as
in MinPy, using one back-end wrt. the other is simply a matter
of using one shared object wrt. the other. The result is that the
same Wyvern kernel code can be run on both CPU and the GPU
with little or no effort.
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Language D C++ C# Scala Hy Python Ruby AVG.

LoC 315 302 319 307 0 279 306 261.14

Table 1: Line of code to define each target language. Hy is 0 as it reuses the
Python target language.
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Figure 6: Benchmark results for languages CUDA, OpenCL, D, C++, C#, Scala,
Ruby, Hy, and Python for algorithms Nearest Neighbor, Gaussian Elimination,
Hotspot 3D, Breadth First Search, and K-means from the open source Rodinia
suite with two machines: Alpha and Beta.
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Figure 7: Benchmark results for languages D, C++, C#, Scala, Ruby, Hy, Python,
and NumPy for the Mandelbrot set algorithm with the NumPy C API back-end
and the torch back-end with the high-end workstation Alpha and Beta
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6. Evaluation

Overview. In this section, we will perform an evaluation of
Wyvern, MinPy, and Hydra. Wyvern is evaluated by compar-
ing time executions in different scenarios generated by vary-
ing: benchmarks, language interfaces, and platforms. Similarly,
MinPy is evaluated by varying: language interfaces and plat-
forms. Meanwhile, the latter, Hydra, is evaluated by measuring
the cost of implementing a transpiler in terms of lines of code
(LOCs).

We do not aim to compare Wyvern with other GPU com-
puting frameworks (e.g., CUDA and OpenCL) or MinPy with
other array computing libraries (e.g., ArrayFire6), as our focus
is on language- and platform-independent software products.
However, for completeness, when evaluating Wyvern, we pro-
vide CUDA and OpenCL benchmarks as a reference for target
performance. Similarly, when evaluating MinPy, we provide
benchmarks with direct Numpy and Torch implementations.
Hardware Setup. We conduct the evaluations on two differ-
ent hardware setups:

• Alpha: A workstation equipped with an NVIDIA GPU
RTX4080 and an Intel i7-10700K CPU.

• Beta: A workstation equipped with an NVIDIA GPU
RTX3090 and an Intel i9-12900KF CPU.

Platforms. Given the available hardware setups, to evaluate
Wyvern software product we performed experiments on four
platforms:
• CPU-only with the Alpha workstation,
• CPU-only with the Beta workstation,
• CPU+GPU with the Alpha workstation, and
• CPU+GPU with the Beta workstation.

Instead, given the available hardware setups, to evaluate the
MinPy software product we performed experiments on two plat-
forms:
• CPU-only with the Alpha workstation.
• CPU-only with the Beta workstation.

Language Interfaces. To represent a diverse range of pro-
gramming paradigms and language features, we selected seven
distinct programming languages for utilizing the Wyvern EDSL:
D, C++, C#, Scala, Ruby, Hy, and Python. These languages
embody various paradigms, including:
• object-oriented, e.g., Python;
• functional, e.g., Hy;
• dynamically typed, e.g., Ruby;
• statically typed, e.g., C#; and
• garbage-collected, e.g., Scala;
• non-garbage-collected, e.g., C++.

All these language interfaces are generated from a single Hy-
draKernel interface, which has been translated into seven pro-
gramming languages. These EDSLs are compared against the
same CUDA and OpenCL benchmarks. However, performance

6https://arrayfire.org

discrepancies are to be expected, as both CUDA and OpenCL
target highly performant programming languages such as C
and C++. Meanwhile, Wyvern targets both performant and
non-performant languages (e.g., C++ vs. Python), additionally
introducing a level of indirectness with FFI.
Benchmarks. To demonstrate the capabilities of Wyvern, we
chose 5 GPU benchmarks from the Rodinia benchmark suite7:
• nearest neighbor,
• Gaussian elimination,
• hotspot 3d,
• breadth-first search, and
• k-means.

For each benchmark, we developed the equivalent versions for
CUDA, OpenCL, D, C++, C#, Scala, Ruby, Hy, and Python (for
a total of 45 benchmarks).

