
Fast remote spectral discrimination through ghost spectrometry

Andrea Chiuria, Marco Barbierib,c, Iole Vendittib, Federico Angelinia, Chiara Battocchiob,
Matteo G A Parisd,e, Ilaria Giananib,*

aENEA - Centro Ricerche Frascati, via E. Fermi 45, 00044 Frascati, Italy
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Abstract. Assessing the presence of chemical, biological, radiological and nuclear threats is a crucial task which is
usually dealt with by analyzing the presence of spectral features in a measured absorption profile. The use of quantum
light allows to perform these measurements remotely without compromising the measurement accuracy through ghost
spectrometry. However, in order to have sufficient signal-to-noise ratio, it is typically required to wait long acquisition
times, hence subtracting to the benefits provided by remote sensing. In many instances, though, reconstructing the full
spectral lineshape of an object is not needed and the interest lies in discriminating whether a spectrally absorbing object
may be present or not. Here we show that this task can be performed fast and accurately through ghost spectrometry
by comparing the low resources measurement with a reference. We discuss the experimental results obtained with
different samples and complement them with simulations to explore the most common scenarios.
*Ilaria Gianani: ilaria.gianani@uniroma3.it

1 Introduction

Spectroscopic techniques are a fundamental tool for the characterization of materials.1 For cen-

turies these have been successfully employed in a variety of fields and have been diversified to

account for the most diverse scenarios and needs.2–7 Including the new capabilities enabled by

quantum light has widened the already vast range of possible applications, in particular for what

concerns harnessing quantum frequency correlations.8 In recent years, two main routes have been

pursued. The first exploits spectral correlations between two photons in non-degenerate configu-

rations,9 so that hardly accessible spectral regions can be explored by looking at their correlated

counterpart in the visible range.10–12 The second employs the correlation to perform remote sens-

ing measurements,13 akin to ghost imaging protocols.14–18 This latter route can be particularly

advantageous when the objects at hand are not easily accessible or represent so-called chemical,

biological, radiological, and nuclear (CBRN) threats.19 In these instances it is vital to extract infor-
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mation at a distance, both to ensure the safety of the users and for ease of measurement operations.

Although this is also possible using classical spectral correlations, using quantum ones can show a

better performance,20–22 especially when the number of modes to be considered is large.23

Dangerous components are typically recognised by features in the absorbance spectrum, how-

ever, in order to fully retrieve the lineshape of such spectral objects a good signal to noise ratio

(SNR) is desirable and, given the typical efficiencies, this usually results in long accumulation

times times. This poses a strong limitation and dramatically hinders the benefits arising from the

use of quantum resources.

If we are interested in swiftly assessing the presence of a threat, retrieving its full lineshape

may not be necessary. One may, in fact, recast the problem as a discrimination one, and wonder

whether it is possible to infer the presence of the threat comparing a fast low-signal spectral mea-

surement performed on the supposed threat, with a reference measurement. A common technique

for discrimination makes use of the correlation coefficient between vectors representing the spec-

tra, or, alternatively, of their distance.24 These are versatile tests, since no requirements on the

distribution are needed; on the other hand, these are prone to artefacts at low SNRs leading to the

wrong attribution.

A decision procedure (an inference strategy) prescribes which hypothesis has to be chosen

given a set of data. Then, one assigns a cost to the choice of the null hypothesis (e.g. no threat)

when the alternative hypothesis is true and look for a strategy minimizing the average cost. In a

Bayesian approach, one assigns equal cost to any wrong inference and zero cost to correct one,

such that the average cost equals the overall probability of error. This approach has been applied to

spectroscopy with success,25 but a fully Bayesian approach for large set of data may be challenging.

One rather employs the concept of likelihood ratios to evaluate the posterior probabilities.
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Fig 1: Conceptual scheme. A ghost-spectrometry scheme is implemented using frequency-
correlated photon pairs: one photon is directed towards the supposed location of the spectral object,
and detected with a bucket detector, while the other photon is analyzed in frequency. By comparing
the recorded coincidences at low SNR with a reference measurement using a Kolmogorov-Smirnov
test it is possible to asses if the two profiles are samples drawn from the same distribution or not.

For binary discrimination problems where the alternative hypothesis has a low a priori proba-

bility to occur (i.e. when the threat is not likely to be present) one may also employ the so-called

Neyman-Pearson strategy instead of a Bayesian one.26 The optimal NP strategy maximizes the

probability of revealing the threat when it is there instead of minimizing the probability of er-

ror.27 Following these ideas, we tackle the problem of risk detection by performing a Kolmogorov-

Smirnov test (KST)28 between a high SNR reference and a low SNR measurement with a ghost

spectrometer.The Kolmogorov-Smirnov test was specifically developed to test the hypothesis that

two samples come from the same distribution and still represents one of the most powerful non-

parametric tools of hypothesis testing.

