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Simple Summary: Untargeted shotgun DNA sequencing of fecal samples is a relatively novel
approach to study the microbiome. This method allows better classification of bacteria on a species
level compared to traditional 16S rRNA gene sequencing, and provides data about viruses, fungi,
archaea, and functional genes. A targeted qPCR-based dysbiosis index has been recently introduced
to evaluate the fecal microbiota in dogs. This study evaluated the agreement for core bacterial taxa
between targeted qPCR assays and relative abundances obtained by shotgun DNA sequencing. We
analyzed the fecal microbiota of 296 dogs with various clinical phenotypes using both methods.
Significant correlations were found between the two methods, and the qPCR-based dysbiosis index
accurately reflected shifts in the microbiome of dogs as observed by DNA shotgun sequencing.

Abstract: DNA shotgun sequencing is an untargeted approach for identifying changes in relative
abundances, while qPCR allows reproducible quantification of specific bacteria. The canine dysbiosis
index (DI) assesses the canine fecal microbiota by using a mathematical algorithm based on qPCR
results. We evaluated the correlation between qPCR and shotgun sequencing using fecal samples
from 296 dogs with different clinical phenotypes. While significant correlations were found between
qPCR and sequencing, certain taxa were only detectable by qPCR and not by sequencing. Based on
sequencing, less than 2% of bacterial species (17/1190) were consistently present in all healthy dogs
(n = 76). Dogs with an abnormal DI had lower alpha-diversity compared to dogs with normal DI.
Increases in the DI correctly predicted the gradual shifts in microbiota observed by sequencing: minor
changes (R = 0.19, DI < 0 with any targeted taxa outside the reference interval, RI), mild-moderate
changes (R = 0.24, 0 < DI < 2), and significant dysbiosis (R = 0.54, 0.73, and 0.91 for DI > 2, DI > 5, and
DI > 8, respectively), compared to dogs with a normal DI (DI < 0, all targets within the RI), as higher
R-values indicated larger dissimilarities. In conclusion, the qPCR-based DI is an effective indicator of
overall microbiota shifts observed by shotgun sequencing in dogs.
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1. Introduction

The gut microbiome plays an important role in health and disease. In dogs, both
acute [1,2] and chronic enteropathy [3,4] have been linked to alterations in the gut mi-
crobiome. Therefore, understanding the composition and function of the normal gut
microbiome is essential for developing new diagnostic tools and therapeutic approaches
for diseases and improving our understanding of their underlying mechanisms. Several
techniques, such as 16S rRNA gene sequencing, DNA metagenomic shotgun sequencing,
metatranscriptomics, fluorescence in situ hybridization, and quantitative PCR (qPCR) can
be applied to study the gut microbiome [5–7]. These techniques can be categorized into
two groups: targeted and untargeted assays.

An untargeted assay, also known as a discovery-based assay, is an approach to detect
a broad range of targets without prior knowledge of what might be present in a sample.
These assays are useful to generate comprehensive profiles of complex biological samples,
for example the fecal microbiota. The most commonly used untargeted methods are 16S
rRNA gene sequencing [8–10] and DNA shotgun metagenomic sequencing. The former
technique provides an overview of bacterial communities up to the genus level, whereas
the latter provides bacterial taxonomy up to the species and strain-level resolution [11–13].
Amplifying specific gene regions is the first step in 16S rRNA sequencing. However, the
choice of primer sets can lead to variable results with different levels of amplification bias.
In contrast, shotgun metagenomic sequencing does not involve gene amplification but
instead breaks down DNA into fragments for sequencing, allowing for a more accurate
estimation of abundance. Both sequencing methods lack analytical validation and reference
intervals are unavailable, hindering comparison of results between runs [14]. Furthermore,
even though standardized protocols have been proposed [15], batch effects are inevitable
when using untargeted assays. Additionally, analyzing sequencing data is computationally
demanding and requires specialized skills and expertise. Nevertheless, sequencing is a
powerful discovery tool for characterizing microbial communities.

Targeted assays measure a predefined set of objectives, in this case, specific microbes.
A quantitative PCR (qPCR)-based assay, called the dysbiosis index (DI), has been developed
to evaluate the fecal microbiota in dogs [16]. The DI is designed to quantify a particular
group of clinically relevant core bacterial taxa and total bacterial abundance, which are
commonly altered in dogs with chronic enteropathy (CE) and has shown utility as a
functional marker of intestinal health in a recent meta-analysis [17]. During qPCR, a DNA
template is amplified in the presence of specific primers to quantify a known target in a
sample. Such qPCR assays can be highly reproducible, sensitive, and specific, and are
time and cost-effective. However, they require prior knowledge of the microbial targets of
interest and cannot detect unexpected or novel microbial taxa.

