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Simple Summary: Cobalamin is a vitamin that all cells of humans and animals, as well as bacteria,
need to survive. If the intestine of dogs is diseased, serum cobalamin levels can decrease in some of
these dogs. There are no studies in dogs using modern techniques to compare the gut bacteria in dogs
with chronic gut inflammation with or without low serum cobalamin levels. Therefore, we compared
the gut bacteria in 47 dogs with chronic gut inflammation. Twenty-nine of them had a low serum
cobalamin level, while 18 did not. We found that those dogs with a decreased serum cobalamin level
had severe alterations in the composition of their intestinal bacteria, while those with a normal serum
cobalamin level did not. Oral or injectable supplements did not correct the changes in intestinal
bacteria, suggesting that low serum cobalamin levels are an indicator of changes in intestinal bacteria
rather than their cause.

Abstract: Cobalamin deficiency is a common sequela of chronic enteropathies (CE) in dogs. Studies
comparing the intestinal microbiome of CE dogs with cobalamin deficiency to those that are normo-
cobalaminemic are lacking. Therefore, our aim was to describe the fecal microbiome in a prospective,
comparative study evaluating 29 dogs with CE and cobalamin deficiency, 18 dogs with CE and nor-
mocobalaminemia, and 10 healthy control dogs. Dogs with cobalamin deficiency were also analyzed
after oral or parenteral cobalamin supplementation. Overall microbiome composition (beta diversity) at
baseline was significantly different in CE dogs with cobalamin deficiency when compared to those with
normocobalaminemia (p = 0.001, R = 0.257) and to healthy controls (p = 0.001, R = 0.363). Abundances
of Firmicutes and Actinobacteria were significantly increased (q = 0.010 and 0.049), while those of
Bacteroidetes and Fusobacteria were significantly decreased (q = 0.002 and 0.014) in CE dogs with
cobalamin deficiency when compared to healthy controls. Overall microbiome composition in follow-up
samples remained significantly different after 3 months in both dogs receiving parenteral (R = 0.420,
p = 0.013) or oral cobalamin supplementation (R = 0.251, p = 0.007). Because cobalamin supplementation,
in combination with appropriate therapy, failed to restore the microbiome composition in the dogs in
our study, cobalamin is unlikely to be the cause of those microbiome changes but rather an indicator of
differences in underlying pathophysiology that do not influence clinical severity but result in a significant
aggravation of dysbiosis.
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1. Introduction

Cobalamin deficiency is a prevalent sequela in dogs with chronic enteropathies (CE) [1–4].
Once cobalamin deficiency has developed, the prognosis for a good response to treatment
of the underlying condition is worse than in CE dogs without cobalamin deficiency [1,4].
The suggested mechanisms behind cobalamin deficiency in dogs with CE is a decreased
expression of the cubam receptors in the ileum, causing impaired cobalamin absorption,
hypocobalaminemia, and intestinal dysbiosis, which can cause bacterial competition for
nutrients and less cobalamin being available for absorption in the ileum [5].

Mammalian cells require cobalamin as a cofactor for two enzymatic processes, but
bacteria need cobalamin for over a dozen enzymatic processes [6,7]. A study has shown
that 83% of bacteria present in the human gut microbiome encode cobalamin-dependent en-
zymes; however, most of those species were unable to synthesize cobalamin themselves [6].
The cobalamin biosynthetic pathway is present in all Fusobacteria, but it is rare in the phyla
Actinobacteria and Proteobacteria, and only about half of Bacteroidetes encode it [8]. There-
fore, those bacterial species need mechanisms to acquire cobalamin, and a two-step process
with passive absorption and active transport has been described [9]. Interestingly, however,
the avidity of bacteria for cobalamin varies, and in the recovery of cobalamin by the intrin-
sic factor (IF) secreted by the host is variable, depending on the bacterial species [10]. In
a study by Degnan et al. [6], loss of cobalamin transporters was a disadvantage, resulting
in decreased amounts and competitive ability of affected bacterial strains in the small
intestine. Bacterial genes are also regulated by cobalamin through mechanisms such as
riboswitches and others [11]. Therefore, the composition of the intestinal microbiome can
reasonably affect the host’s ability to absorb cobalamin from foods, and oral cobalamin
supplementation can confer a selective advantage for some bacterial species.

In a recent systematic review of the link between cobalamin and the gastrointestinal mi-
crobiome in people, results from in vitro studies suggested that cobalamin supplementation
increases alpha diversity and affects beta diversity [12]. Results from human and animal
studies were, however, discordant. Cobalamin supplementation increased alpha diversity
in adults but not in infants or children [13–16]. Similar results were found regarding beta
diversity. Furthermore, different forms of cobalamin (adenosylcobalamin, cyanocobalamin,
and methylcobalamin) used for supplementation as well as co-intervention, appeared
to impact the microbiome in different ways [17–19]. One study in mice showed that
cobalamin supplementation was associated with significantly altered beta diversity but
not alpha diversity [20], whereas beta diversity was unaffected in three other studies in
mice [17,21,22]. At the genus level, an abundance of Bacteroides has been reported to
decrease with oral supplementation with cyanocobalamin [20], a concerning finding since
Bacteroides is commonly already decreased in dogs with CE and expected to improve with
treatment [23–25].

