
A LOG-WEIGHTED MOSER INEQUALITY ON THE PLANE

C. TARSI

Abstract. We establish a sharp Moser type inequality with logarithmic weight in the non-
radial mass-weighted Sobolev spaces, on the whole plane R2. We identify the sharp threshold
for the uniform boundedness of the weighted Moser functional, which is still given by 4π:
further, we prove the validity of the inequality also at the limiting sharp value 4π. Even if the
increasing nature of the log weight prevents the application of any symmetrization tool, we
prove our inequality in the general framework of Sobolev space, and not on radial subspaces,
as in the available literature. The main strategy is a careful analysis of the behaviour of the
normalized maximizing sequences.
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1. Introduction

Let Ω ⊂ R2 be an open domain with finite measure. It is well known that{
H1

0 (Ω) ↪→ Lp(Ω) for p ∈ [1,∞);

H1
0 (Ω) 6↪→ L∞ for p =∞.

A counterexample is given by the function

u(x) = (− log | log |x||)+,

when Ω is the unit ball. The maximal degree of summability for functions in H1
0 (Ω) was es-

tablished independently by Pohožaev [32] and Trudinger [37] (see also [38]) and is of quadratic
exponential type. Several years later, Moser [28] was able to simplify Trudinger’s proof, and to
determine the optimal threshold; more precisely,

(1) sup
‖∇u‖2≤1

∫
Ω

eαu
2

dx ≤M(α)|Ω|, α ≤ 4π

where the constant M(α) stays bounded provided α ≤ 4π and the supremum becomes infinity
when α > 4π. While the proof of the validity of (1) for α < 4π is not difficult, it becomes very
delicate when α = 4π. This is usually done by showing, after reducing by symmetrization to
the radial case, that if {vk} is a maximizing sequence, it can not be “too far” from the so-called
Moser sequence. The same sequence is also used to prove the failure of (1) for α > 4π.

Clearly, as the measure |Ω| → +∞ no uniform bound can be retained in (1), and the exponen-
tial needs to be suitably regularized when u is near 0. The standard way to do this is to consider
the reduced exponential et − 1. Then, by restricting to smooth functions such that ‖∇u‖2 ≤ 1
and ‖u‖2 ≤ K, K > 0, Cao [11] proved that

(2) sup
‖∇u‖2≤1, ‖u‖2≤K

∫
R2

(
eαu

2

− 1
)
dx ≤ C(α,K) <∞ if α ≤ 4π(1− δ),
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where δ ∈ (0, 1) (see also [31]). A further result in this direction was obtained by Adachi-Tanaka
in [1] which reads as follows: for all u ∈ H1(R2) \ {0} one has

(3)
∫
R2

(
e
α u2

‖∇u‖22 − 1

)
dx ≤ C(α)

‖u‖22
‖∇u‖22

,

where
C(α) <∞ as long as α < 4π.

Inequalities (2) and (3) are usually named as subcritical TM inequalities, since they involve only
values of the parameter α < 4π. The critical Moser case in which α = 4π remained uncovered
until Ruf in [33] established the following inequality

(4) sup
‖∇u‖22+ ‖u‖22≤1

∫
R2

(
eαu

2

− 1
)
dx <∞ if α ≤ 4π,

which is sharp, namely the supremum becomes infinity as α > 4π. Note that Ruf’s inequality
yields, as a byproduct, a uniform bound for the Moser functional which is independent of the
measure of the domain when dealing with bounded domains Ω, provided that one considers the
complete Sobolev norm instead of the Dirichlet norm, as in Moser’s result.

Starting from these pioneering results, a very large amount of literature has been developed,
and many interesting phenomena have been discovered: one of the most surprising is the attain-
ability of the supremum in (1), in contrast with the classical Sobolev case, both in the bounded
([12, 21]) and in the unbounded ([22, 27, 33]) setting. This striking difference highlights the
peculiarity of the 2-dimensional framework, which motivates a still very active line of research.

From the point of view of PDEs, differently from the Sobolev case, the exponent α in (1) does
not play any role: the critical growth, in terms of threshold between existence and nonexistence
of solutions, is represented by the quadratic exponential growth retained by the Orlicz class of
functions underlying (1) (see [2, 20]). Motivated by the study of a Schrödinger-Poisson system
in the plane which can be reduced to a Choquard type equation with logarithmic kernel and
exponential nonlinearity, we recently proved in [7, 14] a new log-weighted version of the Trudinger
inequality in the whole plane:

(5) sup
‖u‖2w≤1

∫
R2

(
e2πu2

− 1
)

log(e+ |x|)dx < +∞

where ‖u‖2w =
∫

(|∇u|2 +log(e+ |x|)u2) is the Sobolev mass-weighted norm. It seems now natural
to investigate the validity of a corresponding log-weighted Moser type inequality. Weighted Moser
type inequalities have been already considered in the literature, starting from the pioneering work
of Adimurthi and Sandeep [3] where the authors established the following singular Moser-Hardy
inequality

sup
‖∇u‖2≤1

∫
Ω

eαu
2

|x|β
dx < +∞, if and only if

α

4π
+
β

2
≤ 1

on bounded domains containing the origin in R2, which has been generalized on the whole plane
in [35]. Note that here the Hardy type weight is singular and decreasing : if, on one hand, the
singularity affects the value of the sharp exponent, on the other hand it allows the usual reduction
to radial functions. If, on the contrary, we aim at Moser inequalities involving increasing radial
weights, as in (6), the application of standard symmetrization tools is avoided. For this reason,
these kind of inequalities have been established, till now, only in the framework of radial Sobolev
spaces (see, e.g., [23, 25, 29] and references therein). Up to our knowledge, even in the subcritical
Trudinger setting, only Albuquerque [4] and the author [36] have addressed the question in the
general framework of mass weighted Sobolev spaces, that is, without any a-priori restriction to
radial functions (see also [17] for a close result).
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The main goal of this paper is to prove a sharp, Moser type result in the whole plane in
the special case of the log-weight, in the framework of log-mass weighted Sobolev spaces. More
precisely, we will prove the following

Theorem 1. Let H1
w(R2) be the weighted Sobolev space, endowed with the norm

‖u‖2w = ‖∇u‖22 + ‖u‖22,w =

∫
R2

|∇u|2dx+

∫
R2

u2 log(e+ |x|)dx.

