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Abstract

In the framework of nonlinear Hamiltonian lattices, we revisit the proof of Moser-Darboux’s
Theorem, in order to present a general scheme for its constructive applicability to Hamiltonian
models with non-standard symplectic structures. We take as a guiding example the Salerno and
Ablowitz-Ladik (AL) models: we justify the form of a well-known change of coordinates which
is adapted to the Gauge symmetry, by showing that it comes out in a natural way within the
general strategy outlined in the proof. Moreover, the full or truncated Lie-series technique in the
extended phase-space is used to transform the Salerno model, at leading orders in the Darboux
coordinates: thus the dNLS Hamiltonian turns out to be a normal form of the Salerno and AL
models; as a byproduct we also get estimates of the dynamics of these models by means of dNLS
one. We also stress that, once it is cast into the perturbative approach, the method allows to deal
with the cases where the explicit trasformation is not known, or even worse it is not writable in
terms of elementary functions.

Keywords: Darboux’s Theorem, non linear chains, Lie-series technique, Ablowitz-Ladik and
Salerno models, non standard symplectic form, discrete Nonlinear Schroedinger

1. Introduction

On a symplectic manifold (M, ω) of dimension 2n, Darboux’s Theorem of symplectic geom-
etry [4] ensures the local existence of a set of coordinates, say (q j, p j), j = 1, . . . , n, such that at
any point P ∈ M the symplectic 2-form ω reads ωP =

∑
j dq j ∧ dp j. The existence of such a

standard set of coordinates is useful for the Hamiltonian formalism, and for Hamiltonian pertur-
bation theory in particular (see [7]), since Hamiltonian equations, Hamiltonian vector fields XH ,
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symmetries and canonical transformations can be expressed in terms of Poisson brackets {·, ·} via
the (constant) symplectic matrix J as follows

ż j = (XH( z)) j = {z j,H} { f , g} = (∇ f )>J∇g , J =

(
0 I
−I 0

)
, (1)

where I represents the n-dimensional identity matrix and the gradient ∇ is intended with respect
to the set of real coordinates z = (q j, p j).

A classical example, in the field of Hamiltonian Lattices (see [21] for a recent review on the
topic), is the discrete1 Nonlinear Schrod̈inger model (dNLS)

[dNLS] iψ̇ j = ε(ψ j+1 + ψ j−1) + γ|ψ j|
2ψ j , (2)

where ψ j ∈ C and the lattice-index j may run in a finite J = {1, . . . ,N} (with periodic or fixed
boundary conditions) or infinite J = Z sets (with `2-decay of the sequence {ψ j} j∈J ). It turns out
ot be an Hamiltonian system with Hamiltonian given by

[HdNLS] H(ψ) =
∑
j∈J

[
ε(ψ j+1ψ̄ j + ψ̄ j+1ψ j) +

γ

2
|ψ j|

4
]
, (3)

with the standard Poisson structure {ψ j,H} = −i ∂H
∂ψ j

in complex variables.

However, it might happen that the dynamics of a physical model is described by a vector
field XH(z), with physical coordinates z, which is derived by the Hamiltonian H(z) through a
non-standard representation of the Poisson brackets {·, ·}; in this case the 2-form ω is locally
represented by a different (typically non constant) matrix Ω(z), such that ωP(X,Y) = X>Ω(z)Y ,
being Ω(z) antisymmetric and non-degenerate. This is the case of the Ablowitz-Ladik (AL in the
following) system

[AL] iψ̇ j = ε(1 + µ|ψ j|
2)(ψ j+1 + ψ j−1) , (4)

which is a celebrated integrable discretization of the NLS, and of the Salerno models

[Salerno] iψ̇ j = ε(1 + µ|ψ j|
2)(ψ j+1 + ψ j−1) + γ|ψ j|

2ψ j ; (5)

the two common parameters ε and µ can be taken as positive, while γ of any sign. It is well
known that both models are Hamiltonian and share the same nonstandard symplectic structure
given by the Poisson brackets

ψ̇ j = (XH) j(ψ) = {ψ j,H} {ψ j,H} = −i(1 + µ|ψ j|
2)
∂H

∂ψ j

, (6)

while the Hamilton function reads

H(ψ) =
∑
j∈J

[
−
γ

µ2 ln(1 + µ|ψ j|
2) + ε(ψ j+1ψ̄ j + ψ̄ j+1ψ j) +

γ

µ
|ψ j|

2
]

; (7)

for γ = 0 we recover the AL model (4) while γ , 0 gives the Salerno model (5).

1It is indeed the most common discretization of the continuous Nonlinear Schroedinger Equation (NLS) model.
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The two models also share a second conserved quantity

P =
1
µ

∑
j∈J

ln(1 + µ|ψ j|
2) {H, P} = 0 , (8)

which is related to the Gauge symmetry eiθ of the equation; indeed, the flow of the Hamiltonian
vector field (XP) j = {ψ j, P} = −iψ j is exactly given by the action of eiθ.

One of the reasons why it is preferable to standardize the symplectic structure (6) — which by
the way coincides with the standard one when µ = 0 — is the possibility of linking homotopically
the AL to the dNLS at the Hamiltonian level, by setting γ = 1 − µ, with µ ∈ [0, 1]; indeed
the Salerno model interpolates between the AL model (for γ = 0) and the dNLS (for γ , 0
and µ → 0), and a common symplectic structure might be preferable in order to explore the
transition (AL-Salerno-dNLS) along the three models, especially in terms of dynamical features
(see [12, 13] for a comparison between AL and dNLS in terms of vector fields and persistence
of localized structures, see instead [18] for a comparison between AL and Salerno in terms of
additional conserved quantities). On the other hand, standardization of (6) might be helpful to
implement geometric numerical schemes which are more suitable for the integrability of AL (see
for example [24]).

Motivated by the above mentioned issues concerning those Hamiltonian non linear lattices,
the present manuscript aims at providing a new insight into the classical problem of applying
Darboux’s Theorem to specific models, when a given Hamiltonian system has to be explicitly
transformed into Darboux’s coordinates.

As a first result (see Theorem 2.1) we show that one of most used Darboux’s transformation
for AL and Salerno models (see again [24] and [11]), i.e.

ψ j = Ψ jσ
(
µ

2
|Ψ j|

2
)

with σ(s) =

√
exp(s) − 1

s
, (9)

can be derived directly from Moser’s scheme of the proof (originally in [19], here taken from
[17]). We implement such a transformation with the equivalent procedure of the Lie-series (see
the classical works [5, 14, 10]): this method relies on the idea that, since the change of coordinate
suggested by the proof is the flow of a vector field V at a given time t = 1, the transformed
Hamiltonian systems can be obtained as a (totally convergent) series of iterated Lie derivatives
LV H along V . In the scheme of Moser, such a vector field is time dependent, hence the Lie-series
representation of (9) is performed in the extended R × R2n phase-space

H(Ψσ(Ψ)) = exp
(
−LṼ H

)
(Ψ) =

∑
l≥0

(−1)lLl
Ṽ H(Ψ) ,

where LṼ H is the Lie-derivative of H along the extended vector field Ṽ = (1,V).
As a second result we quantitatively compare the models under investigation, both at the

level of the Hamiltonians, in the spirit of normal forms, and at the level of solutions. Indeed,
once put in the transformed coordinates Ψ, the AL and Salerno model can be compared to the
dNLS dynamics by exploiting the Hamiltonian formalism, since they all share the same sym-
plectic structure, at least in a small neighborhood of the origin. We thus provide estimates of the
closeness between the AL and the dNLS model, as well as between the Salerno model (11), or a
suitable cubic-quintic generalization (see Theorem 2.2 for a more precise formulation), and the
dNLS: in all the cases small norm initial data have to be considered, since the Darboux trans-
formation is only local. Similar results have been already obtained in [12]: however, at variance
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with these authors, we here make estimates at the level of the Hamiltonian formalism and with
the use of Lie-series, rather than directly controlling the difference between the two vector fields.