The effects of oral versus parenteral cobalamin supplementation on the microbiome
were not compared in any of the studies reviewed above [12]. Theoretically, oral cobalamin
supplementation could create a gut environment with increased amounts of unbound
cobalamin, while parenteral cobalamin supplementation would bypass the microbiome-
host competition in the gut. Therefore, parenteral supplementation could potentially avoid
the selective enrichment of cobalamin-dependent bacteria that are less capable of absorbing
or transporting cobalamin in the gut.

Small intestinal bacterial overgrowth (SIBO), diagnosed with a culture of duodenal
juice, was associated with cobalamin deficiency and increased serum folate concentrations
in one study in dogs [26]. The combination of subnormal serum cobalamin concentrations
and supranormal folate concentrations was only moderately sensitive and specific for
canine SIBO in a later study using the same methodology [27]. In other studies, no or poor
correlation between hypocobalaminemia and SIBO, proven with a quantitative culture of
duodenal juice, has been found in dogs with SIBO and antibiotic-responsive diarrhea [3,28].
Using the search engines PubMed, Google Scholar, and Reef Seek, no direct evidence of
causative organisms clearly linking dysbiosis to canine cobalamin malabsorption has been



Animals 2023, 13, 1378 3 of 17

published in dogs to date. Furthermore, no studies in dogs using molecular tools, such
as 16S rRNA or PCR, that specifically address the intestinal microbiome in dogs with
hypocobalaminemia and CE were found.

Intestinal dysbiosis is a common sequel to CE in dogs [29,30]. However, the degree of
dysbiosis that differs between CE dogs with and without hypocobalaminemia has not been
reported based on searches using the previously mentioned search engines.

Therefore, the primary objective of this study was to characterize and compare the
intestinal microbiome in CE dogs with cobalamin deficiency to those that are normocobal-
aminemic. The secondary objectives were to describe the effects of cobalamin supple-
mentation on the microbiota and compare the effects of oral versus parenteral cobalamin
supplementation on the intestinal microbiome in CE dogs with cobalamin deficiency.

2. Materials and Methods
2.1. Animal Inclusion

Three groups of dogs were included and classified based on clinical signs and labo-
ratory exams: dogs with CE and low serum cobalamin concentrations, dogs with CE that
were normocobalaminemic, and healthy controls. Dogs within both CE groups (regardless
of cobalamin status) had to have clinical signs of chronic gastrointestinal disorders, such as
diarrhea, weight loss, vomiting, and hyporexia, for a minimum of three weeks. Exclusion
criteria for all groups of dogs were antibiotic treatment within 3 months prior to collection
of fecal samples, being fed a raw food diet, concurrent exocrine pancreatic insufficiency, or
being under treatment with a proton pump inhibitor.

The group of dogs with CE and low serum cobalamin concentrations included dogs
with low normal serum cobalamin concentration (180–210 pmol/L; reference interval:
180–708 pmol/L) and dogs with hypocobalaminemia (serum cobalamin concentration
<180 pmol/L). All of these dogs were also evaluated for evidence of intracellular cobalamin
deficiency (i.e., supranormal serum methylmalonic acid (MMA) concentrations at baseline
or MMA concentrations within reference interval at baseline that decreased significantly
after one to three months of cobalamin supplementation) [31]. A reduction of MMA after
cobalamin supplementation has been used in people to confirm pretreatment cobalamin
deficiency in people with equivocal serum cobalamin and/or MMA concentrations [32–34].
Dogs at the lowest end of the serum cobalamin reference interval (180–210 pmol/L) were
only included in this group if evidence of intracellular cobalamin deficiency was present.
For simplicity, all dogs with low or subnormal serum cobalamin concentration and either
supranormal serum MMA concentrations at baseline or a significant decrease in serum
MMA concentration after cobalamin supplementation will be referred to as dogs with
cobalamin deficiency.

Dogs with CE that were included in the normocobalaminemic group had serum
cobalamin concentrations at or above the 33rd percentile of the lowest end of the reference
interval (≥350 pmol/L). Dogs in this group were excluded if they were under treatment
with cobalamin supplementation or had been supplemented with cobalamin within the
last 12 months.

The healthy dog group included dogs that were clinically healthy and were volun-
teered by their owners as potential donors for a fecal microbiota transplant. All healthy
controls had normal serum cobalamin concentrations.

2.2. Study Design, Baseline Data, and Diagnostic Investigations

This was an open, prospective comparative study. Fecal samples from all dogs were
collected at the Evidensia Specialist Animal Hospital, Helsingborg, Sweden (ESAHHS)
between March 2014 and October 2019 after informed owner consent. The study was
approved by the Animal Ethics Committee in Uppsala (approval number C109/13; date
of approval 27 September 2013). All fecal samples were freely passed. All CE dogs
with cobalamin deficiency were participating in a block-randomized study of oral versus
parenteral cobalamin supplementation [31,35]. From this group of dogs, fecal samples were
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collected at baseline and 90 +/− 15 days after cobalamin supplementation was initiated.
From all other dogs, fecal samples were collected at one single time point. Samples from
CE dogs with normocobalaminemia were collected from feces brought by the dog owners
to the ESAHHS for other analyses, typically screening for fecal parasites. All of the samples
from healthy dogs were collected from staff-owned dogs that were screened to potentially
become fecal microbiota transplantation donors.