Instead, the capabilities of MinPy are measured against a
single array computing benchmark: the array computation of
the Mandelbrot set.
Results for Wyvern. The results of the Wyvern evaluation are
displayed in Fig. 6. CPU-only platforms are significantly slower
than their CPU+GPU counterparts, with the former taking up
to an hour to complete compared to the latter’s maximum of 1
minute. This behavior is to be expected as the CPU back-end
cannot apply any kind of parallelization or vectorization. Fur-
thermore slowdowns can be blamed on the simulation of the
kernel execution. Thus, algorithms that require fewer execu-
tions of the kernel, such as the breadth-first search algorithm,
perform better. Additionally, compiled languages such as D,
C++, and C# are usually faster compared to others which is
most noticeable in the CPU+GPU benchmarks where Python,
Hy, and Ruby result to be the slowest languages. Notably, while
OpenCL and CUDA offer the highest performance, Wyvern re-
mains competitive with high-performance languages such as D
and C++.

Regardless of the performance, apart from CUDA and OpenCL,
benchmarks are implemented using the same API generated
from the HydraKernel source code. Therefore, the benchmarks
exploit a coherent API to implement the respective algorithms.
For example, the following snippets (from the C# and Ruby
implementations for the Hotspot3d benchmark) showcase the
usage of API in different languages.

c.IfElse(
() => {return condition0;},
() => {tmp0.Store(lexpr0); return null;},
() => {tmp0.Store(C); return null;});

c.if_else
-> {return condition0},
-> {tmp0.store(lexpr0); return nil},
-> {tmp0.store(tC); return nil};

Results for MinPy. The results for the MinPy evaluation are
shown in Fig. 7. Most notably, the direct NumPy implemen-
tation is faster wrt. other implementation. This is because the
language interfaces use NumPy C Array API which requires a

7https://github.com/yuhc/gpu-rodinia
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degree of interoperability with the Python C API. Therefore,
the generated interface uses a higher level of indirectness wrt.
the direct NumPy implementation. Nonetheless, the NumPy
interface performs on par with the direct Torch implementation.
Therefore, while there is surely an introduced overhead, it re-
mains fairly controlled. Furthermore, a direct C implementation
wrt. using either the Python C API or the NumPy C API would
surely provide more efficiency.

Regardless of performance, the same algorithm is imple-
mented consistently using the same API in all seven program-
ming languages which results in consistent implementations, as
showcased in the following snippets (D and Hy):

auto x = linspace(-2, 1, size, FLOAT64)
.reshape([1, size])
.repeat(size,0);

(setv x
( .

( .
(linspace -2 1 size FLOAT64)
(reshape #(1 size)))

(repeat size 0))
)

Here, we create a 1-dimensional array of size floats evenly
spaced between −2 and 1 using linspace. Next, with reshape

and repeat, we repeat the array along a new dimension.
Results for Hydra. The results for the Hydra evaluation are
shown in Table 1. We measured the cost of adding new language
interfaces, by measuring the lines of code of the respective
Hydra template. Firstly, all templates amount to mostly the same
LOC. This result is a byproduct of the form-filling style of the
target language definition approach of Hydra. Secondly, the
whole target language definition lies in less than 300LOC on
average. This means that there are around 300 fields to be filled
per language. Of course, the more plugins a Hydra template
uses the more fields will need to be filled but the more complete
the Hydra kernel will be.

7. Discussion

In the light of these findings, we can try to answer the re-
search questions presented in Sect. 1.

RQ1. Is the Basilisk architectural pattern successful in render-
ing a software product language-independent?

As demonstrated by our experiments with the Rodinia bench-
mark suite and the Mandelbrot set, the Basilisk pattern enables
Wyvern and MinPy, respectively, to be utilized by a variety of
programming languages encompassing different paradigms and
language features. Moreover, the pool of compatible languages
can be expanded by adding new language templates to Hydra.
Therefore, we can conclude that the Basilisk architectural pat-
tern is successful in achieving language independence for the
software product. The only conceivable limitations concern
specific language features. For instance, one requirement for im-
plementing both Wyvern, MinPy and Hydra language interfaces
was the availability of FFI in the target language. Without this

requirement, the entire software product would need to be im-
plemented in HydraKernel, potentially restricting performance.
Another requirement is Turing completeness; otherwise, the
user-to-product interface would need to be severely restricted to
be translatable into the non-Turing-complete target language.