A further result pertains the additional conserved quantity that all the models we are consid-
ering admit. With the above transformation (9), the AL, Salerno and dNLS models now share
the same conserved quantity, since the quantity P, defined in (8), becomes the `2 norm (which
is the additional conserved quantity of the dNLS model (3)). In terms of Lie-series, the integral
given by the `2 norm has to coincide (modulo a prefactor) with exp(−LṼ P)(Ψ) = 1

2 ‖Ψ‖
2. It is

possible to prove (see Proposition 2.1) — and easily anticipate by means of a numerical evidence
(using Mathematica) — a geometric convergence of the truncated Lie-series expK(−LṼ P)(Ψ) =∑K

l=0(−1)lLl
Ṽ

H(Ψ) to the `2 norm, for increasing values of K. Indirectly, this also numerically
confirms the correct relationship between (9) and the (time dependent) vector field V explicitly
computed going through Moser’s scheme.

Clearly, in these specific applications, in particular for the second result, we might have
avoided the use of Lie-series, being in fact equipped with the explicit form of Ψ. However, in
the spirit of perturbation theory, we stress that if one is interested only in some leading order
approximation (normal form) of the transformed Hamilton function H(Ψσ(Ψ)), it is enough
to simply construct a proper polynomial approximation Ṽ (L) of Ṽ , which can be then used to
transform H through the (truncated) Lie-series expK(LṼ (L) H); it is indeed possible, with some
standard analytical estimates of Lie-series, to derive a priori bounds of the error | exp(LṼ H) −
expK(LṼ (L) H)|. And in fact such a procedure can be exploited even in cases where the explicit
form of the transformation is not known or does not exist in terms of elementary functions (see
[16] for a related approach).

The scheme of the manuscript is the following. Section 2 will be devoted to present the
results of this paper: we show the emergence of the aforementioned transformation from the
abstract geometric scheme of the proof and provide normal form statements in the framework
of the Lie-series. Section 3 includes the proofs of the results. Some additional comments and
future perspectives are included in the Conclusions, Section 4. In Appendix A we recall some
analytical results on Lie-series in the non-autonomous case. In Appendix B we review Moser’s
proof and we extract the constructive scheme.

2. Results

In order to find a set of Darboux coordinates, according to the scheme of the proof here
reviewed, we prefer to work with a set of canonical and cartesian variables {q j, p j} ∈ R2N defined
by

ψ j =
1
√

2
(q j + ip j) ψ j =

1
√

2
(q j − ip j) ;

from now on we assume J finite with cardinality N, but the results here presented work also in
the infinite lattice. We start rewriting the Poisson brackets of two smooth functions F, G as

{F,G} =
∑

j

[
1 + ν(q2

j + p2
j )
]
{∂q j F∂p jG − ∂p j F∂q jG} ,

where ν = 1
2µ and the Poisson brackets are related to the 2-form ω0

ω0(q, p) =
∑

j

1
1 + ν(q2

j + p2
j )

dq j ∧ dp j .
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We notice that at the origin ω0 coincides with the standard2 symplectic form ω1

ω1 =
∑

j

dq j ∧ dp j = ω0(0, 0) . (10)

The AL and Salerno Hamiltonian can be then rewritten in cartesian variables

H = H0 + H1

H0 =
∑

j∈J

[
−

γ
4ν2 ln[1 + ν(q2

j + p2
j )] +

γ
4ν (q2

j + p2
j )
]

H1 = ε
∑

j∈J (q j+1q j + p j+1 p j)
, (11)

and the corresponding Hamilton equations areq̇ = ε(p j+1 + p j−1)
(
1 + ν(q2

j + p2
j )
)

+ 1
2 p jγ(q2

j + p2
j )

ṗ = −ε(q j+1 + q j−1)
(
1 + ν(q2

j + p2
j )
)
− 1

2 q jγ(q2
j + p2

j ) ;

in the same set of coordinates, the Hamiltonian of the dNLS model (2) reads

H = H0 + H1

H0 =
γ
8
∑

j∈J (q2
j + p2

j )
2

H1 = ε
∑

j∈J (q j+1q j + p j+1 p j)
, (12)

with Hamilton equations given byq̇ = ε(p j+1 + p j−1) + 1
2 p jγ(q2

j + p2
j )

ṗ = −ε(q j+1 + q j−1) − 1
2 q jγ(q2

j + p2
j ) ;

Since the Darboux transformation acts in the same way on each two-dimensional subspace
with coordinates (q j, p j), we can restrict to the 2-dimensional manifold R2 and consider ω0 as

ω0 =
1

1 + ν(q2 + p2)
dq ∧ dp ,

by omitting all the indexes; in this way, denoting again by J the restriction of (1) on R2, one has

Ω(q, p) =
1

1 + ν(q2 + p2)
J , (13)

and the additional conserved quantity (8) takes the form (on the 2-dimensional subspace)

P(q, p) =
1
2ν

ln[1 + ν(q2 + p2)] . (14)

As anticipated in (9), the nonlinear change of coordinates (q, p) = ϕ−1(x, y) with ϕ−1 given byq = xσ(ν ‖(x, y)‖2)
p = yσ(ν ‖(x, y)‖2)

, (15)

is a Darboux transformation3 and it transforms P into the `2 norm (modulo a prefactor 1
2 )

P ◦ ϕ−1(x, y) =
1
2

(x2 + y2). (16)

2As will be briefly explained in Appendix B, it is always possible to set ω0(P) = ω1 at a given point P, with a linear
change of coordinates.

3Indeed it satisfies J = (Dx,yϕ)>Ω(ϕ(x, y))(Dx,yϕ).
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2.1. First result: Darboux’s change of coordinates

As a first main result we show the relationship between (15) and Moser’s scheme of the proof,
where the last can be summed up in the three main steps:

1. find a vector potential a(q, p) = (a1, a2) for the closed 2-form ω0 − ω1, namely such that

∂pa1 − ∂qa2 =
ν(q2 + p2)

1 + ν(q2 + p2)
; (17)

2. compute the vector field Vt(q, p)

Vt(q, p) = Ω−>t (q, p)a(q, p) , (18)

where, by taking t ∈ [0, 1], the matrix Ωt(q, p) interpolates between Ω(q, p) (non-standard
symplectic structure given by (13)) and J (the standard one)

Ωt(q, p) = tJ + (1 − t)Ω(q, p) Ω1 = J Ω0 = Ω .

3. solve (if possible) the dynamical system

(q̇, ṗ) = Vt(q, p) ,

whose time-one-flow Φ1(q, p) defines the Darboux transformation (x, y) = ϕ(q, p) =

Φ1(q, p).

In the following, we make use of the Lie-series formalism to represent Φ1(q, p); in particular,
being the vector field Vt time dependent, we introduce the extended vector field Ṽ = (1,Vt)
defined in the extended phase space (τ, q, p) ∈ R3 and the corresponding Lie-derivative of a
analytic function f : R3 → R

LṼ f = ∂τ f + 〈Vt(q, p),∇ f (q, p)〉 . (19)

The extended field Ṽ defines a flow Φ̃t : R3 → R3 which can be expressed in term of the
Lie-series operator exp(tLṼ )

Φ̃t(τ, q, p) = exp(tLṼI)(τ, q, p) =
∑
k≥0

tk

k!
(Lk

ṼI)(τ, q, p) , (20)

where I : R3 → R3 is the identity map and Lk
Ṽ
I has to be interpreted as (Lk

Ṽ
I) j = Lk

Ṽ
I j, being I j

the identity on the jth component. It turns out that

Φ̃t(0, q, p) = (t,Φt(q, p)) =⇒ Φ̃1(0, q, p) = (1, x, y) = (1, ϕ(q, p)) ,

and consequently

Φ̃−1(1, x, y) =
∑
k≥0

(−1)k

k!
(Lk

ṼI)(1, x, y) = (0, q, p) = (0, ϕ−1(x, y)) .
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Theorem 2.1. Let Vt(q, p) be the time dependent vector filed given by

Vt(q, p) = χ(t, ν ‖(q, p)‖2)
(
q
p

)
(21)

with

χ(t, ν ‖(q, p)‖2) =
1 + ν ‖(q, p)‖2

2(1 + tν ‖(q, p)‖2)

[
ln(1 + ν ‖(q, p)‖2)

ν ‖(q, p)‖2
− 1

]
, (22)

and consider its extension Ṽ(τ, q, p) = (1,Vt(q, p)) : R3 → R3. Then, the time-one-flow
Φ̃1(0, q, p) = (1, ϕ(q, p)) generated by Ṽ is well defined in a sufficiently small ball Bρ(0) =

{‖(q, p)‖ < ρ} of the origin. Moreover, the Darboux change of coordinates (15) corresponds to
the inverse transformation (q, p) = ϕ−1(x, y), where ϕ is a near-to-the-identity and analytic map
with the following asymptotic expansion

ϕ(q, p) ∼
[
1 −

1
4
ν ‖(q, p)‖2

] (
q
p

)
. (23)

Remark 2.1. In agreement with (23), we observe that (15) has the asymptotic expansion ϕ−1(x, y) ∼
(x, y) + 1

4ν ‖(x, y)‖2 (x, y).