Fecal samples were refrigerated within 2 h of collection, frozen at −20 ◦C within
1–2 days, and stored at the laboratory at ESAHHS. Every 6–12 months, the frozen samples
were sent on dry ice from ESAHHS to the Gastrointestinal Laboratory at Texas A&M
University, College Station, Texas, using express delivery, and the conditions of the samples
at arrival were reported.

With the exception of antibiotics and proton pump inhibitors, concurrent medication
was allowed based on the treating clinician’s assessment. Dietary and medical history
were collected at the time of inclusion. Intestinal parasites were excluded, and ultrasonog-
raphy was performed to exclude extra-intestinal causes of clinical signs. Clinical data
and work-up from dogs with cobalamin deficiency have been previously published [31].
Intestinal biopsies to confirm chronic inflammation were available from 23/29 dogs with
CE and cobalamin deficiency and 11/18 dogs with CE and normocobalaminemia. Canine
Inflammatory Bowel Disease Index (CIBDAI) was calculated at the time of consultation [36].

2.3. Serum Cobalamin and Methylmalonic Acid Concentrations

All serum samples were refrigerated within 2 h of collection and frozen at −20 ◦C
for a minimum of 24 h prior to transport. Samples for cobalamin analysis were sent to
the Laboratory Department at Evidensia Specialist Animal Hospital, Strömsholm, Swe-
den, with cold packs using priority delivery. Previous reports have shown stable serum
cobalamin concentrations under similar conditions [37]. The samples were analyzed us-
ing an automated chemiluminescence immunoassay (Immulite 2000, Siemens Healthcare
Diagnostics), and the detection limit was 110 pmol/L. Serum samples for MMA analysis
were sent on dry ice every 6 to 12 months to the Gastrointestinal Laboratory at Texas A&M
University, College Station, Texas, using express delivery. The samples were analyzed using
a stable isotope dilution gas chromatography-mass spectrometry method, as previously
described [35,38].

2.4. Microbiome Analysis

DNA was extracted from an aliquot of 100 mg of feces with a commercially available
kit following the manufacturer’s instructions (PowerSoil® DNA Isolation Kit, MOBIO
Laboratories, Inc., Carlsbad, CA, USA). Sequencing of the V4 region of the 16S rRNA
gene was performed at MrDna Laboratory (Molecular Research LP, Mr DNA, Shallowa-
ter, TX, USA) using primers 515F (5′-GTGYCAGCMGCCGCGGTAA) [39] to 806RB (5′-
GGACTACNVGGGTWTCTAAT) [40]. Briefly, amplification was performed under the
following conditions: 95 ◦C for 5 min, followed by 30 cycles of 95 ◦C for 30 s, 53 ◦C for 40 s,
and 72 ◦C for 1 min, and a final elongation step at 72 ◦C for 10 min. After amplification,
PCR products were checked by electrophoresis on a 2% agarose gel. Samples were then
multiplexed using unique dual indices and pooled together in equal proportions based
on their molecular weight and DNA concentrations. Pooled samples were purified using
calibrated Ampure XP beads, and an Illumina DNA library was prepared. Sequencing was
performed on a MiSeq following the manufacturer’s guidelines. The raw sequences were
uploaded to NCBI Sequence Read Archive under accession number PRJNA863651.

Sequences obtained were processed using Quantitative Insights Into Microbial Ecology
2 (QIIME 2, v 2021.2) [41]. The sequence data were demultiplexed, and an amplicon
sequence variant (ASV) table was created using DADA2 [42]. Sequences assigned as
chloroplast, mitochondria, and low abundance ASVs (not present in at least 50% of samples
from at least one group or time point) were removed prior to downstream analysis. To
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normalize sequencing depth across all samples, rarefaction was performed to a depth of
4990 sequences per sample, which was chosen based on the lowest read depth.

Alpha diversity was calculated using Chao 1, Shannon diversity, and observed species
metrics. Beta diversity was evaluated by a weighted UniFrac distance matrix and visualized
using PCoA (Principal Coordinate Analysis) plots.

2.5. Statistical Analysis

Prism 6.0 (GraphPad Software) was used for comparative data analyses of serum
cobalamin, MMA, and CIBDAI. Normality testing was performed with the D’Agostino
and Pearson omnibus normality test. Since the groups were not normally distributed,
the Mann–Whitney test was used for all comparisons except serum MMA concentrations
before and after cobalamin supplementation, in which the Wilcoxon matched-pairs signed
rank test was used. Statistical significance was set as a p-value < 0.05.