Both untargeted and targeted assays have their strengths and limitations. Combining
the strengths of both approaches enhances our understanding of the gut microbiome and
its role in health and disease. The aim of this study was to evaluate the correlation between
untargeted DNA shotgun sequencing, targeted qPCR assays, and the qPCR-based canine
DI in dogs with a wide range of different clinical phenotypes, as well as to evaluate whether
the qPCR-based DI can accurately reflect global shifts in the gut microbiome.

2. Materials and Methods
2.1. Study Population

This study included fecal samples from 296 dogs with diverse clinical phenotypes,
sourced from previous studies. The study population consisted of 78 clinically healthy
control dogs, 146 dogs with chronic enteropathy (CE), 35 dogs with diseases unrelated



Animals 2023, 13, 2597 3 of 16

to the gastrointestinal tract (22 dogs with neurological signs and 13 dogs with non-GI
neoplasia), 20 dogs on antibiotics, and 17 dogs with acute diarrhea (AD).

Clinically healthy control dogs did not receive any antibiotics, antacids, anti-inflammatory
medications, or corticosteroids within the past 6 months. The clinical workup of dogs with
acute or chronic GI signs followed standardized protocols described in Werner et al. [18]
and Toresson et al. [19]. Briefly, the inclusion criteria for dogs with CE were dogs that
presented with GI signs (i.e., vomiting, diarrhea, hyporexia/anorexia, and/or weight loss)
for at least three weeks. Dogs with CE that had any recorded antibiotic exposure were
excluded from the study. The inclusion criteria for dogs with AD were dogs presenting
acute GI signs, such as vomiting or diarrhea, for fewer than three days, and fecal samples
were collected upon presentation before any treatments.

Among the 20 dogs receiving antibiotics, sixteen were healthy dogs and had received
metronidazole during an experimental trial with antibiotic exposure [20,21]. The other four
healthy dogs had exposure to antibiotics documented in the medical history (as reported by
the owners), but the reason for treatment and the exact antimicrobial type were unknown.

The fecal samples used in this study were obtained from various previous studies
collected at different institutions and hospitals (Supplementary Table S1). Upon collection,
all samples were stored at either −20 ◦C or −80 ◦C and later transported in bulk with
dry ice to a central laboratory (Gastrointestinal Laboratory at Texas A&M University) for
processing and subsequent storage at −80 ◦C.

2.2. Quantitative PCR and Dysbiosis Index (DI)

DNA was extracted from an aliquot of 100–120 mg fecal sample using a bead-beating
method with a MoBio Power soil DNA isolation kit. The qPCR assays were applied
to quantify total bacteria, Blautia, Clostridium (Peptacetobacter) hiranonis, Escherichia coli,
Faecalibacterium, Fusobacterium, Streptococcus, and Turicibacter. The qPCR assays have been
described previously [16] and in Supplementary Table S1. Briefly, the qPCR assays were
performed in the following order: at 95 ◦C maintained for 2 min, 40 cycles at 95 ◦C for
5 s, and then annealing at the optimized temperature for 10 s, using 10 µL of SYBR-based
reaction mixtures (5 µL of SsoFast™ EvaGreen® supermix [Bio-Rad Laboratories GmbH,
Düsseldorf, Germany]), 1.6 µL of high-quality PCR water, 0.4 µL of each primer (final
concentration: 400 nM), and 2 µL of DNA. Both positive and negative controls were
included for all qPCR assays to ensure the accuracy and reliability of the results.

The DI was calculated based on the results of the qPCR assays using a previously
described algorithm [16]. Furthermore, we further divided the samples into four groups
based on the currently used clinical classification of the DI. A DI < 0 and with all targeted
taxa within the reference interval (RI) was considered normal. A DI < 0 but with any of the
targeted taxa outside the RI was defined as minor shift in the microbiome. A DI between
zero and two was defined as mild to moderate microbiome shift. A DI > 2 was classified as
significant dysbiosis.

In addition to the bacterial groups targeted in the DI, additional bacterial taxa that
were found highly abundant (a maximum relative abundance >50% and/or median rel-
ative abundance >1%) in healthy control dogs upon metagenomic sequencing were also
quantified by qPCR assays in a subset of healthy dogs (selected based on DNA availability)
to allow correlation between both methods. The genera Bacteroides and Bifidobacterium were
quantified by qPCR assays in 78 of healthy control dogs. Genus Collinsella, Prevotella copri,
and Ruminococcus gnavus were quantified by qPCR assays in 37/78 of the healthy control
dogs. Primers and other qPCR information for the additional targets are summarized in
supplementary Table S2 and in previous studies [22,23]. The qPCR assays were similar to
those mentioned above with optimal annealing temperature and time: 60.3 ◦C for 5 s for
genus Collinsella, 58.4 ◦C for 5 s for P. corpi, and 60.0 ◦C for 15 s for R. gnavus.
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2.3. Shotgun Metagenomic Sequencing