Developers may face a limitation while implementing the
Basilisk architectural pattern due to the different functionalities
offered by various platforms. In case the product-to-platform
interface requires functionalities that are not available on a par-
ticular platform, developers have two options. They can either
implement the required functionality directly in the back-end or
if this is not feasible or too expensive, they can choose to drop
support for the lacking platform.

RQ2. Is the Basilisk architectural pattern successful in render-
ing a software product platform-independent?

As illustrated in Figs. 6, and 7, the Wyvern and MinPy soft-
ware products seamlessly operate on the respective different
platforms: different hardware (e.g., CPU and CPU+GPU), and
different array computing libraries (e.g., Torch and NumPy).
The Wyvern abstraction layer, comprising CPU and Vulkan back-
ends, effectively renders the Wyvern EDSL platform-independent.
Similarly, the abstraction layer for MinPy renders the code writ-
ten in one back-end executable with a different one. The primary
limitation of these abstraction layers is the manual alignment re-
quirement for different back-ends. Modifications to the product-
to-platform interface cannot be automatically propagated to each
back-end, leading to potential drawbacks and error-proneness.
Notably, a similar issue is addressed for the user-to-product in-
terface by introducing a common language (HydraKernel) from
which all language interfaces could be generated. An analogous
solution would necessitate the development of an intermediate
back-end from which other back-ends could be derived. How-
ever, we believe that such an approach would pose significant
implementation challenges, as the back-ends are intrinsically
intertwined with the application domain, and consequently, the
intermediate back-end would need to reflect this inherent depen-
dency.
RQ3. What is the cost of introducing new languages and/or

platforms?
In our scenarios, the cost of adding a new programming

language is approximately 300 LOC. However, it is important
to note that a significant portion of these lines are reusable, as
transpilers can be adapted to be used with different software
products. Therefore, we conclude that the Basilisk architectural
pattern is largely successful in maintaining low development
costs for transpiler definition. However, it is worth mentioning
that introducing programming languages significantly different
from those presented in this work (e.g., Prolog) may require
developers to customize existing plugins. In general, it is always
possible to write Hydra plugins to perform the transpilation
from HydraKernel to any target language, provided that the
target language is Turing-complete. In some cases, developers
may not be able to reuse the existing stack, requiring additional
work to define the transpiler.
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8. Threats to Validity

External Validity. In this study, we utilized Hydra as a one-
to-many transpilation infrastructure. We developed several tran-
spilers encompassing a variety of language paradigms and lan-
guage features. However, not all programming paradigms were
tested, e.g., we didn’t investigate the declarative programming
paradigm. Ultimately, the effectiveness of the Hydra infrastruc-
ture remains uncertain for these untested paradigms. The cost
of introducing a new transpiler could be significant, potentially
exceeding 300LOC, due to the need to implement additional
infrastructure. Additionally, the extent of code reusability across
newly introduced target languages is unclear. To mitigate these
concerns, we incorporated a diverse range of programming lan-
guages into our study: D, C++, C#, Scala, Ruby, Python, and
Hy all of which could be developed with a few hundreds of
declarative code lines.

Further, the Basilisk architectural pattern may not map well
to all application domains, to mitigate this issue, we instanti-
ate the pattern in two different application domains: GPGPU
computing and array computing.
Internal Validity. The validity of the reported findings could
be compromised due to the implementation of the same bench-
mark from the Rodinia benchmark suite multiple times in dif-
ferent languages. This approach raises concerns about the in-
troduction of bugs and inconsistencies in the expected behavior
of the benchmark across different languages. To mitigate this
issue, we selected benchmarks with the simplest and smallest
implementations. This choice facilitated a more straightforward
one-to-one translation between languages and minimized the
likelihood of introducing errors.

