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2.1 Introduction

Biomolecular recognition is at the heart of all biological processes that take place
in living organisms. Understanding how a ligand binds to a biological receptor,
how proteins interact with each other, how lipids and proteins aggregate in the
cell membrane, and how these events trigger or block a wide range of biochemical
reactions is of paramount importance, not only for the field of biophysics but also
for other disciplines such as rational drug design.

The first breakthrough in the theory of biomolecular recognition was provided
by Fischer, who as early as 1894, proposed his popular lock-and-key model for lig-
and binding [1]. According to this model, which was originally developed in the
context of enzyme catalysis, ligands involved in biological reactions fit perfectly
into their targets like a key into a lock. In this process, no changes in conforma-
tions are allowed. Later, however, the lock-and-key model based on rigid body
interactions between ligands and proteins was severely challenged by the con-
formational plasticity of macromolecules, as revealed by X-ray crystallography,
nuclear magnetic resonance (NMR) spectroscopy, and single-molecule fluores-
cence detection [2].

In recent years, more dynamic models of molecular recognition have super-
seded Emil Fischer’s rigid lock-and-key binding paradigm. The idea of induced
fit, introduced by Koshland in 1958, aimed at overcoming the limitations of the
lock-and-key model, relies on the formation of an initial loose ligand–receptor
complex that induces a conformational change in the protein, resulting in a series
of rearrangements that lead to a complex with tighter binding.

In 1999, Nussinov and coworkers coined the term conformational selection,
also known as population shift, selected fit, and population selection, which is
based on the idea that all conformations are present when the ligand is not bound
to the receptor and, then, the ligand acts to selectively stabilize specific recep-
tor conformations, causing a shift in the populations observed in the unbound
ensemble toward this specific conformational state [2, 3].

Although both theories, induced-fit and conformational selection, appear
to be antagonistic, they are not necessarily mutually exclusive. Nowadays it is
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increasingly seen that these two major mechanisms contribute to molecular
recognition, which requires a dynamic description over timescales spanning
several orders of magnitude to be fully understood. Moreover, water molecules
often play a crucial role in molecular association. In fact, experimental and
theoretical studies have pointed out the capital importance of both entropic and
enthalpic contributions of water networks to the free energy of binding [4]. All
these findings not only served to advance the field toward a better understanding
of receptor–ligand (e.g. protein, peptide, nuclei acid, and ligand) binding but
also introduced an extra degree of complexity to the description of biomolecular
recognition processes. To comprehend how biomolecular recognition occurs,
we first need to understand the role of all different partners involved in this
association process.

2.1.1 Protein Binding: Molecular Dynamics Versus Docking

Molecular docking programs are widely used to predict receptor–ligand com-
plexes and are extensively and routinely used in computer-aided drug discov-
ery, mostly in the framework of virtual screening (VS) campaigns [5]. Molecular
docking, in practice, has two essential requirements: structural data, for can-
didate ligands and the protein target of interest, and a procedure to estimate
protein–ligand interaction poses and strengths. Various molecular docking algo-
rithms are available to predict receptor–ligand, e.g. protein, peptide, nucleic acid,
and ligand, poses and to rank them based on scoring functions implemented in
each specific docking approach.

In spite of the large usage in structure-based drug discovery (SBDD), docking
retains crucial liabilities. The high computational speed in determining the puta-
tive poses comes at the cost of accuracy, especially when target rearrangements
are required upon ligand binding. Sampling the conformational space remains
challenging. All docking algorithms exhibit sensitivity to initial conditions; there-
fore, some variation in the poses and scores is expected when starting from dif-
ferent input conformations of a particular ligand. The vast majority of molecular
docking applications considers the ligand conformational flexibility either during
docking calculations or using libraries of conformers. Conversely, the flexibility
of the receptor is usually neglected as the number of degrees of freedom, which
should be considered in the calculations, is extremely computationally demand-
ing. Moreover, docking algorithms lack explicit water treatments, which are cru-
cial for reproducing specific drug–target complexes. All these approximations
constitute a major drawback in docking calculations, limiting the success rate of
the drug discovery campaign.

