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Abstract—The classical synthesis method for quantum oracles
generally requires a reversible logic synthesis and a quantum
compilation step. In the reversible logic synthesis it is important
to obtain a compact reversible circuit in order to minimize the
quantum cost of the final quantum circuit. In this paper, we
exploit function regularities for enabling efficient reversible syn-
thesis. In particular, we propose and implement a new method for
the quantum synthesis of Dimension reducible Boolean functions.
The experimental results validate the proposed approach showing
relevant gains in area.

Index Terms—D-reducibile functions, reversible logic, quantum
circuits

I. INTRODUCTION

In the last few years, the technological enhancement in
quantum architectures has lead to a renewed and growing
interest in quantum computing, as well as to the design of new
secure cryptographic protocols. As a consequence, the research
in quantum logic synthesis has also attracted considerable at-
tention. In fact, many quantum algorithms, including Grover’s
search algorithm, usually require to compute oracles [1], i.e.,
subroutines given as classical logic functions.

Standard approaches to synthesize quantum oracles gen-
erally consist of two steps: reversible logic synthesis and
quantum compilation. Indeed, since the evolution of quantum
systems is described by reversible unitary operators, logic
functions must be first realized in terms of classical reversible
circuits. Then, each reversible gate must be decomposed into
a sequence of elementary unitary quantum gates, according
to a given quantum gate library. These two steps should
be performed with the goal of minimizing the overall gate
count of the quantum circuits to be executed. Recently, new
methods for reversible circuit synthesis and quantum compi-
lation have been proposed in the literature. Among these, a
method exploiting a structural regularity called autosymmetry
to synthesize compact quantum circuits is presented in [2].

In this paper we propose and implement a strategy for the
quantum synthesis of Boolean functions exhibiting a different
structural regularity called Dimension reducibility (i.e., D-
reducible functions). These functions can still be formalized

through the XOR operators. Intuitively, all the minterms of
a D-reducible function are entirely contained within an affine
space that is strictly smaller than the whole Boolean cube
{0, 1}n. D-reducible functions are sufficiently common among
classical benchmarks to make the case interesting: experimen-
tal results in [3] show that about 70% of the functions in the
classical ESPRESSO benchmark suite [4] have at least one
D-reducible output. Moreover, the D-reducible decomposition
can be computed in polynomial time.

The proposed method is an ad-hoc strategy for the quantum
synthesis of D-reducible functions. The synthesis method
is based on the structural decomposition of these functions
and enables the standard quantum compilation in finding
more compact quantum circuits. The theoretical part of the
paper shows that we can obtain a reversible circuit, for the
given Boolean function, without adding any new input line.
Moreover, the final reversible circuit exhibits an uncomputing
part implemented with CNOT gates only, i.e., no T-gates
are required. We can notice that this aspect is particularly
important, since T-gates are more expensive then CNOTs.

The quantum compilation phase produces compact quantum
circuits as validated by the experimental results. The exper-
iments show that the proposed strategy allows to compute
compact quantum circuits for D-reducible functions, showing
gains in area (measured in terms of the number of elemen-
tary quantum gates) of about 38%, starting from standard
ESOP forms. Moreover, considering the XAG-based quantum
compilation [5], the experimental results show a gain in area
(measured in terms of T gates) of about 21%. Notice that XAG
quantum based compilation usually provides very compact
implementations. Therefore, even for this setting, the gain in
area is not negligible.

II. PRELIMINARIES

A. Dimension Reducible Functions

A special type of regularity can be observed in dimension
reducible (D-reducible) functions [3], [6], [7], which is based
on affine spaces [8], [9]. Recall that a vector subspace V of



the classical Boolean vector space ({0, 1}n,⊕) is a subset
of {0, 1}n containing the zero vector 0 = (00 . . . 0), such that
for each v1 and v2 in V we have that v1 ⊕ v2 is still in V .
Recall that if α ∈ {0, 1}n is a Boolean point (or vector), the
set A = α⊕ V = {α⊕ v | v ∈ V } is an affine space over V
with translation point α. The dimension of A is the dimension
of the corresponding vector space V . An affine space can be
algebraically represented by a pseudoproduct consisting of an
AND of XORs or literals [8]. There are several ways to express
affine space characteristic functions as a pseudoproduct, out of
them we use the canonical expression (CEX) [10]. Consider
the points of V and A sorted in binary ordering. In the vector
space V , rows are indexed from 0 to 2k − 1 and the points
with indices 20, 21, 22, ..., 2k−1 form the canonical basis BA

of V . The canonical translation point αA is the point of A
with index 0. Generally, the canonical representation of an
affine space is given by its canonical translation point and its
canonical basis. In each canonical basis vector, the variable
corresponding to the first 1-component from left is called
canonical variable. The variables that are not canonical in
the canonical basis are called non-canonical variables.

