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a b s t r a c t 

Motivated by the proliferation of extensive macroeconomic and health datasets necessi- 

tating accurate forecasts, a novel approach is introduced to address Vector Autoregressive 

(VAR) models. This approach employs the global-local shrinkage-Wishart prior. Unlike con- 

ventional VAR models, where degrees of freedom are predetermined to be equivalent to 

the size of the variable plus one or equal to zero, the proposed method integrates a hy- 

perprior for the degrees of freedom to account for the uncertainty in the parameter val- 

ues. Specifically, a loss-based prior is derived to leverage information regarding the data- 

inherent degrees of freedom. The efficacy of the proposed prior is demonstrated in a mul- 

tivariate setting both for forecasting macroeconomic data, and Dengue infection data. 

© 2024 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

1. Introduction 

Macroeconomic and health forecasting holds pivotal importance. Advancements in modeling techniques and the avail- 

ability of large datasets have enhanced the forecasting of macroeconomic and financial variables ( Stock and Watson, 2002; 

De Mol et al., 2008; Bańbura et al., 2010; Koop and Korobilis, 2013; Huber and Feldkircher, 2019 ). Extracting relevant infor-

mation from the data regarding the processes of interest is beneficial. It is demonstrated in leveraging intrinsic information 

within variables of interest to provide an adaptable representation of prior uncertainty. 

The Vector Autoregressive (VAR) model, introduced by Sims (1980) , is widely used. It is employed for representing the 

relationships between quantities of interest, given its flexibility to accommodate multiple time series. Within the Bayesian 

framework, substantial research has been carried out to avoid over parametrization and overfitting (e.g. Doan et al., 1984; 

Litterman, 1986; Sims and Zha, 1998 ), mainly through the definition of suitable shrinkage prior distributions, or by employ-

ing appropriate hierarchical structures (e.g. Bańbura et al., 2010; Carriero et al., 2015; 2019; Huber and Feldkircher, 2019 ). 

We focus on the global-local shrinkage prior for the matrix of coefficients relying on the Horseshoe prior distribution 

( Carvalho et al., 2010 ). The Horseshoe prior ( Follett and Yu, 2019 ) was used on the reduced form of the VAR matrix of coef-
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ficients by Bernardi et al. (2024) and Gruber and Kastner (2023) to shrink the coefficients towards zeros. For the covariance

matrix, general approaches fix the degrees of freedom of the Wishart distribution to be equal to the size of the variable plus

one ( Koop and Korobilis, 2010 ) or equal to zero ( Uhlig, 2005 ). As stated in Koop and Korobilis (2010) , this choice is a trade-

off between avoiding overfitting and allowing for flexibility. We derive a hyperprior for the degrees of freedom based on 

the loss-based priors introduced in Villa and Walker (2015) . This hyperprior accounts for the uncertainty of the parameter

values and exploits the information about the number of degrees of freedom contained in the data. 

The loss-based hyperprior is based on the measure of the loss that would be incurred if the wrong model was chosen and

depends solely on the probability distribution used to model the data. Hence no value is set for the degrees of freedom, and

it impacts the posterior distribution and model forecasts. The performance of the hyperprior is assessed using simulation 

and contrasted with alternative approaches, such as a flat prior ( Uhlig, 2005 ). 

The merits of the hyperprior are demonstrated by forecasting different macroeconomic variables from the Federal Reserve 

Economic Data (FRED) dataset ( McCracken and Ng, 2016; 2020 ). The proposed prior has two important advantages compared

to fixing the degrees of freedom. Firstly, in the absence of any prior information about the true variance-covariance matrix, 

the approach is more robust since the process is combined with information in the data. Secondly, the degrees of freedom

are evaluated through time using a rolling window procedure, where they increase after 20 0 0 and decrease during the 20 09

financial crisis. 

Additionally, we analyse the Google Dengue Trends (GDT) dataset for ten countries, which is a query-based reporting 

system for infectious disease ( Carneiro and Mylonakis, 2009; Strauss et al., 2017 ). In particular, dengue is a viral infection

transmitted by mosquitoes, which is present in South American and Asian countries. The forecasting results demonstrate 

the flexibility of the proposed approach. 

The paper is structured as follows: Section 2 describes the VAR model and derives the proposed loss-based prior for 

the degrees of freedom of the Wishart distribution. In Section 3 , using simulation, we compare the proposed hyperprior to

the model that assumes fixed degrees of freedom. Section 4 presents the forecasting of macroeconomic variables, and the 

forecasting of the Google Dengue Trends data are presented in Section 5 . Section 6 concludes the paper. 

2. VAR model for forecasting and the novel loss-based prior 

Let y t be the m -dimensional vector of observations, for t = 1 , . . . , T . A VAR model with p lags is given by 

y t =
p ∑ 

j=1 

Aj y t− j + ε t , (1) 

where A j is a (m × m ) matrix of coefficients, and ε t is an m -dimensional vector of independent and identically normally

distributed error terms centered on 0, and with covariance matrix �, ε t ∼ N (0 , �) . 

Eq. (1) can be written concisely as 

Y = X A + E, 

where Y is a (T × m ) matrix constructed as Y = (y 1 , y 2 , . . . , y T )
′ , and X = (x 1 , x 2 , . . . , x T )

′ is a (T × k ) matrix containing

the lagged response variables, where x t = (y ′ 
t−1 

, y ′ 
t−2 

, . . . , y ′ t−p ) . A = (A1 , A2 , . . . , Ap ) is a (k × m ) matrix of coefficients and

E = (ε 1 , . . . ,ε T )
′ is a (T × m ) matrix of errors. In a vectorized form, the VAR model of order p is defined as 

y = ( Im 

� X ) α + ε , 

where y = vec (Y ) , α = vec (A ) and ε = vec (E) with distribution ε ∼ N (0 , � � IT ) and � is the Kronecker product. 

We adopt a global-local shrinkage-Wishart prior for the parameters of the model. We assume a Horseshoe prior distribu- 

tion ( Carvalho et al., 2010 ) for the matrix of coefficients and a Wishart distribution for the precision matrix �−1 ∼ W(ν, S −1 ) .

We set the hyperparameters for the Wishart prior equal to ν = m + 1 and S = Im 

. As a robustness check, we ran a Normal-

Wishart prior with hyperparameters for the Normal prior equal to α = 0 and V = 10 · Imk (the results are available upon 

request). 

The general Horseshoe prior for each element of the vectorized matrix of coefficient, α, takes the form 

α j | (λα
j )

2 , (τ α)2 ∼ N (0 , (λα
j )

2 (τ α)2 ) , 

λα
j ∼ C+ (0 , 1) , 

τα ∼ C+ (0 , 1) , 

where C+ (·, ·) denotes the half-Cauchy distribution, λα
j 

is the local shrinkage parameter, and τα is the global shrinkage 

parameter, for j = 1 , . . . , k · m . For the posterior distribution of α, and the global and local shrinkage parameters λα
j 

and τα ,

we refer to Cross et al. (2020) and the algorithm proposed by Makalic and Schmidt (2016) . 

