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Molecular-docking programs coupled with suitable scoring functions are now established
and very useful tools enabling computational chemists to rapidly screen large
chemical databases and thereby to identify promising candidate compounds for further
experimental processing. In a broader scenario, predicting binding affinity is one of
the most critical and challenging components of computer-aided structure-based drug
design. The development of a molecular docking scoring function which in principle
could combine both features, namely ranking putative poses and predicting complex
affinity, would be of paramount importance. Here, we systematically investigated the
performance of the MM-PBSA approach, using two different Poisson–Boltzmann solvers
(APBS and DelPhi), in the currently rising field of protein-peptide interactions (PPIs),
identifying the correct binding conformations of 19 different protein-peptide complexes
and predicting their binding free energies. First, we scored the decoy structures from
HADDOCK calculation via the MM-PBSA approach in order to assess the capability
of retrieving near-native poses in the best-scoring clusters and of evaluating the
corresponding free energies of binding. MM-PBSA behaves well in finding the poses
corresponding to the lowest binding free energy, however the built-in HADDOCK
score shows a better performance. In order to improve the MM-PBSA-based scoring
function, we dampened the MM-PBSA solvation and coulombic terms by 0.2, as
proposed in the HADDOCK score and LIE approaches. The new dampened MM-PBSA
(dMM-PBSA) outperforms the original MM-PBSA and ranks the decoys structures
as the HADDOCK score does. Second, we found a good correlation between the
dMM-PBSA and HADDOCK scores for the near-native clusters of each system and
the experimental binding energies, respectively. Therefore, we propose a new scoring
function, dMM-PBSA, to be used together with the built-in HADDOCK score in the
context of protein-peptide docking simulations.
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INTRODUCTION

Molecular docking is a computational method that investigates
the intermolecular complexes formed between two or more
constituent molecules. It comprises the process of generating
a model of a complex based on the known three-dimensional
structures of its components, i.e., the target (protein, or nucleic
acids) and the ligand (a peptide, a protein, a small organic
molecule), free or bound to other species (Rognan, 2013).
The docking procedure consists in the search for near-native
ligand conformations and orientations (usually referred to as
docking poses) with respect to a target protein, where the
structure of the latter is known or modeled. Fast approximate
mathematical expressions (so called scoring functions) are used
to rank the docking poses based on estimates of the goodness
of the conformations obtained for each putative binder and of
the binding affinity estimate of the two interacting partners.
Pioneered during the early 1980s (Kuntz et al., 1982), molecular
docking is still a field of intensive research, as it represents
a fundamental component in many drug discovery programs
(Meng et al., 2011) and a primary tool for the virtual screening
of large chemical libraries (Kitchen et al., 2004). The typical
system considered in docking calculations includes the ligand,
the receptor, and the solvent molecules. Because of the enormous
number of degrees of freedom associated with the solvent, it is
usually neglected in the calculations, or implicitly accounted for
in the scoring functions. Despite some valuable improvements in
the accuracy and efficiency of the molecular docking algorithms,
there are still considerable drawbacks and limitations to face.
Among these, the reliability of the scoring functions is probably
one of the aspects deserving more attention, since discriminating
native pose and obtaining a fair correlation between docking
scores and experimental activity data remain difficult tasks. These
limitations are responsible for the occurrence of false-positive
and false-negative hits in the ranked lists resulting from the
screenings performed with standard docking methods. Over
the years, since the pioneering work of Kuntz et al. (1982),
several scoring functions have been developed (Gilson and Zhou,
2007; Huang et al., 2010; Sarti et al., 2013), based on several
terms. Despite empirical scoring functions are still widely used
in drug discovery since they are faster and relatively accurate,
first-principle methods for ranking decoy structures and for
predicting affinity should be considered the first desirable choice
in docking scoring stage.

Hence, it is a general opinion that molecular docking results
may benefit from post-processing with more accurate tools, able
to provide higher accuracy in energy scoring of the putative
docked poses. Among several docking approaches, HADDOCK
is one of the few computational docking programs that follow a
data-driven strategy, using experimental data (generated either
via NMR experiments, mutagenesis, or mass spectrometry) as
pivotal information to generate docking poses (Dominguez et al.,
2003). Moreover, the program allows the receptor to undergo
small conformational changes upon association with the ligand,
a feature that has been deemed as crucial in simulating the
binding process (Spiliotopoulos and Caflisch, 2014). HADDOCK
has been applied successfully to a plethora of biomolecular

systems (Dominguez et al., 2003). Its reliability is highlighted
by the excellent evaluations in the CAPRI experiments (van
Dijk et al., 2005) and by the fact that more than 60 structures
solved via HADDOCK docking have been deposited in the
Protein Data Bank (Berman et al., 2000). Moreover, continuous
efforts are devoted to integrate HADDOCK with experimental
methodologies (Hennig et al., 2012) and other computational
techniques (Kastritis et al., 2014) in order to improve its built-
in scoring function. Among several other scoring approaches,
Molecular Mechanics Poisson–Boltzmann Surface Area, MM-
PBSA, is routinely used to evaluate the strength of the complex
formation between protein and ligands. MM-PBSA represents
a good trade-off between calculation efficiency and accuracy in
binding energy calculations and it has been profitably exploited in
virtual design since it allows a ranking in different docking runs
and between different ligands (Graves et al., 2008; Venken et al.,
2011; Yang et al., 2011; Barakat et al., 2012; Genheden and Ryde,
2015). Although MM-PBSA is one of the most used approximate
methods for the estimate of binding free energies, it also presents
weaknesses that should not be overlooked. In particular, a
source of error can be represented by the entropy contribution,
which is often neglected when relative binding free energies of
similar molecules are computed. Furthermore, the quality of
results depends on different computational factors, including
the conformational sampled space, the force field, internal
dielectric constant, and the set of atomic radii (Weis et al., 2006).
Additional MM-PBSA limitations in the estimation of binding
free energies are for highly polar molecules such as DNA and
RNA (Kongsted et al., 2009), buried ligands (Singh and Warshel,
2010), and in presence of explicit water molecules that might
contribute to the binding free energy (Homeyer and Gohlke,
2012). Therefore, several attempts have been made to improve
accuracy and predictivity of the MM-PBSAmethod acting on the
solvation term, including polar and non-polar terms. Expedients
such as using different PB solvers (Feig et al., 2004), tuning the
grid mesh (Harris et al., 2013), and/or the internal dielectric
constant (Singh and Warshel, 2010; Hou et al., 2011; Genheden
and Ryde, 2015), including crystallographic and/or specific water
molecules (Treesuwan and Hannongbua, 2009; Liu et al., 2013;
Maffucci and Contini, 2013), have allowed to successfully use
MM-PBSA in the binding free energy calculations (Wang et al.,
2001). However, there is still room for improvement to make
MM-PBSA more efficient and reliable in the binding free energy
calculations in different respects.