Starting from these definitions, we can now describe the
regular functions that are D-reducible. Intuitively, the points
(i.e., minterms) of D-reducible functions are entirely contained
within an affine space that is strictly smaller than the whole
Boolean cube {0, 1}n. When a function f is D-reducible, it
can be written as f = χA · fA, where A is the smallest affine
space that contains f and it is called the associated affine space
of f . Moreover, χA is the characteristic function of A and fA
is the projection of f onto A.

Example 1: The Karnaugh map on the left side of Figure 1
illustrates a D-reducible function. According to the Karnaugh
map on the right side of the figure, the new function fA
depends on two variables. It should be noted that although
the number of the onset minterms is the same for both f
and fA, they are compacted in a smaller space (map) in the
fA function. If we synthesize f and fA in the classical SOP
framework, we obtain f and fA equal to x1x2x3x4+x1x2x3

and x2 + x2x4, respectively. As a result, the overall number
of products is unchanged, and the overall number of literals
is reduced from 7 to 3. Moreover, the canonical basis can
be derived in polynomial time exploiting the Gauss-Jordan
elimination as described in [11]. Finally, a more compact form
for the function f can be derived as x1(x2⊕x3)(x2+x2x4) ,
where x1(x2 ⊕ x3) is the CEX representing χA.

B. ESOP forms

In the Exclusive-or Sum-of-Products (ESOP) form, a
Boolean function is represented by multi-input AND gates
on one level followed by one multi-input XOR gate on the
second level. Nowadays, ESOP forms are deeply studied due
to their applications in emerging technologies. In comparison
with standard SOP, the ESOP form offers several advantages,
including the need for fewer products to realize randomly
generated functions [12], more compactness for arithmetic or
communication circuits [13], higher testability properties [14]
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Figure 1. Karnaugh maps of a D-reducible function f (left) and its
corresponding projection fA (right).

Table I
THE COST OF k-CONTROLLED TOFFOLI GATES IN NUMBER OF T, H AND

CNOT GATES

k T H CNOT ancillary qubits
2 7 2 6 0
3 16 6 14 1

≥ 4 8k-8 8k-12 4k-6 ⌈ k−2
2

⌉

and security [15], [16]. Moreover, since the XOR operation
is reversible inherently [17], ESOP forms are essential for the
synthesis of reversible logic circuits and quantum computing
[18]. ESOP minimization is a computationally very hard prob-
lem that has long attracted the attention of algorithm designers.
Several heuristic and exact methods have been designed for
this purpose [17], [19].

C. Reversible Circuits and Quantum Compilation

In a reversible circuit, there is a one-to-one mapping be-
tween the input and output vectors, as a result the number
of outputs and inputs are the same. In this kind of circuit,
any constant input is known as an ancilla input, and any
output that is generated to preserve one-to-one mappings, but
it is not a useful output is known as a garbage output. In
general, reversible circuits consist of a sequence of Mixed-
polarity Multiple Control (MPMC) Toffoli gates.

Given a set of circuit lines X = x1, x2, ..., xn, an
MPMC Toffoli gate T (C, t) has control lines C =
{xj1, xj2, ..., xjc} ⊂ X and a target line t ∈ X \ C. The
gate maps t → t ⊕ (xp1

j1 ∧ xp2
j2 ∧ . . . ∧ xpl

jl), where each
literal xpi

ji is either a propositional variable x1
ji = x or its

negation x0
ji = x̄. All remaining other lines are passed through

unaltered. Note that, whenever t is equal to 0, the MPMC
Toffoli gate computes the AND of all control lines on the
target line. Two MPMC Toffoli gates are depicted in Figure 5:
the conventional notation ⊕ indicates the target line; control
lines are denoted by • to indicate positive control connections,
and by ◦ to indicate negative control connections.

An MPMC Toffoli gate without any control connection is
known as a NOT gate, with a single positive control connection
is called a Controlled-NOT (C-NOT) gate, and with only
positive controls is called Multiple-control Toffoli gate [1].