2.1. Loss-based hyperprior 

The usual assumption on the degrees of freedom of the Wishart distribution is to set the parameter to ν = m + 1 . In

this section, we derive the loss-based prior distribution for ν . The parameter is assumed discrete, and the objective method 

introduced in Villa and Walker (2015) is used to construct the prior. 
2
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Consider a Bayesian model with sampling distribution f (x | θ ) , characterized by the discrete parameter θ ∈ �, and prior

π(θ ) . A mass is assigned to each value of the parameter that is proportional to the Kullback–Leibler divergence between the

model defined by θ and the nearest one. Let us define f (x | θ ) as the true model not chosen and f (x | θ ′ ) denotes the nearest

model to the true model. The Kullback-Leibler divergence between f (x | θ ) and f (x | θ ′ ) represents the loss in information The

prior on θ is 

π(θ ) ∝ exp 

{
min 

θ ′ � = θ∈ �
KL

(
f (x | θ ) ‖ f (x | θ ′ )

)}
− 1 , (2) 

where KL
(

f (x | θ ) ‖ f (x | θ ′ )
)

r epr esents the Kullback–Leibler div erg ence between the models. A more detailed derivation of 

the prior in Eq. (2) is illustrated in Appendix A . 

To derive the prior for ν , the Kullback–Leibler divergence between two Wishart distributions that share the same scale 

matrix V and differ in the number of degrees of freedom, say Wν and Wν+ c , is required. The probability density function of

a Wishart distribution with parameters V and ν is given by: 

W (X | V, ν) = | X |(ν−m −1) / 2 exp (− Tr (V −1 X ) / 2) 

2
νm 
2 | V |ν/ 2 
m 

(ν/ 2) 
, 

where 
m 

(·) is the multivariate Gamma function, and Tr (·) is the trace function. Thus the Kullback–Leibler divergence be- 

tween two Wishart distributions is given by: 

KL (Wν‖ Wν+ c ) = log 

{ 


m 

(
ν+ c 

2 

)

m 

(
ν
2 

)
} 

− c 

2 

ψm 

(
ν

2 

)
, 

where ψm 

(·) is the multivariate digamma function defined as ψm 

(x ) = ∑ m 

i =1 ψ(x + (1 − i ) / 2) , ψ(x ) = 
′ (x ) / 
(x ) is the

digamma function, and c ∈ Z . As KL (Wν‖ Wν+ c ) is a convex function of c, and its global minimum is at c = 0 , the nearest

Wishart distribution to Wν will be Wν+ c for either c = −1 or c = 1 . Theorem 1 shows that the Kullback–Leibler divergence

between Wν and Wν+ c is minimized for c = 1 . 

Theorem 1. Consider two Wishart distributions, Wν and Wν+ c , with the same scale matrix and ν and ν + c degrees of freedom,

respectively, and c � = 0 is an integer. Then, the Kullback–Leibler divergence between Wν and Wν+ c is minimum for c = 1 . 

Proof. For c = 1 , the Kullback–Leibler divergence is 

KL (Wν‖ Wν+1 ) = log 
m 

(
ν + 1 

2 

)
− log 
m 

(
ν

2 

)
− 1 

2 

ψm 

(
ν

2 

)
, 

while for c = −1 , we obtain 

KL (Wν‖ Wν−1 ) = log 
m 

(
ν − 1 

2 

)
− log 
m 

(
ν

2 

)
+ 1 

2 

ψm 

(
ν

2 

)
. 

Taking the difference of the two divergences: 

KL (Wν‖ Wν+1 ) − KL (Wν‖ Wν−1 ) = log 
m 

(
ν + 1 

2 

)
− log 
m 

(
ν − 1 

2 

)
− ψm 

(
ν

2 

)
(3) 

= log 

[

(ν) 

2m 
(ν − m ) 

]
− ψm 

(
ν

2 

)
. (4) 

We will prove that Eq. (4) is always negative for any ν, m such that ν > m ≥ 2 . As ν > m , ν = m + k , for k = 1 , 2 , . . . , and

m ≥ 2 , thus we obtain that the minimum Kullback–Leibler divergence is achieved at c = 1 if 

log 

{

(m + k ) 

2m 
(k ) 

}
< ψm 

(
m + k 

2 

)
. (5) 

To prove the inequality in Eq. (5) , we rely on 

ψm +1 

(
ν + 1 

2 

)
= ψm 

(
ν

2 

)
+ ψ

(
ν + 1 

2 

)
, (6) 

and 

log 
(
x − 1 

2 

)
< ψ(x ) , (7) 

where Eq. (6) comes from the definition of the multivariate digamma function, and inequality (7) can be deduced from

log (x + 1 
2 ) − 1 

x < ψ(x ) < log (x + e−γ ) − 1 
x , ( Elezovic et al., 20 0 0 ) for x > 1 

2 and with γ equal to 0.57721 as the Euler-

Mascheroni constant. 
3
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Fig. 1. Loss-based prior distribution (unnormalised) for ν in dimensionality m = 3 (continuous line), m = 7 (dashed line), and m = 15 (dotted line). 

 

 

 

 

 

Assuming the inequality holds for m , considering m + 1 : 

log 

{

(m + 1 + k ) 

2m +1 
(k ) 

}
< ψm +1 

(
m + 1 + k 

2 

)

log 

{

(m + k )(m + k ) 

2m 
(k )2 

}
< ψm 

(
m + k 

2 

)
+ ψ

(
m + 1 + k 

2 

)

log 

{

(m + k ) 

2m 
(k ) 

}
+ log 

{
m + k 

2 

}
< ψm 

(
m + k 

2 

)
+ ψ

(
m + 1 + k 

2 

)
. 

Within the last inequality, we have log m + k 
2 < ψ

(
m +1+ k 

2 

)
as a consequence of the result in inequality (7) . Thus, if the in-

equality (5) holds for m , then it holds for m + 1 , and it holds for any k . The smallest possible value m is m = 2 , as 

log 

{

(2 + k ) 

22 
(k ) 

}
< ψ2 

(
2 + k 

2 

)

log 

{
(k + 1) k 

22 

}
< ψ

(
2 + k 

2 

)
+ ψ

(
1 + k 

2 

)
, 

where log 

(
k 
2 

)
< ψ

(
k +1 

2 

)
and log 

(
k +1 

2 

)
< ψ

(
k +2 

2 

)
due to inequality (7) . Thus, inequality (5) holds for m = 2 and, subse-

quently, it holds for any m . �

We can define the objective prior distribution for ν as 

π(ν) ∝


(

ν+1 
2 

)


(

ν+1 −m 

2 

)e− 1 
2 

∑ m 
i =1 ψ( ν+1 −i 

2 ) − 1 . (8) 

Figure 1 shows the loss-based prior for ν for three different values of m ∈ { 3 , 7 , 15 } , which represents the dimensionality

of the macroeconomic dataset that we analyse in Section 4.1 . Each line yields similar patterns and shows that the loss-based

prior probability distribution decreases as the degrees of freedom ν increases. 