We demonstrate an experiment on two different targets and complement our results by simu-

lating different operational regimes. Our results show that even with slightly absorbing spectral

objects this techniques allows to ascertain the presence of an object with a limited number of

resources and requiring limited processing on the data, thus enabling time-efficient discrimination.
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2 Method

Our objective is that of remotely discriminating between the presence or absence of an object that

has an absorption profile in a given spectral range. The object could be for instance a CBRN threat

that needs to be identified swiftly and whose location cannot be easily accessed.

To perform the measurement remotely we consider the quantum ghost spectrometer scheme

shown in Fig. 1: frequency-correlated photon pairs are generated in the region of interest. One

photon is sent at the object location and is detected with a bucket detector, while the other photon

is detected locally with a spectrally-resolved measurement. In this way, the demanding spectral

measurement can be performed far from the object location, thus allowing for ease of operations.

We use the same scheme to perform two measurements: first we perform a measurement with high

SNR without any spectral object. We thus record the spectral distribution Sr which will serve as a

reference. We then perform a measurement of the signal at the location where the spectral object

should be, and record the transmitted spectrum with a low SNR Ss. If there were no spectral object,

Ss and Sr would have to be two samples drawn from the same distribution. This constitutes our null

hypothesis. We can then perform a Kolmogorov-Smirnov test to accept or reject this hypothesis.

In order to perform the KST, one proceeds as follows: starting from the two measured profiles for

the reference and the signal one builds the two cumulative distributions Fr and Fs and evaluates

the quantity:

gKS = max
λ
|Fs(λ)− Fr(λ)|, (1)

which is a statistical variable of known distribution. Depending on its value one can either reject

of accept the null hypothesis. In Fig 1 we show an example of the cumulative distributions for

reference (blue) and signal (purple). gKS identifies the maximum separation between the two.
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Fig 2: a) Experimental Setup: a CW 403 nm laser is used to generate photon pairs through SPDC
with a 3mm type I BBO crystal. One photon is sent through a spectrometer and detected with
a iCCD camera, while the other photon is sent through a spectral object (either a supergaussian
filter (orange) or a solution of AuNrs) and is detected using a bucket detector. A bandpass filter
(green) acts as reference. b) Recorded coincidences for the reference. c) Example of recorded
coincidences for AuNrs at an accumulation time t=10s.

3 Experiment

We demonstrate this approach by performing measurements with the setup shown in Fig. 2 a).

We employ a CW laser at 403 nm to generate photon pairs through spontaneous parametric down

conversion (SPDC) using a 3 mm thick Type I BBO crystal. One photon is detected locally with

a spectrally-resolved measurement. This is performed with a spectrometer (Andor Kymera 328i)

and a iccd (Andor iStar DH334T-18U-73) after 20 m of fiber to compensate for the camera delays.

The other photon is directed towards the spectral object and is then detected with an avalanche

photodiode (APD). A Gaussian bandpass filter centered at 810 nm selects the spectral region,

thus acting as a reference. The camera is triggered by the signal coming from the APD and thus

directly records the coincidences counts. Fine-tuning of the temporal overlap between the two

arms is achieved by means of a FPGA. Panels (b) and (c) of Fig. 2 show two examples of detected

coincidences for the reference (b) and signal (c). In order to retrieve the spectral profiles these are
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Fig 3: Results with supergaussian filter. a) measured p values obtained from a KS test between
the reference (blue inset) and the signal measured with the supergaussian filter inserted in the beam
at different accumulation times t. The blue dashed and solid lines are the rejection confidence level
at 0.05 and 0.01 respectively. b) and c) recorded coincidence counts at t=1 s and t= 10 s

integrated over the spatial axis, selecting a region of interest. Note that the spectral axis refers to

the wavelength of the photon correlated to that interacting with the spectral object and with the

reference filter.

We first test our technique by using as a spectral object a bandpass 4th-order super-Gaussian

filter centered at 807 nm with a FWHM of 7.5 nm. We collect the reference spectrum performing

a measurement without the object inserted, with a long accumulation time (t=600 s) so to achieve

a good signal to noise ratio. The reference profile is shown in the inset of panel a) of Fig. 3.

This is the calibration of the system and, in case of threat detection, it can be performed in a safe

environment.

