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We perform a first-principles calculation of optical potentials for nucleon elastic scattering off medium-mass
isotopes. Fully based on a saturating chiral Hamiltonian, the optical potentials are derived by folding nuclear
density distributions computed with ab initio self-consistent Green’s function theory with a nucleon-nucleon t
matrix computed with a consistent chiral interaction. The dependence on the folding interaction as well as the
convergence of the target densities are investigated. Numerical results are presented and discussed for differential
cross sections and analyzing powers, with focus on elastic proton scattering off calcium and nickel isotopes. Our
optical potentials generally show a remarkable agreement with the available experimental data for laboratory
energies in the range 65–200 MeV. We study the evolution of the scattering observables with increasing proton-
neutron asymmetry by computing theoretical predictions of the cross section and analyzing power over the
calcium and nickel isotopic chains.
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I. INTRODUCTION

The nuclear optical potential (OP) represents a successful
tool to describe the elastic nucleon-nucleus (NA) interaction.
It can also be extended to inelastic scattering and to the
calculation of reaction cross sections for a wide variety of
nuclear reactions. The OP reduces the complexity of the quan-
tum many-body scattering to that of a one-body Schrödinger
equation that is tractable across a large range of energies,
target isotopes, and reaction channels [1]. The basic idea
is to describe the interaction between the projectile and the
target with an effective complex and energy-dependent poten-
tial [2,3]. The imaginary part accounts for the flux lost from
the elastic channel to open inelastic and reaction channels,
while the energy dependence and nonlocalities account for the
underlying many-nucleon dynamics.

Several ways to devise working OPs have been proposed
over the years, using both phenomenological and microscopic
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approaches. Phenomenological potentials typically assume an
analytical form for the real and imaginary parts that char-
acterizes the shape of the nuclear density distribution and
depends on the scattering energy and the target mass number
through adjustable parameters fitted to elastic NA scattering
data. These models are quite successful in the description of
elastic scattering data and are usually adopted in the interpre-
tation of experimental data [1,4].

Microscopic OPs aim at avoiding the fitting procedure
and are better grounded in underlying quantum mechanics.
Unfortunately, microscopic calculations imply solving the full
many-body problem for the incident nucleon and all the nucle-
ons of the target nucleus, which is a tremendous task, often
beyond available computing capabilities. Clearly, some ap-
proximations are needed to reduce the problem to a tractable
form and the OP depends on the reliability of such choices. As
a consequence, one would expect a microscopic OP to be less
accurate in describing elastic NA scattering data than its phe-
nomenological counterparts. On the other hand, microscopic
OPs are more likely to have a greater predictive power when
applied to situations for which experimental information is not
yet available.

From a formal point of view, the solution of the
Schrödinger equation with an OP is equivalent to the projec-
tion of the full many-body reaction state on the subspace of the
target and projectile ground states. Thus, even if the resulting
OP usually has a simple structure, it has a very compli-
cated derivation. The theoretical framework for doing so has
been the focus of early pioneering works, including those of

2469-9985/2024/109(3)/034613(14) 034613-1 Published by the American Physical Society

https://orcid.org/0000-0002-1012-7238
https://orcid.org/0000-0001-8658-6927
https://orcid.org/0000-0001-9386-4104
https://orcid.org/0000-0002-9958-993X
https://orcid.org/0000-0003-1901-0885
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.034613&domain=pdf&date_stamp=2024-03-15
https://doi.org/10.1103/PhysRevC.109.034613
https://creativecommons.org/licenses/by/4.0/


M. VORABBI et al. PHYSICAL REVIEW C 109, 034613 (2024)

Kerman et al. [5], Feshbach [2,6], Picklesimer et al. [7],
and Watson [8], among many others. Most of these ideas,
however, did not go beyond being formal developments for a
long time because of the unavailability of adequate computa-
tional power. Yet present-day resources allow us to attempt an
ab initio description of the OP, that is, starting from micro-
scopic two-nucleon (NN) and three-nucleon (3N) interactions
and with approximations and theoretical uncertainties es-
timated and reduced in a systematic fashion [9]. This is
particularly important for nuclei away from stability, whose
study represents a frontier in nuclear science over the coming
years and which will be probed at new rare-isotope beam fa-
cilities worldwide [1]. Several groups have begun pursuing the
calculation of microscopic OPs in recent years, following dif-
ferent routes. Among them, let us mention the self-consistent
Green’s function (SCGF) approach [10–13], the inversion
of a Green’s function based on coupled-cluster [14–16] or
on no-core shell model (NCSM) calculations [17–20], chiral
symmetry inspired OPs [21–23], double-folding potentials
from chiral effective field theory [24,25], g-matrix calcula-
tions [26–29], and the phenomenological but microscopically
inspired dispersive OPs [30,31].

The SCGF approach is particularly interesting because it
also delivers accurate ab initio predictions of ground-state ob-
servables in medium mass isotopes, including nucleon density
distributions [32–34]. More importantly, the central quantity
of the formalism, the irreducible self-energy, has been shown
to provide an exact extension of Feshbach theory to include
not only scattering states but also overlap functions as probed
by nucleon removal processes [35–37]. Hence, SCGF might
offer a systematic solution of the long-standing issue of the
lack of consistency between the structure and reaction the-
ory in the interpretation of experiments. The self-energy is
composed of a static part, which represents the mean-field
probed by the projectile, and an energy-dependent part, that
encodes virtual excitations to all possible inelastic channels.
A recent SCGF benchmark provided encouraging results for
low-energy neutron scattering on 16O and showed the impor-
tance of coupling to enough virtual excitations to reproduce
scattering at intermediate scattering energies in the range of
10–100 MeV [13].

In this work, we focus on the multiple scattering theory
initiated by Watson [5,8]. This formalism was further devel-
oped in the 1990s, when it was applied using the realistic
NN interactions available at the time together with either
phenomenological or mean-field target densities [26,38–42].
Within Watson’s theory, the OP was derived at the first order
in the spectator expansion [41] adopting different treatments
of the nuclear binding between the target nucleon and the
residual nucleus.