Multivariate analysis was performed on the weighted UniFrac distance matrixes
using the ANOSIM (Analysis of Similarity) test within PRIMER 7 software (PRIMER-E
Ltd., Luton, UK) to analyze differences in microbial communities. Univariate analysis
of bacterial taxa and alpha diversity was performed on Prism v.9.0 (GraphPad Software).
Kruskall–Wallis test was used to compare groups at baseline and to compare follow-ups
with healthy controls and adjusted at each taxonomic level for multiple comparisons using
Benjamini and Hochberg’s False Discovery Rate [43]. A q-value < 0.05 was considered
statistically significant. Group differences in bacterial taxa were determined with post hoc
Dunn’s multiple comparison test.

3. Results
3.1. Baseline Data and Clinical Diagnosis

Fifty-seven dogs were included, of which 29 dogs had CE and cobalamin deficiency, 18
dogs had CE and were normocobalaminemic, and 10 dogs were healthy control dogs. Base-
line data is available in Table 1. Thirty-one different breeds were included, of which the most
common breeds were mixed breed dogs (10/57 (18%)), Labrador Retrievers (7/57 (12%)),
German Shepherds (3/57 (5%)) and Golden Retrievers (3/57 (5%)). The remaining 27 breeds
were represented by 1–2 dogs. An Australian shepherd, a breed with a predisposition
for congenital cobalamin deficiency, was included in the group of normocobalaminemic
CE dogs [44]. No other breed known for congenital cobalamin deficiency was included.
In the group with cobalamin deficiency, 24/29 (83%) dogs had immune-suppressant re-
sponsive enteropathy (IRE), of which four dogs also had protein-losing enteropathy (PLE)
with a serum albumin concentration below 20 g/L at baseline, 2/29 (7%) dogs had food-
responsive enteropathy (FRE), 2/29 (7%) dogs had non-responsive enteropathy, of which
one had PLE, and 1/29 dogs (3%) had antibiotic-responsive enteropathy (ARE). In the
group of CE dogs with normocobalaminemia, 12/18 (67%) had IRE, 3/18 (17%) had FRE,
2/18 (11%) had NRE, and 1/18 (6%) was initially poorly responsive to immunosuppressive
treatment but responded to fecal microbiota transplantation (FMT) and was generally
stable on immunosuppressants after four FMTs. No dogs with PLE were present in this
group. The clinical diagnosis was established over the first 6 months after inclusion based
on treatment response.

3.2. Serum Cobalamin and Methylmalonic Acid Concentrations

Serum cobalamin concentrations (reference interval 180–708 pmol/L) were
<111–210 pmol/L (median 183) in the cobalamin deficient group, 350–>738 pmol/L (me-
dian 492) in the CE group with normocobalaminemia, and 350–658 pmol/L (median 475)
in the healthy control group. The cobalamin concentration was significantly lower in the
cobalamin-deficient group compared to the group of CE dogs with normocobalaminemia
(p < 0.001) and the healthy control group (p < 0.001). There was no significant difference in
serum cobalamin concentrations between the healthy control group and the CE group with
normocobalaminemia (p = 0.56).
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Table 1. Selected parameters data from 29 dogs with chronic enteropathy (CE) and cobalamin
deficiency, 18 normocobalaminemic dogs with CE, and 10 healthy dogs. Numbers in parentheses
indicate the median.

Parameter (Range; Median) CE + cbl a Deficiency CE; Normal cbl Healthy

Number of dogs 29 18 10
Age (years) 1.5–13.1 (6.1) 0.5–12.5 (5.2) 2.1–10.3 (5.0)

BW b (kg) at inclusion 4.1–49.0 (11.8) 8.9–32.7 (20.9) 3.6–30.8 (7.6)
BCS c at inclusion (X/9) 3–7 (4) 2–7 (4) 4–6 (5)

Sex (m/MN/F/FN) 12/6/6/5 11/2/2/3 0/4/4/2

Serum alb d concentration (g/L); RI e 29–39 14–37 (30) 27–38 (31) 31–39 (33)
Serum cbl concentration (pmol/L) at inclusion;

RI 180–708 <111–210 (183) 350–>738 (492) 350–658 (475)

Serum cbl concentration (pmol/L) after cbl
supplementation; RI 180–708 434–2894 (727) n/a n/a

Serum MMA f concentration (nmol/L) at inclusion;
RI 414–1193

566–2468 (934) n/a 470–972 (746)

Serum MMA concentration (nmol/L) at follow-up;
RI 414–1193 450–1221 (626) n/a n/a

Diet at inclusion
KD g; maintenance diet 8 1 8

KD: ‘Intestinal’ 5 8 1
KD; single protein 8 3 1
KD; hydrolyzed 1 6 n/a

KD + Home-cooked 2 n/a n/a
Home-cooked 5 h n/a n/a

Treatment at inclusion:
Corticosteroids 8 i 10 j n/a
Cyclosporine 3 k n/a n/a

Prebiotics 3 l 3 m n/a
Probiotics 3 n 5 o n/a

Miscellaneous 9 p 4 q n/a
a Cobalamin b Body weight c Body condition score d Albumin e Reference interval f Methylmalonic acid
g Kibble diet h One dog was fed a balanced home-cooked diet i Budesonide 1/8, Methylprednisolon 5/8, Pred-
nisolon 2/8 j Budesonide 3/10, Methylprednisolon 5/10, Prednisolon 2/10 k Combined with corticosteroids
in 3/3 dogs l Psyllium husk m Multi-fiber pellets 2/3, Psyllium husk 1/3 n SLAB51 2/3, Enterococcus faecium
(NCIMB10415) 1/3 o SLAB51 4/5, Enterococcus faecium (NCIMB10415) 1/5 p Olsalazine 4/9, Chaolin clay 2/9,
Metoclopramide + Olsalazine 1/9, Maropitant 1/9, Sucralfate 1/9 q Olsalazine 2/4, Folate 2/4.