The DNA shotgun metagenomic sequencing was performed at Diversigen (New Brighton,
MN, USA). Libraries were prepared with a procedure adapted from the Nextera XT kit
(Illumina, San Diego, CA, USA). Libraries were sequenced on an Illumina NovaSeq 6000 us-
ing paired end 2 × 150 reads with a mean target depth of 2M reads/sample (Illumina). Both
positive and negative controls were included on each DNA extraction plate as well as on
each library preparation plate. DNA sequences were filtered for low quality (Q-Score < 30)
and length (<50), and adapter sequences were trimmed using Cutadapt. Host sequences
were removed using Bowtie2. Sequences were trimmed to a maximum length of 100 bp
before alignment and converted to a single fasta using shi7. DNA sequences were aligned
to a curated database containing all representative genomes in RefSeq for bacteria with ad-
ditional manually curated strains (DivDB-Canine). Alignments were made at 97% identity
against all reference genomes. Every input sequence was compared to every reference se-
quence in Diversigen’s DivDB-Canine database using fully gapped alignment with BURST.
Ties were broken by minimizing the number of unique Operational Taxonomic Units
(OTUs). Each input sequence was assigned the lowest common ancestor consistent across
at least 80% of all reference sequences tied for the best hit for taxonomy assignment. OTUs
accounting for less than one-millionth of all species-level markers and those with less than
0.01% of their unique genome regions covered (and <1% of the whole genome) were dis-
carded. The number of counts for each OTU was normalized to the average genome length.
Count data were then converted to relative abundance for each sample. The normalized
and filtered tables were used for all downstream analyses.

For downstream analysis, QIIME 22021.11 was applied. The data was analyzed on
two different rarefaction levels. To account for the variable sequencing count per sample,
samples were rarefied with the lowest reads of 9788 so that all samples could be included.
To increase the detection rate of taxa, rarefaction depth of 100,000 was also applied, which
resulted in the exclusion of a subset of samples (n = 11). Alpha diversity metrics Shannon,
Chao1, and observed features were calculated on both rarefaction levels. Beta-diversity
was evaluated by the Bray–Curtis distance by visualization with principal coordinate
analysis plots.

Metagenomic sequences are available under BioProject ID PRJNA975215.

2.4. Statistical Analyses

The Spearman test was used to evaluate the correlations between the abundance of
taxa obtained by qPCR and the relative abundance acquired by sequencing. The Bonferroni
method was applied to adjust the p-values for multiple comparisons. Alpha diversity
metrics were compared between different groups based on different DI classifications
using Kruskal–Wallis tests, followed by Dunn’s tests. Beta diversity between groups was
analyzed with the analysis of similarity tests, ANOSIM, using Primer 7 (Plymouth Routines
in Multivariate Ecological Research Statistical Software, v7.0.13). For correlating these
global microbial shifts between DI and sequencing using ANOSIM, only the original DI
containing the original taxa was used. Statistical significance was set at p < 0.05.

3. Results
3.1. Dysbiosis Index of the Study Population

Figure 1 shows the distribution of the DI among dogs with different phenotypes.
Table 1 shows the study population (n = 296) categorized into four interpretations of the DI.
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Figure 1. Scatter plot of dysbiosis index in clinically healthy dogs, dogs with chronic enteropathy,
dogs with acute diarrhea, dogs with non-gastrointestinal disease, and dogs on antibiotics. Samples
are colored based on the subclassification of the DI. Green: normal, DI < 0 with all taxa within
reference interval; Yellow: minor changes, DI < 0 with any bacterial taxa out of reference interval;
Red: 0 < DI < 2; Purple: DI > 2.

Table 1. Number and percentage of dogs categorized based on the interpretation of the dysbiosis
index (DI) within each clinical phenotype.

Group Normal Minor
Changes

Mild to
Moderate
Changes

Significant
Dysbiosis Total

Clinically healthy 66
(85%)

8
(10%)

3
(4%)

1
(1%) 78

Chronic enteropathy 52
(36%)

17
(12%)

29
(20%)

48
(33%) 146

Acute diarrhea 8
(47%)

7
(41%)

1
(6%)

1
(6%) 17

Non-gastrointestinal
disease

19
(54%)

11
(31%)

5
(14%)

0
(0%) 35

On antibiotics 0
(0%)

0
(0%)

3
(15%)

