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Abstract

In this paper, we classify all the variational discrete-time systems in quasi-standard form in N degrees
of freedom admitting coalgebra symmetry with respect to the generic realisation of the Lie—Poisson
algebra s,(R). This approach naturally yields several quasi-maximally and maximally superintegrable
discrete-time systems, both known and new. We conjecture that this exhausts the (super)integrable
cases associated with this algebraic construction.

1. Introduction

This paper is devoted to the classification and the study of a class of discrete-time systems in N degrees of
freedom admitting coalgebra symmetry with respect to the Lie—Poisson algebra sl,(R). We make use of the
notion of coalgebra symmetry for discrete-time systems we recently introduced in [29]. The main outcome of
this paper is that the coalgebra symmetry approach can be fruitfully used to systematically produce
superintegrable discrete-time systems in an analogous way as its continuous counterpart introduced in [11, 13].
In particular, within this paper we introduce several seemingly new discrete-time systems, including an N
degrees of freedom maximally superintegrable discretisation of the celebrated Smorodinski—-Winternitz system
[21,23], one of the first maximally superintegrable systems ever introduced [44].

To be more specific, we consider a class of discrete-time systems we call the systems in quasi-standard form
which we define as the discrete Euler—Lagrange equations (dEL) of the following class of discrete Lagrangians
(dLagrangian) [41]:

N
L =73 4(q(t + Mg 1) — V@®), qt) = (q(0),...qy (). (1.1)
k=1

Here h > Oisa (fixed) constantand t € hZ, while the functions g,(t) are not supposed to be defined for all
t € R. Following the tradition of [42, 54—56] we choose such notation to avoid confusing double indexing in the
formule. Furthermore, we suppose that the functions ¢ = £(£) are smooth and locally invertible functionsin a
given open domain of R. That is, the dLagrangian (1.1) is supposed to be a well-defined function on
Uy x U, C (RN)*2, where Uj, i = 1,2are open subsets of RN, After we fix the explicit form of the functions £} we
will specify the form of the sets U;, i = 1,2, see theorem 3.1.

Computing the discrete Euler—Lagrange equations associated to the dLagrangian (1.1) we have that a system
in quasi-standard form has the following explicit expression:

0
8qk(t)

for k=1,...,N. The number Nis called the degrees of freedom of the system, and will be denoted throughout the
paper with the shorthand notation d.o.f.. Because of the local invertibility assumptions on the functions £} we
have that equation (1.2) is step-by-step solvable to determine the next iterate, as it was done in [54] in a particular
case. In general, we will not show the solved equations to avoid cumbersome expressions.

bﬂk/(qk(t + h)qk(t))qk(t +h) + ﬁ/(Qk(t)qk(t - h))qk(t — h) (1.2)
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Remark 1.1. Before going further we give a few remarks on the terminology we chose to adopt and the meaning
of the parameters.

+ The fixed parameter h > 0 has the meaning of time step between two different stages of the evolution of the
system. If h — 0" we have the so-called continuum limit. To be more precise, the limit b — 07 givesa
(possibly trivial) continuous-time system which needs to be discussed case-by-case. Indeed, each discrete-
time system need an ad-hoc scaling of the parameters. We will discuss the continuum limits of the discrete-
time systems we found in this paper in section 5.

+ Wechoose to call “system in quasi-standard form” the systems (1.2) because if 4. (§) = & forall k=1,...,Nthe
system is in the so-called standard form, as defined in [32, 57].

From the general theory of discrete variational systems, see [ 17, 61] we have that they are naturally
symplectic. Indeed, we can introduce the following canonical momenta:

p() =4’ (q,(Hq,(t — h)g,(t — h), k=1,..,N, (1.3)

and write the the dEL equations (1.2) in canonical form as:

oV
G+ W)t + ) + p () = 24D (L4a)
9q,(t)
Pt + 1) = 4/, (¢ + W (0)a, (D), (1.4D)

with k=1,...,N. Since in the right hand side of equation (1.4b) q(t + h) is present, the iteration step in
equation (1.4) is intended as a two-step procedure. That is, it must be accomplished in the following way:

@®), pe) X (et + b, pe) = (@t + by, p(t + ). (1.5)

We will denote the iteration from step ¢ to ¢ 4+ h by ;. As a map we will assume that ;,: U; x U, — Uy x U,,
where the U; are properly chosen open subsets of RY. Once the sets U, i = 1, 2, are fixed there is a one-to-one
correspondence between the discrete-time system in the form (1.4) and its map form. So, in this paper we will
use interchangeably the words ‘discrete-time system’ and ‘map’.