Serum methylmalonic acid (MMA) concentrations were available from dogs with
cobalamin deficiency and the healthy control group. Serum MMA concentrations (reference
interval 415–1193 nmol/L) were 566–2468 nmol/L (median 934) in the cobalamin deficient
group at baseline, which was significantly higher than the serum MMA concentrations of
470–972 nmol/L (median 746) in the healthy control group (p = 0.012). After cobalamin sup-
plementation, the serum MMA concentration decreased significantly to 450–1221 nmol/L
(median 626, p < 0.001). At this time point, there was no longer any significant difference
in serum MMA concentrations between the healthy control group and the previously
cobalamin-deficient group (p = 0.17). All the dogs with cobalamin deficiency either had
supranormal MMA at inclusion or a significant reduction of serum MMA concentrations
after 1–3 months of cobalamin supplementation.

Serum samples for MMA analysis from the normocobalaminemic dogs with CE were
lost in a transatlantic shipment. One of the cardboard and corresponding styrofoam boxes
with dry ice fell apart during the shipment, and the content was lost.

3.3. Cobalamin Supplementation, Concurrent Medication, and Diet

Of the 29 dogs with cobalamin deficiency, 18 dogs were treated with oral cyanocobal-
amin supplementation and 11 with parenteral hydroxocobalamin supplementation accord-
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ing to a previously described protocol [31]. At inclusion, 8/29 dogs were under treatment
with immunosuppressant drugs in this group of dogs (Table 1). During the cobalamin sup-
plementation study, 19 additional dogs were started on immunosuppressive treatment. In
the group of CE dogs with normocobalaminemia, 10/18 (56%) dogs were under treatment
with immunosuppressive drugs at inclusion (Table 1). Miscellaneous treatments have been
listed in Table 1. In the cobalamin deficiency group, 22/29 (76%) dogs were fed kibbles
from major pet food companies (Table 1). Two (7%) dogs were fed kibbles mixed with a
homecooked diet, and 5/29 (17%) dogs were fed a homecooked, meat-based diet. None of
these dogs were fed a raw food diet. One of the dogs was fed a balanced home-cooked diet
according to the Association of American Feed Control Official (AAFCO) guidelines. In the
group of dogs with CE and normocobalaminemia, as well as the healthy control group, all
dogs were fed kibbles from major pet food companies.

3.4. Canine Inflammatory Bowel Disease Activity Index

There was no significant difference in CIBDAI between CE dogs with cobalamin
deficiency and those normocobalaminemic at inclusion (p = 0.99). The CIBDAI range
was 1–14 (median 7) in the cobalamin-deficient group at baseline and 5–11 (median 7)
in the normocobalaminemic group. The CIBDAI range in the healthy control group was
1–2 (median 1), which is considered clinically insignificant [36]. This was significantly
lower than CIBDAI in dogs with CE in the cobalamin deficient or normocobalaminemic
group (p < 0.0001 for both groups, Figure 1).
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Figure 1. Canine Inflammatory Bowel Disease Activity Index (CIBDAI) scores from (A) chronic
enteropathy (CE) dogs with cobalamin (CBL) deficiency (CE CBL def) or normocobalaminemia (CE
Normal CBL) at inclusion, compared to healthy controls (HC). Scores were significantly higher in
dogs with CE CBL def and CE Normal CBL compared to HC (p < 0.0001 for both). No difference
was observed between CE CBL def and CE Normal CBL (p = 0.99). (B) CIBDAI scores from CE dogs
with cobalamin deficiency at inclusion and after 3 months of cobalamin supplementation (combined
with appropriate therapy on a case-by-case basis), separated by route of administration (oral, PO, or
parenteral, PE). No difference was observed between groups at baseline (p = 0.273) or at 3 months
(p = 0.580). CIBDAI scores decreased significantly in both groups at 3 months compared with baseline
(PO p < 0.0001; PE p = 0.0006).
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Dogs with cobalamin deficiency were randomized to receive supplementation by
either oral (PO) or parenteral (PE) route. No difference was observed between groups at
baseline (p = 0.273) or at 3 months (p = 0.580). CIBDAI scores decreased significantly in
both groups at 3 months compared with baseline (PO p < 0.0001, PE p = 0.0006).