Then we insert the filter and collect measurements with the accumulation time varying from
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Fig 4: Nanorod profiles a) Reference measurement (blue) and AuNRs absorbance (orange), (b-d)
C1 coincidence mearuements at t=5,25,50, (e-g) C2 coincidence measurements at t= 1, 5,10. b)
and e) correspond to a rejection rate of 0.3, c) and f) to a rejection rate of 0.7 for C1 and 0.8 for
C2, d) and g) to a rejection rate of 0.95.

1 s to 10 s. Panels b) and c) of Fig. 3 show the profiles collected at t=1 s and t=10 s. We use

the measured profiles to perform the KST, and report the obtained p values in Fig. 3 a) as a

function of the accumulation time. Even for the signal at t=1 s, which corresponds to a total of

228 detected photons, we are able to reject the null hypothesis with a p value of 3 · 10−12. While

this is remarkable given the limited counts required for a successful discrimination, the profile of

the object and the reference do differ significantly, having two different shapes and being centered

at different wavelengths. This is not necessarily the case in a general scenario, where the spectral

object may introduce more subtle discrepancies between the reference and the signal.

For this reason, we consider a second spectral object, i.e. a solution of gold nanorods (AuNRs)

with a broad surface plasmon resonance band at 695 nm. The reference spectrum, being at the

tail of the resonance band, will only experience a slight change in absorption with the wavelength

(Fig. 4), so that the spectral distribution will differ from the reference considerably less than in

the previous case. The AuNrs solution is placed in a quartz cuvette with a 1 cm path length. We

perform the measurement for two different concentrations, 125 ppm (C1) and 188 ppm (C2), at
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Fig 5: Results AuNRs: a) KS Rejection rate for concentration C1 and C2. Green bars indicate the
successful rejection. Pink bars indicate acceptance of the null hypothesis. b) p values for C1, c) p
values for C2. Blue dashed line: 0.05 confidence level; blue solid line: 0.01 confidence level; the
box center indicates the average value, while the box edges indicate the 25th and 75th percentile;
the whiskers extend to all measured values.

different accumulation times ranging from t=1 s to t=100 s. In Fig. 4 we report the profiles for

the two concentrations measured at different times. For each accumulation time we record 20

measurements, and for each measurement we run the KST against a reference passing through

distilled water only. The results are shown in Fig. 5. In panel a) we report the rejection rate (green)

for the two concentrations at different accumulation times, normalized over the 20 measurements.

The higher concentration results in a spectral distribution which will differ more from the

reference compared to the lower concentration. This means that less resources are required for a

successful discrimination. On the other hand, the lower concentration is more transparent, hence

more resources will be collected per accumulation time. Even by taking this into account, while

the rejection rate for C2 reaches 100% at t=25 s (corresponding to 3000 detected photons), for C1

the same is achieved at t=75 s (corresponding to 24000 detected photons). This is reflected in the

measured p-values, which are shown in panel b) and c) of Fig. 5 for C1 and C2 respectively.
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Fig 6: Simulation broad absorption on a structured reference. a) blu: reference, yellow and dashed
lines: spectral object transmission, purple: signal obtained with the yellow transmission profile.
b) simulated reference c) simulated signal for α = 0.016 at the level of signal resulting in a 100%
rejection rate.

4 Simulations

In order to investigate the performance of our approach under typical regimes of operation, we

complement the experimental results with numerical simulations. We explore two different sce-

narios: to provide an ideal benchmark to the example just discussed, we first look at the instance

in which the absorption is much broader compared to the spectral region where the reference lies.

Such broad spectra usually occur in UV-VIS spectroscopy.29 We then explore the regime in which

the absorption is a narrow line compared to the reference region, as this is the most common occur-

rence when looking for narrow peaks in the fingerprint region of a IR30 or in a Raman spectrum.31

For the first simulation, we consider as a reference a Gaussian pulseR = exp(−(ω − ω0)
2/(2σ2

w))

centered at λ0 = 805 nm, with σλ = 4 nm, and a spectral object with transmittance T = 1 − αλ

with α varying between 0 and 0.016 1/nm, as shown in panel a) o Fig. 6. We simulate the measured

reference by considering a total of NR = 350k resources and generating the measured counts by

extracting random values from a Poissonian distribution centered at NR ·R.

The simulated signal is obtained analogously, by multiplying the signal profile by the resources

interacting with the spectral object NT . Since different values of α correspond to a different trans-
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Fig 7: KS Rejection rate for different values of α and resources NT . Green bars indicate the
successful rejection. Pink bars indicate acceptance of the null hypothesis.

mittivity, this will amount to a different number of detected photons depending on the spectral

profile. We vary NT from 300 to 30000, and for each level of signal we randomly extract 100

simulated profiles, and perform a KST for each profile. In Fig. 7 we report the rejection rate

normalized over the 100 simulated experiments for varying α and NT .