Some other remarks on Theorem (2.1) are in order:

1. the vector field Vt is equivariant under the same Gauge symmetry of the models (11). This
has been made more evident by a proper choice of the vector a(q, p), solution of (17).
Indeed the vector potential a(q, p) in (17) is defined modulo a gradient ∇ f of a scalar
function f ;

2. in general, we cannot expect to write the flow of the dynamical system given by Vt; but
we can prove that in a small neighbourhood of the origin the flow Φt(q, p) is radial and
close to the identity (and contracting). Hence, we can impose a precise structure to the
unknown transformation Φ1(q, p) (and to its inverse), which leads to (15) as its unique
analytic solution;

3. the vector field Vt is asymptotically cubic for (q, p) in a sufficiently small neighborhood of
the origin. This can be understood by observing that Vt is constructed from the nonlinear
deformation of ω0 with respect to ω1. Indeed the vector a(q, p) is obtained integrating the
quadratic deformation ν(q2+p2)

1+ν(q2+p2) in (17). As a consequence, the flow Φt(q, p) is a nonlinear
deformation of the identity map in Bρ(0).

2.2. Second result: dNLS-like normal forms

The approach of Lie-series allows to transform any Hamiltonian system, once given the gen-
erator vector field Vt. Indeed, the explicit expression of the flow Φ̃1 is not necessary and the
Lie-series exp (±LṼ ) operator suffices to write the Hamilton equations in the transformed vari-
ables (x, y). However, the knowledge of Vt depends on the possibility to provide the vector
potential a(q, p) through an explicit integration: in the spirit of perturbation theory, the leading
order approximation of the transformed Hamiltonian exp(−LṼ H) = H ◦ ϕ−1 can be obtained by
a suitable truncation of Vt, hence by a polynomial approximation of the vector potential a(q, p),
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which is always an accessible task. In order to formulate the next statement, we introduce the
following notation for the Taylor expansion of H in (11) and of Vt in (21):

H0 =
∑
l≥2

H0,2l H1 = H1,2 , Vt =
∑
l≥1

Vt,2l+1 .

where the second index s in H j,s represents the polynomial degree of H j,s in the variables (q, p),
while the first index j is the degree with respect to the parameter ε. Furthermore, Ṽ2l+1 will
denote the extension of Vt,2l+1 and Φt

H(x0, y0) denotes the Hamiltonian flow associated to H at
time t, with initial datum (x0, y0) ∈ R2n.

Theorem 2.2. In a sufficiently small ball Bρ(0) ⊂ R2n of the origin, the Hamiltonian (11) can be
transformed by the inverse Lie-series along Ṽ

H ◦ ϕ−1(x, y) = exp(−LṼ H) =
∑
k≥0

(−1)k

k!
(Lk

Ṽ H)(1, x, y) .

At leading order (in ρ and ε), the Salerno model (11) can be approximated by the dNLS Hamil-
tonian (12)

exp(−LṼ H) = Z(0) + R(0)

Z(0) = H0,4 + H1,2 =
∑
j∈J

[
γ

8

(
x2

j + y2
j

)2
+ ε

(
x j+1x j + y j+1y j

)]
,

where the remainder R(0) satisfies

sup
(x,y)∈Bρ

|R(0)(x, y)| ≤ C0νρ
4(ρ2 + ε) , C0 > 0 ,

and for times |t| ≤ (ρ2 + ε)−1 one has∥∥∥Φt
H(x0, y0) − Φt

Z(0) (x′0, y
′
0)
∥∥∥ ≤ c0

(∥∥∥(x0, y0) − (x′0, y
′
0)
∥∥∥ + ρ3

)
c0 > 0 . (24)

At next order, the Salerno model (11) admits the following cubic-quintic normal form

exp(−LṼ H) = Z(1) + R(1)

Z(1) = H0,4 + H1,2 − LṼ3
H0,4 − LṼ3

H1,2 =

=
∑
j∈J

[
γ

8

(
x2

j + y2
j

)2
+ ε

(
x j+1x j + y j+1y j

)]
+

+
∑
j∈J

[
γ

24
ν
(
x2

j + y2
j

)3
+

1
4
εν

(
x2

j + y2
j

)(
(x j+1 + x j−1)x j + (y j+1 + y j−1)y j

)]
,

(25)

where the remainder R(1) satisfies

sup
(x,y)∈Bρ

|R(1)(x, y)| ≤ C1ν
2ρ6(ρ2 + ε) , C1 > 0 ,

and for times |t| ≤ (ρ2 + ε)−1 one has∥∥∥Φt
H(x0, y0) − Φt

Z(1) (x′0, y
′
0)
∥∥∥ ≤ c1

(∥∥∥(x0, y0) − (x′0, y
′
0)
∥∥∥ + ρ5

)
c1 > 0 . (26)
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The dNLS Hamiltonian Z(0) is a normal form also for the AL model, with a remainder R(0)

satisfying
sup

(x,y)∈Bρ
|R(0)(x, y)| ≤ C′0ρ

4(1 + ε) , C′0 > 0 ;

for times |t| ≤ ε−1 one has

∥∥∥Φt
H(x0, y0) − Φt

Z(0) (x′0, y
′
0)
∥∥∥ ≤ c′0

(∥∥∥(x0, y0) − (x′0, y
′
0)
∥∥∥ +

ρ3

ε

)
c′0 > 0 . (27)

Some remarks on Theorem (2.2) are also in order:

1. the dNLS approximation of the AL dynamics given by formula (27), for small (in norm)
initial data, is in agreement with the first (and main) statement in [12]; indeed, for ε = O(1),
our estimate (27) claims that two initial data which are ρ3-close and of order ρ, stay ρ3-
close for times of order |t| ≤ O(1). In this case, our proof can be adapted in order to
consider a fixed time scale |t| ≤ T with arbitrary T > 0; however, as in [12], the price to
pay would be a constant c′0(T ) which is increasing with T . At variance with [12], we do not
need to impose any condition on P(0), since the AL dynamics is compared to the dNLS
one only after the Darboux transformation has been performed: hence the two models
share the same conserved quantity, namely the norm. In fact, the smallness condition on
P(0) in [12] is asked in order to ensure that the AL flow keeps its norm bounded for all
times: this is obtained for free with our approach;

2. estimates (24) and (26) provide two different approximations of the Salerno model (γ ,
0) on the same time scale O((ρ2 + ε)−1). The time scale suggests to link ε to ρ in the
regime ε ∼ ρ2 � 1, so that the two statements are formulated only in terms of energy (or
amplitude). This regime is the typical one for which the dNLS is the normal form of the
Klein-Gordon chain (see for example [20, 22]);

3. it is clear by applying the transformation (15) to the model (11) (by truncating the Taylor
expansion at the identity) that the dNLS (3) is the first approximation of (11), when γ ,
0. However, we here want to derive different levels of approximation of the model by
exploiting the Lie-series method and the expansion of the vector field Vt, without any
need of knowing the exact shape either of ϕ or of Vt. Furthermore, the correctness of the
expansion of H ◦ϕ−1 can be directly verified thanks to the explicit knowledge of ϕ in (15);

4. as it is usual in the non autonomous case, we move to the extended phase space, so to ap-
ply the standard Lie-series operator (20) to transform the Hamiltonian in the new Darboux
coordinates. Since by construction we already know the symplectic form in the new coor-
dinates, it is enough to transform the Hamiltonian in order to get the Hamilton equations
in the new set of variables;

5. as already stressed at the beginning of this subsection, we remark that, if we are interested
in a leading order expansion of the transformed Hamiltonian exp(LṼ H), it might be enough
to truncate Ṽ at a suitable polynomial (or perturbative, whatever is the small parameter
in the expansion) order L; the required order L can be determined on the base of the
error | exp(LṼ H) − exp(LṼ (L) H)|, which can be apriori estimated by exploiting Proposition
Appendix A.2 in Appendix A.