17
(85%) 20

Total 145 43 41 67 296

3.2. Alpha Diversity of the Fecal Microbiota in the Study Population

The median sequencing count obtained was 1,248,309 (range: 9788–5,662,490), with
one sample having a count as low as 9788, ten samples with counts between 10,000 and
100,000, 96 samples with counts between 100,000 and 1,000,000, and 189 samples with
counts higher than 1,000,000.
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Figure 2 displays the alpha diversity metrics. Dogs with a normal DI had significantly
higher (p < 0.0001) alpha-diversity metrics than dogs with minor changes and significant
dysbiosis. With an increase in the rarefaction depth from 9788 to 100,000, the Shannon index
(richness and evenness) remained constant, while Chao1 and observed features (richness)
increased 1.5- to 2-fold. However, the pattern between the four groups was similar for all
indices, regardless of the difference of the rarefaction depth. Chao1 in dogs with minor
changes was significantly higher than dogs with mild to moderate changes only at the
higher rarefaction depth. However, a considerable degree of overlap in values between the
different groups was observed.
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Figure 2. Alpha diversity metrics in dogs with normal DI (DI < 0), minor changes (DI < 0 with
any taxa out of reference interval), mild to moderate changes (0 < DI < 2), and significant dysbiosis
(DI > 2). The rarefaction depth was set at 9788 (on the top) or 100,000 (at the bottom).

Table 2 and Figure 3 show the correlations between the DI and the alpha diversity
metrics at the rarefaction depth of 100,000. The DI was negatively correlated with Shannon,
Chao1, and observed features. Conversely, abundances of Faecalibacterium, Fusobacterium,
and C. hiranonis were positively correlated with all alpha diversity metrics. However, the
abundances of Blautia and Turicibacter were only significantly correlated with observed
features and Chao1, but not Shannon. Notably, the abundances of Streptococcus and E. coli
were not correlated with any of the alpha diversity metrics.
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Table 2. Correlation between log DNA by qPCR-based dysbiosis index (DI) and the selected alpha-
diversity metrics (Shannon and observed features) at the rarefaction depth of 100,000 by shotgun
metagenomic sequencing (n = 285). Spearman R value and its 95% confidence interval is described.
Bolded p values indicate statistical significance.

Bacterial Groups Shannon p Value Adjusted p Value Observed Features p Value Adjusted p Value

DI −0.23 (−0.34 to −0.11) <0.0001 0.0008 −0.26 (−0.37 to −0.14) <0.0001 0.0008
Faecalibacterium 0.38 (0.27–0.47) <0.0001 0.0008 0.56 (0.47–0.64) <0.0001 0.0008
Fusobacterium 0.28 (0.16–0.38) <0.0001 0.0008 0.36 (0.25–0.46) <0.0001 0.0008

Clostridium
hiranonis 0.16 (0.05–0.28) 0.005 0.04 0.26 (0.14–0.37) <0.0001 0.0008

Turicibacter 0.11 (−0.007 to 0.23) 0.06 0.48 0.28 (0.16–0.39) <0.0001 0.0008
Blautia 0.10 (−0.02 to 0.22) 0.08 0.64 0.25 (0.14–0.36) <0.0001 0.0008

Streptococcus −0.08 (−0.19 to 0.04) 0.19 1.0 −0.08 (−0.20 to 0.04) 0.15 1.0
Escherichia coli −0.11 (−0.22 to 0.01) 0.07 0.56 0.02 (−0.10–0.13) 0.79 1.0
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Figure 3. Representative figures of the correlation between alpha diversity metrics (Shannon on the
top and observed features at the bottom) by metagenomic shotgun sequencing and dysbiosis index
(left), abundance of Faecalibacterium by qPCR (middle), and abundance of Fusobacterium by qPCR
(right). p-values and R-values are listed in Table 2.

3.3. Beta Diversity of the Fecal Microbiota in the Study Population

Figure 4 presents the beta diversity based on Bray–Curtis. Dogs with minor changes
and increased DI (>0) clustered away from dogs with a normal DI. According to ANOSIM
tests, the R values (where higher R-values indicate larger size effects) increased propor-
tionally with an increase in the DI, with the highest R value found in dogs with DI > 8
(Table 3). Among dogs with DI < 0, no differences (p = 0.56) were found between dogs with
−5 < DI < −10 and dogs with −5 < DI < 0 (Table 4). Supplementary Figure S1 shows the
plot of beta diversity between different disease phenotypes.
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Figure 4. Principal Component Analysis (PCA) plot based on Bray–Curtis distance derived from
the sequencing data. (a) Samples are color-coded based on the interpretation of the dysbiosis index.
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Table 3. ANOSIM (Analysis of Similarity) test results for the dissimilarity of Bray–Curtis distance
between each group and dogs with normal DI. A larger R value indicates a larger difference between
the groups.

Compared to Normal Groups R Value p Value

minor changes 0.19 0.001
mild to moderate changes (0 < DI <2) 0.24 0.001

significant dysbiosis (2 < DI < 5) 0.54 0.001
significant dysbiosis (5 < DI < 8) 0.73 0.001

significant dysbiosis (DI > 8) 0.91 0.001

Table 4. ANOSIM test results for the dissimilarity of Bray-Curtis distance between each group and
dogs with −5 < DI < −10. A larger R value indicates a larger difference between the groups.