2.2. Properness of the posterior for ν

Let us assume that we observe one random matrix �−1 from the Wishart W (S−1 
0 

, ν) , then, the likelihood function is

given by 

p(y | α, �) = (2 π)− mT 
2 | �|− T 

2 exp 

{
−1 

2 

[
y − (Im 

� X ) α
]′ (

�−1 
� IT 

)[
y − (Im 

� X ) α
]}

∝ | �|− T 
2 exp 

{
−1 

2 

Tr 
[
(Y − X A )′ (Y − X A )�−1 

]}
. (9) 

Using the loss-based prior for ν in Eq. (2) , we obtain the posterior distribution for the number of degrees of freedom as 

p(ν| �−1 ) ∝ π(ν) π
(
�−1 | ν, S−1 

0 

)

4
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∝
{ 



(

ν+1 
2 

)


(

ν+1 −m 

2 

)e− 1 
2 

∑ m 
i =1 ψ( ν+1 −i 

2 ) − 1

} { 

| �−1 |(ν−m −1) / 2 e( − Tr (S0 �
−1 ) / 2) 

2
νm 
2 | S−1 

0 
|ν/ 2 
m 

(
ν
2 

)
} 

. (10) 

Theorem 2 shows that the marginal posterior distribution for ν is proper. 

Theorem 2. The posterior distribution for the number of degrees of freedom ν in Eq. (10) is proper. 

Proof. We prove by using Abel’s test of convergence that 
∑ ∞ 

ν= m 

p(ν| �−1 ) < ∞ . The sequence { π(ν) } is bounded since

π(m ) > π(ν) > 0 and is also monotone (decreasing). We show that 
∑ ∞ 

ν= m 

π(�−1 | ν, S−1 
0 

) < ∞ by using the ratio test 

Rν = | �−1 |(ν−m ) / 2 

2
(ν+1) m 

2 | S−1 
0 

|(ν+1) / 2 
m 

(
ν+1 

2 

) ×
2

νm 
2 | S−1 

0 
|ν/ 2 
m 

(
ν
2 

)
| �−1 |(ν−m −1) / 2 

= | �−1 |1 / 2 
m 

( ν
2 
) 

2m/ 2 | S−1 
0 

|1 / 2 
m 

(
ν+1 

2 

)
=

| �−1 |1 / 2 

(

ν+1 −m 

2 

)
2m/ 2 | S−1 

0 
|1 / 2 


(
ν+1 

2 

) . 

Thus, we have 

lim 

ν→∞ 

{

( ν+1 −m 

2 
) 


( ν+1 
2 

) 

}
= 0 , 

so lim ν→∞ 

Rν = 0 ( Abramowitz and Stegun, 1972 ), therefore, the posterior distribution for ν is a proper distribution. �

2.3. Gibbs sampling algorithm 

Based on the proposed loss-based prior distribution, we provide a Gibbs sampler algorithm. The algorithm follows the 

typical steps observed in multivariate time series analysis (see, Koop and Korobilis, 2010; Follett and Yu, 2019 ), where the

new step relates to the full conditional posterior distribution of ν . We implement a Metropolis-Hastings algorithm since the 

posterior distribution of ν is not available in closed form. 

To summarize, the Gibbs sampler is based on the following steps: 

(i) Update the vectorized matrix of coefficients, α given the data y and �−1 by using the corrected triangular algorithm 

of Carriero et al. (2022) . 

(ii) Update the precision matrix �−1 given α, y and ν from a Wishart distribution. 

(iii) Update the local and global shrinkage parameters λα
j 

and τα given the vectorized matrix of coefficients, α, as in 

Makalic and Schmidt (2016) . 

(iv) Update the degree of freedom ν given �−1 by using a Metropolis-Hastings algorithm with a symmetric random walk 

proposal. 

For the model with fixed ν equal to 0 or m + 1 , the Gibbs sampler is based only on Steps (i)–(iii). 

3. Simulation study 

We compare the performance of our loss-based hyperprior using different simulation scenarios to the case of fixed ν
equal to 0 or m + 1 . We generate the data from a VAR model with one lag, where the elements of the matrix of coefficients

are drawn from a U(−0 . 95 , 0 . 95) distribution and then stationarity conditions are checked. We consider small, medium,

and large numbers of response variables, where m is equal to 5, 10, and 20, respectively, and time, T , is equal to 30 or

100. We have considered different combinations for the choice of the degrees of freedom when generating the data: for 

each dimension m , we have chosen ν equal to { 5 , 10 , 15 } for m = 5 , { 10 , 15 , 20 } for m = 10 , and { 20 , 24 , 26 } for m = 20 . In

Appendix B , we generate data as in the macroeconomic application with a time dimension equal to 240 and the number

of response variables equal to 3, 7, and 15. The choice of ν is { 3 , 5 , 7 } for m = 3 ; { 7 , 10 , 13 } for m = 7 , and { 15 , 20 , 25 } for

m = 15 . 

For the comparative approaches, we use a flat prior as in Uhlig (2005) , or we treat the degrees of freedom as fixed at

ν = m + 1 . We assume an identity matrix for the prior scale matrix of the Wishart distribution and a Horseshoe prior for

the matrix of coefficients since the interest of our simulation experiment is in the evaluation of the covariance matrix. 

For each dataset, and each posterior sample, we estimate the posterior means of the vectorized matrix of coefficients 

and of the covariance matrix �. We compute the Root Mean Absolute Deviation (RMAD) between the posterior means and 

the true parameter values as 

RMAD =
[

1 

N 

N ∑ 

i =1 

| θ − ˆ θ |
]

1 
2 , 
5
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Fig. 2. Monte Carlo Simulation - Root Mean Absolute Deviations (RMAD) of the covariance matrices. These distributions are obtained by simulating 250 

VAR(1) with dimension m = 5 and sample size T = 30 . Results are reported for data generated from a Wishart distribution with ν = 5 (left), ν = 10 (center), 

and ν = 15 (right). 

Fig. 3. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 10 and 

sample size T = 30 . Results are reported for data generated from a Wishart distribution with ν = 10 (left), ν = 15 (center), and ν = 20 (right). 

Table 1 

Monte Carlo Simulation - RMAD of the impulse response functions (IRF) for four horizons h = 1 , 3 , 5 and 7 by simulating 250 

VAR(1) with dimension m = 5 and sample size T = 30 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns 

“Fixed ν = m + 1 ” and “Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 5 ν = 10 ν = 15 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.570 0.995 0.994 0.337 0.999 0.995 0.303 1.00 0.998 

3 0.640 1.007 1.007 0.443 0.978 0.932 0.489 0.978 0.888 

5 0.726 0.971 0.961 0.935 0.935 0.791 1.320 0.944 0.730 

7 1.278 0.915 0.895 2.422 0.896 0.691 4.08 0.917 0.615 

 

 

 

 

 

 

 

 

 

 

 

 

where θ is the matrix of coefficients or the covariance matrix. The number of parameters estimated, N is equal to m2 for

the covariance matrix and depends on the lags for the matrix of coefficients. 