9
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Figure 1: Order m of the truncated Lie-series error O(ρm) as a function of the truncation order K. Left panel: only
truncation of the Lie-series is performed, hence the decay of the remainder is of the order O(ρ2K+4). Right panel:
truncation of the vector field Ṽ (2L+1) is added (with L = 4), hence for K ≥ 4 the error is kept constantly equal to O(ρ12).

2.3. Third result: numerical evidence and the Lie-series of P.
In order to apply the Lie-series method to transform the conserved quantity P given in (14),

and in general to transform any function f (q, p) through ϕ−1(x, y), we need the inverse flow
Φ̃−1(1, x, y), which is indeed the flow of the opposite field −Ṽ(τ, x, y). As a consequence, the
transformed quantity P(φ−1(x, y)) = P(Φ̃−1(1, x, y)) can be obtained from the Lie-series of P
along the field −Ṽ and has to coincide with (16)

P(Φ̃−1(1, x, y)) = exp(L−Ṽ P)(1, x, y) =
∑
k≥0

(−1)k

k!
Lk

Ṽ P(1, x, y) =
1
2
‖(x, y)‖2 .

This provides us with the possibility of numerically verifying the convergence of the Lie series
and estimating the approximation errors, when the series is stopped at a certain order K or when
the vector field is approximated with a suitable Taylor polynomial of order 2L + 1. Let V (2L+1) =∑L

l=1 Vt,2l+1 be the Taylor polynomial at order 2L + 1 of Vt, and denote by expK(tLṼ ) =
∑K

k=0
tk

k! Lk
Ṽ

the Lie-series truncated at order K; then the following result holds true:

Proposition 2.1. In a sufficiently small ball Bρ(0) ⊂ R2n of the origin, the approximations of the
Lie-series exp(L−Ṽ P)(1, x, y) satisfy the following error estimates

sup
(x,y)∈Bρ

∣∣∣∣12 ‖(x, y)‖2 − expK(L−Ṽ P)(1, x, y)
∣∣∣∣ ≤ C1ν

K+1ρ2K+4

sup
(x,y)∈Bρ

∣∣∣∣12 ‖(x, y)‖2 − expK(L−Ṽ (2L+1) P)(1, x, y)
∣∣∣∣ ≤ C2ν

M+1ρ2M+4 ,

(28)

with M = min{L,K} and suitable positive constants C1,2.

Figure 1 shows the numerical computation4 of the above errors for K = 1, . . . , 6 and (in the
right panel) L = 4. The exponent m of the leading polynomial term in the error is plotted against
the truncation K. The left panel indicates a geometric convergence of exp(L(K)

Ṽ
P)(1, x, y) to (16)

as K is increased, in agreement with the first estimate in (28); the right panel shows that for
K ≥ 4 the error is stabilized at values O(ρ12), in agreement with the second estimate in (28),
since min{L,K} = 4 for such values of K.

4Performed with Mathematica Release 12
10



3. Proofs of Theorems

Given x ∈ Rn, we define the polydisk Dρ =
⊗

j=1,...,n Bρ(x j) ⊂ Cn as the product of n-
copies of the complex disk Bρ(x j) with radius ρ ≤ 1 centered at the elements x j. For T > 1 and
t ∈ G = (−T,T ), we also define the extended complex domain Gδ =

⋃
t∈G Bδ(t) ⊂ C. Let X̃ be

a time dependent and analytic vector field X̃(t, x) : Gδ × Dρ → Rn+1, and let f be a real-valued
function f (t, x) : Gδ × Dρ → R which is analytic in the same domain, then we introduce the
following norms ∣∣∣∣ f ∣∣∣∣

δ,ρ
:= sup

(ζ,z)∈Gδ×Dρ

| f (ζ, z)|
∣∣∣∣X̃∣∣∣∣

δ,ρ
:= sup

(ζ,z)∈Gδ×Dρ

|X(ζ, z)| ,

where |X̃(ζ, z)| is the norm of a complex vector in Cn+1. Clearly, if f or X̃ depend only on the
phase space variable z, we will consider only

∣∣∣∣ f ∣∣∣∣
ρ

or
∣∣∣∣X̃∣∣∣∣

ρ
. Moreover, we use the symbol ≺ to

compare to quantities, like the norms of two functions (or vector fields), modulo a numerical
constant

A ≺ B ⇐⇒ ∃C > 0 s.t. A ≤ CB . (29)

3.1. Proof of Theorem 2.1

We first have to observe that (17) represents the integration of the closed 2-form −η = ω0−ω1,
where ω1 = dq ∧ dp and the unknown a(q, p) is the potential vector of a 1-form α such that
dα = −η. Hence the problem reduces to find α0 and α1 such that

dα0 = ω0 dα1 = ω1 ⇒ α = α0 − α1 .

We notice that the two 2-forms already coincide at the origin, ω0(0, 0) = ω1, hence no prelimi-
nary linear transformation is required. We look for a potential of ω0. By passing to action-angle
like coordinates q =

√
A cos(θ)

p = −
√

A sin(θ)

A = q2 + p2

θ = − arctan
(

p
q

)
one gets

dq ∧ dp =
1
2

dθ ∧ dA .

We can rewrite ω0 as

ω0 =
1

2(νA + 1)
dθ ∧ dA

whose potential can be chosen as a dθ-form α0 = − 1
2ν ln(1 + νA)dθ, or in cartesian coordinates

(q, p)

α0 =
ln(1 + ν ‖(q, p)‖2)

2ν ‖(q, p)‖2
(−pdq + qdp) .

The main point in the solution of (17) is to choose the potential α1 of ω1 as a dθ-form as α0,
namely α1 = − 1

2 Adθ, or in cartesian coordinates α1 = 1
2 (−pdq + qdp), so that

α0 − α1 =
1
2

[
ln (1 + ν ‖(q, p)‖2)

ν ‖(q, p)‖2
− 1

]
(−pdq + qdp) ,

11



which implies a solution a(q, p) of (17) of the form

a(q, p) =
1
2

[
ln (1 + ν ‖(q, p)‖2)

ν ‖(q, p)‖2
− 1

] (
−p
q

)
.

For Ω−>t is given by

Ω−>t = g(t, ν ‖(q, p)‖2)J g =
(1 + ν ‖(q, p)‖2)
1 + tν ‖(q, p)‖2

,

the vector field Vt = Ω−>t a(q, p) reads

Vt = χ(t, q, p)
(
q
p

)
, χ =

1 + ν ‖(q, p)‖2

2(1 + tν ‖(q, p)‖2)

[
ln(1 + ν ‖(q, p)‖2)

ν ‖(q, p)‖2
− 1

]
,

which is (22).

Lemma 3.1. Given T > 1, the vector field Vt is contracting and analytic inGδ×Dρ for δ ≤ 1
νρ2 −T

and ρ ≤ ρ∗ := 1
√

2Tν
. Moreover:

1. it leaves the origin O fixed and for ‖(q, p)‖ small enough it admits the time-independent
asymptotic expansion

Vt ∼ Vt,3 = −
1
4
ν ‖(q, p)‖2

(
q
p

)
;

2. it is symmetric under the action of the rotation group

R(s) =

(
cos(s) sin(s)
− sin(s) cos(s)

)
;

3. it satisfies the estimate ∣∣∣∣Vt

∣∣∣∣
T,ρ
≺ νρ3 .

Proof. The field Vt is clearly decomposed in a coefficient which depends only on the norm (q2 +

p2) and a radial direction (q, p), hence it is invariant under the group action of R(s). Indeed
Vt commutes with (p,−q), the generator of R(s). Since ln(1 + ν ‖(q, p)‖2) < ν ‖(q, p)‖2 for any
(q, p) , O, the flow is contracting in the future and the origin is the only equilibrium of the
dynamical system defined by Vt. The asymptotic expansion Vt ∼ Vt,3 is immediately derived
from the Taylor expansion with respect to the phase space variables (q, p). We rewrite χ = χ1χ2
with

χ1 =
1 + ν ‖(q, p)‖2

2(1 + tν ‖(q, p)‖2)
, χ2 =

ln(1 + ν ‖(q, p)‖2)
ν ‖(q, p)‖2

− 1 .