3.5. Microbiome Analysis

Fifty-seven fecal baseline samples were available from all groups of dogs. Follow-up
fecal samples after cobalamin supplementation were available from 20 dogs, of which
15 were in the oral supplementation group, and 5 were in the parenteral supplementation
group. Reasons for lack of a follow-up sample were drop-out from the study for unknown
reasons (2/9), euthanasia due to poor response to medical treatment (2/9), the dog owner
forgetting to bring a fecal sample (2/9), or the dogs starting treatment with antibiotics (2/9)
or proton-pump inhibitor (1/9) prior to follow-up.

At baseline, bacterial richness (Chao1) and evenness (Shannon Index) was reduced in
dogs with CE and cobalamin deficiency (p = 0.013 and 0.043, respectively) but not in CE dogs
with normocobalaminemia compared to healthy controls (Supplementary Figure S1). No
difference in Observed ASVs (another parameter of richness) was observed
(Supplementary Figure S1).

Overall microbiome composition (beta diversity, measured with Weighted UniFrac
distances) at baseline was significantly different in CE dogs with cobalamin deficiency
when compared to those with normocobalaminemia (p = 0.001, R = 0.257) and to healthy
controls (p = 0.001, R = 0.363), as shown in Figure 2. No difference was found between CE
dogs with normocobalaminemia and healthy controls (p = 0.976, R = −0.118).
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Figure 2. PCA plot of weighted UniFrac distances (beta diversity) of baseline fecal samples from
dogs with CE, color-coded based on cobalamin levels (red dots–cobalamin deficient, blue dots–
normocobalaminemia), compared to healthy controls (orange dots). Samples from cobalamin-
deficient dogs clustered separately from those from normocobalaminemic and healthy dogs. No
significant difference was observed between samples from CE dogs with normocobalaminemia and
healthy controls.
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When individual bacterial taxa were analyzed, major changes were observed at the
phyla level (Figure 3), with 4/5 phyla significantly different from healthy controls in
the cobalamin-deficient group (Supplementary Table S1). Firmicutes and Actinobacteria
significantly increased (HC median 22.95 and 0.43%, cobalamin deficient median 69.03 and
3.12%, respectively), while Bacteroidetes and Fusobacteria significantly decreased (HC
median 27.92 and 32.61%, cobalamin deficient median 0.19 and 0.54%, respectively) in
cobalamin-deficient dogs. No significant changes were observed at the phyla level in CE
dogs with normocobalaminemia compared to healthy controls.
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Figure 3. Median abundance of main phyla at baseline in healthy controls, in CE dogs with cobalamin
deficiency, and in CE dogs with normocobalaminemia. Values are expressed in percentages of
total sequences.

At the genus level, cobalamin deficiency was associated with significant decreases in
the abundance of Bacteroides (HC median 22.61%, CE cobalamin deficient 0.08%, q = 0.004),
Sutterella (HC median 1.43%, CE cobalamin deficient 0.02%, q = 0.041), Helicobacter (HC
median 0.64%, CE cobalamin deficient 0.00%, q = 0.004) and Turicibacter (HC median 0.28%,
CE cobalamin deficient 0.00%, q = 0.041, Figure 4). The abundance of one unidentified
genus from the family Enterobacteriaceae instead was significantly increased (HC median
0.00%, CE cobalamin deficient 0.42%, q = 0.041, Figure 4). A trend (q < 0.100) towards
decreased abundance was also observed for genera Fusobacterium (HC median 32.61%,
CE cobalamin deficient 0.54%, q = 0.056, Figure 4) and Roseburia (HC median 0.03%, CE
cobalamin deficient 0.00%, q = 0.092).

Dogs with cobalamin deficiency were followed up after 3 months and subdivided
by supplementation route (parenteral, PE, or oral, PO). Bacterial richness (Chao1) and
evenness (Shannon Index) were reduced in dogs receiving PE supplementation at baseline
(p = 0.036 and 0.032, respectively) but not in dogs receiving PO supplementation compared
to healthy controls (Supplementary Figure S2). Follow-up samples after 3 months of
supplementation were not significantly different from healthy controls. No difference in
richness as measured by Observed ASVs was observed (Supplementary Figure S2).

Overall microbiome composition (beta diversity, measured with Weighted UniFrac dis-
tances) at baseline was significantly different for both supplementation groups compared
to healthy controls, although the difference was more pronounced with the PE supplemen-
tation group (PE R = 0.653 p = 0.001, PO R = 0.267 p = 0.005), as shown in Figure 5A. The
composition of the microbiome in follow-up samples remained significantly different in



Animals 2023, 13, 1378 10 of 17

both dogs receiving PE supplementation (R = 0.420, p = 0.013) and PO supplementation
(R = 0.251, p = 0.007), as shown in Figure 5B.
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Figure 4. Abundance of key genera at baseline in healthy controls, in CE dogs with cobalamin
deficiency, and in CE dogs with normocobalaminemia. Individual values are shown, and red lines
indicate the median. * = q < 0.05; # = q < 0.1.
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Figure 5. PCA plot of weighted UniFrac distances (beta diversity) of (A) baseline fecal samples
from dogs receiving cobalamin supplementation parenterally (orange dots) or orally (purple dots),
compared to healthy controls (red dots); and (B) 3-month follow-up fecal samples from dogs receiving
cobalamin supplementation parenterally (blue dots) or orally (green dots), compared to healthy
controls (red dots).