Very recently, some of the authors began applying this
approach with the goal of constructing a microscopic OP
for elastic nucleon-nucleus scattering in a fully ab initio
fashion using modern chiral interactions. The optimum fac-
torization of the two basic ingredients of the model, i.e.,
the NN t matrix and the nuclear density, was explored in
Ref. [43]. For the NN interaction in the t matrix, potentials
up to fourth [44] and fifth [45] order in the chiral expansion
were employed to study the chiral convergence of elastic

proton-nucleus scattering data. The resulting microscopic OPs
were found to perform similarly to successful phenomeno-
logical potentials when comparing to experimental data on
several isotopic chains [46]. The corresponding OP model was
further improved in Ref. [47] by folding the NN t matrix
with a microscopic nonlocal density computed with the ab
initio NCSM [48] utilizing NN and 3N chiral forces. The
same chiral NN interaction employed to calculate the nuclear
density was used to calculate the NN t matrix. This guarantees
the consistency of the theoretical framework and improves
the soundness of the numerical predictions of the OP model.
The same approach, with NCSM densities, was successively
extended to describe the elastic scattering of antiprotons off
several target nuclei [49] and of protons off nonzero spin
nuclei [50]. The role of the 3N interaction in the dynamic part
of the OP was investigated in Ref. [51], where the 3N interac-
tion is approximated with a density-dependent NN interaction
obtained after the averaging over the Fermi sphere. In practice,
in this procedure the 3N force acts as a medium correction of
the bare NN interaction used to calculate the t matrix.

The use of ab initio nuclear density matrices makes
the theoretical framework more microscopic and consistent,
producing OPs that are quite successful in the description
of the available experimental data. However, computations
based on the NCSM method are limited to light nuclei with
A � 30 [52], due to the prohibitive scaling of this approach for
heavier systems. In general, and in particular for the study of
nuclei away from stability, microscopic OPs are required for a
wide range of nuclei. Thus, it becomes necessary to resort to
many-body approaches with better scaling with respect to the
mass number that allow reaching medium-mass and heavy nu-
clear targets. In the present paper we begin exploiting SCGF
computations [32,53–55] as an input to extend the scope of
the multiple scattering approach. Apart from the possibility of
overcoming the present limitation in the atomic mass number,
the SCGF approach offers some advantages. The energy-
independent part of the self-energy is closely related to the
lowest term in the multiple scattering method, hence, open-
ing opportunities for direct comparison and cross fertilization
among the two approaches to derive OPs. Furthermore, SCGF
calculations could supply dressed propagators to be used in
the Lippmann-Schwinger (LS) equation to simulate medium
effects even within multiple scattering. This extension will
be the subject of future investigations. In fact, in our opinion
SCGF theory provides a natural way to compute the necessary
many-body components for a microscopic OP over a wide
area of the nuclear chart. In particular, its capability to handle
nucleon scattering beyond the impulse approximation (IA)
will be a clear breakthrough for the development of nuclear
reactions.

In this work, we extend the existing approach to heavier nu-
clei by using nuclear densities obtained from ab initio SCGF
calculations. Results for cross section and analyzing power
of elastic proton scattering off Ca and Ni isotopic chains are
presented and discussed. The validity of our OP approach is
first checked against available experimental data. Numerical
predictions are then shown for the two isotopic chains, with
focus on the evolution of the results with the varying neutron
number. The main goal of this work is to prove that the present
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approach can be extended to medium-mass and heavy nuclear
systems giving reliable theoretical predictions.

The paper is organized as follows: In Sec. II we introduce
our theoretical framework for the OP operator. Formal aspects
about the calculation of the OP are given in Sec. II A, de-
tails about the microscopic SCGF densities are provided in
Sec. II B, while some details about the chiral potentials can be
found in Sec. II C. In Sec. III we discuss the results for the
scattering observables obtained with our OP model. Finally,
in Sec. IV we draw our conclusions.

II. OPTICAL POTENTIAL THEORY

In this section we outline the main steps of the derivation
of our microscopic OP (details and complete derivations can
be found in Refs. [5,7,42,43,46,49–51,56–60]). At the heart
of the standard approach to the elastic scattering of a single
projectile from a target of A particles is the separation of the
LS equation for the transition operator T ,

T = V + V G0(E )T, (1)

into two parts, i.e., an integral equation for T ,

T = U + UG0(E )PT, (2)

where U is the optical potential operator, and an integral
equation for U ,

U = V + V G0(E )QU . (3)

In the above equations the operator V represents the external
interaction between projectile and target, G0(E ) is the free
propagator in the projectile plus target nucleus system, and P
and Q = 1 − P are projection operators that select the elastic
channel. The operator P is defined as

P =
∣∣�A

0

〉 〈
�A

0

∣∣〈
�A

0

∣∣�A
0

〉 , (4)

where |�A
0 〉 is the ground-state wave function of the target

nucleus.
With these definitions the elastic scattering transition oper-

ator can be defined as Tel = PT P and Eq. (2) can be written
as a one-body integral equation,

Tel = PUP + PUPG0(E )Tel. (5)

For the present work, we only assume the presence of two-
body forces in the scattering processes, since the extension
to three-body forces in the projectile-target interaction has
a rather small effect, as shown in Ref. [51], in particular
if differential cross sections are under scrutiny. With this
assumption the operator U for the optical potential can be
expressed as

U =
A∑

i=1

Ui =
A∑

i=1

⎛
⎝v0i + v0iG0(E )Q

A∑
j=1

Uj

⎞
⎠, (6)

provided that V = ∑A
i=1 v0i, where v0i acts between the

projectile (“0”) and the ith target nucleon. Through the intro-
duction of an operator τi which satisfies

τi = v0i + v0iG0(E )Qτi, (7)

we can rearrange Eq. (6) as

Ui = τi + τiG0(E )Q
∑
j �=i

Uj . (8)

This rearrangement process can be continued for all A target
particles, so that the operator for the optical potential can be
expanded in a series of A terms called the spectator expansion