The Gibbs sampler is run for 60 0 0 iterations with a burn-in of 10 0 0 iterations and repeated 250 times. For each scenario,

we present three boxplots of RMAD corresponding to degrees of freedom being fixed to 0 and m + 1 , and the loss-based

prior. Figure 2 shows the results for the RMAD for the case with m = 5 and T = 30 when the data are generated with ν = 5

(left panel), with ν = 10 (center), and with ν = 15 (right). 

From Figure 2 , we observe that differences in RMAD between the alternative priors increase when increasing ν . The left

panel shows no difference between the three cases, except for the outliers, which are smaller for our proposed hyperprior. 

Increasing ν to 10 and 15 leads to smaller RMAD when our hyperprior is used. 

As a second measure of evaluation of the proposed prior, in Table 1 we provide the RMAD for the orthogonal (Choleski)

impulse response function evaluated at four different horizons ( h = 1 , 3 , 5 and 7). In particular, the column called “Fixed

ν = 0 ” refers to the Uhlig (2005) flat prior and it is considered as the benchmark, and the other two columns (called “Fixed

ν = m + 1 ” and “Hyperprior”) provide the ratio with respect to the benchmark. If a value is greater than 1, it means that

the flat prior outperforms the other priors, while if the value is lower than 1, the flat prior shows poorer performance. In

Table 1 , increasing ν from 5 to 15 leads to strong improvements of around 12% at horizon 3 and 27% at horizon 5 for the

proposed loss-based prior against the other priors. When ν = 5 , the differences between the hyperprior and the flat prior

are small except for horizon 5 and 7, while for ν = 10 , the improvement ranges from 7% at horizon 3 to 31% at horizon 7. 
6
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Fig. 4. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 20 and 

sample size T = 30 . Results are reported for data generated from a Wishart distribution with ν = 20 (left), ν = 24 (center), and ν = 26 (right). 

Table 2 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension 

m = 10 and sample size T = 30 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and 

“Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 10 ν = 15 ν = 20 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.649 0.996 0.996 0.382 0.999 0.999 0.328 1.00 1.000 

3 0.636 1.028 1.029 0.463 0.972 0.951 0.474 0.97 0.930 

5 1.247 0.918 0.911 1.51 0.903 0.823 1.841 0.914 0.798 

7 3.953 0.863 0.853 5.687 0.855 0.741 7.895 0.863 0.699 

Table 3 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension m = 20 

and sample size T = 30 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and “Hyperprior”

provide the ratio between the referred priors and the flat prior. 

Horizon ν = 20 ν = 24 ν = 26 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.664 1.003 1.003 0.414 1.002 1.002 0.382 1.001 1.001 

3 0.643 1.006 1.007 0.509 0.904 0.895 0.511 0.89 0.878 

5 2.447 0.804 0.805 2.686 0.793 0.766 2.839 0.793 0.759 

7 12.920 0.734 0.735 15.548 0.718 0.684 17.127 0.719 0.671 

 

 

 

 

 

 

 

 

 

 

These results are also confirmed in high dimensional cases as shown in Figures 3 and 4 for the ten-dimensional and

twenty-dimensional cases, respectively. In Figure 3 , we compare our loss-based hyperprior with the fixed ν equal to 0 and

m + 1 for the data generated from a Wishart with degrees of freedom equal to 10 (left panel), 15 (center), and 20 (right).

In this scenario, the results demonstrate that our loss-based prior is an improvement over fixed ν for the case of 15 and 20

degrees of freedom, while for ν equal to 10, we have small differences between the three prior representations. 

Table 2 provides the RMAD of the IRFs for different horizons for the scenario with m = 10 . These results confirm con-

clusions obtained from Figure 3 , where our hyperprior outperforms alternatives when degrees of freedom are increased. 

For ν equal to 10, the loss-based prior shows strong differences when the horizons increase. For the medium and large 

cases, the loss-based prior outperforms the other two priors with fixed ν of around 5 − 7% at horizon 3 and 25 − 30% at 

horizon 7. 

For the twenty-dimensional case, Figure 4 reports the results for data simulated from a Wishart with 20 (left panel),

24 (center), and 26 (right) degrees of freedom with T equal to 30. Our loss-based prior and the fixed ν = m + 1 prior

behave similarly for the left and center panels, with both outperforming the flat prior. When data are generated from a

Wishart distribution with 26 degrees of freedom (right panel), our loss-based prior outperforms the fixed ν = m + 1 prior.

Table 3 provides the RMAD of the IRFs for the dimensionality m = 20 and it confirms the findings from Figure 4 . Hence, the

improvements are substantial when degrees of freedom and horizons are increased. 

These results are confirmed when T is equal to both 100 and 240 as shown in Appendix B . 
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4. Case study 1: Forecasting macroeconomic data 

4.1. Data description 

The FRED data are a set of key US macroeconomic quantities sampled at quarterly frequency from the second quarter of

1959 to the third quarter of 2019. All variables are transformed to be stationary using the approach of McCracken and Ng

(2020) and three different sets of variables are used to estimate a small, medium, and large-scale VAR model. 

The small-scale VAR model considers three variables, which represent inflation, the Gross Domestic Product (GDP), and 

the target interest rate. In particular, the GDP is measured in Billions of Dollars. Inflation is measured by the GDP deflator,

which computes the changes in prices for all goods and services produced in the economy and differs from the Consumer

Price Index (CPI) because it is not based on a fixed basket of goods. The final variable is the effective Federal Funds Rate

(FEDFUNDS), which is the target interest rate set by the Federal Open Market Committee at which commercial banks borrow 

and lend their excess reserves to each other overnight. 

For the medium-scale model, we additionally consider consumption, investment, and production variables. The real per- 

sonal consumption expenditure (PCECC96) is a measure of consumer or household spending for a period and it is used to

construct the PCE Price index, which measures the price changes in consumer goods and services in the US economy. Real

gross private domestic investment (GPDIC1) is a component of the GDP and measures the quantity of money invested by 

private businesses in the domestic economy. The average weekly hours of production and nonsupervisory employees for the 

manufacturing sector (AWHMAN) relate to the average hours per worker for which pay was received, and it differs from the

standard and scheduled hours. 

The large-scale model additionally uses the macroeconomic variables related to GDP, inflation, production, consumption, 

and investment jointly with private investment in the residential sector (PRFIx), consumption (PCECTPI), and common stock 

index based on the S&P 500 index (SP500). The Industrial Production Index (INDPRO) measures the level of production and 

capacity in the manufacturing, mining, electric, and gas industries relative to 2012. Capacity Utilization (CUMFNS) captures 

the manufacturing and production capabilities that are being used by the economy at any given time, relating the output 

produced with the given resources and the potential output that can be produced if capacity is fully used. Lastly, CPI for All

Urban Consumers (CPIAUCSL) measures the average change over time in the prices paid by consumers for a market basket 

of consumer goods and services. 