Then

(6) sup
‖u‖2w≤1

∫
R2

(
e4πu2

− 1
)

log(e+ |x|)dx < +∞.

Inequality (6) is sharp, that is, for any α > 4π

(7) sup
‖u‖2w≤1

∫
R2

(
eαu

2

− 1
)

log(e+ |x|)dx = +∞.

Remark 1. We choose the weight w = log(e + |x|) instead of log(1 + |x|) because we want to
avoid any role of the weight, except for its unboundedness at infinity. Indeed, the zero value of
the function log(1 + |x|) ∼ |x| at the origin may affect the Moser inequality, as in the Hénon
cases, see [10].

Remark 2. As motivated above, we focus here on the effect of an increasing weight in the mass
term. A complementary interest that has been recently developing in the literature is devoted
to the impact of a weight w in the Dirichlet norm. The presence of a power weight in the
gradient term affects the sharp exponent in the radial Moser inequality, as proved in [10] in the
bounded domain framework. A much more relevant improvement can be obtained by considering
a logarithmic weight, as established by Calanchi and Ruf (see e.g. [8, 9]). Note that one needs to
restrict attention to radial functions in order to obtain any actual improvement of these limiting
inequalities: otherwise, suitable translation and dilation of the Moser’s sequence in a region far
from the origin and far from the boundary, where the presence of can be ”neglected”, shows that
the sharp exponent 4π cannot be enhanced. Roughly speaking, the presence of a radial weight in
the Dirichlet norm may produce an improvement of the Moser inequalities if it can affect all the
concentrating sequences: and this is possible only if the concentration occurs at the origin.
The whole plane case have been recently considered in [5]: the authors in Theorem 1.9 prove
that the presence of a weight unbounded at infinity (independently from the growth rate) in the
Dirichlet norm does not affect the sharp exponent in the Moser functional, even in the radial
framework.

Our proof is partially inspired to [18] where the authors deal with monomial increasing weights
(even if the Moser type result, stated there, is affected by an erroneous application of rearrange-
ment results). The main tool will be a transformation which relates functions in the weighted
space H1

w(R2) to functions in the unweighted space H1(R2), based upon a change of variables
acting only on the radial part of x: the price to pay is a dilation term in the Dirichlet norm,
whose effect is lower and lower as |x| → ∞ due to the logarithmic growth of the weight. This
property is the key tool that allows to retain the sharp threshold 4π. Nevertheless, the discussion
of the critical case α = 4π requires a deeper insight, which relies on a careful analysis of the
behaviour of the maximizing sequences. Inspired by the concentration-compactness principle for
Moser type inequalities on the whole plane stated by Černý in [15], we will deal with the follow-
ing phenomena: no concentration (which includes compactness and vanishing), concentration on
bounded domains, partial concentration at infinity and concentration at infinity. The last two
are new phenomena which are not visible in the unweighted case, due to the standard reduction
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to the radial decreasing setting, first described by Chabrowski [16]: we will further split the anal-
ysis of sequences concentrating at infinity into concentration at points that diverges at infinity
and spread concentration at infinity. The key tools to deal with these last two cases, the most
delicate, will be a careful application of an improved version of Adachi-Tanaka inequality due to
the author together with Cassani and Sani ([13], see subsection 3.3.1) and the Vitali Covering
Lemma, together with suitable cut-off arguments.

We hope that the strategy adopted to deal with this special log-weight may be applied to
more general weights, such as the slowly varying ones; we recall that a measurable function
w : (0,∞)→ (0,∞) is said to be slowly varying if

lim
r→+∞

w(ar)

w(r)
= 1 ∀ a > 0,

such as w(r) = logβ(1 + r), for all β > 0. Since our proof relies on the lower effect of the dilation
term near ∞ when applying the transformation T , due to the logarithmic growth of the weight,
we suspect that a similar phenomenon could be observed in the more general framework of slowly
varying weights.
Finally, we believe that the higher dimensional limiting Sobolev case W 1,N (RN ) can be handled
with similar tools. We hope that the analysis performed in the last section may be useful to
approach other related and challenging questions, such as the attainability of log-weighted Moser
type inequalities.

2. Sharp subcritical inequalities

In this section we aim at identifying the sharp threshold between uniform boundedness and
unboundedness of the log-weighted Moser functional, so improving the result stated in [14, 36]
up to 4π.
Let H1

w(R2) be the space of measurable functions defined as

(8) H1
w(R2) :=

{
u ∈ H1(R2) :

∫
R2

|u|2 log(e+ |x|)dx < +∞
}

equipped with the norm

(9) ‖u‖2w := ‖∇u‖22 + ‖u‖22,w =

∫
R2

|∇u|2dx+

∫
R2

u2 log(e+ |x|))dx.

With the notations of [24], H1
w is nothing thatW 1,2(R2, S) where S is the set of weights given by

S = {log(e+ |x|), 1}. Since the weight w = log(e+ |x|) satisfies the condition w−1 ∈ L1
loc(R2), it

turns out that H1
w(R2) is a Banach space ([24, Theorem 1.11]), and further, it is a Hilbert space,

endowed with the inner product

〈u, v〉 =

∫
R2

∇u∇vdx+

∫
R2

uv log(e+ |x|)dx.