U =
A∑

i=1

τi +
A∑

i, j �=i

τi j +
A∑

i, j �=i,k �=i, j

τi jk + · · · . (9)

For practical calculations we will introduce the single-
scattering approximation, meaning that we will only retain
the first term of Eq. (9). However, the operator τi in Eq. (9)
satisfies Eq. (7), which is still a many-body equation because
of the presence of the many-body propagator G0(E ). Because
of the projectile energies we are going to consider, it is safe, as
shown in Ref. [61], to introduce the impulse approximation,
which can be viewed as τi ≈ t0i, where the operator t0i can be
identified with the free NN t matrix. With these two approxi-
mations, the final expression for the optical potential becomes

U =
A∑

i=1

t0i. (10)

In the case of the IA, one never needs to solve any integral
equation for more than two particles. As shown in Ref. [62],
the IA to the Watson single-scattering term provides the
best two-body approximation to a single-scattering optical
potential. This has made the IA very practical in intermediate-
energy nuclear physics, with a large body of work based on
this approximation over many years.

A. Definition of the optical potential

In this short section we present the final expression of the
optical potential in the IA. Our starting point is the elastic
(A + 1)-body transition operator of Eq. (5), which defines the
elastic OP operator as Uel ≡ PUP. Now we distinguish be-
tween neutrons and protons and introduce the basis |�A

0 , k〉 ≡
|�A

0 〉 |k〉 to project the Uel operator with U given by Eq. (10).
Here k and k′ denote the initial and final momenta of the pro-
jectile in the projectile-target center-of-mass frame. With this
basis, we obtain a one-body equation for the elastic transition
amplitude

Tel(k
′, k) = Uel(k

′, k) +
∫

d p
Uel(k

′, p)Tel(p, k)

E − E (p) + iε
, (11)

which requires in input the elastic optical potential Uel.
This can be obtained, after some manipulations (see
Refs. [43,46,56]), evaluating the single-folding integral

U α
el (q, K; E ) =

∑
N=p,n

∫
dP η(q, K, P)

× tαN

[
q,

1

2

(
A + 1

A
K − P

)
; E

]

× ρN

(
P − A − 1

2A
q, P + A − 1

2A
q
)

, (12)
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where the index α identifies the projectile (e.g., a proton, a
neutron, or an antiproton) and the new variables are defined
as follows:

q ≡ k′ − k, (13)

K ≡ 1
2 (k′ + k). (14)

Here q represents the momentum transfer and is located along
the ẑ direction, K is the average momentum, and P is the
integration variable. The t matrix is generally computed in
the NN frame and is not a Lorentz invariant, so it must be
transformed to the NA frame through the Møller factor η.

When evaluated in the NN center-of-mass frame, the NN t
matrix appearing in Eq. (12) has the following spin structure

tαN (κ′, κ) = t c
αN (κ′, κ) + i(σ · n̂) t ls

αN (κ′, κ), (15)

where n̂ is the unit vector orthogonal to the scattering plane
and κ and κ′ are the initial and final relative momenta of the
two nucleons. Inserting Eq. (15) into Eq. (12) leads to the
following spin structure of the OP,

U α
el (q, K; E ) = U α,c

el (q, K; E ) + i(σ · n̂)U α,ls
el (q, K; E ), (16)

where U α,c
el and U α,ls

el represent the central and the spin-orbit
parts of the potential, respectively.

Finally, the energy E in Eq. (12) displays a dependence
on the integration variable P and makes the calculation of the
integral very complicated. In our calculations we assume the
so called fixed beam energy approximation, which consists to
set E at one-half the kinetic energy of the projectile in the
laboratory frame, i.e., E = Tlab/2.

B. Density matrix from SCGF

We compute the density matrix using SCGF theory and
its algebraic diagrammatic construction [ADC(n)] truncation
scheme at different orders n. We use the standard, Dyson,
formulation of SCGF for closed-shell isotopes and its Gorkov
extension for semimagic open shells. While the details of
our computations are covered in Refs. [55,63–66], here we
summarize the points relevant to the discussion of the present
results.

In the simplest case of closed-shell nuclei, the one-body
propagator is obtained as a solution of the Dyson equation

gαβ (ω) = g0
αβ (ω) +

∑
γ δ

g0
αγ (ω)�

γδ (ω)gδβ (ω) (17)

in a spherical harmonic oscillator (HO) basis of Nmax + 1
shells. Here collective Greek indices α = (nα, lα, jα, mα, τα )
label the quantum numbers of the basis states. Each HO state
can be written as a function of momentum in the laboratory
frame, p, spin, σ , and isospin, τ , variables as

φα (p, σ, τ ) ≡ (−i)lα gnα lα (p)Y lα
1
2

jαmα
( p̂, σ ) χ 1

2 τα
(τ ), (18)

with gnα lα (p) being the Hankel transform of the usual HO
radial function in coordinate space and the spin-angular

functions being defined as

Y lα
1
2

jαmα
( p̂, σ ) ≡

∑
ml ms

(lαml
1
2 ms| jαmα )Ylαml ( p̂)χ 1

2 ms
(σ ). (19)

In Eq. (17), g0
αβ (ω) is the free particle propagator that de-

scribes the propagation of a nucleon subject only to the kinetic
energy operator. The nuclear many-body correlations and
dynamics are encoded in the irreducible self-energy �

αβ (ω)
that has the following general spectral representation:

�
αβ (E ) = �

(∞)
αβ +

∑
i, j

M†
α,i

[
1

E − (K> + C) + iη

]
i, j

M j,β

+
∑
r,s

Nα,r

[
1

E − (K< + D) − iη

]
r,s

N†
s,β , (20)

where �
(∞)
αβ is the correlated and energy-independent mean

field and η → 0+ imposes the correct boundary conditions.
The ADC(n) expansion provides a hierarchy of improvable
approximations to the self-energy where at first order, or
ADC(1), only the �

(∞)
αβ is retained and the SCGF approach

reduces to a Hartree-Fock computation. The ADC(2) scheme
introduces the matrices M (N) that couple to the inelas-
tic channels, expanded over intermediate-state configurations
with unperturbed energies K. Eventually, the ADC(3) refines
the approximation of M (N) and introduces the interaction
C (D) among the intermediate states, hence enriching the
description of virtual excitation of the target nucleus. Higher
ADC(n) orders would further improve the description of the
nucleon-nucleus dynamics by accounting for even more com-
plex inelastic channels [55,67]. Note that the irreducible self
energy (20) is itself an exact microscopic OP in the extended
Feshbach formalism [35].