4.2. Forecasting results 

We evaluate the performance of our loss-based hyperprior with respect to the fixed ν prior by forecasting one-quarter 

ahead ( h = 1 ). We compare the predictive ability of the three different priors by using point and density forecasting mea-

sures. To evaluate the forecasting capability, we compute the root mean square error (RMSE), given by 

RMSEi =
[

1 

T − R 

T −1 ∑ 

t= R 
( ˆ yi,t+1 − yi,t+1 )

2 

]
1 
2 , (11) 

where R is the length of the rolling window, yi,t+1 is the observation for the i -th variable, and ˆ yi,t+1 is the one-step ahead

prediction for the i -th variable. 

We assess the density forecasting using the continuous ranked probability score (CRPS) introduced by Gneiting and 

Raftery (2007) and Gneiting and Ranjan (2011) . The use of the CRPS has some advantages with respect to the log score

since it weights values from the predictive density that are close to the outcome, and it is less sensitive to outlier outcomes.

The CRPS is defined such that a lower value indicates better performance, and is given by 

CRP St (yt+1 ) = 

∫ + ∞ 

−∞ 

(F (z) − 1 (yt+1 ≤ z))2 dz 

= E f | Yt+1 − yt+1 | − 0 . 5 E f | Yt+1 − Y ′ 
t+1 | , 

(12) 

where F (·) is the cumulative distribution function associated with the posterior predictive density, f , 1 (yt+1 ≤ z) is an

indicator function taking the value 1 if yt+1 ≤ z and 0 otherwise, and Yt+1 , Y
′ 

t+1 
are independent random draws from the 

posterior predictive density. 

In addition, we apply Diebold-Mariano t tests ( Diebold and Mariano, 1995 ) for equality of the average loss (with loss

defined as the RMSE or CRPS) to compare the predictions of alternative models with the benchmark. The differences in 

accuracy that are statistically different from zero are denoted with one, two, or three asterisks, corresponding to significance 

levels of 10% , 5% , and 1% , respectively. 

The small-scale VAR only includes three variables, the medium-scale VAR seven variables, and the large-scale VAR 15 

variables. Given the quarterly frequency of our data, we include p = 5 lags for all the models considered, and we fit the

models using the MCMC algorithm with 60 0 0 iterations after discarding the first 10 0 0 iterations as burn-in. For forecasting,

we use a rolling window size of 60 quarters. 

Figure 5 shows the results of the estimated degrees of freedom jointly with the 95% highest posterior density (HPD) and

the degrees of freedom used in the Horseshoe-Wishart scenario with fixed ν = m + 1 (in red). 

From Figure 5 , we observe strong changes in the estimated degrees of freedom across time. The left panel results indicate

an increase in the degrees of freedom after 20 0 0 and a fall around 2009, strongly linked to the Lehman Brothers failure.
8
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Fig. 5. Estimated degrees of freedom (solid line) for the loss-based hyperprior by using a rolling window of 60 quarters with the 95% Highest Posterior 

Density (dotted lines) and the case with ν = m + 1 , where m ∈ { 3 , 7 , 15 } (red dashed line) for the macroeconomic data. The left panel is for the small-case; 

the center for the medium-scale and the right for the large-scale. 

Table 4 

RMSE (Columns 2-4) and average CRPS (Columns 5-7) for the small-case VAR for each prior. 

Column “Fixed ν = 0 ” provides the RMSE and the average CRPS; Columns “Fixed ν = m + 1 ”

and “Hyperprior” provide the ratio between the referred prior and the flat prior. ∗∗∗ , ∗∗ and 
∗ indicate ratios are significantly different from 1 at the 1% , 5% and 10% significance level 

according to the Diebold-Mariano test. 

Variable RMSE average CRPS 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 

GDPC1 0.0092 0.9459 0.9116 ∗∗∗ 0.0513 0.9653 ∗∗∗ 0.8483 ∗∗∗

GDPCTPI 0.0044 0.9484 0.9442 ∗∗ 0.0516 0.9616 ∗∗∗ 0.8423 ∗∗∗

FEDFUNDS 1.0206 0.996 1.0012 0.4060 0.9880 ∗∗∗ 0.9713 ∗∗∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results are confirmed also in the medium-scale VAR model (center panel) with an increase also observed in the 

last period. These changes are less evident in the large-scale VAR model (right panel) but provide clear support for not

fixing ν . The identified changes in degrees of freedom over time can be associated with the uncertainty (see, Bloom, 2014) ,

illustrating countercyclical fluctuations during recessionary periods. 

Table 4 shows the results for the small-case VAR for the RMSE (left panel) and the CRPS (right panel). The column

“Fixed ν = 0 ”, which is the benchmark, reports the RMSE and the average CRPS, while the columns “Fixed ν = m + 1 ” and

“Hyperprior”, provide the ratio between each prior and the flat prior. When the ratio is less than 1, it indicates that the

model with loss-based hyperprior or with fixed ν = m + 1 outperforms the benchmark model with fixed ν = 0 . In the point

forecasting measure, the benchmark model outperforms our hyperprior for the FEDFUNDS by a small amount. On the other 

hand, for the GDP, our hyperprior leads to an improvement of around 9% with respect to the benchmark. This result is

confirmed for the average CRPS, where our loss-based hyperprior outperforms the benchmark model by 15% for real GDP 

growth and the GDP deflator, and by 3% for FEDFUNDS. By using the Diebold-Mariano test, we show evidence of statistical

significance for all variables when density forecasting is considered, while for point forecasting, the results are statistically 

significant for GDP and GDP deflator. In addition, our loss-based prior shows improved density forecasting performance 

relative to the alternative fixed ν = m + 1 prior. 

For the 7-variable model, Table 5 presents the point and density measures, and similar results can be observed for both

forecasting performance measures. The main difference relates to the GDPCTPI, where the hyperprior approach outperforms 

the benchmark by about 11% in point forecasting, whilst for the FEDFUNDS, there is little difference. Moreover, we observe 

that the hyperprior model outperforms the other models for the PCECC96 by about 11% , while for the GDP both the hyper-

prior and the model with fixed ν = m + 1 (with m = 7 ) demonstrate around 7% and 9% improvement. As in the small-scale

VAR, the average CRPS shows better results with respect to the benchmark model across the 7 variables. In particular, for

the GDP, GDP deflator, and the FEDFUNDS, the hyperprior model outperforms the benchmark by 4% up to 16% . This is also

confirmed for the other variables analysed and from the Diebold-Mariano test for the density forecasting measures. 