Here we focus our investigation on the field of protein-
peptide interactions (PPIs), which are gaining large interest in
the biological and pharmaceutical research (Scott et al., 2016).
In fact, the inhibition of PPIs is of paramount importance in
drug discovery and development. The main problem in the PPIs
simulation is that the protein-peptide interface is large, shallow,
and involving several contacts characterized by being weak,
transient and non-specific. Therefore, not all the PPI interface
contributes equally to the strength of the binding between the
partners. PPIs are rathermediated by hot spots, small regions that
give the largest contribution to the binding.

In the present study, we investigated the effectiveness of MM-
PBSA on evaluating protein-peptide docked complexes using
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HADDOCK software in order to consider the possibility of
exploiting this relatively fast approach as an additional scoring
function.We show in the results section the performance ofMM-
PBSA as a scoring function for the 19 systems (Results—Section
MM-PBSA As Scoring Function for Protein-Peptide Docking)
and as binding affinity predictor for the systems where reliable
experimental binding affinity data were available (Results—
Section Correlation between Experimental Binding Free Energies
and Scores).

RESULTS AND DISCUSSION

MM-PBSA is an end-point method devised to estimate binding
free energy (1Gcomp) as the difference of the free energy of
the complex and those of the unbound receptor and peptide
(Massova and Kollman, 1999). Normally, it is performed
from a set of snapshots obtained from Molecular Dynamics
simulation (Hou et al., 2011). This method is significantly less
computationally demanding than alternatives such as free energy
perturbation (FEP) calculations and therefore it represents
a possible alternative to FEP for virtual screening of large
chemical libraries. It relies on the use of implicit solvent (for
the PB part) and it requires energy calculations only on the
endpoint (bound/unbound) states whereas other approaches
require energy calculation along a reaction coordinate. MM-
PBSA has already been used as a scoring function in the past
with various outcomes (Kuhn et al., 2005; Thompson et al., 2008;
Zhou et al., 2009; Genheden and Ryde, 2015) but to the best of
our knowledge this is the first time it has been used for a set of
PPIs obtained from docking calculations. Previous studies have
shown that MM-PBSA is efficient to identify the correct binding
poses and rank small molecules for a specific target (Thompson
et al., 2008; Hou et al., 2011; Zhu et al., 2013). However, there
is no systematic evaluation of the performance of MM-PBSA
in identifying the correct docking poses in the protein-peptide
context. As mentioned, the free energy of binding was calculated
as the difference in free energy between the product state and the
reactants state, that is, between the energy of the protein-peptide
complex and the sum of the energies of the protein and the ligand
in their unbound forms.

We investigated 19 protein-peptide complexes for which
structural and thermodynamic data (binding free energy values
1Gbind) were available (Table 1). The final MM-PBSA values
are calculated as the sum of two molecular mechanics terms
(namely Coulomb and Lennard-Jones), which are calculated
by HADDOCK, and two solvation terms, including polar and
non-polar solvation contributions, which here were calculated
using two different Poisson–Boltzmann equation solvers, APBS
(Baker et al., 2001) and DelPhi (Rocchia et al., 2001, 2002)
in combination with the NanoShaper program (Decherchi
and Rocchia, 2013). We decide to use two different solvers
to minimize the MM-PBSA aforementioned weakness and
interestingly the binding free energy values from the two solvers
were in good agreement in all case studies, indicating that the
consistency of the approach. (Figure S1).

In our calculations, we observed that the computed binding
free energies were larger than those obtained by experiments
(Table 2), an overestimation that has been already observed

in other systems. This behavior has been often ascribed
to the omission of the entropic contribution, which is an
approximation typical of these calculations (Gilson and Zhou,
2007; Spiliotopoulos et al., 2012).

The constituents of each complex (i.e., protein and
peptide) were separated and re-docked using HADDOCK.
The HADDOCK scores and MM-PBSA binding free energies
corresponding to 200 poses were calculated in each system
with the HADDOCK’s clustering-based approach. Similarly to
HADDOCK score calculation, where coulombic interactions
are scaled to a fifth, we also dampened MM-PBSA, i.e., the
MM-PBSA energies were calculated multiplying both coulombic
and polar solvation terms by 0.2. We will therefore compare
three different scoring functions, including HADDOCK built-in,
MM-PBSA, and dampened MM-PBSA, which we call dMM-
PBSA. The two following sections show the performances of each
scoring function in discriminating between the correctly and
incorrectly docked peptide poses (Section MM-PBSA As Scoring
Function for Protein-Peptide Docking) and in correlating with
the experimental 1Gbind through the whole dataset (Section
Correlation between Experimental Binding Free Energies and
Scores).