Whenever we compute open-shell nuclei, the standard
Dyson expansion of SCGF in Feynman diagrams is ill de-
fined due to degeneracies among the particle and hole spectra.
These issues are resolved by adopting the Gorkov formulation
of SCGF, where pairing effects are included already at the
mean field level but at the price of giving up particle number
symmetry [66,68]. In practice, one considers the (zero temper-
ature) grand canonical Hamiltonian � ≡ H − μN̂ , where N̂ is
the particle number operator and the chemical potential μ is
fixed to recover the correct number of particles on average.
The Gorkov formalism introduces anomalous components,
associated to particle number breaking, of both the propagator
and the self-energy but it retains the spectral representation
of Eq. (20) and has an analogous ADC(n) expansion as for
the Dyson case. Whenever the Gorkov approach is applied to
fully closed-shell isotopes, we find that the anomalous terms
become negligible and predictions reproduce very closely
those obtained using the Dyson formulation. Note that the
Dyson SCGF formulation has been numerically implemented
up to ADC(3) [65,69], while for open shells the working
equations of Gorkov ADC(3) have been presented [66] but
numerical implementation is currently available only up to
ADC(2).

The density matrix is computed from the imaginary part
of the (normal) propagator, summing over the quasihole
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spectrum. Assuming a spherical ground state |�A
0 〉 for the

target nucleus, with Jπ = 0+, we have

ραβ = 1

π

∫ EF

−∞
Im gβα (ω) dω

= δmα,mβ
δ jα, jβ δlα,lβ δτα,τβ

ρτα lα jα
nα,nβ

, (21)

where we put in evidence that the density matrix becomes
block diagonal in angular momentum, parity, and isospin. Fi-
nally, the density matrix entering the computation of the OP, in
Eq. (12), is obtained by transforming from HO to momentum
space:

ρ(p′, p) = 〈
�A

0

∣∣ψ†
p′ ψp

∣∣�A
0

〉

= δτ ′τ

∑
l j

ρτ l j (p′, p )
∑

m

Y l 1
2

jm( p̂′, σ ′)Y l 1
2 ∗

jm ( p̂, σ ),

(22)

where ψ†
p (ψp) are the creation (annihilation) operators for a

nucleon with quantum numbers p ≡ (p, σ, τ ) and

ρτ l j (p′, p ) =
∑
nαnβ

gnα l (p′) ρτ l j
nα,nβ

gnβ l (p). (23)

Although we express the density matrix in momentum
space, our SCGF computations are performed in a HO space
limited by Nmax. This implies that the expansion in Eq. (23)
yields an unphysical Gaussian tail at large momenta. The cor-
rect exponential asymptotic behavior is simply recovered by
repeating the diagonalization of the Dyson equation in a much
larger model space where the kinetic energy in g0

α,β (ω) was
computed with up to 300 HO shells, while the self-energy (20)
(and the many-body dynamics it describes) remains truncated
at Nmax. We refer to this correction as “full T̂ space” in the
following.

C. Microscopic interaction

We base our computations on two-plus three-nucleon
forces derived within chiral effective field theory (EFT). In
this framework, interactions between nucleons are modelled
via the exchange of pions and short-range contact operators,
with all possible interaction terms respecting the symmetries
of quantum chromodynamics. All these terms are organized
according to their importance via a so-called power counting,
which in principle provides a systematic way of truncating
the EFT expansion and assessing the corresponding theoret-
ical uncertainties [70,71]. Modern NN potentials have been
constructed up to the fifth (N4LO) or sixth (N5LO) order [72]
in Weinberg’s power counting, while corresponding 3N forces
have been derived up to N3LO [73]. This approach leads to
a generally good description of nuclear structure observables
although it is known to have renormalizability problems [74].

Several realizations of chiral EFT interactions have been
made available in recent years which are capable of reproduc-
ing NN phase shifts and deuteron/triton properties with very
high precision [45,75–77]. However, constraining the interac-
tions to only few-body observables often fails to reproduce
binding energies and radii of larger nuclei simultaneously
with the empirical nuclear matter saturation point [33,78].

More recently, it has been found that proper saturation can
be recovered if light to medium mass nuclei are also used to
determine the Hamiltonian [79,80]: Typically, constraining to
a few additional data points from oxygen and calcium isotopes
leads to predictions of charge radii with 1–2% accuracy for
isotopes up to Sn and Pb [81,82].

The possibility to simultaneously account for energies
and radii of medium-mass nuclei motivated us to adopt the
NNLOsat interaction from Ref. [79] throughout this work.
In particular, an accurate reproduction of the target radius is
extremely important for a correct description of the diffraction
minima in the cross section [81]. The NNLOsat was used
for almost all the SCGF computations of the density matrix
reported below, however, we also experiment in varying the
NN force in Eqs. (6) and (7) to probe the sensitivity of our
method to the interaction between projectile and target.

III. RESULTS

We computed the microscopic OPs for elastic nucleon scat-
tering off calcium and nickel isotopes and report results for the
cross section and analyzing power with nucleon incident en-
ergies between 65 and 200 MeV. This is a bit below the lower
end of the range of applicability of the multiple scattering
theory but still compatible with the assumptions made. In fact,
the impulse approximation adopted in the derivation of our
OP works best at 200 MeV and above, but it has been found
to be reasonable even for laboratory energies down to 100
MeV [50]. Following Ref. [33], the density matrix of each tar-
get was obtained from SCGF theory truncating the HO basis
{α} to Nα = 2 nα + lα � Nmax. All kinetic energy and NN ma-
trix elements were included to cover the entire model space,
while the 3N interaction was truncated to configurations with
Nα + Nβ + Nγ � E3max because of computational resources.
Unless stated otherwise, we used Nmax = 13, E3max = 16 and
an oscillator frequency of h̄� = 14 MeV as the parameters
that guarantee the best convergence of radii with respect to
the model space [33]. Note that the density matrices are even-
tually expressed in momentum space and the OP is computed
in the complete one-nucleon scattering space, as explained in
Secs. II A and II B.