The second factor χ2 is analytic in Dρ with ρ < 1
√
ν
; the first factor is analytic in polydisks Bδ×Dρ

where δ, radius of the disks Bδ(ζ) for ζ ∈ (−T,T ), satisfies

δ = inf
|ζ |<T

∣∣∣∣ 1
ν ‖(q, p)‖2

+ ζ
∣∣∣∣ =

1
νρ2 − T ,
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with T ≤ 1
νρ2 −T due to the condition ρ ≤ ρ∗. Hence we are allowed to take δ = T in the estimate

of Vt: the factor χ1 can be uniformly bounded by a constant in the given domain, while the factor
χ2 and the radial direction provide the cubic dependence on ρ.

The above Lemma implies that its flow Φ1 is a (contracting in the future) nonlinear analytic
deformation of the identity map, for any |t| ≤ 1, provided ρ is small enough. Indeed, by its
definition in terms of Lie-series5, in Lemma (3.1) we can take δ = T = 1

2νρ2 (which means
ρ = ρ∗) and d1 = d2 = d so that

Γ ≺
νρ2

d
< Γ∗

holds true for sufficiently small ρ; the asymptotic expansion (23) follows immediately from the
local behavior of Vt

Φ1(q, p) ∼ (1 + Vt(1, q, p))
(
q
p

)
∼

(
1 −

1
4
ν ‖(q, p)‖2

) (
q
p

)
.

We finally have to show that Φ1(q, p) is the inverse of (15). We can assume the time-one-flow
ϕ(q, p) = Φ1(q, p) to be a radial and close to the identity transformation having the form

Φ1(q, p) = ξ(
√
ν ‖(q, p)‖)

(
q
p

)
ξ(0) = 1 ,

with ξ being analytic in the norm ‖(q, p)‖; the same can be assumed also for the inverse transfor-
mation ϕ−1(x, y)

ϕ−1(x, y) = σ(
√
ν ‖(x, y)‖)

(
x
y

)
σ(0) = 1 .

By imposing for ϕ−1(x, y) the condition of being a Darboux transformation (ϕ−1)∗ω0 = ω1, we
get the following equation for σ

σ′σ% + σ2 = 1 + %2σ2 % =
√
ν ‖(x, y)‖

which becomes, by introducing the more suitable variable h(%) = σ2(%), a linear and non-
homogeneous equation of the form

h′ +
2
%

(1 − %2)h −
2
%

= 0 . (30)

The unique analytic solution of (30) is given by

h(%) =
1
%2

(
e%

2
− 1

)
,

which gives σ(x, y) the expression in (15).

5Alternatively, one can construct a series of analytic approximating solutions which are uniformly convergent in Bρ
to the solution, then also the solution has to be analytic.
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3.2. Proof of Theorem 2.2
In order to prove the normal form statement and the bound on R(1), we make use of three

different levels of approximation. As in the previous proof, we set δ = T = 1
2νρ2 and we assume

ρ small enough to ensure T > 1. First expand the vector field Ṽ

exp(L−Ṽ H) = exp(L−Ṽ3
H) + R1 ,

where R1 can be bounded using Proposition (Appendix A.3) with Γ3 = 1
dρ

∣∣∣∣V − Vt

∣∣∣∣
T,ρ
≺ ν2ρ4

∣∣∣∣R1

∣∣∣∣
(1−d)T,(1−d)ρ

≺ Γ3

∣∣∣∣H∣∣∣∣
T,ρ
≺ ν3ρ8 + εν2ρ6 .

As a second step, we truncate the Lie series of Ṽ3 at order K = 1

exp(L−Ṽ3
H) = exp1(L−Ṽ3

H) + R2 ,

where
exp1(L−Ṽ3

H) = H − LṼ3
H ,

and R2 can be bounded using Proposition (Appendix A.2) with Γ = 1
d

(
2νρ2 +

∣∣∣∣Ṽ ∣∣∣∣
T,ρ

)
≺ νρ2

∣∣∣∣R2

∣∣∣∣
(1−d)T,(1−d)ρ

≺ Γ2
∣∣∣∣H∣∣∣∣

T,ρ
≺ ν3ρ8 + εν2ρ6 .

Last and easiest step consists in a Taylor expansion of H0 in H − LṼ3
H which gives

H − LṼ3
H = H0,4 + H1,2 − LV3 H0,4 − LV3 H1,2 + R3 ,

with ∣∣∣∣R3

∣∣∣∣
ρ
≺ εν2ρ6 + ν3ρ8 .

Since d < 1 is arbitrary, ρ is assumed to be small enough and the three contributions R j to the
remainder are of the same order, the estimate follows. The estimates for R(0) follows by minor
variations; in the AL case just remember that the cubic nonlinearity is one of the leading terms
in the remainder.

In order to prove the different bounds on the closeness between the AL/Salerno model and
the normal forms, one has to apply Cauchy estimates (A.1) to get estimates on the vector fields
XR(0,1) , starting from the bounds on the remainders∣∣∣∣XR∣∣∣∣

(1−d)ρ
≤

1
dρ

∣∣∣∣R∣∣∣∣
ρ
,

∣∣∣∣XR∣∣∣∣
(1−d)ρ

= max
j=1,...,2n

∣∣∣∣XR, j∣∣∣∣
(1−d)ρ

. (31)

Hence from (31) one can obtain ∣∣∣∣XR(1)

∣∣∣∣
(1−d)ρ

≺ ν2ρ5(ρ2 + ε) ,

for the cubic-quintic dNLS-like normal form and∣∣∣∣XR(0)

∣∣∣∣
(1−d)ρ

≺ ν2ρ3(ρ2 + ε) ,
∣∣∣∣XR(0)

∣∣∣∣
(1−d)ρ

≺ ν2ρ3(1 + ε) ,
14



for the standard dNLS normal form, in the Salerno and AL cases respectively. Then all the
estimates follow from Gronwall Lemma and from the conservation of the norm ‖x(t), y(x)‖2

along the different Hamiltonian flows (so that all the orbits belong to the initial ball Bρ(0) for
infinite times). We can sketch the procedure as follows: we have to compare the dynamics of
H = Z(0) + R(0) with the one of the normal form Z(0)

ż = XH(z) ζ̇ = XZ(0) (ζ) = XH(ζ) − XR(0) (ζ) ,

so we introduce the error δ(t) = z(t) − ζ(t) which solves

δ̇ = [XH(z) − XH(ζ)] + XR(0) (ζ) = [XH(ζ + δ) − XH(ζ)] + XR(0) (ζ) .

Hence we can derive the differential inequality∥∥∥δ̇∥∥∥ ≤ ‖XH(η)‖ ‖δ‖ + ‖XR(0) (ζ)‖ , η = ζ + sδ , s ∈ [0, 1] ;

then Gronwall estimate can be applied, once we provide estimates for ‖XH(η)‖ and ‖XR(0) (ζ)‖, for
ζ, η belonging to a polydisk of small radius.

3.3. Proof of Proposition 2.1
To prove both the estimates, we have first to set (as in the previous proof) δ = T = 1

2νρ2 and
assume ρ small enough, so that T > 1 and we can evaluate the Lie-series at τ = 1, lying inside
the domain Gδ. The first of (28) is a consequence of (A.5) with

∣∣∣∣ f ∣∣∣∣
δ,ρ

=
∣∣∣∣P∣∣∣∣

δ,ρ
∼ ρ2 and

Γ ≺
νρ2

d
⇒ (eΓ)K+1

∣∣∣∣ f ∣∣∣∣
δ,ρ
≺ νK+1ρ2K+4 .

The second of (28) can be derived combining the previous estimate with (A.9), where Γ3, defined
in (A.7), in this case fulfills

Γ3 ≺
1
ρ

∣∣∣∣Y ∣∣∣∣
δ,ρ

=
1
ρ

∣∣∣∣Vt − V (2L+1)
t

∣∣∣∣
δ,ρ
∼ νL+1ρ2L+2 ,

since the leading term of the remainder Vt − V (2L+1)
t is of order 2L + 3.