Compared to −5 < DI < −10 R Value p Value

−5 < DI < 0 −0.01 0.56
0 < DI < 2 0.12 0.001
2 < DI < 5 0.30 0.001
5 < DI < 8 0.65 0.001

DI > 8 0.89 0.001

3.4. Correlation between qPCR-Based Dysbiosis Index and Shotgun Metagenomic Sequencing Data

The abundances of all bacterial groups targeted in the DI were significantly correlated
(p < 0.001) with the relative abundances acquired by shotgun sequencing (Table 5 and
Figure 5). With an increase in the rarefaction depth from 9788 to 100,000, the Spearman’s
R-values increased in all groups, but with minimal changes. However, it should be noted
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that many bacterial groups were undetectable by shotgun metagenomic sequencing in a
subset of samples (Table 5).

Table 5. Correlation between log DNA by qPCR-based dysbiosis index (DI) and the relative abun-
dance by shotgun metagenomic sequencing. Spearman R value and its 95% confidence interval is
described. All p-values are <0.0001, where adjusted p-values are 0.007.

Bacterial Groups Targeted
in DI

Spearman R (n = 296)
Rarefaction Depth of 9788

Spearman R (n = 285)
Rarefaction Depth of 100,000

Escherichia coli 0.80 (0.76–0.84) 0.84 (0.80–0.87)
Faecalibacterium 0.80 (0.75–0.84) 0.82 (0.78–0.86)

Streptococcus 0.77 (0.71–0.81) 0.77 (0.72–0.82)
Clostridium hiranonis 0.73 (0.67–0.78) 0.74 (0.68–0.79)

Fusobacterium 0.71 (0.65–0.76) 0.78 (0.72–0.82)
Turicibacter 0.65 (0.57–0.71) 0.72 (0.65–0.77)

Blautia 0.46 (0.36–0.55) 0.49 (0.39–0.57)
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3.5. Core Microbiota in Healthy Dogs

Descriptive data of core bacterial groups in healthy control dogs are shown in Table 6.
The median percentage of the total abundance of bacterial groups that are targeted by the
DI account for 11.2% (range: 0.5–74.0%). In healthy dogs, the maximum relative abundance
of Lactobacillus, Collinsella, Prevotella, Bifidobacterium, and Streptococcus were above 50%,
while the minimum relative abundance could be as low as zero, meaning undetectable. For
example, E. coli was undetectable in 68% and 53% of healthy dogs when the rarefaction
depth was set at 9788 (n = 78) or 100,000 (n = 76), respectively. On the contrary, shotgun
metagenomic sequencing was able to identify C. hiranonis in all healthy dogs. However, the
relative abundance of C. hiranonis ranged from 0.01 to 37% in the sequencing data, whereas
the absolute quantification by qPCR showed a relatively narrow range with 97% of the
healthy dogs within RI (log DNA: 5.1–7.1).

At the rarefaction depth of 100,000, less than 5% of genera (15/328) were found in
all healthy dogs (n = 76). These genera were Bacteroides, Blautia, Clostridium, Coprococcus,
Eubacterium, Fusicatenibacter, Lachnoclostridium, Roseburia, each of one unknown genus in the
families Erysipelotrichaceae, Lachnospiraceae, and Peptostreptococcaceae, orders Bacteroidales
and Clostridiales, and two unclassified genera. Similarly, less than 2% of species (17/1190)
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were detectable in all healthy dogs. These species are presented in Table 7. At the species
level, a substantial proportion of bacterial groups (12.8%, 152/1190) were unclassified.

Table 6. Descriptive data (median and range) of the abundances of major bacterial groups in healthy
dogs by shotgun metagenomic sequencing (relative abundance%) or qPCR (log DNA).

Bacterial Taxa

Sequencing Rarefaction 9788
(n = 78)

Sequencing Rarefaction 100,000
(n = 76) qPCR (n = 78)

Median Range UDL 1 (%) Median Range UDL 1 (%) Median Range UDL 1 (%)

Collinsella 6.1 0–83.2 1.3 5.9 0–83.6 1.3 13.7 13.2–15.0 2 0
Blautia 5.9 0.4–42.1 0 6.3 0.3–41.9 0 10.4 9.1–11.1 0

Bacteroides 5.4 0–63.4 33.3 4.5 0–62.9 0 6.7 3.2–7.9 0
R. gnavus 4 0.2–27.0 0 4.4 0.1–26.9 0 10.5 6.0–12.4 2 1.3

C. hiranonis 2.5 0.01–36.9 0 2.5 0–36.7 0 6.3 2.5–7.7 0
Prevotella copri 1.6 0–73.5 20.7 1.8 0–75.3 16.9 14 9.5–16.8 2 9.0

Faecalibacterium 0.13 0–3.7 7.7 0.13 0–4.1 1.3 6.4 3.1–8.0 0
Streptococcus 0.07 0–61.8 28.2 0.07 0–61.4 6.5 7.8 1.1–8.7 1.3
Lactobacillus 0.03 0–88.5 29.5 0.02 0–88.1 10.5 N/A 3 N/A N/A