We first investigate the dependence of the scattering ob-
servables on the details of the ab initio SCGF computations
and on the chiral potential used in the NN t matrix. Sec. III B
tests the reliability of our OPs in comparison with avail-
able experimental data and Sec. III C provides predictions for
the evolution of scattering observables as a function of the
neutron-to-proton asymmetry.

A. Convergence and accuracy

Previous works show that the microscopic nucleon den-
sity profiles converge quickly with respect to the truncation
of many-body physics and charge distributions are already
accurate at the ADC(2) level for SCGF approaches [83,84].
Since our OPs also depend on the off diagonal part of the
density matrix we perform additional ADC(3) computations
to confirm that these findings remain valid in our case. Fig-
ure 1 demonstrates the convergence with respect to several
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FIG. 1. Differential cross section (top panel) and analyzing
power (bottom panel) as a function of the center-of-mass scattering
angle θc.m. for elastic proton scattering off 40Ca at a laboratory energy
of 201 MeV. All calculations are performed with NNLOsat [79] for
both the nuclear density and the NN t matrix. The different curves
represent various truncations employed in computing the ab initio
density matrix. E3max = 12, 14 are a reduced truncation of 3N forces,
all the remaining parameters being unchanged. All other curves are
for E3max = 16. The ADC(3) is an improvement on the coupling to
inelastic channels and “full T̂ space” corrects the Gaussian HO tail in
the density matrix [see discussion below Eq. (23)]. All curves employ
the Dyson formulation of SCGF theory.

details on the computation of the density matrix. We show the
differential cross section (dσ/d�) and analyzing power (Ay)
as a function of the center of mass (c.m.) scattering angle θc.m.

for elastic proton scattering off 40Ca at a laboratory energy
of 201 MeV. The first three curves refer to a Dyson-ADC(2)
computations with varying truncations of the 3N forces in the
range E3max = 12–16. The remaining curves are for ADC(3),
with the usual HO truncation (at Nmax = 13) but in one case
we extend the kinetic energy to the infinite model space limit
to correct for asymptotic tail in the nucleon density distri-
bution, ρ(r). The differences between all curves shown in
Fig. 1 are very small and practically negligible both for cross
section and analyzing power. Only a very slight difference
between the ADC(2) and ADC(3) curves may be noticed for
the largest angles shown in the figure.

Figure 2 reports analogous results for the more difficult
case of an open-shell isotope. Here the differential cross sec-
tion and analyzing power are shown for proton scattering off
66Ni at a laboratory energy of 192 MeV. Computations are
now made using the Gorkov SCGF at second order, or Gk-
vADC(2). Again, all the curves are practically equivalent for
both cross section and analyzing power. Figures 1 and 2 give
a clear indication that our SCGF computations of the density
matrix are fully under control with respect to truncations in 3N
forces and many-body correlations. The resulting microscopic
OPs give converged results for the observables of elastic
proton-nucleus scattering, with respect to these parameters.

FIG. 2. Differential cross section (top panel) and analyzing
power (bottom panel) for elastic proton scattering off 66Ni at a
laboratory energy of 192 MeV. Calculations are performed with
NNLOsat for both the NN t matrix and the nuclear density, obtained
from GkvADC(2) SCGF calculations. The different curves represent
various truncations in the ab initio density matrix, with respect to the
model space available to 3N forces and the kinetic energy, similarly
to Fig. 1.

Scattering observables can still be impacted by the choice
of the model space parameters, Nmax and h̄�, since these
affect directly the computed radii. For a constant truncation,
the radii typically increase monotonically when lowering the
oscillator frequency, while it can be shown that they con-
verge as a function of the HO “effective box” size, L2 =
h̄
√

2(Nmax + 7/2)/(mN�), in the infrared limit [85,86]. In
practice, upper and lower limits to the converged radii can be
found by choosing appropriate model spaces. For the specific
case of the NNLOsat interaction used in this work, we find that
bounds to the converged values of radii can be found varying
the model space parameters in the ranges Nmax = 11–13 and
h̄� = 12–14 MeV [33,81]. Converged NNLOsat radii have
tendency to overestimate the experiment by 1–2% for Ni and
light Ca isotopes [33,87]. However, computation for slightly
larger h̄� than the optimal value have been found to reproduce
the experimental charge distribution more closely [83,84,88].
To give a conservative estimate of the uncertainties from
the model space truncation, we have recomputed 40Ca with
Nmax = 11, 13 and a larger range of h̄� = 12–18 MeV. The
differential cross sections are presented in Fig. 3 as colored
bands for two separate choices of the NN t matrix. The
bands are narrow and nearly negligible for forward scattering
and increase only slightly with the scattering angle, without
affecting the shape of the differential cross section. Thus,
uncertainties in SCGF calculations of the target density do not
affect significantly the theoretical predictions of our OPs. We
have shown here only a few numerical examples for proton
energies of about 200 MeV, but this conclusion is confirmed
by corresponding results obtained over the whole range of
energies to which we have applied our OPs.
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FIG. 3. Differential cross section as a function of the center-
of-mass scattering angle for elastic proton scattering off 40Ca at a
laboratory energy of 201 MeV. Results obtained with different chiral
interactions in the NN t matrix, NNLOsat (red band) and N4LO
(blue band), are compared. All results are obtained with the nuclear
density matrix from GkvADC(2) SCGF calculations with NNLOsat.
The bands indicate the differences in the nuclear density obtained
with h̄� = 12, 14, 16, 18 and Nmax = 11, 13.