The natural correspondence between product terms in ESOP
forms and MPMC Toffoli gates makes ESOP-based synthesis



widely utilized in reversible logic synthesis [18], [20], [21]:
a sequence of MPMC Toffoli gates can be extracted from an
ESOP expression, where literals in each product term become
control lines in the corresponding MPMC Toffoli gate. Since
all these gates act on the same target line, the overall circuit
computes the XOR of all product terms on the target line.

Reversible circuit synthesis plays an important role in
quantum computing, as it represents a first step towards the
construction of quantum circuits. To convert a reversible circuit
containing MPMC Toffoli gates into a functionally equivalent
quantum circuit, an additional quantum compilation step is
required: each reversible gate must be decomposed into a
sequence of elementary quantum gates, according to a given
quantum gate library [22], [23]. In this work, we will use the
Clifford+T library for this mapping. This library is composed
of the Pauli, Hadamard, CNOT gates and of the T gate, which
is considered the most expensive one (we refer the reader to [1]
for more details on elementary quantum gates).

Table I reports the classical cost in terms of Hadamard,
CNOTs, T gates, and ancillary qubits of the realization of k-
controlled MPMC Toffoli gates with the algorithm described
in [24]. New quantum compilation heuristics have been pro-
posed, able to synthesize compact circuits [5], [25], [26].

III. REVERSIBLE CIRCUITS FOR D-REDUCIBLE FUNCTIONS

As already reviewed in the previous section, there is a
natural correspondence between ESOP expressions and re-
versible circuits, based on the fact that a product terms in an
ESOP expression can be easily represented with a reversible
MPMC Toffoli gate. Thus, given an ESOP expression, one
can extract a sequence of MPMC Toffoli gates whose control
lines correspond to the literals in the product terms of the
ESOP form, and whose target line corresponds to the output
of the function. Notice that all gates act on the same target
line, thus realizing the exclusive OR sum of all product terms.
The main problem of this approach is due to the fact that
MPMC Toffoli gates are only an intermediate representation.
They need to be mapped into elementary quantum gates using
an additional synthesis step, whose goal is to transform the
reversible circuit of MPMC Toffoli gates into a functionally
equivalent quantum circuit implementation. Unfortunately, this
mapping step might be very onerous, especially for MPMC
Toffoli gates controlled by many variables, thus leading to
quantum circuits of high size and depth.

In this section, we therefore propose to exploit the regularity
of D-reducible functions to ease their reversible synthesis, in
order to obtain a final quantum circuit of reduced size and
depth. Given a D-reducible function f = χA · fA, the idea
is to concatenate two reversible circuits: a circuit computing
the characteristic function χA of the affine space A and a
reversible circuit implementing the projection fA. Since the
characteristic function χA may depend on all input variables,
the inputs of the circuit for χA are all variables: non-canonical
and canonical ones. The circuit for fA, instead, depends only
on the canonical variables. To compute f , we then need a final
Toffoli gate computing the AND between the two subfunctions

Reversible circuit for 
!A 

!A
fA
f

Non-canonical 
variables

Canonical 
variables

Reversible circuit for 
fA 

Figure 2. A reversible circuit for a D-reducible function based on the
decomposition f = χA · fA.

χA and fA, with f as target line. Note that this approach
requires three additional lines (and therefore 3 new qubits in
the quantum implementation of the reversible circuit for f ):
one line for χA, one for fA, and finally one for f . The overall
circuit structure is shown in Figure 2.

Let us now discuss how to implement the circuits for χA

and fA. The circuit for fA can be derived from an ESOP
representation of the projection fA. Since fA depends only
on the canonical variables, that are a subset of the input vari-
ables, we can reasonably expect that its ESOP representation
will contain product terms with less literals. Therefore, the
corresponding MPMC Toffoli gates will be controlled by less
input lines, thus leading to a quantum circuit of smaller size
and depth after the quantum compilation with respect to the
Clifford+T library. A reversible circuit for χA can be imple-
mented directly from its canonical CEX expression. Indeed,
recall from Section II-A that a CEX consists of an AND of
XOR factors, and each XOR factor can be implemented using
CNOT gates. In particular, a XOR factor of k literals can be
implemented using k − 1 CNOTs. Finally, an MPMC Toffoli
gate is required to implement the AND of all XOR factors.
The number of control lines in input to this gate corresponds
to the number of XOR factors, and therefore to the number
of non-canonical variables of the affine space A. Interestingly,
we do not need to introduce new input lines to represent each
XOR factor, as proved in the following proposition.