Further, its dual can be characterized thanks to the Hahn Banach Theorem as

H−1
w (R2) =

(
H1(R2) ∩ L2

w(R2)
)′

= H−1(R2)|H1
w

+(L2
w)′(R2)|H1

w

(see Theorem 14.9 in [34]).
We briefly recall the proof of inequality (6) given in [14], since its main tools will be used
frequently in what follows; we also slightly modify the change of variable originally introduced.

Proposition 1. [Theorem 1.1 in [14]] For any α ≤ 2π

(10) sup
‖u‖2w≤1

∫
R2

(
eαu

2

− 1
)

log(e+ |x|)dx < +∞.
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Furthermore,

(11)
∫
R2

(
eαu

2

− 1
)

log(e+ |x|)dx <∞

for any u ∈ H1
w(R2) and any α > 0.

Proof of Proposition 1. Let us perform a change of variable which acts only on the radial part
of any point in R2. To shorten the notation we will write

s = T (r) =

√
2

∫ r

0

ρ log(e+ ρ) dρ, where r = |x|, s = |y|, x 7→ y :=
x

|x|
T (|x|).

Note that T (r) can be explicitly determined, even if not strictly necessary; since

2

∫ r

0

ρ log(e+ ρ) dρ = r2 log(e+ r)−
∫ r

0

ρ2

e+ ρ
dρ and 0 ≤ ρ2

e+ ρ
≤ ρ,

we easily get

(12) r

√
log(e+ r)− 1

2
≤ T (r) ≤ r

√
log(e+ r) and

T (r)

r
√

log(e+ r)
−→ 1 as r → +∞

where r
√

log(e+ r) is the former change of variable suggested in [14]. The transformation T is
invertible on R2, even if its inverse map is not explicit. Let us define

v(y) := u(x), that is, v(y) = u
(
T−1(|y|) cos θ, T−1(|y|) sin θ

)
and denote by

w(r, θ) := u(r cos θ, r sin θ), w̃(s, θ) := v (s cos θ, s sin θ) .

Then we have∫
R2

|∇v|2dy1dy2 =

∫ 2π

0

∫ +∞

0

[
w̃2
s +

w̃2
θ

s2

]
sdsdθ

=

∫ 2π

0

∫ +∞

0

[
w2
r(r, θ) ·

1

[T ′(r)]2
+
w2
θ(r, θ)

r2
· r2

T 2(r)

]
T ′(r)T (r)drdθ.

Now,

(13) T ′(r) =
r log(e+ r)

T (r)
=⇒ 1

2 log(e+ r)
≤ 1

[T ′(r)]2
≤ 1

log(e+ r)

whereas

(14)
1

log(e+ r)
≤ r2

T 2(r)
≤ 1

log(e+ r)− 1
2

≤ 2

log(e+ r)
,

so that, at the end,

(15)
1

4

r2

T 2(r)
<

1

[T ′(r)]2
<

r2

T 2(r)
.

Then,

1

4

∫ 2π

0

∫ +∞

0

[
w2
r +

w2
θ

r2

]
r2T ′(r)

T (r)
drdθ ≤

∫
R2

|∇v|2dy1dy2 ≤
∫ 2π

0

∫ +∞

0

[
w2
r +

w2
θ

r2

]
r2T ′(r)

T (r)
drdθ.

By (13), (14)
r2T ′(r)

T (r)
=

r2

[T (r)]2
· r log(e+ r) =⇒ r <

r2T ′(r)

T (r)
< 2r
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which implies
1

4

∫
R2

|∇u|2dx1dx2 <

∫
R2

|∇v|2dy1dy2 < 2

∫
R2

|∇u|2dx1dx2.

On the other hand, thanks to (13)∫
R2

v2dy =

∫ 2π

0

∫ ∞
0

w̃2(s, θ)sdsdθ =

∫ 2π

0

∫ ∞
0

w2(r, θ)T ′(r)T (r)drdθ

=

∫ 2π

0

∫ ∞
0

w2(r, θ)r log(e+ r)drdθ =

∫
R2

u2 log(e+ |x|)dx,

so that, finally,

(16)
1

4
‖u‖2w < ‖v‖2 = ‖∇v‖22 + ‖v‖22 < 2‖u‖2w.

We have then proved that the map

T : H1
w(R2) → H1(R2)

u 7→ v

is an invertible, continuous map, with continuous inverse map too. As before, it is easy to verify
that ∫

R2

(
eαu

2

− 1
)

log(e+ |x|)dx =

∫
R2

(
eαv

2

− 1
)
dx < +∞

by [33], for any α > 0, that is (11). The uniform bound (10) follows directly by combining Ruf’s
inequality (4) with the norm’s estimate (16). �

Note that, thanks to (12) and (13), the scaling factor appearing when changing variable in
the Dirichlet norm has an interesting property:

(17)
rT ′(r)

T (r)
=
r2 log(e+ r)

T 2(r)
−→ 1 as r → +∞.

This observation is essentially related to the nature of the weight, and it is the key tool which
allows us to improve the previous inequality up to the (sharp) exponent 4π, as stated in the
following.

Proposition 2. For any α < 4π

(18) sup
‖u‖2w≤1

∫
R2

(
eαu

2

− 1
)

log(e+ |x|)dx < +∞.

The inequality is sharp, that is,

(19) sup
‖u‖2w≤1

∫
R2

(
eαu

2

− 1
)

log(e+ |x|)dx = +∞

for any α > 4π.