Next we investigate the choice of the chiral forces in the
NN t matrix by comparing two different models for the in-
teraction among the projectile and the nucleons in the target.
The NNLOsat force is consistent with the computation of the
density matrix, which is a general requirement for pursuing
ab initio, well controlled, predictions. It also has the clear
advantage of reproducing correct radii. However, concerns
may arise from the fact that this interaction is only fitted
to low energy scattering data, up to 35 MeV, and it has a
poor reproduction of p-wave NN phase shifts in virtue of
its low order in the chiral EFT expansion. At the scattering
energies we consider in the spectator model even much higher
partial waves are probed. For the second model we employ the
� = 500 MeV cutoff version of the N4LO interaction from
Ref. [45,77], which tames the above concerns. This interaction
is constructed to higher orders in chiral EFT and reproduces
NN partial waves up to l = 4, 5 and scattering energies up
to pion-production threshold. Figure 3 compares the use of
the NNLOsat and N4LO for the elastic proton scattering cross
sections off 40Ca at a laboratory energy of 201 MeV. The de-
pendence on the NN t matrix is sizable. The results obtained
with NNLOsat and N4LO differ in both shape and size, the
differences can be decisive in comparison with experimental
data (see Sec. III B). To better disentangle the implications
that the choice of the Hamiltonian has on different parts of
our computations we repeat a similar study for 48Ca but using
an additional density matrix computed from a local-nonlocal
version of the N4LO Hamiltonian (here named N4LOlnl) as
presented in Refs. [33,47]. Figure 4 shows that the density dis-
tribution generated by N4LOlnl slightly shifts the diffraction
minima toward larger angles with respect to NNLOsat. This is
a direct consequence of the fact that this interaction system-
atically underestimates root-mean-square radii and confirms

FIG. 4. Differential cross section (top panel) and analyzing
power (bottom panel) as a function of the center-of-mass scatter-
ing angle θc.m. for elastic proton scattering off 48Ca at a laboratory
energy of 201 MeV. The solid (dashed) lines are obtained by using
GkvADC(2) density matrices computed with the NNLOsat (N4LOlnl)
interactions, while red (blue) lines use the NN part of NNLOsat

(N4LO) for the NN t matrix. The SCGF computations are done with
Nmax = 13 and used an oscillator frequency of h̄� = 14 MeV for
NNLOsat and h̄� = 20 MeV for N4LOlnl as the values giving optimal
convergence for nuclear radii in both cases [33].

that a correct reproduction of nuclear sizes is an important
constraint for describing the structure of the target. On the
other hand, both cross sections and analyzing powers have
stronger sensitivity on the choice of the NN t matrix. Thus, it
could be expected that refinements in the scattering approach
of Sec. II A such as accounting for three-nucleon forces in
the t matrix, see Ref. [51], will impact the accuracy of the
present approach. Note that only the full-red and the dashed-
blue curves in Fig. 4 are computed consistently with a similar
interaction both in the density matrix and NN t channel,
respectively, using NNLOsat or N4LOlnl. While consistency
in the microscopic Hamiltonian remains a fundamental con-
straint to ensure predictive power for unstable isotopes, Figs. 3
and 4 suggest that a Bayesian analysis over several chiral
Hamiltonians might be important to a systematic estimation
of theoretical uncertainties [9]. For the reminder of this work
the target density will be always computed with NNLOsat, to
be consistent with empirical nuclear sizes, and we neglect 3N
forces in the NN t matrix.

B. Comparison to experimental data

We now move to confronting the prediction of the two
different NN t matrices and compare the results of our mi-
croscopic OPs against the available data for nucleon elastic
scattering off calcium and nickel isotopes. Figure 5 displays
the differential cross section and analyzing power as a func-
tion of the center-of-mass scattering angle for protons off a
48Ca target at 201 MeV laboratory energy. The experimental
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FIG. 5. Differential cross section (top panel) and analyzing
power (bottom panel) as a function of the center-of-mass scattering
angle θc.m. for elastic proton scattering off 48Ca at a laboratory energy
of 201 MeV. Experimental data [89] are compared with the results of
microscopic OPs obtained using NNLOsat (red curves) and N4LO
(blue curves) chiral interactions in the NN t matrix. In both cases,
the nuclear density is obtained from GkvADC(2) SCGF calculations
computed with NNLOsat with Nmax = 13 and h̄� = 14 MeV.

data are compared with the results obtained using the NNLOsat

and N4LO chiral interactions in the NN t matrix. The two
forces produce significant differences in both shape and size
of the cross section and analyzing power. Both results give a
reasonable description of the experimental cross section, al-
though the agreement is somewhat better for NNLOsat. Larger
differences are found for Ay where both interactions are able
to describe the shape and the position of the experimental
minima. However, only NNLOsat reproduces their depth. The
analogous comparison for 58Ni at 192 MeV is given in Fig. 6.
It confirms that there is a significant dependence of the OPs on
the chiral interactions used for the NN t matrix. In general, the
results obtained with NNLOsat give a better description of the
experimental data and, in particular, a remarkable description
of the experimental analyzing power. We have tested other
isotopes and energies and always found confirmation of these
findings, see Appendix.

In Figs. 5 and 6 and in the Appendix we have com-
pared the results of our OPs with experimental data above
150 MeV, where the approximations adopted in our OP
model are expected to be valid. This has been already
investigated and confirmed in previous works [43,46,49–
51,56]. Let us remark, however, that NNLOsat was con-
strained to much lower NN scattering energies. A quick
look at NN scattering amplitudes shows that predictions
from NNLOsat still compare reasonably well to the ex-
periment up to 200 MeV although this is far from being
perfect (in contrast to N4LO which fits the data by construc-
tion). For a multiple scattering-based approach such as the
present work, it is plausible that small discrepancies with

FIG. 6. Same as in Fig. 5 but for elastic proton scattering off 58Ni
at 192 MeV. Experimental data is taken from Ref. [90].

NN data due to missing higher orders in the chiral EFT
expansion average out as the IA gains validity. Even if its
predicted NNLO phase shifts remain reasonable at larger en-
ergies, the good agreement on experimental analyzing powers
could still be somewhat fortuitous. Importantly, even though
the shape of the target nucleus is under control, the depen-
dence on the interaction between the projectile and the target
nucleons can be important.