The results for the large-scale VAR with 15 variables are presented in Table 6 . For point forecasting, the three main

variables of interest show similar improvements to the one in the medium-scale VAR. In fact, the loss-based hyperprior 

improves with respect to the benchmark by about 12% for the GDP and 28% for its deflator, while for the FEDFUNDS the

situation is similar. The average CRPS demonstrates that the improvement is stronger for every variable, particularly for 

the FEDFUNDS. If we look at all 15 variables analysed, the loss-based hyperprior model always outperforms the bench- 

mark in a density forecasting scenario, which is also highlighted by the Diebold-Mariano test. These results are confirmed 

when looking at the prior with fixed ν equal to m + 1 , where our loss-based prior outperforms the other prior in density

forecasting. 
9
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Table 5 

RMSE (Columns 2-4) and average CRPS (Columns 5-7) for the medium-case VAR for each prior. Col- 

umn “Fixed ν = 0 ” provides the RMSE and the average CRPS; Columns “Fixed ν = m + 1 ” and “Hy- 

perprior” provide the ratio between the referred prior and the flat prior. ∗∗∗ , ∗∗ and ∗ indicate ratios 

are significantly different from 1 at the 1% , 5% and 10% significance level according to the Diebold- 

Mariano test. 

Variable RMSE average CRPS 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 

GDPC1 0.0095 0.9081 ∗∗ 0.9284 ∗∗ 0.0823 0.9304 ∗∗∗ 0.8396 ∗∗∗

GDPCTPI 0.0060 0.9155 ∗ 0.8888 ∗∗ 0.0834 0.9252 ∗∗∗ 0.8368 ∗∗∗

FEDFUNDS 1.0048 1.0005 1.0002 0.4165 0.9821 ∗∗∗ 0.9621 ∗∗∗

PCECC96 0.0082 0.9796 0.8926 ∗∗ 0.0837 0.9288 ∗∗∗ 0.8335 ∗∗∗

GPDIC1 0.0342 0.9868 1.0029 0.0866 0.9300 ∗∗∗ 0.8435 ∗∗∗

AWHMAN 0.2470 1.0003 0.9995 0.1545 0.9641 ∗∗∗ 0.9308 ∗∗∗

CES2000000008x 0.0086 0.8936 0.9486 0.0859 0.9268 ∗∗∗ 0.8336 ∗∗∗

Table 6 

RMSE (Columns 2-4) and average CRPS (Columns 5-7) for the large-case VAR for each prior. Column 

“Fixed ν = 0 ” provides the RMSE and the average CRPS; Columns “Fixed ν = m + 1 ” and “Hyperprior”

provide the ratio between the referred prior and the flat prior. ∗∗∗ , ∗∗ and ∗ indicate ratios are sig- 

nificantly different from 1 at the 1% , 5% and 10% significance level according to the Diebold-Mariano 

test. 

Variable RMSE average CRPS 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 

GDPC1 0.0093 0.9105 0.8833 ∗∗ 0.0905 0.8542 ∗∗∗ 0.7783 ∗∗∗

GDPCTPI 0.0074 0.8672 0.7153 ∗∗∗ 0.0913 0.8520 ∗∗∗ 0.7747 ∗∗∗

FEDFUNDS 0.9441 1.0057 1.0065 0.4138 0.9613 ∗∗∗ 0.9454 ∗∗∗

PCECC96 0.0085 0.9471 0.9442 ∗∗ 0.0920 0.8502 ∗∗∗ 0.7781 ∗∗∗

GPDIC1 0.0324 1.0003 1.0185 0.0945 0.8529 ∗∗∗ 0.7827 ∗∗∗

AWHMAN 0.2484 0.9978 0.9892 ∗ 0.1616 0.9286 ∗∗∗ 0.8957 ∗∗∗

CES2000000008x 0.0091 0.8400 ∗∗∗ 0.8939 ∗∗ 0.0939 0.8493 ∗∗∗ 0.7753 ∗∗∗

PRFIx 0.0407 0.9914 0.9930 0.0970 0.8520 ∗∗∗ 0.7813 ∗∗∗

INDPRO 0.0146 0.8374 ∗∗∗ 0.9306 ∗∗∗ 0.0953 0.8501 ∗∗∗ 0.7770 ∗∗∗

CUMFNS 1.0338 0.9915 0.9844 0.5651 0.9586 ∗∗∗ 0.9435 ∗∗∗

SRVPRD 0.0081 0.9427 0.9696 0.0965 0.8458 ∗∗∗ 0.7727 ∗∗∗

PCECTPI 0.0104 0.7792 ∗∗∗ 0.6835 ∗∗∗ 0.0972 0.8484 ∗∗∗ 0.7703 ∗∗∗

GPDICTPI 0.0094 0.9068 ∗∗ 0.8185 ∗∗∗ 0.0980 0.8435 ∗∗∗ 0.7703 ∗∗∗

CPIAUCSL 0.0111 0.9165 0.8336 ∗∗ 0.0992 0.8452 ∗∗∗ 0.7668 ∗∗∗

SP500 0.0679 0.9913 ∗∗ 1.0188 0.1065 0.8517 ∗∗∗ 0.7830 ∗∗∗

 

 

 

 

 

 

 

 

 

5. Case study 2: Dengue data 

The second case study analyses the Google Dengue Trend (GDT) dataset, which tracks the Dengue incidence based on in- 

ternet search patterns and clusters weekly queries for key terms related to the disease. We use GDT data from January 2011

to December 2014 for Argentina, Bolivia, Brazil, India, Indonesia, Mexico, Philippines, Singapore, Thailand, and Venezuela. 

Following Davis et al. (2016) , we examine a VAR model with two lags, and we run a forecasting exercise with a rolling

window of 104 weekly observations. 

In Figure 6 we present the posterior mean of the degrees of freedom evaluated using rolling window estimation from the

model using our hyperprior (solid black line), the 95% HPD (dotted line), and the fixed values of ν equal to 11. The results

indicate that the estimated degrees of freedom are often considerably larger than the fixed value of 11. We observe some

changes in values at the beginning of the sample and then a decrease before it remains relatively stationary. 

Table 7 shows the forecasting results for each country. For the RMSE, the proposed loss-based hyperprior leads to small 

improvements with respect to the benchmark prior and the other fixed prior for Bolivia, India, and Mexico, while for Brazil

and Philippines, the model with fixed prior equal to ν = m + 1 performs better with respect to the benchmark and slightly

better than the proposed loss-based prior. The average CRPS indicates strong improvement against the benchmark model and 

the fixed ν equal to m + 1 prior for all countries. In particular, the proposed loss-based prior outperforms the benchmark

by 5% for India, Philippines, and Brazil, and by 3% for Argentina, Indonesia, Thailand, and Venezuela. These results provide

evidence of strong significance from density forecasting for all countries as shown by the Diebold-Mariano test. The Diebold- 

Mariano test gives statistically significant results for only Bolivia, Brazil, and India. 
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Fig. 6. Estimated degrees of freedom (solid line) for the loss-based hyperprior by using a rolling window of 104 weekly data with the 95% Highest Posterior 

Density (dotted lines) and the case with ν = m + 1 , where m = 10 (red dashed line) for the Dengue data. 

Table 7 

RMSE (Columns 2-4) and average CRPS (Columns 5-7) for the Dengue Data for each prior. 

Column “Fixed ν = 0 ” provides the RMSE and the average CRPS; Columns “Fixed ν = m + 1 ”

and “Hyperprior” provide the ratio between the referred prior and the flat prior. ∗∗∗ , ∗∗ and 
∗ indicate ratios are significantly different from 1 at the 1% , 5% and 10% significance level 

according to the Diebold-Mariano test. 