Proof. The main idea of the proof is to take advantage of the property (17): since α is strictly
less then 4π, we have room enough to split any function u ∈ H1

w as the sum of two functions,
the first one compactly supported in a uniform bound domain and the second one supported far
from the origin, where we will perform the change of variable T .
Let us consider a smooth, radial cut-off function χ(|x|), such that

χ(|x|) =

{
1 if |x| < 1

0 if |x| > 2
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and 0 ≤ χ ≤ 1 with bounded derivative. Set ξ(|x|) := 1− χ(|x|)); then scale ξ as follows:

ξη(|x|) := ξ(η|x|),
so that

ξη(|x|) =

{
0 if |x| < 1/η

1 if |x| > 2/η,

and |∇ξη(|x|)| = η|∇ξ(η|x|)| = η|∇χ(η|x|)|. For any u ∈ H1
w(R2) with ‖u‖2w ≤ 1 let us define

uη := u · ξη
whose support is contained in B{

1/η. We have∫
R2

|∇uη|2 ≤ ‖∇u‖22 + 2η‖∇χ‖∞‖u‖2‖∇u‖2 + η2‖∇χ‖2∞|‖u‖22,

so that

‖uη‖2w ≤ (1 + cη)‖u‖2w ≤ (1 + cη)(20)

for some positive fixed constant c independent of η. Let α < 4π fixed. Obviously,∫
R2

(
eαu

2

− 1
)

log(e+ |x|) ≤
∫
B2/η

(
eαu

2

− 1
)

log(e+ |x|) +

∫
R2

(
eαu

2
η − 1

)
log(e+ |x|).

By Ruf’s inequality∫
B2/η

(
eαu

2

− 1
)

log(e+ |x|) ≤ log(e+
2

η
)

∫
B 2
η

(
eαu

2

− 1
)
≤

≤ log(e+
2

η
)

∫
R2

(
eαu

2

− 1
)
≤ C

η2

since ‖∇u‖22 + ‖u‖22 ≤ ‖u‖2w ≤ 1. To bound the second term, let us apply the change of variable
introduced in the proof of Proposition 1 to uη, taking advantage of the fact that uη is supported
far from the origin. Using the same notations as in Proposition 1, let vη be defined as

uη(r cos θ, r sin θ) = vη (T (r) cos θ, T (r) sin θ) .

Then∫
R2

|∇vη|2dy1dy2 =

∫ 2π

0

∫ +∞

T ( 1
η )

[
w̃2
s +

w̃2
θ

s2

]
sdsdθ ≤

∫ 2π

0

∫ +∞

1
η

[
w2
r +

w2
θ

r2

]
r2T ′(r)

T (r)
drdθ.

If η is small enough and r > 1/η, by (13), (14)

r ≤ r2T ′(r)

T (r)
≤ r log(e+ r)

log(e+ r)− 1
2

=⇒ r ≤ r2T ′(r)

T (r)
<

(
1 +

1

2 log(1 + 1
η )

)
r,

so that, at the end,

(21)
∫
R2

|∇vη|2dy1dy2 <

(
1 +

1

2 log(1 + 1
η )

)∫
R2

|∇uη|2dx1dx2.

Since ∫
R2

v2
ηdy =

∫
R2

|uη|2 log(e+ |x|)dx

we conclude that

‖vη‖2 = ‖∇vη‖22 + ‖vη‖22 <

(
1 +

1

2 log(1 + 1
η )

)
‖uη‖2w ≤

(
1 +

1

2 log(1 + 1
η )

)
(1 + cη)
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by (20). Now, let us fix η such that(
1 +

1

2 log(1 + 1
η )

)
(1 + cη) <

4π

α
,

so that α‖vη‖2 < 4π. Then, since T ′T = r log(e+ r), we have∫
R2

(
eαu

2
η − 1

)
log(e+ |x|) =

∫ 2π

0

∫ +∞

1
η

(
eαu

2
η(r cos θ,r sin θ) − 1

)
log(e+ r)rdrdθ

=

∫
R2

(
eα‖vη‖

2v2
η/‖vη‖

2

− 1
)
dx < C(α)

by Ruf’s inequality (4), as α‖vη‖2 < 4π.
The sharpness of 4π can be verified, as usually, by means of a suitable Moser type sequence. Let

(22) vn(x) :=
1√
2π


√
δn log n 0 < |x| ≤ 1

n√
δn√

log n
log

1

|x|
1

n
< |x| < 1

0 |x| ≥ 1

where δn ∈ (0, 1) will be fixed later. Then

‖∇vn‖22 =
δn

log n

∫ 1/n

0

1

r
dr = δn,

whereas∫
R2

v2
n log(e+ |x|)dx =

∫
B1

v2
n log(e+ |x|)dx ≤ 2

∫
B1

v2
ndx

=
log n

n2
δn +

2δn
log n

∫ 1

1/n

r log2 1

r
dr =

(
1

2 log n
+

2 log n

n2
− 1

n2
− 1

2n2 log n

)
δn,

so that

‖vn‖22,w ≤
(

1 +
1

2 log n
+

2 log n

n2
− 1

n2
− 1

2n2 log n

)
δn.

If we choose

(23) δn :=

(
1 +

1

2 log n
+

2 log n

n2
− 1

n2
− 1

2n2 log n

)−1

= 1− 1

2 log n
+ O(n−2 log n)

we have ‖vn‖w ≤ 1. Thanks to (23), for any α > 4π there is an nα such that if n > nα

α

2π
δn >

α

2π

(
1− 1

log n

)
> 2 +

α− 4π

4π
,

so that∫
R2

(
eαv

2
n − 1

)
log(e+ |x|)dx ≥ 2π

∫ 1/n

0

(
e
α
2π δn logn − 1

)
log(e+ r)rdr

≥ π
∫ 1/n

0

n2e
α−4π

4π logn log(e+ r)rdr ≥ π

2
n
α−4π

4π → +∞ as n→ +∞,

which ends the proof. �
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We end this section by proving a variant of Cao’s inequality (2) available in our log-weighted
setting. As before, since the parameter α involved is always less than 4π, there will have again
’room enough’ to perform a change of variable when x is large, obtaining a new function whose
Dirichlet norm is larger than the former, but still less than 1.