Bifidobacterium 0.02 0–61.9 35.9 0.01 0–62.7 13.1 4 2.1–7.6 0
Fusobacterium 0.02 0–44.4 34.6 0.04 0–44.4 22.3 9.1 6.4–10.8 0

Turicibacter 0.01 0–2.3 33.3 0.02 0–2.5 10.5 6.8 4.3–9.0 0
Escherichia coli 0 0–4.7 67.9 0 0–5.0 52.6 4.7 0.9–7.7 3.8

1 UDL = under detection limit. Percentage of samples that have 0 counts in the sequencing data. Percentage of
samples that have Cq-value of 40 in the qPCR assays. 2 Quantitative PCR was performed in 37 healthy dogs.
3 N/A = not applicable, Lactobacillus was not quantified by qPCR.

Table 7. Descriptive data (median and range) of the relative abundances of species (%) detected in the
feces of all healthy dogs (n = 76) by shotgun metagenomic sequencing at rarefaction depth of 100,000.

Species Median (%) Range (%)

unclassified species in the family Lachnospiraceae 5.1 0.04–29.7
Ruminococcus gnavus 4.4 0.13–26.9
Clostridium hiranonis 2.5 0.01–36.7

unclassified species in the order Bacteroidales 0.6 0.001–8.1
Clostridium sp. AT4 0.6 0.001–13.3

unclassified species in the order Clostridiales 0.5 0.03–2.2
unclassified species in the genus Bacteroides 0.5 0.002–17.0
unclassified species in the phylum Firmicutes 0.3 0.02–1.1

unclassified species 0.3 0.01–1.0
Coprococcus sp. HPP0074 0.2 0.002–1.7

unclassified species in the genus Blautia 0.2 0.02–11.8
Blautia sp. Marseille P3201T 0.2 0.002–1.3

Clostridium glycyrrhizinilyticum 0.1 0.001–0.6
Blautia wexlerae 0.05 0.004–6.096

Blautia massiliensis 0.04 0.001–0.251
Blautia obeum 0.03 0.002–0.848

Fusicatenibacter saccharivorans 0.01 0.001–0.251

At the rarefaction depth of 1,000,000, this analysis included 46 healthy dogs, with 31 of
them being excluded due to having counts below 1 million. Around 10% of genera (28/272)
and 5% of species (40/852) were detected among this group of 46 healthy dogs.

4. Discussion

Our study demonstrated a robust correlation between qPCR targeting core bacteria
taxa, the dysbiosis index (DI), and metagenomic sequencing data. Higher DI values
indicated a more pronounced deviation from the healthy reference group, which was
supported by ANOSIM analysis on beta diversity showing an increasing R value as the
DI value increased. Additionally, an increase in DI was correlated with a decrease in
alpha-diversity. These findings confirm that the DI accurately reflects the extent of shift in
the overall fecal microbiota composition in dogs.
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The DI was negatively correlated with Shannon, Chao1, and observed features, indi-
cating that dogs with a higher DI tend to have decreased alpha diversity, characterized
by low richness and evenness of the bacterial communities. In contrast, the abundances
of Faecalibacterium, Fusobacterium, and C. hiranonis were positively correlated with alpha
diversity metrics, suggesting that higher abundance of these bacterial groups reflects higher
microbial diversity. These bacterial groups had been reported to be beneficial in dogs, as
Faecalibacterium [24] and Fusobacterium [25] produce short-chain fatty acids, which have
anti-inflammatory and immunomodulatory properties [26]. C. hiranonis is linked to con-
version of primary to secondary bile acids in dogs, which is important in the regulation
of C. difficile and C. perfringens in both dogs and humans [27–29]. In humans, microbially
derived secondary bile acids have been reported to inhibit the growth and germination of
C. difficile [30]. Similarly, secondary bile acids inhibited growth of E. coli and C. perfringens
isolates from dogs in vitro [31]. The loss of C. hiranonis and the expansion of primary
fecal bile acids has been repeatedly reported in dogs with CE [32,33] and dogs receiving
antibiotics [20,34]. Bile acid dysmetabolism and dysbiosis were also found in humans with
inflammatory bowel disease [35]. Additionally, previous studies using 16S rRNA sequenc-
ing have reported the correlations between alpha diversity and both DI and C. hiranonis [36].
However, the abundances of Blautia and Turicibacter were only significantly correlated with
observed features and Choa1, but not Shannon, indicating that these bacterial groups may
contribute more to the richness rather than the evenness of the bacterial community. It is
important to note that the correlations between alpha diversity metrics and the targeted
bacterial groups in the DI were statistically significant but weak. However, as shown in
Supplementary Figure S2, the differences in alpha diversity between phenotypes were also
overlapping and no significant different were found between healthy dogs and dogs with
any of the disease phenotypes.