Proposition 1: Let χA : {0, 1}n → {0, 1} be the canonical
CEX expression representing an affine subspace A of {0, 1}n.
Then, a reversible circuit for χA can be implemented without
adding new input lines.

Observe that the modification of the non-canonical variables
has no effect on the successive calculation of the projection
fA, as fA depends only on the canonical variables. Once
the overall function f has been computed on the output
line (the last line in Figure 2), we can restore the non-
canonical variables to their initial values applying the so-
called uncomputing procedure [1]: we uncompute the XOR
factors stored in the non-canonical variables by re-applying
the CNOTs in reverse order. This disentangles the variables,
reverting them to their initial values. The overall methodology
is summarized in the algorithm in Figure 3.

Example 2: Consider the function f = x1x2x3x4+x1x2x3

described in Example 1. This function is D-reducible, with
canonical variables x2 and x4, and can be decomposed as



INPUT
f /* D-reducible Boolean function with affine space A */
fA /* projection of f onto A */
χA /* characteristic function of A */
OUTPUT
Q /* Quantum circuit for f */

QA = ReversibleSynthesis(fA);
QχA

= ReversibleSynthesis(χA);
Q = Toffoli(QA, QχA

);
Q = UncomputingProcedure(Q);
return Q

Figure 3. Reversible synthesis of D-reducible functions.

follows f = x1(x2⊕x3)(x2+x2x4) , where χA = x1(x2⊕x3)
and fA = x2+x2x4. To derive a reversible circuit of f exploit-
ing this decomposition, we first need to represent fA in ESOP
form. For this example, since the two products x2 and x2x4

are disjoint, we can immediately derive an ESOP form simply
replacing the OR operator with a XOR: fA = x2 ⊕ x2x4. To
implement the reversible computation of χA we only need a
CNOT for computing x2 ⊕ x3 onto the line corresponding to
the non-canonical variable x3, and a Toffoli gate for computing
the AND between the first factor x1 and the factor x2 ⊕ x3

(first and second gate in Figure 4). The projection fA can
be computed with two gates corresponding to the two terms
in its ESOP form (third and forth gate in Figure 4). Then,
the next Toffoli gate computes the AND between χA and
fA. Finally, the last CNOT gate implements the uncomputing
procedure. Figure 5 shows a reversible circuit derived from
the ESOP representation f = x1x2x3x4⊕x1x2x3 of the same
function. This circuit contains only two MPMC Toffoli gates,
and may appear more convenient than the one exploting the
D-reducibility properties. However, the first circuit contains
Toffoli gates with at most two control variables, while the
gates in the second circuit are controlled by up to 4 variables.
This has a very important impact on their quantum implemen-
tations. Indeed, if we compute the cost in terms of T, H, and
CNOT gates of these two implementations (using the costs
reported in Table I) we can easily verify that the first circuits
requires 21 T gates, 6 H gates and 21 CNOTs, leading to an
overall size of 48 gates. On the other hand, the second circuits
has a cost of 40 T gates, 26 H gates and 24 CNOTs, and an
overall size of 90 gates.

Finally, observe that the same strategy can be applied also
when the two parts of the decompostion, i.e., fA and χA, are
represented in XAG form, as discussed in Section IV.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the proposed decomposition in
the context of reversible circuit synthesis and quantum compi-
lation. In particular, we conducted two different experimental
evaluations. The first one, discussed in Section IV-A, aims
at measuring to what extent the D-reducibility property can
be exploited to implement compact circuits, in the context
of standard reversible synthesis starting from ESOP forms.
The aim of the second experimental evaluation, discussed in
Section IV-B, is to establish whether more advanced quantum

x1

x2

x3

x4

0 χA

0 fA

0 f

Circuit for χA Circuit for fA Uncomputing

Final Toffoli gate

Figure 4. Reversible circuit, with the uncomputing procedure, for the D-
reducible function f of Example 2, derived from its decomposition as f =
χA · fA. After quantum compilation with the Clifford+T library, the size of
the circuit becomes equal to 48 elementary quantum gates.

x1

x2

x3

x4

0 f

Figure 5. Reversible circuit for the D-reducible function f of Example 2,
derived without exploiting the D-reducible decomposition. After quantum
compilation with the Clifford+T library, the size of the circuit becomes equal
to 90 elementary quantum gates.

compilation methods could also benefit from the decomposi-
tion based on D-reducibility.