These limitations can be addressed by molecular dynamics (MD) simulations.
Thanks to the rapid development of faster architectures (graphics processing unit
(GPU)-based clusters) and better algorithms for high-level computations, clas-
sical MD simulations nowadays allow the implementation of SBDD strategies
that account for the structural flexibility of drug–target systems at a fully atom-
istic description. Therefore, MD simulations can be exploited to characterize the
protein–ligand binding process at a fully dynamic level. As a result, classical MD
is no longer considered prohibitive for effective drug design. Instead, it is pushing
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the frontiers of computationally driven drug discovery in both academia and
industry [6].

2.1.2 Molecular Dynamics – The Current State of the Art

MD is a physical method for studying the interaction and motion of atoms and
molecules according to Newton’s physics. A force field is used to estimate the
forces between interacting atoms and calculate the overall energy of the system.
MD simulations are used today to study nearly every type of macromolecule,
including proteins, nucleic acids, and carbohydrates, of biological or medicinal
interest. Simulations span wide spatial and temporal ranges and resolutions. To
be explicit, all-atom MD, thousands to millions of individual atoms representing,
for instance, all the atoms of a protein and surrounding water molecules, move
in a series of short (e.g. 2 fs), discrete time steps. At each step, the forces on each
atom, determined from the “force field,” e.g. a collection of physics-based param-
eters that represent both bonded and nonbonded (e.g. van der Waals) interatomic
forces, are computed and the atomic position and velocity are updated according
to Newton’s laws of motion [7]. Recently, computational speed has grown rapidly
with the introduction of parallel computing based on GPU computing techniques
and specialized computing machines, e.g. high-performance supercomputers [8],
designing of specialized hardware [9], and development of intelligent MD proto-
cols [10]. As a consequence, nowadays simulations lasting up to a few millisec-
onds are now possible. Assuming that the ergodic hypothesis holds, an infinitely
long MD trajectory should be able to sample the entire conformational space.
However, except for a few cases published recently [11, 12], long MD simula-
tions are often relegated to some local minimum in the rugged and complex free
energy surface (FES) that is accessible to the system. At room temperature, the
probability of crossing high-energy barriers is often too small to be observed dur-
ing a finite MD simulation. Most likely, even with several hundred nanoseconds
of simulations, the system might be confined to limited regions of the confor-
mational space. Therefore, besides the increasing computational power, various
modeling techniques have been developed to accelerate simulations and/or to
sample rare events during ligand binding processes. A solution usually applied to
overcome the limited sampling efficiency of MD simulations at room tempera-
ture consists in raising the simulation temperature. The additional kinetic energy
available at higher temperature allows the crossing of high-energy barriers, thus
ensuring a wider sampling of the conformational space. This methodology is the
basis of two computational approaches, simulated annealing (SA) and parallel
tempering (also named replica-exchange molecular dynamics, REMD). SA con-
sists in heating up the system in order to jump out from the initial local minimum
to explore other minima [13]. The heating step is followed by a gradual cooling,
which allows the system to slowly settle down to a lower energy minimum. REMD
[14] is based on the run of multicopy MD simulations randomly initialized, at
different temperatures. The conformations are then exchanged at different tem-
peratures following the Metropolis criterion. The strength and robustness of this
method allows sampling of both low- and high-energy configurations [15].
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The well-recognized limitations of sampling in atomistic dynamics have led to
many innovative alternatives to enhance the coverage of the thermally accessible
conformational space and to capture rare events (events that might happen on a
long timescale) [16]. One trick that is commonly used to address this problem is
to add a potential bias in order to force the rare event to occur. In this context,
several techniques, including the local elevation method [17], taboo search [18],
the Wang–Landau method [19], adaptive force bias [20] conformational flooding
[21], umbrella sampling [22], weighted histogram techniques [23], transition state
theory and path sampling [24], steered MD [25], free energy–guided sampling
[26], and metadynamics [27], have been developed to address the sampling prob-
lem. In this context, metadynamics has emerged as a powerful coarse-grained
non-Markovian MD approach for the acceleration of rare events and the efficient
and rapid computation of multidimensional FES as a function of a restricted num-
ber of degrees of freedom, named collective variables (CVs). Different from other
sampling methods, in which the calculation of FES requires an additional step
(such as the weighted histogram analysis method (WHAM) [19]), metadynam-
ics directly provides a good estimate of the free energy of the system projected
into the CVs. On one hand, the main advantage of metadynamics along with
other methods based on CVs is that the sampling is enhanced toward the spe-
cific event of interest by biasing the MD simulations along chosen CVs, which
are functions of the atomic coordinates. In this way, free energy barriers can be
efficiently crossed. On the other hand, it can be difficult to choose the right set
of CVs a priori, particularly when the system’s reaction mechanism is not yet
known. In the latter case, tempering methods, such as REMD, accelerated molec-
ular dynamics (aMD) [28], and potential scaled [29] seem to be more appropriate
since they act by heating all degrees of freedom of the system or by modifying the
Hamiltonian [30].