MM-PBSA As Scoring Function for
Protein-Peptide Docking
We sought to determine the correlation between the results of
the identified scoringmethods and the i-RMSD (interface RMSD,
see Section Materials and Methods for details) values. The re-
docked structures were clustered using the HADDOCK protocol
based on i-RMSD values (de Vries et al., 2010). In the Poisson–
Boltzmann equation (polar term in MM-PBSA), calculations
were performed using ε equal to 2 and 80 for the solute and
solvent, respectively. We then calculated the probability to find
at least one near-native structure (i.e., displaying an i-RMSD
lower than 2 Å) among the N top-ranking of the best 4 poses
in each cluster (clustersBEST4) according to HADDOCK, MM-
PBSA, or dampened MM-PBSA (dMM-PBSA), respectively. The
percentage of systems with near-native pose vs. the number of
clusters for each scoring function is shown in Figure 1. Overall,
we observe that HADDOCK score is a valid scoring function by
which the near-native pose is ranked within the first cluster in
8 out of 19 systems (about 40%) and within the top 3 clusters
in 12 out of 19 (about 63%). MM-PBSA has a somehow worse
performance, ranking the near-native pose within the first and
the second cluster in 7 out of 19 (about 37%) and 8 out of
19 (about 43%) in the top 3 clusters. The modulation of the
polar terms resulting from the MM-PBSA calculation proved
able to improve theMM-PBSA performance. In fact, dMM-PBSA
reaches similar performance to HADDOCK score in ranking the
near-native pose in the first cluster and in the top 3 clusters (11
out of 19, about 58%).

Correlation between Experimental Binding
Free Energies and Scores
A further question of interest is whether scoring functions
can reliably predict binding affinities when carried out on
multiple structures. To address this question, we correlated the
HADDOCK scores, MM-PBSA, and dMM-PBSA values of the
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TABLE 1 | Complexes investigated.

PDB Protein/peptide Ref. KD 1Gbind Techn.

1CKAA:B C-Crk N-terminal SH3 domain 1 1.90E–6 −31.84 TF

C3G peptide

1D4TA:B T cell signal transduction molecule SAP 2 6.50E–7 −35.26 FP

Signaling lymphocytic activation molecule

1MFGA:B Erb-B2 interacting protein 3 5.00E–5 −24.51 ITC

Erb-B2 carboxyl-terminal fragment

1PZ5AB:C Antibody SYA/J6 4 4.00E–6 −30.76 ITC

MDWNMHAA peptide

1SE0A:B Apoptosis 1 inhibitor 5 7.60E–8 −39.89 ITC

Cell death protein Grim

1T4FM:P MDM2 6 8.00E–8 −40.44 F

Peptidomimetic p53

1T7RA:B Androgen receptor 7 1.10E–6 −33.96 SPR

FxxLF motif peptide

1TW6B:D Baculoviral IAP repeat-containing protein 7 8 3.00E–8 −42.87 FP

Diablo homolog, mitochondrial

1W9EB:S Syntenin 1 9 1.00E–3 −17.38 CSP

TNEFYF peptide

1X2RA:B Kelch-like ECH-associated protein 1 10 1.81E–7 −38.42 ITC

Nuclear factor erythroid 2 related factor 2

2AK5AB:D Rho guanine nucleotide exchange factor 7 11 1.40E–5 −27.01 ITC

8-residue peptide from CBL-B

2B9HA:C Mitogen-activated protein kinase FUS3 12 8.00E–8 −40.44 FP

Serine/threonine-protein kinase STE7

2CCHAB:E Cell division protein kinase 2/cyclin A2 13 2.03E–8 −43.84 CD

Cell division control protein 6 homolog

2FOJA:B Ubiquitin carboxyl-terminal hydrolase 7 14 2.10E–5 −26.66 TF

p53 peptide 364-367

2HO2A:B FE65 WW 15 1.16E–4 −22.28 ITC

Mena Peptide 10

2HPLA:B PUB domain of mouse PNGase 16 3.60E–6 −31.02 ITC

C-terminal of mouse p97/VCP

2O9VA:B Src homology 3 (SH3) domain 17 2.88E–4 −20.18 F

Paxillin

2R7GA:B Retinoblastoma-associated protein 18 9.00E–7 −33.30 ITC

Early E1A 32 kDa protein

3D1EA:P DNA polymerase III subunit beta 19 1.42E–6 −33.32 ITC

decamer from polymerase II C-terminal

In each complex, the protein is underlined. The values of KD and ∆Gbind are expressed in molar and kJ/mol, respectively. The techniques in the last column are: TF, Tryptophan
Fluorescence; FP, Fluorescence Polarization; ITC, Isothermal Titration Calorimetry; F, Fluorescence; SPR, Surface Plasmon Resonance; CSP, Chemical Shift Perturbation; CD, Circular
Dichroism.
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TABLE 2 | Complexes investigated.