These two experimental evaluations have been conducted on
D-reducible functions taken from the LGSynth’89 benchmark
suite [4]. Since D-reducibility is a property of single outputs,
we consider single outputs of the benchmark functions.

A. Standard reversible synthesis

Following the strategy depicted in Figure 2, we implement
a reversible circuit for a D-reducible function f = χA ·fA. To
better evaluate the quality of the reversible circuits derived
for D-redicibile funtions, and to compare them with those
derived without exploiting the D-reducibility property, we have
measured their size in terms of elementary quantum gates.
More precisely, instead of considering the overall number of
MPMC Toffoli gates, we have mapped each Toffoli gate into
elementary quantum gates, considering the Clifford+T low-
level quantum gate library and the algorithm described in [24].

Table II reports a significant subset of benchmarks as
representative indicators of our experiments. The first col-
umn reports the name and the number of the considered D-
reducible output of each benchmark. The following group of
3 columns reports the costs, in terms of elementary quantum
gates, of the reversible circuits derived from minimal ESOP
expressions of the benchmarks, without exploiting the D-
reducibility structural regularity. The last group of columns
reports the costs of the reversible circuits derived exploiting
the D-reducibily decomposition, as explained in Section III.
ESOP minimization of the benchmarks and of their projections
onto the associated affine spaces is performed using the



Table II
COMPARISON BETWEEN QUANTUM CIRCUITS COMPUTED WITHOUT AND WITH THE D-REDUCIBLE DECOMPOSITION

without decomposition with decomposition
Benchmark output input T H CNOT ancillae T H CNOT ancillae T gain
b10 3 15 488 448 133 27 406 354 129 23 17%
dk48 2 15 512 492 200 30 110 92 45 5 79%
dk48 4 15 520 500 204 31 80 76 38 5 85%
gary 2 15 488 448 133 27 406 354 129 23 17%
gary 4 15 744 686 246 44 646 588 198 36 13%
in0 3 15 232 216 71 13 181 154 65 9 22%
in0 5 15 856 812 306 53 615 556 198 33 28%
in2 5 19 1520 1410 491 89 1118 1002 307 63 26%
in2 9 19 2144 2002 715 127 1878 1736 581 107 12%
in5 9 24 1568 1492 574 94 1423 1342 504 83 9%
m181 1 15 135 114 26 7 103 70 46 5 24%
newtpla 0 15 200 188 66 12 134 112 38 7 33%
newtpla 2 15 704 652 208 42 382 322 94 20 45%
rckl 6 32 1928 1862 817 120 1814 1748 759 106 6%
spla 21 16 752 724 298 45 142 120 56 7 81%
spla 32 16 1560 1492 592 93 1094 1024 387 64 30%
t2 6 17 494 452 165 29 287 262 91 17 42%
vg2 2 25 1152 1096 421 70 527 462 111 30 54%
vg2 6 25 520 492 182 30 231 182 64 11 56%
vtx1 5 27 4096 3984 1739 244 1287 1154 387 78 69%
Average Benchmark Suite 379 352 126 22 236 204 80 13 38%

Table III
COMPARISON OF THE NUMBER OF T GATES IN QUANTUM CIRCUITS

COMPILED WITHOUT AND WITH THE D-REDUCIBLE DECOMPOSITION

T gates without T gates with
Benchmark output input decomposition decomposition T gain
b10 3 15 76 96 -26%
dk48 2 15 84 52 38%
dk48 4 15 76 40 47%
gary 2 15 84 96 -14%
gary 4 15 124 96 23%
in0 3 15 64 52 19%
in0 5 15 156 136 13%
in2 5 19 240 184 23%
in2 9 19 228 292 -28%
in5 9 24 152 168 -11%
m181 1 15 24 24 0%
newtpla 0 15 56 48 14%
newtpla 2 15 80 68 15%
rckl 6 32 120 120 0%
spla 21 16 96 56 42%
spla 32 16 324 88 73%
t2 6 17 68 44 35%
vg2 2 25 120 80 33%
vg2 6 25 68 64 6%
vtx1 5 27 184 116 37%
Average Benchmark Suite 63 49 21%

EXORCISM-4 heuristic [19]. Due to the heuristic nature of
this ESOP minimizer, the synthesis times for the functions
and their projections are similar and very short, leading to
negligible gain in synthesis time. Finally, the last column
reports the gain in the number of T gates, and the last row
reports the average costs for all the benchmarks considered in
our experiments. The gain obtained synthesizing a reversible
circuit exploiting this structural regularity is quite interesting.
Indeed, the cost gain for T gates is about 38%, the cost gain
for H gates is about 42%, the cost gain for CNOTs is about
37% (including the cost of the uncomputing procedure), and
the gain in ancillary qubits is about 42%. Notice that the
uncomputing procedure does not introduce new T gates.