Finally, MD simulations are capable of providing quantitative binding estimates
with high accuracy, i.e. free energy of binding, but it has been typically regarded
as too computationally expensive. A variety of free energy simulation methods,
such as free energy perturbation (FEP), thermodynamic integration (TI), and λ
dynamics, employ an analysis of atomistic MD simulations to determine the free
energy difference between two related ligands via either a chemical or alchem-
ical path. In recent years, FEP calculations have benefited from improved force
fields, new sampling algorithms, and the emergence of low-cost parallel comput-
ing, which have resulted in the level of accuracy and turnaround time needed to
impact lead optimization efforts.

The examples in the following sections indicate some of the current capabilities
of MD simulations in three different fields: protein–protein, protein–peptide, and
protein–ligand binding and the insights they can provide.

2.2 Protein–Protein Binding

Protein–protein interactions (PPIs) are ubiquitous in biological systems as they
are the building blocks for the complex molecular machinery that drives critical
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functions within the cell. Protein–protein association signals transduction and
inhibition, immune response, and protein recruitment to membrane scaffolds.
Mutations and perturbations within the proteins that result in aberrant interac-
tions often lead to a number of diseases, including cancer. It has been estimated
that the human interactome involves between 130 000 and 600 000 PPIs [31–33].
Although the Protein Data Bank (PDB) contains more than 100 000 entries, struc-
tural data on protein–protein complexes remain scarce [34]. In this context, MD
simulations along with docking aim at offering opportunities to fill this gap and
provide valuable information on the structure of PPIs as well as their specific
interactions, and furthermore support the design of novel PPI modulators or
inhibitors. PPIs are often characterized by the cooperative formation of many
weak interatomic interactions over an extended binding surface rather than by
few strong interactions, as in the case of protein–ligand binding. In comparison
to classical small-molecule targets, the binding site of protein–protein interfaces
is relatively large, with an area of about 1500–3000 Å2 [35]. Nevertheless, slight
conformational changes can be temporarily induced to enable PPIs, which mostly
involve side-chain motions or small fluctuations of loops [36].

Despite the availability of several experimental data on the PPIs, such as NMR,
X-ray structure, and isothermal titration calorimetry (ITC) thermodynamic data,
the description of the protein–protein system is limited to static snapshots, which
are not sufficient to describe coherently the molecular processes occurring upon
binding. In this scenario, atomistic simulations could greatly contribute to linking
binding mechanism and function. MD simulation could adequately represent the
complex physics and thermodynamics behind the protein–ligand complex for-
mation in order to investigate the underlying mechanisms of complex formation
and modulation or inhibition. The mechanism of regulated recognition involves
conformational changes in the binding partners, which are prevented or induced
by external signals. This implies that protein–protein binding motifs can be labile
and intrinsically flexible with binding sites that are shallow and rather feature-
less compared to “druggable” sites [36]. In comparison to classical ligand–protein
approaches, this step is far from trivial as high-resolution structural informa-
tion is needed as a prerequisite. These data can be obtained from experiments
(NMR, X-ray crystallography, etc.), PPI databases, or modeling approaches such
as homology modeling or protein–protein docking. As an alternative to simu-
lating already existing PPIs, it has been shown that the initial formation of PPIs
during MD simulations starting from two separate proteins is possible [37]. Nev-
ertheless, this approach still is computationally demanding and requires exper-
imental validation. This section highlights the benefits of applying MD to PPI
investigations.