PDB 1Gbind HADDOCK 1Gcomp d1Gcomp vdW BSA

1CKAA:B −31.84 −80.0 −1076.9 (72.9) −316.2 (15.1) −91.6 1025.5

1D4TA:B −35.26 −105.8 −987.5 (99.7) −467.3 (20.1) −282.9 1710.2

1MFGA:B −24.51 −82.9 −975.4 (57.0) −369.0 (2.5) −178.8 1175.0

1PZ5AB:C −30.76 −82.2 −855.4 (50.9) −406.9 (8.8) −252.3 1386.2

1SE0A:B −39.89 −101.9 −890.8 (50.7) −378.4 (17.8) −213.6 1209.3

1T4FM:P −40.44 −119.2 −748.3 (153.9) −381.6 (25.4) −262.9 1522.9

1T7RA:B −33.96 −95.1 −1207.5 (58.5) −330.1 (13.4) −76.6 1101.9

1TW6B:D −42.87 −70.8 −469.7 (11.8) −286.5 (6.2) −208.2 1007.1

1W9EB:S −17.38 −87.9 −574.4 (106.0) −253.3 (17.6) −142.2 966.1

1X2RA:B −38.42 −108.4 −1309.4 (33.2) −453.8 (17.5) −179.7 1298.1

2AK5AB:D −27.01 −56.7 −509.7 (58.8) −225.3 (14.5) −123.5 850.9

2B9HA:C −40.44 −91.2 −993.9 (56.0) −450.6 (8.1) −243.6 1677.7

2CCHAB:E −43.84 −112.1 −1046.7 (68.5) −410.2 (14.8) −201.9 1485.3

2FOJA:B −26.66 −52.71 −622.6 (41.4) −293.1 (11.0) −177.5 955.1

2HO2A:B −22.28 −49.7 −208.0 (5.8) −170.5 (10.0) −132.9 783.8

2HPLA:B −31.02 −95.1 −1182.5 (25.4) −353.7 (7.3) −119.1 862.9

2O9VA:B −20.18 −28.9 −201.3 (24.3) −140.6 (7.3) −93.9 830.1

2R7GA:B −33.30 −116.5 −1213.4 (93.9) −462.7 (18.4) −226.7 1810.5

3D1EA:P −33.32 −72.2 −662.1 (29.2) −294.3 (10.4) −168.5 1072.8

Correlation 0.63 0.49 0.66 0.53 −0.58

Experimental binding free energy ∆Gbind , MM-PBSA computational and dMM-PBSA, ∆Gcomp and d∆Gcomp, respectively, for the system studied. The values are expressed in kJ/mol,
except BSA in Å2. The values shown between parentheses represent the standard error.

FIGURE 1 | Bars indicate the percentage of systems in which at least a
near-native pose could be found among the members of the N
top-ranking (x-axis value) clustersBEST4. Note that in four cases no
near-native pose could be found among the members of the clustersBEST4.

clusterBEST4 displaying the lowest average i-RMSD obtained for
each of the 19 systems and plotted against the experimental
binding free energies. In Figure 2 it is shown the correlation
for each scoring function. Despite the large absolute values, the
correlation between the 19 experimental binding free energies
and the HADDOCK scores is good (R= 0.63 p= 0.004, Figure 2,

upper panel). The dampened MM-PBSA (Figure 2, lower panel)
outperforms MM-PBSA (Figure 2, middle panel) and is better
than HADDOCK score in terms of the correlation between
experimental and computational binding free energies (R= 0.66,
p= 0.002 and R= 0.49, p= 0.03, respectively).

We wondered then whether the scores could be exploited to
correctly predict the 1Gcomp of a new set of protein-peptides.
Therefore, we performed a docking with HADDOCK for two
additional protein-peptide systems:

1. AIRE-PHD1 complexed with the H3 histone peptide, both
NMR structure (PDB 2KE1) and 1Gbind value available
(Chignola et al., 2009).

2. NPHP1-SH3 domain in complex with a polyproline peptide,
only 1Gbind available (Wodarczyk et al., 2010).

The latter system represents a real blind case study of PPIs since
no experimental structural information was available for this
system. Binding free energy obtained according to theMM-PBSA
approach on the putative pose belonging to the top-ranking
clusterBEST4 according to the HADDOCK score has been carried
out and the calculated value correlated with experimental values
(Figure 2, black star). The 1Gcomp of the AIRE and NPHP1-
SH3 complexes lies close to the previously calculated regression
line, suggesting that the scores can be reliably used to predict the
correct pose of PPIs systems.

Breakdown of the binding free energy into its components,
including van der Waals, electrostatic, polar solvation, and
nonpolar solvation interaction energy terms, identified the
factors dominating binding affinity for the whole dataset. We
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FIGURE 2 | HADDOCK values are expressed in a.u. MM-PBSA and dampened MM-PBSA values are expressed in kJ/mol. In all graphs, the color code
indicates the average i-RMSD of the clusterBEST4. Green, lower than 1.5 Å; orange, between 1.5 and 2 Å; red, >2 Å (none of which is greater than 2.7 Å). Data for
AIRE-PHD1 and NPH1-SH3 are indicated with a green × (average i-RMSD: 0.87 Å) and a black star (unknown i-RMSD). The correlation between the different scoring
functions and the experimental 1Gbind is shown in the left corner of each panel. The p-values for HADDOCK, MM-PBSA, and dMM-PBSA are 0.003, 0.03, and
0.002, respectively.

analyzed the correlation between either the Lennard-Jones terms
(vdW) or the buried surface area (BSA) of the same clusterBEST4
and the experimental binding free energies. Data for vdW
and BSA vs. experimental binding free energies along with i-
RMSD values are plotted in Figure 3. The van der Waals and
BSA terms are fairly correlated with the experimental binding
free energies (R = 0.53, p = 0.02, Figure 3, upper panel, and
R = −0.58, p = 0.009, Figure 3, lower panel, respectively). The
anticorrelation between experimental 1Gbind values and BSA
relies on the fact that larger BSA allows broader interactions
between protein and peptide partners. In contrast, no correlation
has been found between experimental data and the polar terms.

One of the main advantages to use the MM-PBSA approach
in the docking scoring is the ability to quickly perform the
computational alanine scanning (CAS) on the best pose in order
to evaluate the energetic contribution to the binding affinity
of individual residues. Therefore, we carried out a small study
of CAS on the AIRE-PHD1 system (five mutants) using the
data published in Spiliotopoulos et al. (2012) and we decided
to be in the best scenario possible, e.g., we used the NMR
complex (Chignola et al., 2009) as starting structure for the
CAS calculation. We also evaluated the HADDOCK score of
each mutated AIRE-PHD1 complex by only performing the
water refinement [i.e., by which the rigid body stage (it0) and
the flexible refinement (it1) are turned off]. In agreement with
the published data (Spiliotopoulos et al., 2012) we found a

good correlation between both MM-PBSA (R = 0.88, p < 0.02)
and dMM-PBSA (R = 0.86, p < 0.03) and the experimental
data (Figure S3middle and bottom), whereas HADDOCK score
showed lower correlation with the experimental data (R = 0.60,
p < 0.21) (Figure S3 top).