Variable RMSE average CRPS 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 

Argentina 0.3475 1.0033 1.0026 0.1933 0.9864 ∗∗∗ 0.9761 ∗∗∗

Bolivia 0.2529 0.9982 0.9972 ∗ 0.1682 0.9711 ∗∗∗ 0.9601 ∗∗∗

Brazil 0.2389 0.9894 ∗∗ 0.9899 ∗∗∗ 0.1482 0.9618 ∗∗∗ 0.9529 ∗∗∗

India 0.2142 0.9912 ∗∗ 0.9905 ∗∗ 0.1607 0.9673 ∗∗∗ 0.9494 ∗∗∗

Indonesia 0.2696 1.0097 1.0079 0.1651 0.9787 ∗∗∗ 0.9690 ∗∗∗

Mexico 0.2425 0.9997 0.9986 0.1547 0.9749 ∗∗∗ 0.9593 ∗∗∗

Philippines 0.2513 0.9905 ∗∗ 0.9928 0.1532 0.9614 ∗∗∗ 0.9488 ∗∗∗

Singapore 0.7310 1.0068 1.0083 0.3501 0.9923 ∗ 0.9912 ∗

Thailand 0.3731 1.0033 1.0028 0.2010 0.9789 ∗∗∗ 0.9710 ∗∗∗

Venezuela 0.2563 1.0055 1.0019 0.1594 0.9831 ∗∗∗ 0.9692 ∗∗∗

 

 

 

 

 

 

 

 

6. Discussion 

We have presented a novel method to perform forecasting in VAR models, where a hyperprior is set on the number

of degrees of freedom of the covariance matrix for the global-local-shrinkage-Wishart prior. The proposed loss-based prior 

takes into consideration only the intrinsic properties of the model; that is, the sampling distribution and the priors. The 

method has been compared with what is currently used in the literature when no information about the parameter values 

of the Horseshoe-Wishart prior is available. 

The analysis of simulated data has shown that, when the true value of ν is close to m + 1 , both approaches perform

similarly. While, as one would expect, the farther the true ν is from m + 1 , the better the performance of the proposed

prior. To illustrate in practice the advantage of having a loss-based prior on ν , we have analysed its performance in terms

of prediction on two datasets. One concerns macroeconomic variables from the FRED dataset, and the other is the analysis 

of infection variables from the GDT dataset. For both datasets, the proposed method outperforms the one currently used, in 

particular for density forecasting. 

In support of our results, we have estimated the number of degrees of freedom using rolling windows. This analysis 

has shown that the data contains information for a value of ν always above the value of m + 1 , which justifies the use

of the proposed method. As the data appears to have been generated by a Bayesian model with a relatively large number

of degrees of freedom, by setting ν = m + 1 , one impacts the predictive performance of the model. On the other hand,

by assuming uncertainty of the value of ν by assigning an objective prior to it, the model is free to “choose” the most

appropriate value of the parameter and, even considering the extra uncertainty that this implies, the results are better than 

the previous method. 

There are at least two possible research directions to further extend this work. Given the increasing importance of fore- 

casting macroeconomic variables on policymakers’ agendas, one may consider incorporating time-varying volatility, such as 

stochastic volatility, into the VAR framework when estimating the degrees of freedom through a loss-based prior (see, e.g., 

Clark and Ravazzolo, 2015; Kastner and Huber, 2020 ). Additionally, another interesting avenue is to explore the application 
11
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of the proposed prior in analyzing matrix VAR in the form of the Wishart Autoregressive process of multivariate stochastic 

volatility ( Gourieroux et al., 2009 ). 
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Appendix A. Loss-based prior 

In this section we illustrate the derivation of the loss-based prior in Eq. (2) . 

Consider a probability distribution f (x | θ ) , where θ ∈ � is an unknown discrete parameter. The prior mass to be put on θ
is derived by considering what is lost if the model f (x | θ ) is removed and it is the true one. The approach associates a worth

to each parameter value measured by applying a result available in Berk (1966) which states that, if a model is misspecified

(i.e. if θ is removed and it is the true value) then the posterior distribution asymptotically accumulates at the value θ ′ 
such that the Kullback–Leibler divergence ( Kullback and Leibler, 1951 ) KL ( f (·| θ ) ‖ f (·| θ ′ )) is minimised. That is, if the true

model is removed, the estimation process will asymptotically indicate as the correct model the nearest one, in terms of the

Kullback–Leibler divergence, i.e., the model which is the most similar to the true one ( Bernardo and Smith, 1994 ). To link

the worth of each parameter value to the prior probability, we use the self-information loss function. This particular type of

loss function assigns a loss to a probability statement and, say we have defined prior π(θ ) , its form is − log π(θ ) . More

information about the self-information loss function can be found, for example, in Merhav and Feder (1998) . 

To formally derive the prior for θ , we can proceed in terms of utilities, instead of losses; this approach allows for a clearer

exposition and does not impact the logic behind the prior derivation. Let us then write utility u1 (θ ) = log π(θ ) . We then let

the minimum divergence from θ be represented by utility u2 (θ ) . We naturally want u1 (θ ) and u2 (θ ) to be matching utility

functions; though as it stands −∞ < u1 ≤ 0 and 0 ≤ u2 < ∞ , and we want u1 = −∞ when u2 = 0 . The scales are matched

by taking exponential transformations, so exp (u1 ) and exp (u2 ) − 1 are on the same scale and we obtain 

π(θ ) = eu1 (θ ) ∝ eu2 (θ ) − 1 , 

yielding the loss-based prior for θ in Eq. (2) . 

Appendix B. Further simulation results 

B1. Case T = 100 

In this section, we provide further simulation results. We report the root mean absolute deviation (RMAD) for the case 

with T = 100 . In particular, Figure B.7 shows the RMAD for the covariance matrix for the five-dimensional case, when

the data are simulated from a Wishart distribution with degrees of freedom equal to 5 (left), 10 (center), and 15 (right).

Table B.8 provides the RMAD for the impulse response function at four different horizons h = 1 , 3 , 5 and 7. 

In Figure B.8 , we show results for a ten-dimensional case for the matrix of covariance and with data generated with 10

(left), 15 (center), and 20 (right) degrees of freedom. Table B.9 shows the IRF for the same dataset for four different horizons.

In conclusion, Figure B.9 shows the results for the twenty-dimensional case, where the data are generated from a Wishart 

with 20 (left), 24 (center), and 26 (right) degrees of freedom. Table B.10 shows the RMAD for the impulse response functions

at four horizons. 

As stated in the paper, the results show improvements in the use of our loss-based prior with respect to a fixed ν prior

when the data are generated with a higher than the dimension degrees of freedom. 
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Fig. B7. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 5 and 

sample size T = 100 . Results are reported for data generated from a Wishart distribution with ν = 5 (left), ν = 10 (center), and ν = 15 (right). 

Fig. B8. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 10 

and sample size T = 100 . Results are reported for data generated from a Wishart distribution with ν = 10 (left), ν = 15 (center), and ν = 20 (right). 