B. XAG-based quantum compilation

We now discuss the experimental results obtained by apply-
ing the quantum compilation heuristic proposed in [5]. In par-
ticular, we are interested in evaluating experimentally whether

this recent technique could benefit from the decomposition of
the target function based on the D-reducibility property.

The considered compilation heuristic starts from a XAG
representation of a Boolean function f and produces quantum
circuits containing elementary quantum gates taken from the
Clifford+T gate set. Since, as already observed, the T gate is
particularly expensive to be applied, the overall number of T
gates is considered a good measure for the cost of the quantum
implementation. Therefore, in this experimental evaluation, we
only consider the number of T gates in the circuits obtained ap-
plying the XAG-based quantum compilation heuristic with and
without exploiting the decomposition based on D-reducibility.

A very interesting result shown in [5] is that the number
of T gates in a quantum circuit for a Boolean function f can
be expressed in terms of the number of AND gates in its
XAG representation. This implies that it is possible to provide
an upper bound on the number of T gates in a circuit for
a function f in terms of its multiplicative complexity, i.e.,
the minimum number of AND gates required to realize f in
XAG form. Computing the multiplicative complexity for an
arbitrary Boolean function is intractable, however as shown
in [27], it is sometimes possible to derive good estimates
of this complexity measure exploiting structural regularities
of the functions, as for instance the D-reducibility property.
We can derive a quantum circuit for a D-reducible function
f = χA ·fA combining the quantum circuits obtained applying
this heuristic to χA and fA separately. This approach should
be convenient since 1) we are able to compute the exact
multiplicative complexity of χA, and build a XAG with the
minimum number of AND gates required to realize χA (see
Theorem 2 in [27]); 2) fA is a function that depends on fewer
variables, so its XAG representation might contain a reduced
number of AND gates (as already experimentally verified
in [27]); 3)the two circuit components can be combined by
adding a single AND gate, and therefore only 4 T gates
in the final quantum circuit. Therefore, this strategy should



lead to a reduced number of T gates in the final quantum
implementation of the function f . The experimental results
confirm this expectation, showing a significant reduction in
the number of T gates: compiling a quantum circuit exploiting
the decomposition of the target function f as χA · fA, we can
obtain a cost gain in T gates of about 21%.

We report in Table III a subset of all the benchmarks that
are considered for our experiments. The first column contains
the name and the number of the output of the considered
benchmark. The second column reports the number of inputs.
The following column reports the cost, in terms of T gates,
of the quantum circuit compiled without exploiting the D-
reducibility regularity. Finally, the last two columns report
the cost of the quantum circuits derived exploiting the D-
reducibily decomposition, and the gain in the number of T
gates. The last row reports the average results for all the
benchmarks considered in our experiments.

From the results reported in Table III, we can notice how
some benchmarks highly benefit from the proposed strategy.
For example, the benchmark spla 32 shows a gain of 73%,
in T gates. For other benchmarks the gain is much less
significant, for example m181 1 and vg2 6. There are also
cases where the strategy based on D-reducibility gives circuits
with a higher number of T gates (see for instance, b10 3 and
in2 9). This fact is due to the heuristic nature of both the
XAG minimizer, used to derive the initial representation of
the function, and of the quantum compiler itself. In general,
we can observe how the overall T cost of the XAG based
quantum compiler is much lower than the cost of the circuits
derived from standard ESOP forms, both for decomposed and
non-decomposed benchmarks.

V. CONCLUSION

In this paper we have considered the class of D-reducible
functions and have shown how this regularity can be exploited
to implement compact reversible circuits. Experimental results,
conducted starting with both standard ESOP or XAG repre-
sentations of the decomposed expressions, have validated the
proposed approach. Future work can consider new regularities
for enhancing quantum compilation. Moreover, we plan to
investigate whether other decomposition techniques can be
exploited for deriving compact quantum circuits.
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