Proposition 3. For any δ ∈ (0, 1) and M > 0

(24) sup
u ∈ H1

w(R2)
‖∇u‖2 ≤ 1− δ, ‖u‖2,w ≤M

∫
R2

(
e4πu2

− 1
)

log(e+ |x|)dx = C(δ,M) < +∞.

The inequality is sharp, that is,

(25) sup
u ∈ H1

w(R2)
‖∇u‖2 < 1, ‖u‖2,w ≤M

∫
R2

(
e4πu2

− 1
)

log(e+ |x|)dx = +∞.

Proof. The proof follows arguments similar to the previous one. Let M > 0 and 0 < δ < 1 be
fixed. For any η > 0, u ∈ H1

w(R2) with ‖∇u‖2 ≤ 1 − δ, ‖u‖2,w ≤ M let uη := u · ξη as before,
and, again, vη

uη(r cos θ, r sin θ) = vη (T (r) cos θ, T (r) sin θ)

as in Proposition 1. Then, for any η > 0,∫
R2

(
e4πu2

− 1
)

log(e+ |x|) =

∫
B2/η

(
e4πu2

− 1
)

log(e+ |x|) +

∫
BC

2/η

(
e4πu2

− 1
)

log(e+ |x|).

Let’s estimate the two terms separately. By Cao’s inequality (2),

(26)
∫
B2/η

(
e4πu2

− 1
)

log(e+ |x|) ≤ log(e+
2

η
)

∫
B 2
η

(
e4πu2

− 1
)
≤

≤ log(e+
2

η
)

∫
R2

(
e4πu2

− 1
)
≤ C(δ,M)| log η|.

On the other hand, if η < 1/M ,

‖∇uη‖22 ≤ ‖∇u‖22 + 2η‖∇χ‖∞‖u‖2‖∇u‖2 + η2‖∇χ‖2∞‖u‖22
≤ (1 + cMη)‖∇u‖22 + cη2M2

≤ (1 + cMη)(1− δ) + cη2M2 ≤ (1 + cMη)(1− δ) + cηM since η < 1/M

≤ 1− δ + cMη(2− δ) ≤ 1− δ

2

if η < min( 1
M , δ

2cM(1−δ) ). Further, eventually choosing η smaller (depending on δ and M)

‖∇vη‖22 <

(
1 +

1

2 log(1 + 1
η )

)
· ‖∇uη‖22 ≤

(
1 +

c

| log(η)|

)(
1− δ

2

)
< 1− δ

4
,

whereas

‖vη‖22 ≤
(

1 +
c

| log η|

)
‖uη‖22,w ≤

(
1 +

c

| log η|

)
‖u‖22,w ≤

(
1 +

c

| log η|

)
M2.

In what follows, recall that uη(x) = vη(x) for any x s.t. |x| ≥ 2/η, and that supp uη = BC1/η;
further, as in the proof of Proposition 1, denote by

w(r, θ) := u(r cos θ, r sin θ), w̃(s, θ) := v (s cos θ, s sin θ) .
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Then, for any η small enough, depending only on M and δ, we get

(27)
∫
BC

2/η

(
e4πu2

− 1
)

log(e+ |x|) dx ≤
∫
BC

2/η

(
e4πu2

η − 1
)

log(e+ |x|) dx

≤
∫
BC

1/η

(
e4πu2

η − 1
)

log(e+ |x|) dx =

∫
R2

(
e4πu2

η − 1
)

log(e+ |x|) dx

=

∫ 2π

0

∫ +∞

0

(
e4πw2

η − 1
)

log(e+ r)r drdθ =

∫ 2π

0

∫ +∞

0

(
e4πw̃2

η − 1
)
s dsdθ

=

∫
R2

(
e4πv2

η − 1
)
dx =

∫
BC
T (1/η)

(
e4πv2

η − 1
)
dx ≤ C(δ,M, η)

by Cao’s inequality (2). Combining the two estimates (26), (27) with a fixed η (small enough)
yields the statement.
To prove the sharpness of inequality (24) we use the sequence of functions introduced in [13].
Since we cannot rely on dilation argument in our weighted framework, we have to perform
estimates directly by hand. Let BRn be the ball of radius Rn, where

(28) Rn :=

√
log n

log log n
−→∞, δn := 1− log log n

4 log n
−→ 1− as n→∞,

and consider the sequence of radial functions

un(x) =
1√
2π


√
δn√

log n
log

(
Rn
|x|

)
,

Rn
n

< |x| ≤ Rn

√
δn log n, 0 ≤ |x| ≤ Rn

n
.

Then
‖∇un‖22 = δn −→ 1− as n→∞,

whereas, integrating by parts and erasing all the negative terms, we have

‖un‖22,w = δn log n

∫ Rn/n

0

r log(e+ r)dr +
δn

log n

∫ Rn

Rn/n

r log2

(
Rn
r

)
log(e+ r)dr

≤ δn
log n

2n2
R2
n log(e+

Rn
n

) +
δn

log n

∫ Rn

Rn/n

r log

(
Rn
r

)
log(e+ r)dr

≤ δn
log n

n2
R2
n +

δn
log n

∫ Rn

Rn/n

r

2
log(e+ r)dr

≤ δn
log n

n2
R2
n +

δn
log n

R2
n

4
log(e+Rn)→ 0

by (28). On the other hand,∫
R2

(
e4πu2

n − 1
)

log(e+ |x|) dx ≥ 2π

∫ Rn/n

0

(
e2δn logn − 1

)
r log(e+ r) dr

≥ πe2δn logn

∫ Rn/n

0

r dr =
π

2
R2
ne
−2(1−δn) logn =

π

2
R2
ne
− 1

2 log logn

=
π

2

R2
n√

log n
−→ +∞ as n→∞.