Table B8 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension 

m = 5 and sample size T = 100 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and 

“Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 5 ν = 10 ν = 15 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.411 0.996 0.995 0.283 0.998 0.989 0.272 0.999 0.990 

3 0.486 1.001 1.001 0.415 0.988 0.982 0.316 0.994 0.933 

5 0.424 0.996 0.994 0.331 0.986 0.918 0.438 0.980 0.805 

7 0.303 0.997 0.982 0.440 0.972 0.841 0.739 0.967 0.694 

Table B9 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension 

m = 10 and sample size T = 100 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and 

“Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 10 ν = 15 ν = 20 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.540 0.996 0.993 0.346 0.997 0.990 0.309 0.999 0.992 

3 0.588 1.006 1.007 0.342 0.993 0.976 0.342 0.989 0.945 

5 0.631 0.989 0.982 0.524 0.959 0.857 0.686 0.958 0.786 

7 0.996 0.960 0.936 1.096 0.933 0.768 1.711 0.938 0.689 

 

 

B2. Case T = 240 

As a third simulated experiment, we report the RMAD for the case with T = 240 . Figure B.10 shows the RMAD for the

covariance matrix for the three-dimensional case when the data are generated from a Wishart distribution with degrees of 

freedom equal to 3 (left), 5 (center), and 7 (right). Table B.11 shows the RMAD for the impulse response variable at four

different horizons h = 1 , 3 , 5 , and 7. 
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Fig. B9. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 20 

and sample size T = 100 . Results are reported for data generated from a Wishart distribution with ν = 20 (left), ν = 24 (center), and ν = 26 (right). 

Fig. B10. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 3 

and sample size T = 240 . Results are reported for data generated from a Wishart distribution with ν = 3 (left), ν = 5 (center), and ν = 7 (right). 

Table B10 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension 

m = 20 and sample size T = 100 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and 

“Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 20 ν = 24 ν = 26 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.620 0.996 0.995 0.401 0.997 0.995 0.368 0.998 0.995 

3 0.644 1.021 1.025 0.391 0.989 0.982 0.375 0.986 0.971 

5 1.193 0.960 0.951 1.061 0.928 0.868 1.137 0.932 0.858 

7 3.809 0.923 0.901 3.789 0.893 0.807 4.247 0.899 0.791 

Table B11 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension 

m = 3 and sample size T = 240 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and 

“Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 3 ν = 5 ν = 7 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.215 0.999 0.999 0.175 0.999 0.997 0.175 0.999 0.996 

3 0.299 1.000 1.001 0.228 1.000 1.000 0.208 1.000 0.997 

5 0.240 1.000 1.001 0.193 0.999 0.998 0.185 0.999 0.992 

7 0.202 0.999 1.000 0.174 0.998 0.995 0.171 0.998 0.982 

 

 

In Figure B.11 , we study the seven-dimensional case for the matrix of covariances and data generated with 7 (left), 10

(center), and 13 (right) degrees of freedom. The RMAD of the impulse response functions for four different horizons are 

reported in Table B.12 . 

In conclusion, Figure B.12 shows the results for the fifteen-dimensional case, where the data are generated from a Wishart 

with 15 (left); 20 (center), and 25 (right) degrees of freedom. Table B.13 shows the RMAD for the impulse response function

for four different horizons. 
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Fig. B11. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 7 

and sample size T = 240 . Results are reported for data generated from a Wishart distribution with ν = 7 (left), ν = 10 (center), and ν = 13 (right). 

Fig. B12. Monte Carlo Simulation - RMAD of the covariance matrices. These distributions are obtained by simulating 250 VAR(1) with dimension m = 15 

and sample size T = 240 . Results are reported for data generated from a Wishart distribution with ν = 15 (left), ν = 20 (center), and ν = 25 (right). 

Table B12 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension 

m = 7 and sample size T = 240 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and 

“Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 7 ν = 10 ν = 13 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.474 0.998 0.996 0.273 0.998 0.990 0.262 0.9990 0.988 

3 0.582 1.001 1.000 0.275 0.999 0.997 0.252 0.999 0.991 

5 0.516 0.999 0.997 0.245 0.997 0.987 0.238 0.995 0.966 

7 0.521 0.995 0.995 0.242 0.993 0.966 0.257 0.989 0.924 

Table B13 

Monte Carlo Simulation - RMAD of the IRF for four horizons h = 1 , 3 , 5 and 7 by simulating 250 VAR(1) with dimension 

m = 15 and sample size T = 240 . Column “Fixed ν = 0 ” provides the RMAD of the IRF, while Columns “Fixed ν = m + 1 ” and 

“Hyperprior” provide the ratio between the referred priors and the flat prior. 

Horizon ν = 15 ν = 20 ν = 25 

Fixed Fixed Hyperprior Fixed Fixed Hyperprior Fixed Fixed Hyperprior 

ν = 0 ν = m + 1 ν = 0 ν = m + 1 ν = 0 ν = m + 1 

1 0.567 0.997 0.994 0.337 0.997 0.988 0.302 0.998 0.988 

3 0.666 1.004 1.007 0.310 0.999 0.993 0.285 0.995 0.973 

5 0.691 0.994 0.993 0.354 0.981 0.917 0.418 0.972 0.835 

7 1.069 0.975 0.960 0.588 0.958 0.820 0.855 0.952 0.727 

 

 

 

Appendix C. Convergence Diagnostics 

In this section of the appendix, we describe the converge analysis we have performed for the different simulation exper- 

iments. 

The convergence analysis has been done using the R Coda Package ( Plummer et al., 2006 ). In particular, we provide the

chain of the degrees of freedom, the Geweke convergence test, the Gelman-Rubin’s plot, and test statistics. Figure C.13 pro-

vides the chain of the degrees of freedom when T = 30 and m is equal to 5 (left), 10 (center), and 20 (right). As shown
15
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Fig. C13. Posterior Chain of the estimated degrees of freedom when T = 30 and m is equal to 5 (left); 10 (center), and 20 (right). 

Fig. C14. GelmanRubin plot for the estimated degrees of freedom when T = 30 and m is equal to 5 (left); 10 (center), and 20 (right) when no burn-in 

iterations are discarded. 

Table C13 

Geweke’s test statistics for the posterior chain of the degrees of free- 

dom for different simulation experiments when T = 30 . 

Case: Simulated data Test 

m = 5 0.6713 

m = 10 0.9306 

m = 20 -0.8532 

 

 

 

 

 

 

 

in the Figure, we are able to reach convergence of the chain over the number of iterations. Table C.13 reports the results

of Geweke’s convergence test ( Geweke, 1992 ) for the different simulation experiments. The test statistics show no conver-

gence issues. To perform the Gelman-Rubin test of convergence, we have run multiple chains with sparse starting points. 

Figure C.14 plots the shrinking factor for different simulation experiments when the burn-in iterations are not discarded and 

in all cases, we do not see any indication of failed convergence under the proposed loss-based prior. 
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