With MD simulations, protein interactions, flexibility, and sampling of the con-
formational space can be characterized, which is of great value for the investiga-
tion of the interacting surfaces of protein–protein complexes. MD simulations
can also be used to identify binding hot spots and transient pockets that play
a role in protein–protein binding but could not be captured by crystallography
[38, 39]. Due to the dynamic nature of protein–protein interfaces, transient pock-
ets and buried binding hot spots can emerge on the protein surfaces; and binding
of small molecules to these transient areas have been reported [40].
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Combining MD and principal component analysis (PCA), Dixit and Verkhivker
identified conserved functional regions of Hsp90, an important chaperone pro-
tein [41]. These findings help in the design of inhibitors targeting these
protein–protein interfaces and furthermore provide mechanistic insights into
the allosteric regulation of the complex dynamics and motions of the chaperone
machinery.

Bastianelli et al. exploited MD simulations to refine the protein–protein dock-
ing results and to perform free energy calculations [42]. In this work, the authors
were able to predict the interactions between two proteins, i.e. PcFK1, a small pro-
tein extracted from spider venom, and PfSUB1, a subtilisin-like serine protease.
The results were then confirmed by experimental validation.

Although the interaction area between proteins is relatively large, it has
been shown that only a small subset of key residues contribute the most to
high-affinity binding in PPIs [43]. These protein domains with key interacting
residues are termed hot spots, and hot spot detection is an efficient strategy to
identify potential druggable areas of PPIs [43]. This can be done by computa-
tional alanine scanning (CAS), by which a single residue is mutated in alanine in
order to determine its energetic contribution to identifying hot spots. Using the
CAS method, Sousa et al. provided an evaluation of the energetic contribution
of the amino acid residues at the subunit interface and also potential starting
points for HIV inhibitors that block the dimerization of the protein [44].

2.3 Protein–Peptide Binding

In many PPIs, it has been shown that the interactions are dominated by short
linear recognition motifs that are part of the larger protein [45]. Protein–peptide
recognition has a crucial role in various fundamental aspects of cellular home-
ostasis, such as signal transduction, protein trafficking, and immune response.
Peptides often serve as signaling vehicles as, for example, in the case of hormones
and neurotransmitters. Peptides in organisms often occur as part of the break-
down of proteins. One important example is the amyloid beta (Abeta) peptide
which results from the hydrolysis of the APP protein on the surface of neurons.
Plaques formed by the aggregation of Abeta peptides are recognized as one of the
hallmarks of Alzheimer’s disease [46]. Antimicrobial peptides are an important
component of the innate immune system, and peptides presented and recog-
nized on the surface of antigen-presenting cells by the fragmentation of foreign
proteins are recognized as one of the main processes of the adaptive immune
response [47].

Protein–peptide complexes often display interaction patterns different
from the ones often encountered in protein–protein complexes. For example,
protein–peptide interactions tend to be more hydrogen bond–dependent than
PPIs, usually involving the peptide backbone. Finally, the protein–peptide
binding process frequently involves significant conformational rearrangements
of peptide chains (e.g. from unfolded to folded structure).