�
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Remark 3. Note that, in the classical, unweighted setting, Adachi-Tanaka inequality (3) can be
interpreted as a scale-invariant form of Moser’s type inequalities; indeed, if we set

Jα(u) :=
1

‖u‖22

∫
R2

(
eαu

2

− 1
)
dx, uλ(x) := u(λx),

then we have

(29) ‖∇uλ‖2 = ‖∇u‖2, Jα(uλ) = Jα(u), ∀λ ∈ R

and Adachi-Tanaka inequality (3) can be written in a scaling invariant form as

sup
u ∈ H1(R2) \ {0},
‖∇u‖2 ≤ 1

Jα(u) <∞ if and only if α < 4π.

The same scaling can be applied when proving Cao’s inequality (2), also noting that Jα(bu) =
Jb2α(u) for all b ∈ R (see [13]). This scaling have a key role when describing the lack of com-
pactness phenomena of sequences in H1(R2), as clearly described by Ishiwata in [22]. By means
of the transformation T : H1

w → H1 introduced in this Section, one may identify a nonlinear
replacement of the standard scaling u→ uλ in the weighted framework, namely

ũλ(x) = T −1 ((T u)λ) (x)

which preserves the nature of the sequences (vanishing or concentrating) and the invariance
property

1

‖ũλ‖22,w

∫
R2

(
eαũ

2
λ − 1

)
log(e+ |x|) dx =

1

‖u‖22,w

∫
R2

(
eαu

2

− 1
)

log(e+ |x|) dx;

nevertheless, the Dirichlet norm does not enjoy any invariance property. Note, finally, that our
weighted setting seems not enjoy any (at least evident) analogous property as (29).

3. The critical case α = 4π: proof of Theorem 1

The aim of this section is to prove our main theorem, which deals with the critical case
α = 4π. Let us first note that, if the supremum in (6) is attained, then the statement is a direct
consequence of (11). Therefore, it remains to consider the opposite case: in the following we
will analyse the behaviour of any maximizing normalized sequence {un}, in the spirit of [15]
(where we say that a sequence un is normalized if ‖un‖w = 1 for any n ∈ N). As recalled in the
Introduction, we will deal with a new phenomenon, first described by Chabrowski in [16] and then
studied by Černý in [15]: the concentration at infinity . Compared to these two former papers,
our analysis will be more detailed; more precisely, we classify the behaviour of any normalized
maximizing sequence {un} as follows (up to subsequences):

• no concentration: for some δ ∈ (0, 1), ‖∇un‖22 ≤ 1− δ for any n;

• concentration on a bounded domain: for some R > 0∫
BR(0)

|∇un|2 → 1 as n→ +∞;

• partial concentration at infinity :

‖∇un‖22 → 1 and lim
R→+∞

lim sup
n→+∞

∫
|x|>R

|∇un|2 ∈ (0, 1);
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• concentration at infinity :

‖∇un‖22 → 1 and lim
R→+∞

lim sup
n→+∞

∫
|x|>R

|∇un|2 = 1.

We will further specify this last class in two different sub-classes, see section 3.3.
The first case is the easiest one: if no concentration phenomenon occurs, then the statement

follows directly from Proposition 3. So, let us consider the remaining ones.

3.1. Concentration on a bounded domain. We consider here maximizing sequence concen-
trating on a bounded domain. That is, we suppose that there exists R > 0 such that∫

BR(0)

|∇un|2 → 1 as n→ +∞.

This implies that ∫
|x|>R

|∇un|2 → 0, ‖un‖2,w → 0 as n→ +∞.

Obviously,

(30)∫
R2

(
e4πu2

n − 1
)

log(e+ |x|) ≤ log(e+ 2R)

∫
B2R

(
e4πu2

n − 1
)

+

∫
|x|>2R

(
e4πu2

n − 1
)

log(e+ |x|)

≤ C · log(e+ 2R) +

∫
|x|>2R

(
e4πu2

n − 1
)

log(e+ |x|)

by Ruf’s inequality, since ‖un‖2H1 = ‖∇un‖22 + ‖un‖22 ≤ ‖u‖2w ≤ 1.
To bound the second term in (30), let us consider a C1-piecewise radial monotone cut-off function

χ(|x|) =

{
1 if |x| < 1

0 if |x| > 2
, ‖∇χ‖∞ ≤ 1/2

as in the proof of Proposition 2, and the associated function ξ(|x|) := 1− χ(|x|)), together with
ξR(|x|) := ξ(|x|/R). Set uRn = un · ξR: the function uRn has support in {|x| > R}, and for any
ε > 0 there is nε such that for n ≥ nε

‖un‖22 < ε,

∫
|x|>R

|∇un|2 < ε,

which yields directly∫
R2

|∇uRn |2 ≤
∫
|x|>R

|∇un|2 +
2

R
‖∇χ‖∞

∫
R<|x|<2R

|un||∇un|+
1

R2
‖∇χ‖2∞|‖un‖22

≤ ε+
ε

R
+

ε

4R2
≤ 1

2

for a proper choice of ε. Since uRn is supported on {|x| > R}, if we consider the change of variable
T−1 introduced in the proof of Proposition 1 we obtain a sequence of functions vn such that

uRn (x) := vn(T (x)), ‖vn‖22 = ‖uRn ‖2,w ≤ ‖un‖22,w = o(1),

‖∇vn‖22 ≤
(

1 +
1

2 log(1 +R)

)
‖∇uRn ‖22 ≤

1

2
,

which yields ‖vn‖2w < 1. Applying again Ruf’s inequality we obtain∫
|x|>2R

(
e4πu2

n − 1
)

log(e+ |x|) <
∫
|x|>R

(
e4π(uRn )2

− 1
)

log(e+ |x|) =

∫
R2

(
e4πv2

n − 1
)
< C
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which yields the statement, thanks to (30).

3.2. Partial concentration at infinity. We deal here with maximizing sequence such that

‖∇un‖22 → 1 and lim
R→+∞

lim sup
n→+∞

∫
|x|>R

|∇un|2 := A∞ ∈ (0, 1).