CONCLUSIONS

In this work, we made use of the MM-PBSA technique in
docking scoring and in affinity prediction of protein-peptide
complexes. We also compared the results with the HADDOCK
built-in scoring function. Overall, HADDOCK and dMM-PBSA,
a dampened MM-PBSA version, behaved similarly in ranking
the near-native poses in the top 3 clusters, improving over
the standard MM-PBSA version. The introduction of weights
for the different MM-PBSA terms is not unprecedented in
the literature (Zhou et al., 2009), but this approach has never
been applied to PPIs. Notably, despite the fact that different
experimental conditions (where the main difference regarded the
type of buffer and the ionic strength, whereas as both pH and
temperature were comparable) and techniques (Table 1) were
used to determine the dissociation constants, we observed a
good correlation between experimental and computational 1G
of binding using HADDOCK and dMM-PBSA scoring functions,
0.63 and 0.66 respectively. Interestingly, lack ofmodulation of the

Frontiers in Molecular Biosciences | www.frontiersin.org 6 August 2016 | Volume 3 | Article 46

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Spiliotopoulos et al. dMM-PBSA Scoring for Protein-Peptide HADDOCKing

FIGURE 3 | van der Waals term, expressed in kJ/mol, and BSA, expressed in Å2, terms as function of experimental 1Gbind. Data for AIRE-PHD1 and
NPH1-SH3 are indicated with a green × (average i-RMSD: 0.87 Å) and a black star (unknown i-RMSD). The correlation between the different terms and the
experimental 1Gbind is shown in the upper left corner of each panel.

solvationMM-PBSA terms resulted in worse correlation between
the experimental and simulated figures (r = 0.49).

Our findings were then validated on two additional systems,
one with known structure and binding affinity and one for
which only the 1Gbind has been reported. Both HADDOCK
and dMM-PBSA methods perform remarkably well in ranking
the two additional protein-peptide complexes, and lead to good
correlation with experimentally measured 1Gbind.

In order to assess the presence of possible systematic errors
in the binding free energy calculations, we used two different PB
solvers, namely APBS (Baker et al., 2001) and DelPhi (Rocchia
et al., 2001, 2002). No differences in term of correlation with
experimental data were found using the two different solvers,
except that in absolute 1Gcomp values (Figure S1) and in the
calculation speed (see Section Materials and Methods). APBS
provided a 1Gcomp larger than DelPhi. This could arise from
different aspects, including the different approaches used to
describe the dielectric interface, the approach used to estimate
the reaction field energy, and/or how the different solvers
treat cavities that are internal to the solute. The accuracy of
the PB equation solution has been reported to be sensitive
to the grid size, in favor of smaller grid spacing (Sørensen
et al., 2015) However, decreasing the grid spacing increases
the computational resources needed to perform the calculation,
both in terms of physical memory, and the computational time
required. We choose a grid size of 0.5 Å for both solvers since
it represents a good trade-off between speed and accuracy. With
lower grid resolution, APBSwould have encountered problems in
convergence in 1Gcomp calculation (see Figure 3.2 in Sørensen
et al., 2015). Finally, the choice of the interior dielectric (εint)
value in the PB calculation is not trivial since in the literature its
value can be found spanning between 1 and 20. Higher εint (4–20)
aims to effectively mimic polarization and local rearrangement
effects, as well as transient penetration of watermolecules into the
solute interior. They should in principle be preferred when the PB
calculation is performed on individual structures. On the other
hand, lower εint (2–3) is preferred in order to mainly account for
electronic polarization and it is commonly used on ensembles

of structures, which explicitly account for conformational
flexibility. In light of this, there is still no consensus on the
most appropriate εint value. We decided to use εint = 2 in all
cases, while being aware that scaling the polar contribution in
dMM-PBSA is similar to considering a dielectric screening of the
solute medium, accounting for polarization and rearrangement
due to the reaction to the existing fields (Figure S2). This is
also in agreement with previous studies where the rank-ordering
performance for MM-PBSA improves with increasing dielectric
constant (Wang et al., 2013). Simultaneously, this supports the
relative importance of the non-polar components and results in
better performance. In fact, the van der Waals and BSA terms,
which are directly related to the MM-PBSA non-polar terms,
correlated well with the experimental data and they provided
the main contribution to the final score. These factors might
explain the better performance of the dampened MM-PBSA.
Finally, we analyzed the calculated data from HADDOCK and
MM-PBSA in order to evaluate the reproducibility of the results
in terms of scoring and final correlation with the experimental
data. First of all, for a given complex, with the corresponding
MM energy terms provided by HADDOCK, the only variations
in the final results could arise from the PB calculations since
it depends on many parameters, including the grid spacing,
the atomic radii, and the dielectric interior. For this reason,
we used two different PB solvers, APBS and DelPhi, using
identical parameters. In Figures S1, S2 it is shown the good
agreement in the MM-PBSA and dMM-PBSA calculations with
the two PB solvers, indicating that the calculations are quite
robust. Second, we calculated the correlations between the
experimental and calculated binding free energy using different
MM-PBSA values from the clusterBEST4 and not the average
value. The final correlations R were in a range of 0.39–0.49 for
MM-PBSA and 0.60–0.67 for dMM-PBSA, indicating that in
principle the MM-PBSA could be performed on a single pose
with less computational effort. Finally, the calculated standard
error for each clusterBEST4 reported in Table 2 represent the
MM-PBSA limit when we try to compare the binding affinities
of different complexes, mainly when dealing with docking
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since the conformational sampling is poor with respect to
performing MM-PBSA from molecular dynamics simulations
(Spiliotopoulos et al., 2012). Nevertheless, in case of AIRE-
PHD1 mutants, the MM-PBSA and dMM-PBSA uncertainty
over the NMR structure bundle (20 structures) reduces, leading
to an average standard error of 34 and 7 kJ/mol, respectively,
indicating that dMM-PBSA is fairly reliable in predicting protein-
peptide interface alanine mutations. Moreover, the CAS dMM-
PBSA of AIRE-PHD1 error range values are fairly in agreement
with the CAS MM-PBSA error range (ca. 4 kJ/mol) shown
in Spiliotopoulos et al., in which the sampling was carried
out by molecular dynamics simulations (Spiliotopoulos et al.,
2012). This result indicates that dMM-PBSA carried out on
a small number of structures (e.g., 20) behaves similarly to
MM-PBSA from molecular dynamics, in which the sampling is
more extended. In fact, the modulation of the polar terms in
MM-PBSA is probably taking into account the possible local
rearrangement similarly to what is done via a higher internal
dielectric, indicating that dMM-PBSA represents a simple and
promising approach in evaluating alanine mutations from single
structure, either from docking or from X-Ray or from NMR.