The efficient treatment of the large-scale changes remains one of the major
challenges for molecular docking and dynamics simulations [48]. The inefficiency
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in classic MD sampling is a result of the highly rugged nature of the folding
energy landscape of the peptide chains. The prediction of the structures of
protein–peptide complexes and the quantitative prediction of their binding
affinities are far from a solved problem. In the following, we report the few
examples in literature exploiting MD simulations of protein–peptide systems.
In 2009, Pietrucci et al. used the bias-exchange metadynamics technique to
successfully describe the binding mechanism of a small peptide to the HIV-1
protease [49]. Even though the authors accurately computed the free energy
associated with ligand binding and unbinding as a function of 7 CVs, almost
2 μs of simulation were required to converge the free energy. Despite this, they
managed to characterize the kinetics of the binding/unbinding process using a
discrete-states kinetic model, including the relevant metastable states along the
recognition pathway.

Tortorici et al. performed MD simulations in explicit solvent as well as in tem-
perature replica exchange MD simulations to explore the peptide conformations
derived from the “SNAG” domain of SNAIL1 in solution [50]. True to the exper-
imental data, MD simulations revealed that the peptides exist as random struc-
tures, showing transient secondary structures with an α-helical propensity of
only about 7%. The authors used this evidence to suggest that the peptides do
indeed exist as disordered conformers in solution and only form a secondary
structure upon binding, in agreement with experimental data (CD spectra) and
with the analysis of seven crystal structures of SNAIL-derived peptides bound to
LSD1/CoREST in which the peptides were bound in a helical structure.

Efficiently predicting binding affinities of protein–peptide binding affinities
from structural models would be an extremely important step in our overall
understanding of the regulation of biological systems and critical for drug design
and development. MD simulations together with binding free energy calculation
under the molecular mechanics-generalized born surface area (MM-GBSA)
approximation was used to study the binding affinities of a series of short
peptides against the catalytic site of protein kinase A [51]. To reduce compu-
tational cost, the entropy term was not computed. This approach was justified
by the observation that other studies on similar systems had concluded that
the entropy term did not contribute significantly to the binding affinity and/or
would not vary appreciably across the peptide library. The authors reported high
correlation between experimental free energy values and computational values
(r2 = 0.98). The authors also concluded that the most influential term in the
binding free energy is the electrostatic term, again showing that the success of
this model is intimately tied to the electrostatic interactions present.

Another important field in protein–peptide binding is the epigenetic recog-
nition by histone tails. Epigenetic regulation of gene transcription relies
on an array of recurring structural domains that have evolved to recognize
posttranslational modifications on histones. Misinterpretation of epigenetic
mechanisms is often associated with disease conditions. Epigenetic readers are
therefore rapidly becoming a privileged target for drug discovery study. Plant
homeodomain (PHD) fingers represent one of the largest families of epigenetic
readers capable of decoding posttranslationally modified or unmodified histone
H3 tails. Spiliotopoulos et al. presented a computational case study describing
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the dynamics and the thermodynamics at the basis of unmodified histone H3
(H3K4me0) recognition by the first PHD finger of the transcriptional activator
Autoimmune Regulator (AIRE-PHD1) [52]. MD simulations together with
PCA showed that histone peptide binding strongly affects AIRE-PHD1 internal
correlation motions. In particular, analysis of the essential domain motions high-
lighted the presence of a “flapping” movement in free AIRE-PHD1, which might
be relevant for domain function. Importantly, this intrinsic domain “breathing”
was blocked upon H3K4me0 binding. Moreover, calculations of the free energy
of binding obtained through molecular mechanics/Poisson–Boltzmann surface
area (MM/PBSA) methodology allowed us to dissect the energetic terms asso-
ciated with native and alanine mutants of AIRE-PHD1/H3K4me0 complexes.
The calculated binding free energies were in good qualitative agreement with
experiments. Prompted by these encouraging results, the authors extended
MM/PBSA calculations to other PHD fingers recognizing the unmodified status
of histone H3K4 in order to investigate whether this subclass of histone readers
shared similar thermodynamic behavior. Indeed, comparison of calculations
with experimental binding data confirmed that MM/PBSA can be considered as
a valuable tool to rapidly analyze the energetic determinants dictating histone
decoding by this class of epigenetic effectors.