Eventually considering subsequences, we assume that the lim sup in the previous condition is
actually a limit. Hence, for any ε > 0 there are Rε such that for any R > Rε there is a nR,ε with∫

|x|>R
|∇un|2 ∈ (A∞ − ε,A∞ + ε) ∀ n > nR,ε.

Fix now ε0 such that A∞ − 2ε0 > 0, A∞ + 2ε0 < 1. Since ‖∇un‖22 → 1 we have also∫
|x|<R

|∇un|2 < 1 + ε0 −
∫
|x|>R

|∇un|2 < 1−A∞ + 2ε0 < 1, if n > max(n0, nR,ε0).

Applying the same argument used to prove the previous case, we have∫
B2R

(
e4πu2

n − 1
)

log(e+ |x|) ≤ log(e+ 2R)

∫
B2R

(
e4πu2

n − 1
)
< C · log(e+ 2R)

and ∫
|x|>2R

(
e4πu2

n − 1
)

log(e+ |x|) <
∫
|x|>R

(
e4π(uRn )2

− 1
)

log(e+ |x|) =

∫
R2

(
e4πv2

n − 1
)
,

where the last term on the right hand side is uniformly bounded if, for some δ < 1

‖∇vn‖22 ≤
(

1 +
1

2 log(1 +R)

)
‖∇uRn ‖22 ≤ δ.

But this estimate can be easily verified choosing R large enough and n > nR, since∫
R2

|∇uRn |2 ≤
∫
|x|>R

|∇un|2 +
2

R
‖∇χ‖∞

∫
R<|x|<2R

|un||∇un|+
1

R2
‖∇χ‖2∞|‖un‖22

≤ A∞ + ε0 +
1

R
+

1

4R2
≤ A∞ + 2ε0 < 1

by assumption.

3.3. Concentration at infinity. We deal here with maximizing sequences such that

‖∇un‖22 → 1 and lim
R→+∞

lim sup
n→+∞

∫
|x|>R

|∇un|2 = 1.

We further distinguish between sequences concentrating at points running at infinity or not , that
is, between the two following behaviours:

• for any ρ, δ < 1 (small) there are a subsequence unk and a sequence of points xδ,ρ,nk such
that ∫

Bρ(xρ,δ,nk )

|∇unk |2 > δ;

• there are two constants ρ, δ ∈ (0, 1) such that for any x ∈ R2 and for any n∫
Bρ(x)

|∇un|2 ≤ δ.
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3.3.1. Concentration at points xn → ∞. Let us suppose that the maximizing sequence satisfy
the first condition: by choosing ρ = 1

2 , δ = 1
2 , up to subsequence, for any n there is a point xn

such that ∫
B 1

2
(xn)

|∇un|2 >
1

2

and xn →∞. To get a uniform bound for the Moser functional, we split the integral as the sum
of two terms:
(31)∫
R2

(
e4πu2

n − 1
)

log(e+ |x|) =

∫
B1(xn)

(
e4πu2

n − 1
)

log(e+ |x|) +

∫
B{

1 (xn)

(
e4πu2

n − 1
)

log(e+ |x|).

In the first term, since the domain of integration is B1(xn), the log-weight behaves like log |xn|:
the uniform bound will follow by applying a refinement of Adachi-Tanaka inequality proved by
the author together with Cassani and Sani in [13], that we recall here for the reader’s convenience,
in a slightly different, but equivalent statement:

Theorem 2 (Theorem 1.2 in [13]). There exists C > 0 such that the following inequality holds
for all u ∈ H1(R2) with ‖∇u‖2 < 1

(32)
∫
R2

(
e4πu2

− 1
)
dx ≤ C ‖u‖22

1− ‖∇u‖22
.

The second term in (31), instead, presents an unbounded domain of integration where, never-
theless, the Dirichlet energy is not concentrating: the bound will be, then, a consequence of the
subcritical inequality proved in the previous section. Note that in both the two cases we have
to perform first a suitable cut-off in order to assure that the supports of the functions lie in the
proper domains, and checking that this operation do not increase to much the energy.
Let us start by performing a smooth cut off on the ball centered in xn with radius 2, with a very
careful choice of the cut off function. Let us consider

χ(|x|) =


1 if |x| < 1

1− (1− |x|)2 if 1 < |x| < 2

0 if |x| > 2

and set wn := un · χn(x − xn), whose support is B2(xn). Then, applying the inequality 2ab <

4a2 + b2

4 ,

(33) ‖∇wn‖22 ≤
∫
B1(xn)

|∇un|2 +

∫
1<|x−xn|<2

|∇un|2χ2 + 2

∫
1<|x−xn|<2

un|∇un||∇χ|χ

+

∫
1<|x−xn|<2

|∇χ|2u2
n

≤
∫
B1(xn)

|∇un|2 +

∫
1<|x−xn|<2

|∇un|2χ2 + 4

∫
1<|x−xn|<2

u2
n

+
1

4

∫
1<|x−xn|<2

|∇un|2|∇χ|2χ2 +

∫
1<|x−xn|<2

|∇χ|2u2
n

≤ 1− ‖un‖22,w +

∫
1<|x−xn|<2

|∇un|2
[
χ2

(
|∇χ|2

4
+ 1

)
− 1

]
+ 4

∫
1<|x−xn|<2

u2
n +

∫
1<|x−xn|<2

|∇χ|2u2
n.