4. Conclusions

In this manuscript we have focused on the constructive aspects of Moser’s proof of Darboux’s
Theorem, with the aim of a deeper understanding of the standardization procedure, in particular
for the AL and Salerno model.

In general, Darboux’s change of coordinates is local, and linear coordinates can always be
chosen so that it represents a small perturbation of the identity map; hence a successful strat-
egy is to combine the polynomial approximation of the vector field V with the use of truncated
Lie-series (or even Lie-transform), in order to compute leading order terms of the transformed
Hamiltonian H(Ψ), without any need to derive a complete explicit expression for Ψ or for V itself.
This approximation of the transformed Hamiltonian might be enough for the subsequent inves-
tigation of its dynamical features by means of perturbation techniques (for example, by normal
form methods). For what concerns the specific case of the Salerno model, such a normal form can

15



be used as a starting point for perturbation schemes which require the use of the standard Poisson
brackets: for example, one can start to explore existence and stability of localized solutions, such
as multi-breathers, quasi-periodic breathers, low dimensional tori (see [3, 25, 26, 15, 6]).

Outside the field of nonlinear lattices, a classical example that it is worth mentioning is that of
the Lotka-Volterra system and its higher dimensional generalizations (Lotka-Volterra systems). It
is well known that, for (x, y) ∈ R2 the predator-prey system ẋ = αx−βxy, ẏ = −γy + δxy (usually
with all the parameters taken positive) admits the constant of motion H(x, y) = βy− α ln y + δx−
γ ln x. In the original variables the system is not Hamiltonian with respect to the standar Poisson
structures, but it is so with the non standard6 Poisson brackets {x, y} = xy. Equivalently it is
possible to use the change of variables ξ = ln x, η = ln y to obtain an Hamiltonian form with the
standard symplectic structure. In [23] it is discussed the effectiveness of a particular numerical
integration scheme by showing that it turns out to be symplectic with respect to the non standard
Poisson structure. A suitable generalization of the above mentioned non standard structure is
also used in the higher dimensional extensions of LV models: the possibility to view also those
systems as Hamiltonian open the way for the investigation of their integrability (see [2] for a
recent work in that direction).

Appendix A. Lie series in the extended phase space.

In this Section we present some analytical result about Lie-series in the non autonomous case
(see for example the Appendix of [8] for similar estimates in the autonomous case and [9] in the
non autonomous Hamiltonian context). In order to estimate the Lie series of a given function f

exp(tLX̃ f )(ζ, z) =
∑
k≥0

1
k!

tkLk
X̃ f (ζ, z)

already defined in (19), it is necessary to provide an upper bound to the Lie derivative LX̃ f in the
shrinked domain G(1−d1)δ × D(1−d2)ρ, according to the usual Cauchy inequality valid for analytic
functions (in several complex variables)∣∣∣∣∂ f

∂ζ

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
1

d1δ

∣∣∣∣ f ∣∣∣∣
δ,(1−d2)ρ

,
∣∣∣∣ ∂ f
∂z j

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
1

d2ρ

∣∣∣∣ f ∣∣∣∣
(1−d1)δ,ρ

, (A.1)

which is a consequence of the (multidimensional) Cauchy formula7

∂k f
∂uk (u) =

k!
2πi

∫
Tδ,ρ

f (v)
(v − u)k+1 dv , u = (ζ, z) ,

where k = (k0, k1, . . . , kn) ∈ Zn+1 is a derivative multi index and Ta,b = ∂Bδ(ζ) × ∂Bρ(z1) ×
. . . × Bρ(zn) is the n + 1-dimensional torus given by the product of the boundaries of all the
distinguished disks (distinguished boundary). Hence, if f is analytic in Dρ, the same Cauchy
formula allows to bound the k-derivative of f (with respect to z) in Dρ−δ∣∣∣∣∂l f

∂zl

∣∣∣∣
ρ−δ
≤

l1! . . . ln!
δk

∣∣∣∣ f ∣∣∣∣
ρ
, |l| = k .

6Sometimes called log-canonical.
7One can differently consider ∂ f

∂u j
(u) =

∂ f (u+e jz)
∂z (0) and use the one dimensional version of the Cauchy formula.
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Consider f , analytic on Gδ × D1, as an analytic function on Dρ ⊂ D1, and Taylor expand f with
respect to z ∈ Dρ

f (ζ, z) = Tk(ζ, z) + Rk+1(ζ, z) , Rk+1(ζ, z) =
∑
|l|=k+1

1
l!

f (l)(ζ, cz)zl , c ∈ (0, 1) .

Then the following estimate provide the exponential decay of the reminder ot the truncated Taylor
series

Lemma Appendix A.1. Let ρ < 1
2 , then there exists E = E(k, n) such that∣∣∣∣Rk+1

∣∣∣∣
δ,ρ
≤ (2ρ)k+1

∣∣∣∣ f ∣∣∣∣
1
E .

Proof. It is enough to exploit the above bound of the derivative with respect to z and the combi-
natorial formula of the number of partial derivatives of given order k + 1. Indeed from

|Rk+1(ζ, z)| ≤
∑
|l|=k+1

1
l!
| f (l)(ζ, cz)|ρk+1 ,

since z ∈ Dρ implies cz ∈ Dcρ ⊂ Dρ, we have∣∣∣∣Rk+1

∣∣∣∣
δ,ρ
≤ ρk+1

∑
|l|=k+1

1
l!

∣∣∣∣ f (l)
∣∣∣∣
δ,ρ
,

with ∣∣∣∣ f (l)
∣∣∣∣
δ,ρ
≤

l!
(1 − ρ)k+1

∣∣∣∣ f ∣∣∣∣
1
< 2k+1l!

∣∣∣∣ f ∣∣∣∣
1
.

Hence ∣∣∣∣Rk+1

∣∣∣∣
δ,ρ
≤ (2ρk+1)

∣∣∣∣ f ∣∣∣∣
1

 ∑
|l|=k+1

 = (2ρk+1)
∣∣∣∣ f ∣∣∣∣

1
E ,

where E = C∗n,k+1 =
(

n+k
k+1

)
.

Lemma Appendix A.2. Let X̃ = (1, X) with X analytic in Gδ × Dρ and f analytic in Gδ × Dρ,
and let 0 < d j < 1, then

∣∣∣∣LX̃ f
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤ Γ
∣∣∣∣ f ∣∣∣∣

δ,ρ
Γ =

1
d1δ

+

∣∣∣∣X∣∣∣∣
δ,ρ

d2ρ
. (A.2)

Proof. Notice that the Lie differential operator LX̃ acts on f as

LX̃ f = ∂ζ f + 〈X,∇z f 〉 ,

hence from the previous Cauchy estimate and the usual bound on the scalar product we get
(A.2).

Remark Appendix A.1. The basic estimate (A.2) and the ones which follow are equivalent to
the ones due to Gröbner in [10], obtained originally with the classical methods of majorants due
to Cauchy.
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Remark Appendix A.2. If f and X depend only on z ∈ Dρ, then formula (A.2) becomes the
usual estimate ∣∣∣∣LX f

∣∣∣∣
(1−d)ρ

≤
1

dρ

∣∣∣∣X∣∣∣∣
ρ

∣∣∣∣ f ∣∣∣∣
ρ
.

Next Lemma provides the main estimate when dealing with the convergence of the Lie series
and related results

Lemma Appendix A.3. Let X̃ = (1, X) and f as in Lemma Appendix A.2, and let 0 < d j < 1,
then ∣∣∣∣Lk

X̃ f
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
k!
e

(Γe)k
∣∣∣∣ f ∣∣∣∣

δ,ρ
. (A.3)

Proof. The result follows by repeating formula (A.2) for k-times to each Lie derivative, starting
from Lk

X̃
f = LX̃

(
Lk−1

X̃

)
f , by reducing each time the domain of the supremum norm by the factors

d′j = 1
k d j. Then, to conclude, one has to use the basic inequality kk ≤ k!ek−1.