We believe that in parallel with the recently developed
optimization of the HADDOCK score for PPIs inhibitors
(Kastritis et al., 2014), the combination of HADDOCK score
and modified MM-PBSA binding free energy might lay the
groundwork for novel approaches to study in silico PPIs
inhibitors in a quick and automatic fashion. The advantage of
using MM-PBSA as scoring function is threefold. First, MM-
PBSA is versatile. It provides estimates of the equilibrium
averages over the solvent degrees of freedom, permitting
the post-processing of solute representative snapshots from
docking poses. Since MM-PBSA estimates binding free energy,
it represents a valuable alternative since it is in principle
transferable between different docking runs and can be used to
score both intra-ligand and inter-ligand poses, saving individual
validation for each system under study. This makes MM-PBSA
more suitable for novel problems with limited experimental
data as we demonstrated in the case study of NPHP1-SH3.
Second, MM-PBSA can be used to quantify the thermodynamical
strength of the putative poses. In particular, our dMM-PBSA is
a reliable scoring function in the protein-peptide field showing
good a correlation with experimental data. Therefore, the
advantage to use dMM-PBSAwith respect toMM-PBSA relies on
the possibility to modulate the polar terms without rerunning the
Poisson–Boltzmann calculations at different internal dielectric
values. Finally,MM-PBSA could better allow to disclose atomistic
details of protein-peptide binding, supporting the rational design
of bioactive compounds. In fact, post-processing task such as
CAS approach has been very recently applied to MD simulations
for successfully evaluating the importance of key residues in the
protein-peptide binding complex (Spiliotopoulos et al., 2012).
Therefore, MM-PBSA can be used to calculate the 11G, defined
as 1Gwt − 1GmutALA, on the protein-peptide best docked poses
in order to identify residues for which mutation to alanine
strongly attenuates binding. The latter behavior occurred in
our short CAS study of AIRE-PHD1 mutants (Figure S3), by
which an acceptable correlation of R = 0.86/0.88 between the

experimental and the calculated binding energies of the mutants
demonstrated the possibility to use MM-PBSA as a promising
tool at low computational cost to evaluate the hot-spots in the
PPIs field with respect to the HADDOCK score.

Finally, structural prediction of protein-peptide complexes
remains challenging due to two major obstacles: peptides are
highly flexible and they often interact weakly with their substrate,
underlining their importance in signal transduction or regulation
which often relies on transient processes. This leaves flexible
docking as one of the few amenable computational techniques
to model these complexes (Verkhivker et al., 2000; Hetényi and
van der Spoel, 2002; Niv and Weinstein, 2005; Raveh et al., 2010,
2011; Trellet et al., 2013). In our study, we are considering the
two interacting partners, protein and peptide, already in the
bound conformation, which represents a strong assumption in
term of binding mechanism and also the best scenario for a
docking calculation, especially in the PPIs field. This undoubtedly
increases the success rate in the native pose determination and
it reduces the error in the binding affinity calculations since in
our MM-PBSA approach we are neglecting most of the solute
entropic contribution (i.e., under this assumption the estimate of
1S = SComplex − (Sprotein − Speptide) can be poor). Recent work
have highlighted the efforts to improve HADDOCK protocol in
the field of protein-peptide (Trellet et al., 2013) but still predicting
large conformational changes remains a challenge as indicated
by several failure to accurately predict cases where the protein
undergoes large conformational changes upon binding (Trellet
et al., 2013). In this case, even the more accurate and reliable
scoring function and binding free energy methods will struggle
in discriminating the correct binding mode due to both hard and
soft docking failure (Verkhivker et al., 2000).

In conclusion, in contrast to other scoring functions and
approximate binding free energy calculation methods such as
the linear interaction energy (LIE) method, MM-PBSA contains
less empirical parameters and, thus, it is more likely to be useful
in determining the relative free energies of binding of quite
different compounds and systems for which there is more limited
experimental data, although a protein structure of the target is, of
course, required.

MATERIALS AND METHODS

Data Set
Particular attention should be paid to the choice of the data
set exploited as a benchmark in the binding free energy
computational estimation. First of all, binding affinity
greatly depends on temperature, pH, and salt concentration
(Acampora and Hermans, 1967) and these parameters are
difficult to incorporate in the docking calculation. Second,
experimental binding data present in the literature are
determined with different experimental techniques and
they are from different research laboratories. This could
significantly impact on the reliability and comparability of the
results. Therefore, it should be desirable to rely as much as
possible on homogenous data, in terms of research laboratory,
experimental technique, and experimental conditions. Along
this line, we used a subset of the London’s benchmark
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(http://www.weizmann.ac.il/Organic_Chemistry/London/) for
which there were available free forms of the proteins and binding
affinity data. The data set consists of 19 complexes the structures
of which have been determined by X-ray crystallography, as
shown in Table 1. In addition to this data set, two protein-
peptide systems, including AIRE-PHD1 (NMR structure, PDB
ID 2KE1) (Chignola et al., 2009) and NPHP1-SH3 (Wodarczyk
et al., 2010), were used in order to establish the predictive ability
of the three different scoring functions. In case of NPHP1-SH3
only experimental binding free energy data were available.