Unlike endpoint methods, such as MM/PBSA/GBSA, pathway free energy
methods compute the difference in binding free energy between the unbound
and bound states of the ligand–protein complex by linking them through a suit-
able thermodynamic path. Oftentimes the path is parameterized by a progress
parameter 𝜆 ranging from 0 to 1. A 𝜆-dependent potential energy function
U(xA, xB, 𝜁B, rs; 𝜆) is designed in such a way that at 𝜆 = 0 it represents the
unbound state of the complex (when protein and ligand are not interacting), and
at 𝜆 = 1 it represents the bound state of the complex. The reversible work along
the path yields the binding free energy of the complex [53]. As the decoupling
transformations are too extensive and the corresponding free energies are too
large to routinely obtain converged binding free energy estimates, there has
been only one report of the application of the double decoupling method to the
calculation of absolute binding free energies of peptides [54].

2.4 Protein–Ligand Binding

MD simulations have been successfully and widely utilized in drug design and
development [30]. Usually, protein–ligand binding is studied by docking simula-
tions. If we are interested in determining a plausible pose, the receptor flexibility
during the docking is modeled using an ensemble of structures, obtained through
either experimental techniques (X-ray crystallography or NMR spectroscopy) or
by exploiting sampling engines such as Monte Carlo (MC) or MD. The latter one
has the advantage of taking into account the global flexibility of the protein, and
the only drawback is the narrowness of sampling. First, a long MD simulation of
the protein in the unbound state is performed to exhaustively sample the confor-
mational space. Then, MD snapshots are selected either at regular time intervals
or after cluster analysis to perform docking simulations.
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Moving beyond protocols that use MD to incorporate target flexibility into
standard docking calculations, it is now possible to run MD simulations for
long enough to explore the free energy landscape and kinetic profile associated
with the overall drug-binding process (i.e. from the drug fully solvated in water
to the drug–target bound state) [55]. The major advantage of MD simulation
with respect to docking simulation in studying protein–ligand is twofold: (i)
investigating possible allosteric binding mode; (ii) structural characterization of
the binding path and a posteriori calculations of the binding free energy mini-
mum path. Even though the MD framework is certainly appealing and will most
likely be employed more in the future, at present, some efficiency limitations
prevent its widespread use in SBDD. Long plain MD simulations have already
described the spontaneous binding of small organic molecules to biological
targets of pharmacological interest, demonstrating both the adequacy of the
present force fields and the feasibility, at least in some cases, of observing the
rare event.

A seminal example of the useful insights offered by MD simulations in
structure-based drug design was reported in 2011, when Buch and Giorgino
performed on GPU-based infrastructures 495 MD simulations of 100 ns each
to simulate the complete binding process of the inhibitor benzamidine to
β-trypsin [56]. The approach allowed the identification of the lowest energy
binding mode of a ligand to a receptor. Monitoring of the binding process at
an atomic resolution can potentially assist the development of drugs able to
control and modulate the ligand–receptor recognition process. In this context,
Shaw and collaborators formulated a mechanism for the flipping of a conserved
motif of Abl tyrosine kinases combining microsecond MD simulations with
crystallographic and kinetic experiments. Importantly, the conformation of this
motif was crucial to discriminate between active/inactive kinase conformations.
Their results led to the identification of a class of potent inhibitors of both Src
and Abl that recognize the inactive kinase conformations [12].

The G protein–coupled receptor β2-adrenergic (β2-AR) is an important tar-
get for hypertension and several heart diseases. Shaw and coworkers have used
extensive plain MD to study how this receptor interacts and binds with the inverse
agonist alprenolol [11]. The binding paths followed a two-step molecular mecha-
nism. First, alprenolol reorients so that its hydrophobic group binds to the extra-
cellular vestibule surface. Then, it penetrates into the binding pocket through the
gate closing–opening mechanism between Tyr308 and Phe193 to form the salt
bridges between the ammonium moiety and the carboxylate of Asp113.