The comparison between the results of our OPs computed
with NNLOsat and the experimental differential cross sec-
tions of elastic proton scattering off 40Ca in a range of proton
energies between 65 and 182 MeV is displayed in Fig. 7. Our
OPs are able to give a reasonable description of the experi-
mental cross section at all energies considered. The agreement
gets somewhat worse for larger values of the scattering angle.
We note the remarkably good agreement between our OP and
the data at 65 MeV, an energy that can be considered at the
limit of validity of the impulse approximation adopted in our
OP model.

Overall, the agreement found between our theoretical re-
sults and the experimental data is remarkably good, and it
makes our approach to the OP comparable to the other ex-
isting approaches on the market. The striking feature of our
method is that allows us to compute the OP using NN and 3N
interactions as the only input, which is extremely important to
maintain consistency and predictive power in our calculations.

We now turn to predictions for the total cross sections at
different energies. Figure 8 shows the elastic neutron scatter-
ing cross sections off 40Ca and 48Ca for laboratory scattering
energies between 40 and 250 MeV. The results of our mi-
croscopic OPs computed with the NNLOsat interaction are
compared with the experimental cross sections. The model
adopted to derive our OPs contains several approximations
and we do not expect to obtain a perfect agreement with
the experimental cross section across the whole energy range
considered. The main aim of this investigation is to obtain
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FIG. 7. Differential cross section as a function of the center-of-
mass scattering angle for elastic proton scattering off 40Ca at 65-,
80-, 135-, and 182-MeV laboratory energy. The results of the OPs
obtained with GkvADC(2) densities computed from NNLOsat are
compared to experimental data from Refs. [91–95].

FIG. 8. Total cross section for elastic neutron scattering off 40Ca
(top panel) and 48Ca (bottom panel) for laboratory energies in the
range 40–250 MeV. Experimental data from Refs. [96,97] are com-
pared with the results of our OPs computed with NNLOsat. The
nuclear densities are obtained from GkvADC(2).

an indication of the general validity of our OP and of its
approximations as a function of the neutron energy. At the
highest energies considered, in the range 180–250 MeV,
our OPs are able to describe the experimental total cross
sections of both isotopes. This is a range for which the approx-
imations adopted to derive our OP hold. The adopted impulse
approximation worsens gradually as the energy decreases but
it does not diverge from the experiment in any abrupt way.
In the range between 70 and 180 MeV our results overesti-
mate the experimental cross sections of both isotopes and we
find the largest disagreement with the experiment for 48Ca.
At the lowest energies considered, 40–70 MeV, the experi-
mental cross sections for both isotopes are underpredicted. We
consider these energies too low for IA to hold, without the
inclusion of medium effects and any higher-order correction
in the spectator expansion. Yet, the overall disagreement with
data is contained. The reasonably good description of the
differential cross section found in Fig. 7 and the comparison
between theoretical and experimental total cross sections sug-
gests that improvements needed in our microscopic OPs may
be relatively modest and under reach. In particular, the con-
tributions of medium effects might reduce or even solve the
discrepancies between numerical results and data found in this
work.

C. Calcium and nickel isotopic chains

Given the generally satisfactory agreement between our
microscopic OPs and experimental data, we produce theo-
retical predictions for elastic proton scattering off the whole
calcium and nickel isotopic chains. These include cases for
which experimental data are not yet available. We note that
the NNLOsat interaction is known to predict the charge radii
for the two 40,48Ca isotopes and the known data for the Ni
chain [33,87] to good accuracy. However, it reproduces only
partially the steep rise in Ca radii for N � 50 [98] while
GkvADC(2) computations do not explain the bell shape for
20 < N < 28 [33]. These discrepancies are obviously trans-
ferred to the predicted scattering for these specific targets.
The results are displayed in Figs. 9 and 10 for 34−60Ca tar-
gets at 201 MeV and in Figs. 11 and 12 for 48−68Ni at 192
MeV. We perform computations for the density matrix using
GkvADC(2) and the NNLOsat interaction in the NN t matrix.
We present here only a few predictions for laboratory energies
at about 200 MeV where the IA and our OP model are fully
justified, although similar calculations are easily doable at
different energies.

The evolution of the differential cross sections and ana-
lyzing powers with increasing neutron-to-proton asymmetry
is regular and similar for both isotopic chains. The main
effect of increasing the neutron number is a shift of the
cross-section minima toward smaller scattering angles. This
compression of the diffraction minima is a direct consequence
of the changes in the root-mean-square radius of the targets,
which is included in phenomenological models by scaling the
size of Woods-Saxon potential as A1/3. In the ab initio frame-
work, the isotopic shifts of radii are computed microscopically
and they are a direct prediction of the Hamiltonian. Hence,
one has in principle the capability of making predictions
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FIG. 9. Differential cross section as a function of the center-
of-mass scattering angle for proton elastic scattering off 36−60Ca
isotopes at 201-MeV laboratory energy. The OPs are computed with
NNLOsat and GkvADC(2) densities. The four panels show the trend
of the cross section with increasing neutron-to proton asymmetry in
the isotopic chain.

beyond simple phenomenological trends. For our calculations,
the limits of NNLOsat mentioned above apply [33,87,98].
Figures 9 and 11 show that the compression of diffraction
minima is similar for both Ca and Ni chains and the shift
becomes stronger at large scattering angles. This is clearly

FIG. 10. Analyzing power as a function of the center-of-mass
scattering angle for proton elastic scattering off 36−60Ca isotopes at
201-MeV laboratory energy. The OPs are computed with NNLOsat

and with GkvADC(2) densities. The four panels show the trend of
the analyzing power with increasing neutron-to-proton asymmetry
in the isotopic chain.