Generation of Binding Poses
We used the experimental data (chemical shift mapping and
mutagenesis) to generate the decoy structures of the 19
cases study and for both AIRE-PHD and NPHP1-SH3 using
the HADDOCK strategy. The HADDOCK protocol proceeds
through three steps (rigid docking, semi-flexible docking,
and water refinement) (de Vries et al., 2007). Non-bonded
interactions were calculated with the OPLS force field using a
cutoff of 8.5 Å. The electrostatic energy (Eelec) was calculated
using a shift function while a switching function (between 6.5
and 8.5 Å) was used for the van der Waals energy (Evdw). This
procedure generated 200 models for each complex, starting from
different random velocities. As per default of the HADDOCK
protocol, the average score of the top 4 models was considered.
The HADDOCK score is defined as a weighted sum of the
following four terms:

HADDOCKSCORE = 0.2∗Eelec + 1.0 ∗ELJ + 1.0 ∗Edesolvation
+ 0.1∗EAIR (1)

where Eelec is the electrostatic energy, Evdw is the van der Waals
energy, Edesolvation is the desolvation energy and EAIR restraints
(i.e., distance) violation energies.

The different docking parameter settings and cluster analysis
were selected according to the protocol reported in de Vries
et al. (2010). BSA is defined as SASAComplex − (SASAProtein +
SASAPeptide) and it is calculated directly by HADDOCK. All
calculations were performed with HADDOCK, version 2.1/CNS,
version 1.2, through the refinement interface of the HADDOCK
web server (de Vries et al., 2010).

Binding Free Energy Calculation MM-PBSA
A modified version of the recently published GMXPBSA tool
(Paissoni et al., 2014), named HADDOCKPBSA was used to
perform the MM-PBSA calculations for the systems. Similarly to
the previous version of the scripts, the calculations are organized
in an automatic fashion that can be run in parallel in a PBS
queue system and the scripts are extensively commented to
facilitate their customization. Improving the previous version,
HADDOCKPBSA facilitates the interface between HADDOCK
and Poisson–Boltzmann Surface Area (PBSA) calculations.

Themethod for determining the binding free energy following
theMM-PBSA approach has been described previously (Massova
and Kollman, 1999). The binding free energy of MM-PBSA was
estimated as following:

< G > = < EMM > + < Gsolv > −T < SMM > (2)

This average over each term, i.e., using a set of snapshots, is
required since the Poisson–Boltzmann method to calculate Gsol
averages only over the degrees of freedom of the solvent and not
of the solute, i.e., protein, peptide, and ligands.

The energetic term EMM is defined as:

EMM = Eint + Ecoul + ELJ (3)

where Eint indicates bond, angle, and torsional angle energies,
and Ecoul and ELJ denote the intramolecular electrostatic and
van der Waals energies, respectively. Equation (3) is normally
approximated to Ecoul + ELJ since Eint will zero out upon binding

(1Eint = Ecomp
int − (Eproteinint + Epeptideint )) if the same conformations

are considered for the free and bound forms. The solvation term
Gsolv in Equation (4) is split into polar Gpolar and non-polar
contributions, Gnonpolar:

Gsolv = Gpolar + Gnonpolar (4)

Equation (2) can therefore be rewritten as:

< G > = < Eint > + < Gpolar > + < Gnonpolar > (5)

where:

< Gpolar > = α∗(< Ecoul > + < Gpolar >) (6)

< Gnonpolar > = < ELJ > + < Gnonpolar > (7)

where α is a parameter allowing to reduce the polar contribution
to the <G> values. Here, the polar contribution Gpolar was
calculated with two different PB solvers: APBS (Adaptive
Poisson–Boltzmann Solver) (Baker et al., 2001) and DelPhi
(Rocchia et al., 2001, 2002) programs. The polar contribution
Gpolar refers to the energy required to transfer the solute from
a continuum medium with a low dielectric constant (ε = 2) to a
continuummediumwith the dielectric constant of water (ε= 80).
Gpolar was calculated using the nonlinear Poisson Boltzmann
equation. The grid spacing was automatically set to 0.5 Å. The
temperature was set to 296 K, and the salt concentration was
0.15M. The non-polar contribution Gnonpolar was calculated with
two different approaches: APBS internal routine and using the
NanoShaper program (Decherchi and Rocchia, 2013). This term
was considered proportional to the solvent accessible surface area
(SASA):

Gnonpolar = γ∗SASA + β (8)

where γ = 0.0227 kJ mol−1 Å2 and β = 0 kJ mol−1

(Spiliotopoulos et al., 2012). The dielectric boundary was defined
using a probe radius of 1.4 Å.

The binding free energy of a protein molecule to a peptide
molecule in a solution was then defined as:

1Gcomp = < Gcomplex > − (< Gprotein > + < Gpeptide >)
(9)

where <Gi > is calculated as the average of the best 4 poses of
each cluster. The computational determination of the free energy
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of binding requires the calculation of the entropic contributions
to complex formation, including conformational changes in
rotational, translational and vibrational degrees of freedom of
the solute. Solute entropic contributions are usually estimated
by either the quasi-harmonic approach (e.g., Schlitter equation)
or by normal mode analysis (Gohlke and Case, 2004). Entropy
calculations would require a full sampling of the free energy
landscape, an extremely computationally demanding step, which
can result in unreliable results (Brown and Muchmore, 2009)
with standard errors usually one order of magnitude larger
than those associated with the other energetic components (Kar
et al., 2011). In addition, the normal mode analysis estimation
is often extremely qualitative (Cheatham et al., 1998) and the
configuration entropy estimate on a short dynamic time range
can be non-significant (Majumdar et al., 2011). Based on these
considerations, we decided to neglect the entropic term in our
calculations, leading to a one-parameter model:

MM-PBSA ≈ 1 Gcomp = α∗1 Gpolar + 1 Gnonpolar (10)

where with α = 1 is the canonical MM-PBSA method, α = 0.2
is the new dMM-PBSA method discussed in this work. The
standard error (SE) is calculated as follows:

SE = σ/
√
N (11)

where σ is the standard deviation and N is the number of
averaged structures (N = 4).