Animals 2023, 13, 1378 11 of 17

When individual bacterial taxa were analyzed (Supplementary Table S2), major
changes were observed at the phyla level compared to healthy controls, with dogs random-
ized to receive PE supplementation showing significant differences in 4/5 phyla, and dogs
in the PO supplementation group showing significant differences in 1/5 phyla, despite
similar median values for all phyla as shown in Figure 6. At follow-up, all five phyla
were no longer statistically different from healthy controls, despite showing only minimal
improvement in median values (Figure 6). Of note, phyla Bacteroidetes and Fusobacteria,
which in healthy controls corresponded to 27.92 and 32.61% of sequences, remained ex-
tremely low in both dogs receiving PE supplementation (0.65 and 0.37%, respectively) and
in those receiving PO supplementation (2.79 and 3.49%, respectively).
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Figure 6. Median abundance of main phyla at baseline in CE dogs with cobalamin deficiency
compared to their 3-month follow-ups, separated by route of supplementation (parenteral, PE, or
oral, PO) and to healthy controls. Values are expressed in percentages of total sequences.

At the genus level, despite randomization at enrollment, only dogs in the PE group had
a significantly decreased abundance of Bacteroides (HC median 22.61%, PE baseline 0.03%,
q = 0.004), and Turicibacter (HC median 0.28%, PE baseline 0.00%, q = 0.016, Figure 7). The
abundance of Helicobacter (HC median 0.64%, PE baseline 0.00% q = 0.007, PO baseline
0.01% q = 0.031) was decreased in both PE and PO at baseline. The abundance of Sutterella
(HC median 1.43%, PE baseline 0.01% q = 0.097, PO baseline 0.06% q = 0.099) showed
a trend toward a decrease in both PE and PO at baseline, which was also observed for
Fusobacterium (HC median 36.61%, PE baseline 0.33%, q = 0.058, Figure 7). In contrast, one
unidentified genus from the family Enterobacteriaceae instead was significantly increased
at baseline only in the group randomized to receive PO supplementation (HC median
0.00%, PO baseline 1.63%, q = 0.040, Figure 7). No significant differences from healthy
controls were observed in the 3-month follow-up samples for either supplementation route.
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separated by supplementation route, at baseline and after 3 months of cobalamin supplementation.
PE indicates parenteral supplementation; PO indicates oral supplementation. Individual values are
shown, and red lines indicate the median. * = q < 0.05; # = q < 0.1.

4. Discussion

This study aimed to answer two main questions: one, is cobalamin deficiency in dogs
with CE associated with a different dysbiosis profile? Two, does cobalamin supplemen-
tation, whether oral or parenteral, have an impact on microbiome composition? For that
purpose, we enrolled 47 dogs diagnosed with CE, 18 of which had normal serum cobalamin
levels and 29 that had cobalamin deficiency. Ten healthy dogs were recruited as controls.
Dogs with cobalamin deficiency were randomized to receive cobalamin by either oral
(PO, 18 dogs) or parenteral (PE, 11 dogs) route and were reanalyzed after 3 months of
supplementation. Three months of follow-up samples were available for 15/18 dogs in the
PO group and 5/11 dogs in the PE group. Clinical scores did not differ between dogs with
cobalamin deficiency or normocobalaminemia at baseline.

Cobalamin deficiency was associated with changes in microbiota composition which
included decreased richness and changes in beta diversity compared to both healthy
controls and CE dogs with normocobalaminemia. Interestingly, no differences in richness
or beta diversity were observed between CE dogs with normocobalaminemia and healthy
controls. Because previous studies in CE did not separate patients by cobalamin levels, it is
difficult to compare our results with those studies. However, our findings in the CE group
with cobalamin deficiency match previous findings in canine CE, including decreased
richness and evenness [45,46] and changes in beta diversity [23,45,46].

Similarly, findings at the phylum level for the CE group with cobalamin deficiency
match previous studies with dogs with CE, with increased Firmicutes and Actinobacteria
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and decreased Bacteroidetes and Fusobacteria [23]. Similar trends were observed in the CE
normocobalaminemic group, but to a lesser extent, and did not reach statistical significance.
Those findings suggest that a similar underlying pathological process may be present
in CE regardless of cobalamin serum levels but are aggravated by cobalamin deficiency.
Since no difference in CIBDAI scores was observed, it is unlikely that those differences in
microbiome composition reflect an increase in clinical severity.

In our study, increases in Firmicutes were driven mostly by unidentified species
within the family Clostridiaceae (HC median 6.13%, CE non-def median 9.38%, CE CBL def
median 22.27%), which was, however, no longer significant once the p-value was adjusted
for multiple comparisons (q = 0.133). Clostridiaceae is a large family that includes both
pathogens, such as Clostridium perfringens, and beneficial bacteria, such as Clostridium
hiranonis, making it difficult to establish the significance of this finding. However, increased
Firmicutes to Bacteroidetes ratio observed in dogs with CE and cobalamin deficiency is
a common finding in dysbiosis across species and has been described in GI- [47,48] and
non-GI-related [49,50] diseases, including canine CE [23].