A LOG-WEIGHTED MOSER INEQUALITY ON THE PLANE 15

Now, if r = |x| ∈ (1, 2)

χ2

(
|∇χ|2

4
+ 1

)
=
[
1− (1− r)2

]2 (
(1− r)2 + 1

)
=
[
1− (1− r)2

] (
1− (1− r)4

)
≤ 1,

so that ∫
1<|x−xn|<2

|∇un|2
[
χ2

(
|∇χ|2

4
+ 1

)
− 1

]
≤ 0,

which yields, thanks to (33),

‖∇wn‖22 ≤ 1− ‖un‖22,w + 8

∫
1<|x−xn|<2

u2
n

≤ 1− ‖un‖22,w +
c

log |xn|

∫
1<|x−xn|<2

u2
n log(e+ |x|) ≤ 1−

‖un‖22,w
2

for large n, since xn → +∞. Therefore, for large n,

(34)
∫
B1(xn)

(
e4πu2

n − 1
)

log(e+ |x|) ≤ c log |xn|
∫
B1(xn)

(
e4πw2

n − 1
)

≤ c log |xn|
∫
B2(xn)

(
e4πw2

n − 1
)
≤ c log |xn|

‖wn‖22
1− ‖∇wn‖22

≤ 2c log |xn|

∫
B2(xn)

u2
n

‖un‖22,w
≤ 2c,

which yields the first uniform bound.
To estimate the second term in (31), note that, by assumption∫

|x−xn|> 1
2

|∇un|2 <
1

2
.

Let us perform a piecewise linear cut off as follows:

ξ(x) :=


0 if |x| < 1/2

2|x| − 1 if 1/2 < |x| < 1

1 if |x| > 1

, w̄n := un · ξ(x− xn).

The functions w̄n are supported on B{
1/2(xn), and

‖∇w̄n‖22 ≤
∫
|x−xn|> 1

2

|∇un|2 + 4

∫
|x−xn|> 1

2

un|∇un|+ 4

∫
|x−xn|> 1

2

u2
n

≤ 1

2
+ 2
√

2‖un‖2 + 4‖un‖22 ≤
1

2
+ 2
√

2‖un‖2,w + 4‖un‖22,w <
3

4
as n→ +∞,

so that, by Proposition 3

(35)
∫
B{

1 (xn)

(
e4πu2

n − 1
)

log(e+ |x|) ≤
∫
R2

(
e

3π
w̄2
n

‖∇w̄n‖22 − 1

)
log(e+ |x|) < C.

The statement now follows combining (31), (34) and (35).
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3.3.2. Spread concentration at infinity. Let us suppose that the maximizing sequences satisfy the
second condition: there are two constants ρ, δ ∈ (0, 1) such that for any x ∈ R2 and for any n

∫
Bρ(x)

|∇un|2 ≤ δ.

The main tool here will be the Vitali Covering Lemma (see e.g.[19]): we are inspired by the paper
[4], which, however, deals only with the much more easier case of vanishing bounded weights and
subcritical inequalities. The idea is to split the log-weighted Moser integral as the (infinite) sum
of integrals whose domains are balls with the same fixed radius: on each ball, as before, the
log-weight behaves like a constant, which allows us to apply inequality (32) and to conclude the
estimate. Again, we have to perform a suitable cut off which has not to increase too much the
energy: this is possible since we are analysing sequences whose energy ’is spreading’ away.
More precisely, by Vitali Covering Lemma, for any fixed radius R there exists a (countable)
covering of R2 of balls B(xi, R) such that each point of R2 belongs to at most 5 balls. Let us
now fix R = ρ/2 and perform a piecewise linear cut off as follows

φ(x) :=


1 if |x| < ρ/2

2 (1− |x|/ρ) if ρ/2 < |x| < ρ

0 if |x| > ρ

, un,i := un · φ(x− xi).

Then each un,i is supported in the ball Bρ(xi), and

(36) ‖∇un,i‖22 ≤
∫
|x−xi|<ρ

|∇un|2 + 4

∫
|x−xi|<ρ

un|∇un|+ 4

∫
|x−xi|<ρ

u2
n

≤ δ + 2
√
δ‖un‖2 + 4‖un‖22 ≤ δ + 2

√
δ‖un‖2,w + 4‖un‖22,w <

δ + 1

2
< 1 as n→ +∞.

Then, by (32)

∫
R2

(
e4πu2

n − 1
)

log(e+ |x|) ≤ C2

∫
⋃
i Bρ/2(xi)

(
e4πu2

n,i − 1
)

log(e+ |x|)

≤ C2

∑
i

∫
Bρ(xi)

(
e4πu2

n,i − 1
)

log(e+ |x|)

≤ C2

∑
i

log(e+ |xi|+ ρ)

∫
Bρ(xi)

(
e4πu2

n,i − 1
)

≤ C2

∑
i

log(e+ |xi|+ ρ)
∫
Bρ(xi)

u2
n,i

1− ‖∇un,i‖22
.

Now we have to ’bring’ again the log-weight inside the integrals: note that if |xi| > 3ρ then
log(e + |xi| + ρ) < 2 log(e + |xi| − ρ), and log(e + |xi| − ρ) < log(e + |x|) for any x ∈ Bρ(xi).
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Hence,

C2

∑
i

log(e+ |xi|+ ρ)
∫
Bρ(xi)

u2
n,i

1− ‖∇un,i‖22
≤ 2C2

∑
|xi|>3ρ

log(e+ |xi| − ρ)
∫
Bρ(xi)

u2
n,i

1− ‖∇un,i‖22
+

+ C2

∑
|xi|≤3ρ

log(e+ 4ρ)
∫
Bρ(xi)

u2
n,i

1− ‖∇un,i‖22

≤ 2C2

∑
|xi|>3ρ

∫
Bρ(xi)

u2
n,i log(e+ |x|)

1− ‖∇un,i‖22
+ C2

∑
|xi|≤3ρ

log(e+ 4ρ)
∫
Bρ(xi)

u2
n,i log(e+ |x|)

1− ‖∇un,i‖22

≤ C3
2 log(4 + ρ)

1− δ

∫
⋃
i Bρ(xi)

u2
n,i log(e+ |x|) ≤ C4

2 log(4 + ρ)

1− δ
‖un‖22,w

where we have used (36) to bound the Dirichlet energy. This yields directly the statement.
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