Fig 8: p values a) α = 0 b) α = 0.004 c) α = 0.006 d) α = 0.008 e) α = 0.010 f) α = 0.012
g) α = 0.014 and h) α = 0.016. Dashed blue line: 0.05 confidence level; solid blue line: 0.01
confidence level. The box center (black dot) indicates the average value, while the box edges (dark
solid pink) indicate the 25th and 75th percentile; the whiskers extend to all measured values.
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Fig 9: Simulation for broad reference and narrow absorption. a) blu: reference, dashed lines: spec-
tral object transmission, purple: signal obtained with the yellow transmission profile. b) simulated
reference c) simulated signal for σ = 6 nm for NT = 15k resulting in a 100% rejection rate.

When α = 0 the signal is equivalent to the reference: indeed, the rejection rate is below 3%

at all signal levels. This shows that even with very low signal levels, the absence of the spectral

object is almost always correctly detected. The higher α, the more different the signal distribution

from the reference, and the fewer resources are needed for discriminating the two profiles. In Fig.

8 we report the p-values for each α as a function of the number of resources NT . As expected, for

α = 0 the p values are well above the confidence level and as α increases the p value becomes

smaller.

Fig 10: KS Rejection rate for different values of σ and resources NT . Green bars indicate the
successful rejection. Pink bars indicate acceptance of the null hypothesis.
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We now turn to the scenario in which the reference is broader than the absorption feature. We

consider a flat reference profile and we model the transmission as T = 1−α·exp(−(λ− λ0)2/(2σ2)).

We keep α = 0.2 fixed and vary the width σ from 0 to 6 nm. The resulting profiles are shown in

panel a) of Fig. 9. As before, we simulate the measured reference and the signal, however given

the different profile shape, to attain the same average counts per bin for the reference we now em-

ploy NR = 600k resources. The simulated reference profile is shown in panel b) of Fig. 9. We

then simulate the transmitted profile following the same procedure described above, generating

100 simulated profiles for each level of signal and σ.In panel c) we show an example of simulated

signal relative to the transmission profile with the broadest dip, for NT = 15k resources. For each

generated signal we perform a KST and report the obtained rejection rate in Fig. 10. Even un-

der these unfavourable conditions, dictated by a low absorption (α = 0.2) and by a narrow peak,

the method achieves a satisfactory results, albeit requiring more resources than in the previous

Fig 11: p values a) σ = 0 nm b) σ = 1 nm c) σ = 1.5 nm d) σ = 2 nm e) σ = 3 nm f) σ = 4
nm g) σ = 5 nm and h) σ = 6 nm. Dashed blue line: 0.05 confidence level; solid blue line: 0.01
confidence level.The box center (black dot) indicates the average value, while the box edges (dark
solid pink) indicate the 25th and 75th percentile; the whiskers extend to all measured values.
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instance. In Fig. 11 we report the obtained p-values for each σ as a function of NT .

5 Conclusion

In this article we have explored the use of a quantum ghost spectrometer for discriminating the

presence of an absorbing spectral object. Using a Kolmogorov-Smirnov test we have been able

to asses the presence of an object by exploiting a limited amount of resources in an efficient way.

We have demonstrated our technique with experiments on two distinct samples, as well as with

simulations extending the experimental results to typical spectral regimes.

Our technique provides a viable route for fast discrimination of a spectral object in all the

examined condition. In particular, the more different the spectral profile after the absorption, the

lesser resources are needed for a successful discrimination. This makes our technique an optimal

solution when dealing with systems that strongly affect the transmission resulting in exceedingly

low signal rates, which, coincidentally, are those that would otherwise require more effort for

reconstructing the full lineshape. Moreover, our approach offers great spectral tunability as it can

take advantage of the non-degenerate measurements, enabling the investigation in otherwise hardly

accessible spectral regimes.

Our results can be extended in different directions. Solutions taken from Fuzzy Logic32 or

Machine learning algorithms33 can benefit the hypothesis testing approach. In this respect, Ma-

chine Learning has been employed for classification of non-spectral features.34 This suggests that

the efficiency of the method can be further optimised. As for the extension of the capabilities,

incorporating other degrees of freedom, notably the spatial domain or the polarisation, would be

particularly helpful in determining not only the presence of a threat but also its position and size.
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