FIG. 11. Same as in Fig. 9 but for proton elastic scattering off
36−60Ni isotopes at 192-MeV laboratory energy.

seen from the positions of the diffraction minima that shift
toward smaller scattering angles. This is in general accompa-
nied by a simultaneous increase in the height of the maxima.
This behavior is similar for both calcium and nickel isotopic
chains. Also for the analyzing powers, with increasing of
the neutron-to-proton ratio, the main effect for both isotopic
chains is a shift toward smaller scattering angles that increases
with the scattering angles.

IV. CONCLUSIONS

We reported on a new advancement in the theory of mi-
croscopic OPs. This is part of an ongoing project that aims

FIG. 12. Same as in Fig. 10 but for proton elastic scattering off
36−60Ni isotopes at 192-MeV laboratory energy.
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at devising a framework for nucleon-nucleus elastic scatter-
ing that is free from phenomenology and sufficiently reliable
to guide future experimental researches. Our OP is derived
within the Watson multiple scattering theory, using NN and
3N chiral interactions as the only input. The final expression
for the OP is obtained at the first order of the spectator expan-
sion as the folding integral between the density of the target
nucleus and the NN t matrix, representing respectively the
structure and the dynamic part of the OP.

Earlier applications of this approach were affected by a
lack of consistency between the calculation of the t matrix
and the one-nucleon density profile of the target, which were
obtained with different techniques. This problem was recently
overcome for light isotopes using the ab initio NCSM, which
can provide accurate descriptions of the target density adopt-
ing the same chiral interaction used in the computation of
the NN t matrix. Within this framework, the model was then
extended to describe antiproton scattering, to investigate the
impact of 3N interactions on the dynamic part of the OP,
and to be applied to nonzero spin targets [49–51]. In gen-
eral, however, the study of systems far from stability requires
knowing microscopic OPs for a wide range of target isotopes,
with medium and heavy mass, that are beyond the reach of
foreseeable NCSM applications.

In this work, we have begun to exploit SCGF theory in
aid to the current spectator model framework. The SCGF ap-
proach presents better scaling of computational requirements
with respect to the mass number that allows us to reach heavier
systems, currently up to masses A ≈ 140, and provides fully
nonlocal density matrices for the target. We presented and
discussed results for differential cross sections and analyzing
powers of elastic proton scattering up to 201 MeV in labora-
tory energy, where chiral interactions are still usable and one
can rely on the impulse approximation. Detailed computations
for 40Ca and 66Ni targets demonstrate that the SCGF input
is completely stable and scattering observables are well con-
verged with respect to the model space, three-nucleon forces,
and many-body truncation already at the ADC(2) level. We
further compared to the available experimental data for elastic
proton scattering off 40,48Ca and 58,60,62Ni targets. In all cases
we obtained a very good reproduction of the experimental
differential cross section and a remarkable description of the
analyzing power, where the minima are correctly reproduced.
Agreement with the experiment remained satisfactory down
to Elab = 65 MeV energies for 40Ca even if this is some-
what below the limits of validity expected for the impulse
approximation.

The good agreement between our results and experimental
data gives us confidence in the reliability of the theoretical
OPs. Therefore, we computed predictions for elastic scatter-
ing off the whole Ca and Ni isotopic chains to investigate
the evolution of the differential cross section and analyzing
power with the increasing asymmetry between the number of
neutrons and protons. For both isotopic chains we observed a
compression of minima in the differential cross section toward
smaller scattering angles when increasing neutron-to-proton
asymmetry, as due to the bigger root-mean-square radii. This

FIG. 13. Differential cross section (top panel) and analyzing
power (bottom panel) as a function of the center-of-mass scattering
angle θc.m. for elastic proton scattering off 40Ca at a laboratory energy
of 201 MeV. The experimental data [100] are compared with the
results of microscopic OPs obtained using NNLOsat (red curves)
and N4LO (blue curves) chiral interactions in the NN t matrix.
In both cases, the nuclear density is obtained from GkvADC(2)
SCGF calculations computed with NNLOsat with Nmax = 13 and
h̄� = 14 MeV.

shift is in general accompanied by a simultaneous increase
in the height of the maxima. The same shift towards smaller
angles is also observed in the analyzing power.

In our opinion, the combination of the spectator model
and SCGF theories offers remarkable opportunities for
the physics of radioactive beams and in particular toward

FIG. 14. Same as in Fig. 13 but for elastic proton scattering off
60Ni at a laboratory energy of 178 MeV. Experimental data from
Ref. [101].
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FIG. 15. Differential cross section as a function of the center-of-
mass scattering angle for elastic proton scattering off 62Ni at 156-
MeV laboratory energy. Line convention as in Fig. 13. Experimental
data from Ref. [102].

resolving the long-standing issue of the lack of consistency
between structure and reactions in the interpretation of data.
While the SCGF method has so far been applied to closed-
shell or, through its Gorkov formulations, to semimagic
open-shell isotopes, it is plausible that computations on de-
formed bases will soon become available at least at the
ADC(2) level. In fact, this will open the possibility of devising
first-principles optical potentials for essentially all isotopes in
the lower part of the Segrè chart. The SCGF approach can
also be employed for providing two-nucleon spectral densi-
ties [99], which are the basis for extending the current model
for the OP to the next term of the spectator expansion in
two ways: accounting for the 3N force between the projectile
and in-medium pairs and computing double-scattering events.
At laboratory scattering energies below 100 MeV, where the
impulse approximation may become more questionable, the
self-energy computed through SCGF theory is itself a viable

ab initio OP [13]. Future work will be devoted to advance-
ments along these lines.
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APPENDIX: PROTON SCATTERING OBSERVABLES

In supplement to the discussion of Sec. III B, we show
comparisons of our microscopic OP to experimental elas-
tic proton scattering observables for additional targets and
scattering energies. Figure 13 displays differential cross sec-
tion and analyzing powers for 40Ca at 201-MeV laboratory
energy, Fig. 14 is for 60Ni at 178 MeV, and Fig. 15 compares to
the differential cross section of 62Ni at 156 MeV. Overall, the
findings of Sec. III B in regards to the accuracy of prediction
employing the chiral interactions remain valid for all cases
we tested and in the energy range 150–200 MeV, where our
assumptions in deriving the OP are most reliable.
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