Briefly, the protocol obtains the Molecular Mechanics (MM)
terms, including intermolecular van der Waals and coulombic
terms, for each complex from the HADDOCK output file
energies.disp. Then, the get_average.inp protocol file is modified
in order to re-generate the complexes file inserting the partial
charges and radii according to the PQR format.

The same PQR files were used for the Poisson–Boltzmann
calculations (Gsolv), in order to ensure consistency across the
two solvers APBS and DelPhi. Preserving partial charges and
intrinsic PB radii is important, as they might significantly affect
the outcomes. Notably, each program returns results in different
energy units; APBS reports in kJ/mol, and DelPhi reports in
kT. All results in this paper are converted to kJ/mol to ease
comparison. In APBS six calculations are performed, one for
each component in either solvent or “dry” (uniform dielectric
εext = εint = 2) environment. The energy (Gsolv) is reported in
the “elecEnergy” term and the 1Gsolv is then calculated again
by subtracting the receptor and ligand from the complex in
each environment and then subtracting the values from the dry
environment from those of the solvated environment (εext =
80). For DelPhi, six calculations are performed, one for each
component both in the presence or absence of salt/ions. The
energy 1Gsolv term used is the difference in “corrected reaction
field energy” from the calculations without salt, as well as the
difference in the “total grid” energies calculated with and without
salt. Surface Area is calculated using the apbs built-in function in
APBS and NanoShaper functionalities for DelPhi.

Subsequently, the structures of the complex, the protein
and the peptide are used to perform the PBSA calculations.

HADDOCKPBSA then generates a grid suitable for the
calculations for all the structures: the coordinate extremes
of the complexes in each dimension are extracted, and 20
and 10 Å are added to each value to set the limits of the
coarse and fine grids, respectively. The tool then automatically
calculates the number of grid points that is feasible for APBS
and DelPhi calculations and builds a mesh finer than 0.5
Å. When all calculations are completed, the final MM-PBSA
value is calculated as the sum of the van der Waals and
coulombic terms (calculated by HADDOCK) and the polar and
non-polar solvation terms (calculated by APBS and DelPhi).
HADDOCKPBSA can also extract the HADDOCK scores values
and conveniently generate output files that ease the comparison
with the MM-PBSA values. HADDOCKPBSA tool is a set of
bash script interfacing HADDOCK output with both APBS and
DelPhi Poisson–Boltzmann solvers, which need to be installed
on their own. HADDOCPBSA is available on the HADDOCK
GitHub repository (https://github.com/haddocking).

Computation Time
The PBSA terms were calculated with the two different programs,
APBS and DelPhi/NanoShaper. Calculations were carried out
on a personal computer with CPU i7 dual-quad core and 16
GB of memory. The time-averaged calculation of the MM part
relies on the HADDOCK calculations, which are performed on
the clusters. The post-processing time-averaged calculation of
the PBSA terms is different depending on the program used.
APBS program allows to calculate all-in-once, including PB
and SA terms, using the apbs tool and it requires ∼120 s per
complex (about 1000–1500 atoms on average), whereas DelPhi
and NanoShaper requires ∼12.5 s per complex. Each system
comprises 200 putative poses, for a total of 4200 structures
analyzed. The performance of the DelPhi solver benefits from
the specific approach it uses to estimate the reaction field energy.
As described in Rocchia et al. (2001, 2002) the procedure is
kept analytical as far as possible. The polarization charge in
each grid cube at the boundary between high and low dielectric
constant is calculated via Gauss law, then its position is relocated
by projecting it over the analytical expression of the Connolly
molecular surface. This permits, on one side, to avoid double
PBE solution using different dielectric constant values, and, on
the other, to get results which are particularly robust regarding
position and orientation of the system with respect to the grid.
Robustness and efficiency are further enhanced by coupling
DelPhi solver with NanoShaper, as shown in Decherchi and
Rocchia (2013).

Statistical Treatment of the Derived Data
Linear correlation between calculated and experimental binding
affinities was evaluated via the Pearson product-moment
correlation coefficient (R). p-values from two-tailed Gaussian
probability were determined for each data set using the R,
and the sample size information, assuming that correlations are
statistically significant if p < 0.05. Due to the relatively small
size of the samples, we preliminarily performed the Shapiro-
Wilk normality test. This test indicated that our data can be
modeled according to the normal distribution, (W parameter of
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0.96, >0.90, which represents the threshold for 5% significance
level). Moreover, the associated p-value is 0.63, much greater
than 0.05, which is the common accepted threshold to consider
a distribution normal. The standard error is calculated as σ/

√
N,

where σ is the standard deviation and N the number of structures
(i.e., N = 4 for each clusterBEST4).
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Figure S1 | Representative of MM-PBSA values of the 200 poses of 1CKA
system calculated using APBS (x-axis) vs. DelPhi (y-axis) solvers. The other
cases study show similar behavior plot.

Figure S2 | Representative of dMM-PBSA (εsolute = 2 and α = 0.2) values
vs. MM-PBSA using εsolute = 5 and α = 1 of the 200 poses of 1CKA
system calculated using DelPhi solver. There is a good correlation between
calculating 1Gcomp with high εsolute and α, i.e., standard MM-PBSA, and low
εsolute and α (dMM-PBSA). Both approaches reduce the 1Gpolar term favoring
better correlation with experimental data.

Figure S3 | HADDOCK score (top), MM-PBSA (middle), and dMM-PBSA
(bottom) calculations of native and mutant AIRE-PHD1/H3K4me0
complexes plotted vs. the experimental binding free energy.
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