The obtained results could be influenced by our familiarity
with Basilisk, as we developed instantiations in Hydra, MinPy,
and Wyvern. This extensive knowledge may have inadvertently
steered us away from potential pitfalls. In an effort to mitigate
this bias, we had the benchmarks created by individuals who
were not directly involved in the Basilisk development.

9. Related Works

In this section, we summarize a few among the many re-
lated works that the community has proposed during the years
targeting transpilers, and platform-independent software.

Platform independence can be achieved by means of quality
code design. While we cited only an approach based on estab-
lished designed patterns as those found in [19], more modern
alternatives do exist. For example, Almeida et al. [4] propose an
abstraction layer based on services. They argue that by describ-
ing the application-platform interaction as services the software
product becomes naturally platform-independent. Also, Selic
[51] treats platforms as service-offering entities. Platform inde-
pendence is achieved by means of an abstract platform. Blanco
and Lucrédio [9] propose to use a high-level general purpose lan-
guage, named GPL, to describe the product-to-platform interface.
Then each back-end provides a GPL implementation or compiler,
so that, the GPL code can be executed seamlessly on different

platforms. Instead, He et al. [24] target web applications by
proposing a model-driven approach [50, 18]. Another notable
example is embodied by [14], here platform independence is
achieved by exploiting the LLVM intermediate representation.
Hsieh and Chen [25] develop a series of ten design patterns to
support continuous integration in cross-platform applications.
Chadha et al. [12] develop a semi-automatic approach, with
a relevant degree of success, to translate IOS into equivalent
Android code and vice versa using popular web-based program-
ming resources.

Transpilers are heavily studied concepts. However, often,
the focus is only on translating pairs of languages. For instance,
Schultes [48] focuses on Swift and Kotlin. Meanwhile, Shetty
et al. [53] focus on C/C++ and Rust languages. Related to
GPGPU, Tabuchi et al. [56] discuss a transpiler from OpenACC
to CUDA. Albrecht et al. [2] have focused on Ada and Pascal
programming languages.

While not being the focus of Hydra, source-to-source transla-
tors have been used to improve performance [37]. For example,
Cetus [47] uses a source-to-source transformation to automat-
ically introduce parallelization, thus improving performance;
Krzikalla et al. [33] also discuss automatic loop vectorization.
Alias et al. [3] introduce a memory contraction implementation
using source-to-source translation. Quinlan and Liao [42] pro-
pose ROSE8, a compiler infrastructure to support various kinds
of software optimizations and verifications. ROSE, during the
years, has been used in several research projects for both compil-
ers [35, 46] and transpilers [36]. Similarly, DMS9 is a compiler
infrastructure based on AST transformations [6]. A compilation
infrastructure, Nanopass, discussed in [43, 26, 45], is used to
develop compilers as a sequence of many small passes rather
than a few complicated ones. Similarly, an A* search-based
compilation infrastructure is proposed in [7].

More akin to Hydra, HaXe10 is one-to-many, source-to-
source translator [41]. While more mature and more studied [58],
it supports only a fixed size number of languages. Meanwhile,
Hydra is designed with extensibility in mind. Thus, new lan-
guages can be introduced by simply declaring language features
(as shown in Sect. 3).

10. Conclusion

In this work, we proposed Basilisk. An architectural pat-
tern for the development of language- and platform-independent
software products. We achieved these properties by means of
an abstraction layer which can be achieved through quality soft-
ware design. Meanwhile, language independence is achieved by
means of transpilation. We also instantiate the pattern for the
development of SIMT development EDSL. To achieve platform
independence we develop Wyvern, the abstract layer over the
computational platforms. To achieve language independence,

8http://rosecompiler.org/
9http://www.semdesigns.com/Products/DMS/DMSToolkit.html

10https://haxe.org/
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we developed Hydra, a source-to-source transpilation infrastruc-
ture, which we used to render Wyvern EDSL available to seven
more languages (other than the native one: Rust).

The code of Hydra, Wyvern, and MinPy alongside with
the code necessary to reproduce the presented experiments is
available at

https://doi.org/10.5281/zenodo.11058650
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