The production of short-chain fatty acid (SCFA) is known to be depleted in dogs
with CE [51]. Bacteroidetes, a phylum found to be significantly decreased in dogs with
CE with cobalamin deficiency at baseline, contains genera, such as Bacteroides spp. and
Prevotella spp., that are SCFA-producers. Genus Bacteroides was significantly decreased at
baseline in dogs with CE and cobalamin deficiency. When randomized for inclusion in one
of the supplementation groups, phylum Bacteroidetes was significantly decreased in both
groups compared to healthy controls at baseline, but the decrease in genus Bacteroides only
reached significance in the PE group (PE q = 0.004, PO q = 0.086). Interestingly, despite the
lack of improvement in median values at the 3-month follow-up, neither at the phylum nor
the genus level significance could be found. While oral supplementation with cobalamin
has been described to decrease Bacteroides abundance in mice [20], we did not observe that
effect in our cohort. Unfortunately, SCFAs were not measured in this study, but it is likely
that SCFA production was impaired in agreement with a previous study in canine CE [51]
and was not completely restored by cobalamin supplementation.

Fusobacteria is another major phylum in the fecal microbiome of healthy dogs [24],
whose abundance was severely decreased in CE dogs with cobalamin deficiency at baseline
compared to healthy controls (CE CBL def median 0.54%, HC median 32.61%, q = 0.014),
which is in agreement with the literature for CE [25,30,51]. Some Fusobacterium species
are known to produce butyrate, an SCFA, from amino acids, which could explain its role in
the healthy microbiome of dogs [24,52]. While Fusobacteria was no longer significantly dif-
ferent after 3 months of cobalamin supplementation in both groups, its median abundance
remained 10 and 100-fold below that of healthy controls with PO and with PE supplemen-
tation, respectively (PO 3 months median 3.49%, q = 0.280; PE 3 months median 0.37%,
q = 0.275).

Proteobacteria, and in particular γ-Proteobacteria, are typically increased in dogs with
CE [24]. Gamma-Proteobacteria are mainly composed of Enterobacteriaceae (e.g., E. coli),
and their increase is a hallmark of dysbiosis which has been associated with a number
of diseases. In contrast, in our study, we found a significant decrease in Proteobacteria
in CE dogs with cobalamin deficiency at baseline compared to healthy controls, driven
by a depletion of β-Proteobacteria from genus Sutterella, in agreement with a previous
study on immune-suppressant-responsive enteropathy [23]. A significant increase in family
Enterobacteriaceae was observed in CE dogs with cobalamin deficiency at baseline compared
to healthy controls, driven by an unidentified genus. Both the decrease in Sutterella and the
increase in Enterobacteriaceae were no longer significant at the 3 months follow-up.

Our study has limitations that need to be considered. Due to the clinical nature of the
study, we enrolled dogs prospectively based on their serum cobalamin levels and did not
exclude animals based on their response to treatment. Therefore, our cohort includes ani-
mals that were ultimately classified as food-responsive, immune-suppressant-responsive,
antibiotic-responsive, and non-responsive, including one case of protein-losing enteropathy.
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While no study has been able to identify differences in microbiome composition in those
subtypes, it is possible that minor differences could be confounding factors in the study.

Another limitation was that, despite our best efforts of randomization, there were
small differences at baseline between the two groups receiving cobalamin supplementation
(PO vs. PE). This limitation, combined with the lower number of animals at the 3-months
follow-up, has limited our statistical power to compare the response of the microbiome to
different routes of supplementation. Despite that, we could demonstrate that cobalamin
supplementation for 3 months resulted in minimal changes in microbiome composition in
terms of alpha diversity, beta diversity, and taxonomy, regardless of administration route.
It is possible that supplementation over a longer period of time may be required to modify
microbiome composition, in line with findings of a previous study in which dogs with
CE treated with steroids only improved microbiome composition in a long-term (1-year)
follow-up [23].

Lastly, serum MMA concentrations were not available for CE dogs with normocobal-
aminemia. Even though there was no significant difference in serum cobalamin concentrations
between the healthy group and CE dogs with normocobalaminemia, approximately 10% of
dogs with serum cobalamin concentrations in the same range had supranormal serum MMA
concentrations in one study [53]. Consequently, there is a risk that a minority of the CE dogs
with normal serum cobalamin concentrations had intracellular cobalamin deficiency.

5. Conclusions

In conclusion, despite a significant difference in microbiome composition between
CE dogs with cobalamin deficiency or normocobalaminemia, cobalamin is unlikely to
be the culprit of those differences. Cobalamin supplementation, in combination with
appropriate therapy, failed to restore the microbiome composition in our study regardless
of the administration route. Serum cobalamin is likely an indicator of differences in
underlying pathophysiology that do not influence clinical severity but result in a significant
aggravation of dysbiosis. These findings prompt the need for further investigation into the
role of the microbiome in cobalamin deficiency associated with CE in dogs.

Supplementary Materials: The following supporting information can be downloaded at: https:
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