The above estimate (A.3) can be generalized in the following way

Lemma Appendix A.4. Let X̃ j = (1, X j), j = 1, . . . , k, be a sequence of vector fields with X j

analytic in Gδ × Dρ and f analytic in Gδ × Dρ, and let 0 < d j < 1, then

∣∣∣∣LX̃k
. . . LX̃1

f
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
k!ek

e

 k∏
j=1

Γ j

∣∣∣∣ f ∣∣∣∣δ,ρ Γ j =
1

d1δ
+

∣∣∣∣X j

∣∣∣∣
δ,ρ

d2ρ
. (A.4)

Next Lemma exploits the previous estimates to get total convergence of the Lie series on a
smaller domain G′δ × D′ρ ⊂ Gδ × Dρ:

Lemma Appendix A.5. Let X̃ and f be as in Lemma Appendix A.2. Then for any 0 < d j < 1
the Lie series exp(tLX̃ f ) is totally convergent in G(1−d1)δ × D(1−d2)ρ for times |t| < 1

eΓ
.

Proof. By using (A.4) one obtains

∣∣∣∣ exp(tLX̃ f )
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
∑
k≥0

1
k!
|t|k

∣∣∣∣Lk
X̃ f

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤

∣∣∣∣ f ∣∣∣∣
δ,ρ

e

∑
k≥0

(|t|Γe)k < ∞ ,

for times |t|Γe < 1.

In the following we focus on the Lie series at times t = ±1; indeed we are mainly interested
in the transformation ϕ(z) := {ϕ j(z)} j=1,...,n, with ϕ j(z) = exp(LX̃I j)(0, z), and in its inverse ϕ−1(z).
The following result holds true:

Proposition Appendix A.1. Let X̃ be as in Lemma Appendix A.2. Then for any j = 1, . . . , n the
Lie series exp(tLX̃I j)(0, z) is totally convergent in z ∈ D(1−d)ρ, for times |t| < 1

Γe and 0 < d < 1.
Moreover, if

Γ < Γ∗ =
e

1 + e2 <
1
e
,

then the transformations ϕ±1(z) are well defined as Lie-series and, for 0 < d < 1
2 , satisfy the

inclusion
D(1−2d)ρ ⊂ ϕ

±1(D(1−d)ρ) ⊂ Dρ .
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Proof. For z ∈ D(1−d2)ρ we have

| exp(tLX̃I j)(0, z)| ≤
∣∣∣∣ exp(tLX̃I j)

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤

∣∣∣∣I j

∣∣∣∣
ρ

e

∑
k≥0

(|t|Γe)k < ∞ .

Moreover, condition Γ < Γ∗ ensures 1
eΓ
> 1, so that t = ±1 makes sense in the Lie-series. The

deformation of the domain can be bounded by taking the Lie series from k ≥ 1∣∣∣∣ exp(LX̃I j) − I j

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
∑
k≥1

1
k!

∣∣∣∣Lk
X̃I j

∣∣∣∣
(1−d1)δ,(1−d2)ρ

=
∑
k≥1

1
k!

∣∣∣∣Lk−1
X̃ X j

∣∣∣∣
(1−d1)δ,(1−d2)ρ

;

then

∣∣∣∣Lk−1
X̃ X j

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
(k − 1)!

e
(eΓ)k−1

∣∣∣∣X j

∣∣∣∣
δ,ρ

= (d2ρ)
(k − 1)!

e
(eΓ)k−1

∣∣∣∣X j

∣∣∣∣
δ,ρ

d2ρ
≤

≤ (d2ρ)
(k − 1)!

e2 (eΓ)k .

Hence by condition Γ < Γ∗ one has∑
k≥1

1
k!

∣∣∣∣Lk
X̃I j

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
d2ρ

e2

(
eΓ

1 − eΓ

)
< d2ρ .

The same estimate holds by replacing (1− d2)ρ with (1− 2d2)ρ and ρ with (1− d2)ρ respectively
in the inequalities involving the Lie derivatives.

The proof clearly shows that the size of
∣∣∣∣X∣∣∣∣

δ,ρ
provides the leading deformation of ϕ(z) with

respect to the identity ∣∣∣∣ϕ j(z) − z j

∣∣∣∣
(1−d2)ρ

≺

∣∣∣∣X j

∣∣∣∣
δ,ρ
.

Two important issues to be addressed in perturbation theory are to estimate the error when
either the Lie series is truncated at some finite order K or the analytic vector field X̃ is approx-
imated with its Taylor polynomial, truncated at order L. To provide standard estimates of this
type is the goal of next results. We first introduce the following notation: given two integers
K, L ≥ 1 we denote by expK(LX̃ f ) =

∑K
k=0 Lk

X̃
f , the truncation of the Lie series at order K, and

by exp(LX̃(L) f ) =
∑

k≥0 Lk
X̃(L) f , the Lie series of the truncated vector field X̃(L) at order L. In the

following, to simplify some estimates, we also make use of the symbol ≺ defined in (29).

Proposition Appendix A.2. Let X̃ and f as in Lemma Appendix A.2, 0 < d j < 1 and K ≥ 1. If
Γ < Γ∗ then ∣∣∣∣ exp(LX̃ f ) − expK(LX̃ f )

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≺ (eΓ)K+1
∣∣∣∣ f ∣∣∣∣

δ,ρ
. (A.5)

Proof. The result is a consequence of the estimate of the reminder∣∣∣∣ ∑
k≥K+1

Lk
X̃ f

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤
1
e

∣∣∣∣ f ∣∣∣∣
δ,ρ

∑
k≥K+1

(eΓ)k =
1
e

(eΓ)K+1
∣∣∣∣ f ∣∣∣∣

δ,ρ

∑
k≥0

(eΓ)k

 .
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In order to study the error due to the truncation of a vector field, we start considering the
Lie series of two vector fields X̃1,2. Next Lemma allows to properly rewrite the difference of Lie
derivatives:

Lemma Appendix A.6. Let X̃1 and X̃2 two vector fields as in Lemma Appendix A.2, and define
Ỹ = X̃1 − X̃2 = (0, X1 − X2). Then the following holds true

LX̃1
− LX̃2

= LỸ ,

Lk
X̃1
− Lk

X̃2
= LỸ Lk−1

X̃2
+

k−1∑
l=1

Lk−l
X̃1

LỸ Ll−1
X̃2

k ≥ 2 ,
(A.6)

where obviously LỸ = LY .

Proof. By induction. Formula (A.6) works for k = 1, since by linearity we have LX̃1
− LX̃2

= LỸ ,
and for k = 2, since

L2
X̃1
− L2

X̃2
= LX̃1

LX̃2
+ LX̃1

LỸ − L2
X̃2

= LX̃1
LỸ + LỸ LX̃2

.

We assume the above formula to hold for k ≥ 2 and we show its validity for k + 1. Indeed

Lk+1
X̃1
− Lk+1

X̃2
= LX̃1

Lk
X̃1
− Lk+1

X̃2
= LX̃1

Lk
X̃2

+ LỸ Lk−1
X̃2

+

k−1∑
l=1

Lk−l
X̃1

LỸ Ll−1
X̃2

 − Lk+1
X̃2

=

= LX̃1
Lk

X̃2
+ LX̃1

LỸ Lk−1
X̃2

+

k−1∑
l=1

Lk+1−l
X̃1

LỸ Ll−1
X̃2
− Lk+1

X̃2
=

= LỸ Lk
X̃2

+

k∑
l=1

Lk+1−l
X̃1

LỸ Ll−1
X̃2

.