The PCA plot based on the Bray–Curtis distances showed that dogs with significant
dysbiosis had a microbiota shift far away from dogs with a normal DI, indicating a marked
difference in the overall microbiota composition. Moreover, the increasing R values shown
in the ANOSIM analysis also indicated that the dogs with a higher DI had larger shifts
compared to dogs with lower DIs. This finding was in line with studies using 16S rRNA
gene sequencing, where dogs with normal DI clustered away from dogs with an increased
DI on the PCA plot on Bray–Curtis distances [36] or UniFrac distances [20].

The significant correlation between a targeted qPCR-based DI and an untargeted
metagenomic shotgun sequencing found in this study could be attributed to the process
used to develop the DI. During the development of the DI, an initial set of bacterial
phyla (Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Ruminococcaceae) and genera
(Bifidobacterium, Blautia, Faecalibacterium, Turicibacter, Lactobacillus, C. perfringens, C. hiranonis,
and E. coli) were selected based on results from studies using 16S rRNA gene sequencing
and/or qPCR, and quantified by qPCR for feature selection to identify the best combination
that would differentiate the fecal microbiota in dogs with CE from healthy dogs [16]. The
DI model ultimately consisted of seven bacterial groups that provided the balance between
highest classification accuracy and the lowest number of assays. The DI’s ability to capture
the overall shifts in the fecal microbiota is further supported based on the results of the
current study.

Consistent abnormal DI values may indicate an imbalance in the gut microbiota and
reflect more severe abnormalities within the gastrointestinal tract. Dogs with a DI above
zero were found to cluster farther away from dogs with a DI below zero on the PCA plot
based on Bray–Curtis distances, indicating a significant shift in the fecal microbiota as
assessed by metagenomics. A higher DI might indicate larger shifts in the microbiota,
which was also evident in a recent study that demonstrated that dogs with CE and a higher
DI had a worse response to fecal microbiota transplantation as an adjunct treatment [19].
The DI has been used as a monitoring tool to assess whether the microbiota returns to a
normal state or improves in response to treatment. For instance, healthy dogs receiving
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antibiotics had a significantly increased DI which decreased over time after the antibiotic
was discontinued [20,34].

Notably, not all dogs with CE in our study population exhibited shifts in sequencing
and DI. Approximately 36% of dogs with CE had a normal DI in this study, consistent
with findings from other studies [19,32,37–39]. This result was confirmed by sequencing, as
these dogs with CE and a normal DI clustered together with the healthy dogs with a normal
DI in the PCA plot based on Bray–Curtis distances (Supplementary Figure S1). It is possible
that these dogs with CE and a normal DI may have a different pathophysiology compared
to dogs with CE and dysbiosis. Canine CE is known to be a multifactorial disease, where
the microbiota is only one of the associated factors. Future studies on dogs with CE and
a normal DI are necessary, as these dogs may have different therapeutic needs and/or
prognostic compared to dogs with CE and dysbiosis.

Sequencing approaches provide an overview and serve as an initial step in gathering
information on microbiota composition in a specific disease or condition. However, the
untargeted nature of this technique can make reproducibility difficult to define. Comparing
sequencing results over time or between studies that use different sequencing platforms
requires caution. The calculation of a relative abundance could be influenced by factors
such as sequencing depth, data normalization, and data processing methods [40]. As a
result, different studies might report different relative abundances for the same taxa in
a group with similar conditions. Furthermore, using relative abundances often leads to
misinterpretation, as the increase of one taxon leads to the concurrent decrease of the
other(s) within compositional data [14,41].

Using qPCR assays allowed for a quantitative approach and the establishment of ref-
erence intervals for the DI and each target taxon. In contrast, the metagenomic sequencing
results revealed a wide range of major and prevalent bacterial genera, such as Collinsella,
Bacteroides, Prevotella, Streptococcus, Lactobacillus, and Bifidobacterium, in healthy dogs. While
these genera are expected to be present in all healthy dogs, this study detected zero counts
for many bacterial genera using shotgun sequencing. However, as qPCR uses specific
primer sets to identify these bacterial groups, most of these prevalent bacterial groups
were detectable by qPCR in all healthy dogs. Specifically, Collinsella, Bacteroides, Prevotella,
and Bifidobacterium were detected by qPCR in 100% and Streptococcus was detected in
97% of healthy dogs. These findings were not consistent within the sequencing approach.
For instance, the relative abundance of the genus Collinsella ranged from 0 to 83%. It is
unlikely that Collinsella accounts for 83% of the fecal microbiota in one healthy dog but
0% in another dog. Moreover, it is unlikely that a certain genus accounts for more than
80% of bacterial composition in any healthy dogs. To confirm our untargeted sequencing
findings, a qPCR assay was applied and found a narrow range (13.2–15.0 log DNA) of
the fecal abundance of Collinsella in healthy dogs. This pattern of a wide range of relative
abundance in metagenomic sequencing and a narrow range of the qPCR results were also
observed in other genera, such as C. hiranonis and R. gnavus.