From the general theory of discrete-time variational system the equations (1.4) preserve the canonical
Poisson bracket:

(4,0, (0} = (p,0. O} =0, {g(1), (D)} = &), (16)
see[17, 54, 63]. Here, by preservation of a Poisson bracket we mean that the following relation holds true:
{g;(t + h), q;(t + W} = {q;(D), q;(D)}, (1.7a)
(p,(t + by, p (e + W) = (p,(D, p(0)), (1.7)
(4,(t + By, p(t + W) = (q,0, p,0)). (1.7¢)

This implies that the map ¢y, is a Poisson map. In particular, since the canonical Poisson bracket (1.6) has
maximal rank we have that the map ¢y, is a symplectic map.
From the general theory of integrable symplectic maps, we recall the following definitions:

+ Asymplectic map yy,: U; x U, — U; x U, possessing N functionally independent invariants in involution
with respect to a non-singular Poisson bracket for all values of & > 0 is said to be a Liouville integrable map.

+ ALiouville integrable map ;,: U; x U, — U; x U, possessing N + k, with k > 0, functionally independent
invariants in involution with respect to a non-singular Poisson bracket for all values of & > O is said tobe a
superintegrable map.

+ ALiouville integrable map ¢: U; x U, — U, x U, possessing 2N — 2 functionally independent invariants in
involution with respect to a non-singular Poisson bracket for all values of h > 0 is said to be a quasi-maximally
superintegrable (QMS) map.

+ ALiouville integrable map ;,: U, x U, — U, x U, possessing 2N — 1 functionally independent invariants in
involution with respect to a non-singular Poisson bracket for all values of h > 0is said to be a maximally
superintegrable (QMS) map.

These definitions naturally generalise to the case of Poisson maps: a Poisson map ,: Uy x U, — U; x U, is said
to be Liouville—Poisson integrable if, for all values of h > 0, it admits M — r functionally independent invariants in
involution, where M is the number of equations and 2ris the rank of the preserved Poisson structure.
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Remark 1.2. Differently from the review [44] on continuous superintegrability we consider superintegrability to
require Liouville integrability, making it a stronger property. We decide to adopt this definition because as
noticed already in [29] not all discrete-time systems admitting more than N non-commuting invariants are
integrable with respect to other commonly accepted notions of integrability for discrete-time systems, e.g.
algebraic entropy [14].

For a complete overview on the integrability of Poisson and symplectic maps we refer to [17, 61, 63], the
review part of the thesis [60], and our previous paper [29].

Before recalling the construction of coalgebra symmetry for discrete-time systems we make a final
observation on continuum limits, i.e. the limits as h—07. Given a (super)integrable discrete-time system, ifa
continuum limit is known then it is expected to be (super)integrable as well. However, we observe that this does
not necessarily follow from the (super)integrability of the associated discrete system. For instance, in [27] were
presented several examples where in the continuum limit one invariant of a system in two d.o.f. is lost, yet the
continuous-time system possesses two invariants. If both the discrete-time system for # > 0 and its continuum
limitas h — O are (super)integrable, we say that the discrete system is a (super)integrable discretisation.

We now briefly recall the definition of coalgebra symmetry for discrete-time systems we introduced in [29].
The concept of coalgebra was formulated in the theory of quantum groups [18, 19]. Precisely, a coalgebra is a pair
of objects (A, A) where 2 is a unital, associative algebraand A: 20 — 2 ® 2 isa coassociative map. Thatis, A
satisfies the following condition: Ae

A/ A®Id
(A®ld)oA=(Id®A)o A <= ¢ AoAoA

/
A\‘erx)m Id®A

and itis an algebra homomorphism from 2 to A ® A:
AX-Y)=AX) - AY) VX Yedld (1.9)

The map A is called the coproduct map. When there is no possible confusion on the coproduct map; it s
customary to denote the coalgebra simply by 2I.
In [29] we gave the following definition:

Definition 1.3. A Poisson map ), is said to possess the coalgebra symmetry with respect to the Poisson coalgebra
&, A)ifforall N € N the evolution of generators A;, i = 1,...,Kin a N degrees of freedom realisation of the
Poisson coalgebra is:

(1) closed in the Poisson coalgebra, that is:
Ai(t + h) = ai(A(1),.. ,Ak (1)), i=1,...,K, (1.10)
with a; € C®),
(i) itisaPoisson map with respect to the Poisson algebra 2, i.e.:

{Ait + ), Aj(t + B} = ¢,({Ai(@®), Aj(DD), i, j=1...K, (1.11)

(iii) assuming that the Poisson algebra 2( admits r independent Casimir functions { C;(t),...,C,(t)}, these are
preserved as invariants by the map ¢, i.e.:

Ci(gp()) = Ci(1), i=1...r (1.12)

This definition allows us to provide an analogue of the construction of the invariants for Hamiltonian systems
givenin[11, 13],aresultstated in [29], theorem 3.3.