Proposition Appendix A.3. Let X̃1,2 and Ỹ as in Proposition Appendix A.2 and let Γ j=0,1,2,3 be
defined by

Γ1 =
1

d1δ
+

∣∣∣∣X1

∣∣∣∣
δ,ρ

d2ρ
, Γ2 =

1
d1δ

+

∣∣∣∣X2

∣∣∣∣
δ,ρ

d2ρ
, Γ3 =

∣∣∣∣Y ∣∣∣∣
δ,ρ

d2ρ
, Γ0 = max{Γ1,Γ2} . (A.7)

Then for any f analytic in Gδ × Dρ, if eΓ0 < 1 we have∣∣∣∣ exp(LX̃1
f ) − exp(LX̃2

f )
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≺ Γ3

∣∣∣∣ f ∣∣∣∣
δ,ρ
. (A.8)

Proof. We have to exploit Lemma Appendix A.6 to estimate the difference of the Lie derivatives
for k ≥ 2∣∣∣∣Lk

X̃1
f − Lk

X̃2
f
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤

∣∣∣∣LỸ Lk−1
X̃2

f
∣∣∣∣
(1−d1)δ,(1−d2)ρ

+

k−1∑
l=1

∣∣∣∣Lk−l
X̃1

LỸ Ll−1
X̃2

f
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤

≤ k!ek−1
∣∣∣∣ f ∣∣∣∣

δ,ρ

Γ3Γk−1
2 +

k−1∑
l=1

Γk−l
1 Γ3Γl−1

2

 =

= k!ek−1
∣∣∣∣ f ∣∣∣∣

δ,ρ
Γ3

 k∑
l=1

Γk−l
1 Γl−1

2

 ≤ k!(k − 1)Γ3(eΓ0)k−1
∣∣∣∣ f ∣∣∣∣

δ,ρ
,
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while for k = 1 one easily has∣∣∣∣LX̃1
f − LX̃2

f
∣∣∣∣
(1−d1)δ,(1−d2)ρ

=
∣∣∣∣LY f

∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤ Γ3

∣∣∣∣ f ∣∣∣∣
δ,ρ
.

Hence we have∣∣∣∣ exp(LX̃1
f ) − exp(LX̃2

f )
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≤ Γ3

∣∣∣∣ f ∣∣∣∣
δ,ρ

1 +
∑
k≥1

k(eΓ0)k

 ≺ Γ3

∣∣∣∣ f ∣∣∣∣
δ,ρ
.

The previous Proposition allows to estimate the error due to the truncation of a vector field.
Indeed, if X2 = X(L), namely the truncation at order L of a given field X, then Y = X − X(L) is the
remainder. Due to Lemma Appendix A.1 it holds also

∣∣∣∣Y ∣∣∣∣
δ,ρ
≤

∣∣∣∣X∣∣∣∣
δ,1
ρL+1E, hence (A.8) takes the

form ∣∣∣∣ exp(LX̃ f ) − exp(LX̃(L) f )
∣∣∣∣
(1−d1)δ,(1−d2)ρ

≺
E
d2

∣∣∣∣X∣∣∣∣
δ,1

∣∣∣∣ f ∣∣∣∣
δ,ρ
ρL . (A.9)

Appendix B. Outline of Moser’s constructive scheme

The scheme of the proof here reported is taken from [17]. Since we are mostly interested in
translating the idea of the proof in a applicable scheme, we omit most of the geometric details,
while focusing on the objects one has to construct (in a given set of coordinates) and on their
manipulation.

Theorem Appendix B.1. Let (M, ω) a symplectic manifold and ω be a non-degenerate closed
2-form in a neighborhood U of P ∈ M. Then there exists V, a neighborhood of P, and a set of
coordinates (y1, ..., yn, x1, ..., xn) defined in V such that ω is represented in the standard form

ω =

n∑
i=1

dxi ∧ dyi .

Proof. Let ω0 be a representation of the ω in a local chart (U0, ϕ0) around the arbitrary point
P ∈ M, hence ω = ϕ∗0ω0; let {qi}i=1,...,2n the coordinates related to this chart, hence

ω0 =
∑
i< j

ω0,i j(q)dqi ∧ dq j .

We recall that the coefficients ω0,i j uniquely define the antisymmetric matrix Ω which represents
the action of ω0 on tangent vectors X,Y , namely

ω0(X,Y) = X>Ω(q)Y Ωi< j(q) = ω0,i j(q) .

We have to show that there exists a local chart (U1, ϕ1) centered in P, and a second set of coordi-
nates {xi, yi}i=1,...,n such that ϕ∗1(ω1) = ω where ω1 is the standard symplectic form on R2n

ω1 =

n∑
i=1

dxi ∧ dyi =
∑
i< j

ω1,i j(q)dzi ∧ dz j ;
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here zi = xi for i = 1, . . . , n or zi = yi for i = n + 1, . . . , 2n and ω1,i j = Ji< j. This is equivalent to
saying that there exists a local change of coordinates (x, y) = ϕ(q) such that

ϕ∗ω1(q) = ω1(ϕ(q)) = ω0(q) .

Hence, we can work directly in a neighborhood U ⊂ R2n of the origin O = ϕ0(P) = ϕ1(P). From
Darboux’s theorem on vector spaces (see [1]) there exists a linear and symplectic change of coor-
dinates (simplectomorphism) such thatω1|O = ω0|O; this means that Ω(0) = J where J represents
the standard symplectic form ω1. We consider ω0 written in the “unknown” coordinates {zi}i.

Let η = ω1 − ω0 be the deformation of ω0 with respect to ω1 (indeed they coincide ath the
origin); η is closed and exact 8. Let α be the 1-form such that η = −dα, uniquely defined modulo
adding d f , with f : U → R. We can always assume9 αO = 0 and write in coordinates

α(x) =

2n∑
i=1

ai(x)dxi ai(0) = 0 .

We introduce time dependent 2-form on U

ωt(x) = ω0 + tη = tω1 + (1 − t)ω0 ∀ t ∈ R

represented by the matrix

Ωt(x) = tJ + (1 − t)Ω(x) Ωt(0) = J ∀t ∈ R ,

which is invertible, being ωt always closed and non-degenerate.
The idea of the proof is to construct a time-dependent vector field Vt(q) on U whose time-

one-flow, Ψt(q)
∣∣∣∣
t=1

, defines the change of coordinates (x, y) = ϕ(q) which puts ω0 (and hence ω)
into its standard form ω1, namely

ω1(ϕ(q)) =
∑
i< j

ω1,i jdϕi(q) ∧ dϕ j(q) = ω0(q) .

This is done by showing that, with a suitable definition of Vt, one has

d
dt
ωt(Ψt(q)) =

d
dt

(Ψt)∗ωt = 0

so that (Ψt)∗ωt is constant ∀t, and then ω1(Ψ1(q)) = ω0(Ψ0(q)) = ω0(q), since Ψ0 is the identity
transformation of coordinates z = (x, y) = q. The vector field Vt(q) is obtained as a not unique10

solution to the so-called “Moser equation”

ωt(Vt,Y) = α(Y) ∀Y

or more explicitly

Ωt(q)Vt(q) = a(q) ⇒ Vt(q) = Ω−1
t (q)a(q) .

8As we are working on U which is convex therefore in particular star-shaped, then Poincaré’s Lemma holds true, i.e.
η is exact.

9It is enough to redefine α = α − αO
10Because α, and hence the vector a, in defined modulo a differential d f , as already noticed.
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The dynamical system q̇ = Vt(q) defines the flow Ψt(q)

d
dt

Ψt(q) = Vt(Ψt(q)) .

With such a definition of Vt it is possible to explicitly show

d
dt
ωt(Ψt(q)) =

d
dt

∑
i< j

ωt,i j(Ψt(q))dΨt
i(q) ∧ dΨ j(q) ,

by performing the various derivatives and obtaining in coordinates that that

d
dt
ωt(Ψt(q)) = (Ψt)∗

[
η(x) + dα(x)

]
= 0 .

Acknowledgments T.P. and S.P. thank Vassilis Koukouloyannis for his hospitality in Samos
in September 2022, which inspired useful and intensive discussions about the dynamics of the
Ablowitz-Ladik model. T.P. has been supported by the MIUR-PRIN 20178CJA2B “New Fron-
tiers of Celestial Mechanics: Theory and Applications”.

References

[1] Abraham, Ralph and Marsden, Jerrold E, Foundations of mechanics. American Mathematical Soc., n. 368, 2008.
[2] Christodoulidi H, Hone ANW and Kouloukas TE A new class of integrable Lotka-Volterra systems Journal of

Computational Dynamics, 6 (2), 223–237, 2019.
[3] V. Danesi, M. Sansottera, S. Paleari and T. Penati Continuation of spatially localized periodic solutions in discrete

NLS lattices via normal forms Communications in Nonlinear Science and Numerical Simulations 108 (4), 2022.
[4] G. Darboux, Sur le problème de Pfaff Bulletin des sciences mathématiques et astronomiques 2 e série, tome 6, n.
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