More recently, Decherchi et al. ran extensive unbiased MD simulations (about
1 μs each) to investigate the tight binding event of a transition state analog
(DADMe-immucilin H) into the pharmaceutical target, purine nucleoside
phosphorylase [57]. Despite observing spontaneous binding through different
routes, the authors used the pathways obtained by MD simulations to determine
the free energy profiles associated with the diverse binding mechanisms.

The aforementioned examples require a huge amount of computational
resources, far more than the average time allocated to a real-world drug discov-
ery project. A valid alternative is to accelerate the sampling while preserving a
statistical mechanics distribution of states through so-called enhanced sampling
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methods. Researchers have recently demonstrated the power of these methods
for studying protein–ligand binding and estimating the associated free energy
and kinetics [38, 58].

Among all these, the metadynamics-based method, which allows fast explo-
ration of the underlying free energy landscape of rare events, has been applied
to a number of ligand–target complexes, demonstrating its ability to charac-
terize binding and unbinding paths, to treat conformation flexibility, and to
compute free energy profiles. Since Gervasio et al. first applied metadynamics to
ligand–target complexes, several other informative studies have been reported
[58, 59].

2.5 Future Directions

Nowadays, computational power has increased with respect to the past to such an
extent that most MD simulations are run on personal powerful workstations. The
increase in computational power implies a different future scenario. Simulations
will become much larger and will reach longer timescales. This reach for ever
larger and longer simulations will also be increasingly aided by improved algo-
rithmic methods to increase the sampling of conformational space. The unbiased
assessment of protein–protein and protein–nucleic acid interactions, in particu-
lar, will present new drug discovery opportunities. MD simulations can address
two aspects of this problem. First, how and where do the partners interact? And as
they interact, are novel ligand binding sites created, at the interface or at allosteric
sites? MD simulations seem to be good at identifying low-energy protein confor-
mations that harbor cryptic drug-binding sites. Second, how can small-molecule
ligands modulate those interactions? How can we optimize their binding and
druglike properties? Simulations of macromolecular assembly will also extend
to include very large complexes, such as the nuclear pore complex or even entire
organelles.

Although we have been able to simulate on a millisecond timescale, there
are still some parameters including torsions in amino acids, carbohydrates,
and single-stranded nucleic acids for which the force fields need further
improvement. The existing force fields are not efficient for studying the crowded
environment inside the cells, since these interactions involve multiple factors in
real time. Therefore, the improved force fields may provide the opportunities
for their wider applications on the complex biosystems in diverse cellular
conditions.

2.5.1 Modeling of Cation-p Interactions

These interactions, driven by electric quadrupole moments and polarization
effects, are now recognized to be quite important to both protein structure
(e.g. arginine–tryptophan ladders) and protein function, for instance, in a wide
variety of protein–ligand interactions. Polarizable models should enable us to
more accurately describe (inter)molecular interactions, and, indeed, several
polarizable force fields have begun to demonstrate their value. The AMOEBA
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force field, for instance, includes some cross-terms and, significantly, polarizable
atomic multipoles (up to quadrupoles) replace fixed partial charges [6].

2.6 Grand Challenges

There are several grand challenges that will help make MD simulations a
standard “tool” to study and describe life sciences. First of all, free energy
calculations should be more reliable and rapid. The calculation of free energy
should answer to different questions for both macromolecule–ligand and
macromolecule–macromolecule interactions. The importance of this compu-
tationally demanding task is crucial to answer whether either a ligand or a
macromolecule will interact or not. Moreover, the magnitude of the interactions
needs to be accurate (less than 1 kcal mol−1). Finally, the free energy is of vital
importance in drug discovery. Improvement of free energy calculations has to go
through both the exhaustive sampling of configurational space and better force
field. The abovementioned force field improvements should help significantly.
Converged calculations will enable rigorous determination of both force field
accuracy and the need for specific force field improvements.
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