In this study, shotgun sequencing yielded varying counts in each sample, ranging from
around ten thousand to 5.6 million. This variability may have been caused by technical
issues (i.e., bioinformatic pipelines, library preparation, choice of database, etc.), poor
quality of DNA, or biological variation in the samples, resulting in fewer or lower- quality
reads. Having different count numbers does not necessarily indicate a problem or bias,
but accounting for the sequencing depth between samples when interpreting the data is
crucial [40]. Rarefaction is often applied in sequencing analysis to address these differences
in sequencing counts between samples, but not without controversy [42,43]. Rarefaction
randomly subsamples the sequencing counts to an equal number across all samples, to
compare the diversity and richness of different samples, when accounting for differences
in sequencing depth. For example, Sample A has 2 million counts and Sample B has
0.1 million counts. If the rarefaction depth is set at 0.1 million counts, the process will
randomly subsample 0.1 million counts from Sample A and include all counts from Sample
B. However, rarefaction has the potential to introduce bias [43]. Altering the rarefaction
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depth had different impacts on the alpha diversity metrics in this study. Increasing the
rarefaction depth by a factor of 10 resulted in minimal changes to the Shannon index,
which is an indicator of species diversity and evenness in a sample. However, both the
observed features and Chao1 metrics, which estimate the number of unique species present
in a sample, increased almost two-fold. Therefore, direct comparisons on alpha-diversity
between studies are not appropriate, especially if rarefaction depth is not the same.

Increasing the sequencing rarefaction deptSh reduced the rate of undetectable genera,
but also excluded more samples with counts below the rarefaction depth. In this study,
11 samples were excluded for a larger rarefaction count. If a rarefaction depth of 1 million
reads per sample had been applied, 108 samples (36%) would need to be excluded from
the study, which could be problematic for studies with small sample sizes, or when paired
analysis would require the exclusion of study subjects when one sample is lost. Increasing
the sequencing depth is a viable solution to obtaining higher read counts in samples, but it
comes at a higher financial cost [44]. Moreover, increasing sequencing depth can also lead
to a higher rate of sequencing errors, which can affect downstream analysis.

The main advantage of a targeted assay, such as a qPCR-based DI used in this study,
is the ability to detect and quantify a pre-defined set of microbial targets with high repro-
ducibility. We were also able to demonstrate that the DI reflects the extent of shifts in the
gut microbiome, as observed by shotgun metagenomic sequencing. While the qPCR-based
DI provides information about fewer taxa compared to sequencing, it targets the core
bacteria and offers advantages such as cost-effectiveness, easy repeatability, and faster
turnaround time (can be performed in one day). It also allows comparison of data across
studies. Untargeted sequencing techniques, while providing an overview of the microbial
community and identifying novel and unexpected microbial taxa, can be more expensive,
computationally intensive, and require larger sample sizes to achieve statistical significance
compared to targeted assays. This can limit their use in research studies. Nonetheless,
untargeted metagenomic sequencing is essential for identifying microbial taxa that may be
relevant to disease and provide a comprehensive understanding of the microbiome, such
as R. gnavus and P. copri which were found to be highly abundant in healthy dogs in this
study. As for the bacterial taxa not detected by shotgun metagenomics, this could be due to
various factors, including differences in assay sensitivity and sequencing depth. Indeed, an
increased sequencing depth might have provided more insights, but the current depth was
sufficient to establish significant correlations. It is important to consider the advantages
and limitations of both targeted and untargeted approaches when selecting the appropriate
method for a specific research question, and ideally both methods should be applied to
allow for stronger conclusions in research studies.

5. Conclusions

This study demonstrated robust correlations between untargeted metagenomic se-
quencing and targeted qPCR assays. The qPCR-based canine dysbiosis index accurately
predicted shifts in the microbiome observed on shotgun metagenomic sequencing. It is
important to note that targeted assays, such as qPCR, have limitations as they only de-
tect a pre-defined set of microbial targets. Nonetheless, this study provided evidence for
the use of the DI as an effective indicator of shifts in the fecal microbiota in dogs, which
allows better comparisons across studies and individual dogs over time due to superior
reproducibility and analytical sensitivity. Combining the strengths of both approaches can
enhance our understanding of the gut microbiome and its role in health and disease.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani13162597/s1, Figure S1. Beta diversity based on Bray–Curtis distances
in different phenotypes; Figure S2. Observed features (alpha diversity) in different phenotypes; Table
S1: Study population; Table S2: Quantitative PCR conditions of all targeted bacterial taxa in this
study.

https://www.mdpi.com/article/10.3390/ani13162597/s1
https://www.mdpi.com/article/10.3390/ani13162597/s1
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