The plan of the paper is the following: in section 2 we remind the main properties of the Lie—Poisson algebra
s (R) and its generic symplectic realisation. In particular, we discuss the construction of the corresponding left
and right Casimir invariants. In section 3 we classify all systems in quasi-standard form admitting coalgebra
symmetry with respect to the generic realisation of the Lie—Poisson algebra s[,(IR). This result is contained in
theorem 3.1. In section 4 we study the Liouville-Poisson integrability of the dynamical system of the form (1.10)
associated to the generic realisation of the Lie—Poisson algebra sl,(R). To be more specific, we impose the

3
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existence of an additional polynomial invariant and prove in theorem 4.1 that it exists if the degree of the
invariantis 1, 2, or 3. For invariants of higher degree we conjecture, based on the evidence obtained for degrees 4
and 5, that no polynomial invariants exist. In section 5 we identify the systems we found in section 4 in the
explicit symplectic realisation. This gives us several integrable systems, which we put in the context of the
literature. In particular, we find a discrete-time maximally superintegrable version of the Smorodinski—
Winternitz system. We note that the maximal superintegrability of this discrete-time model follows from a
peculiar construction of the s, (IR) coalgebra which is possible only in this specific case. We also find a QMS
reduction of the discrete-time Wojciechowski system, introduced in [56], and a generalisation of a N degrees of
freedom autonomous discrete-time Painlevé I equation we obtained in our earlier work [29]. In section 6 we
provide some concluding remarks and discuss the further possible developments.

2. The sl,(R) Lie-Poisson coalgebra

The three-dimensional Lie-Poisson algebra sl,(R), spanned by the generators J := {J_, J, J5}, is characterized by
the following Lie—Poisson brackets:

{]—: ]+} - 4]3: {]3) I+} - 2]+> {]3) ]—} - *21—> (21)

and it is endowed with the Casimir invariant:
C=CO)=1J] —J5 2.2)

This Lie-Poisson algebra can be endowed with a ‘natural’ coproduct map called the primitive coproduct [59]. Its
explicit action on the basis generators and the unit element is given by (u = £ , 3):

AU) =1, @1 +1®J,, A =1®1, (2.3)
and extends to polynomial elements through the homomorphism property:
A(]u]v) = A(]/l)A(]I/)J Wy V= =£,3. (2.4)

For example, the coproduct of the Casimir function (2.2) is computed as:

AC) = AU — J5) = AUJD)AJ) — A(s)?
=L R1+1J)0. @1+10]) -1+ 18 J3)?
) @1+, Q) +) QL +10L) —(FR1+250%k+1®JD)
= —JD@1+100J )+ QL +]-®J — 25 ® L, (2.5)

where we used the definition primitive coproduct (2.3) and the properties of the tensor products. From the
definition of the Casimir invariant (2.2) we obtain the final result:

AC)=CR1+10C+ ] +]- Q] —25® 5 (2.6)

Note that the Casimir of s,(IR)*? genuinely contains new information because it is not just two tensor copies of
the casimir C, but additional terms are present.

After giving this summary of the abstract properties related to the s[,(IR) Lie—Poisson coalgebra we need a
way to ‘embed’ these properties in the setting of (continuous or discrete-time) dynamical systems. To this end,
we use the concept of symplectic realisation of a Lie—Poisson algebra as expressed in the following definition:

Definition 2.1. Assume we are given a Lie—Poisson algebra 2( generated by {J,,...,J,,}, associated structure
constants ¢’ such as:

(INZ

m
{];n I }91 = Z C[Z,y]p) o, V = 1,...,m, (27)
p=1

and Casimir invariants { G,...,C,}. A N degrees of freedom symplectic realisation of the Lie—Poisson algebra 2( is a
map

D: A — Q, (2.8)

where () is an open subset of a symplectic manifold (M, w) with dim M = 2N, such that it preserves the
commutation relations (2.7):
m
{D(]u)a D(U)} = Z C[;,VD(];))- W v=1,...,m. (2.9
p=1
Moreover, the realisation D: 20 — € is called genericif the dimension of M equals the number of generators of
2 minus the number of its Casimir functions, i.e.:

4
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2N=m —r. (2.10)

Remark 2.2. We remark that on a symplectic manifold (M, w), by Darboux theorem [2] and its discrete-time
analog [17] we can introduce two sets of canonically conjugated variables (€, 7) € Ug x Uy C (RN)*%, where
& are the canonical coordinates, and 7 their corresponding canonical momenta, defined on some open sets

Us, Ur C RY, and satisfying the canonical Poisson relations (analogous to (1.6)):

{& &t = {m m} =0, {&, m} = bij. (2.11)

Throughout the paper, we will denote the discrete-time variables in lowercase Latin letters and the continuous
time variables in capital Latin letters. The Greek letters & and 7 will denote variables that can be either
continuous or discrete-time. The difference between the discrete-time and the continuous-time cases is that in
the continuous-time setting the dynamics is specified by a smooth function H = H (§, 7r), while in the discrete-
time setting by a symplectic map ¢;,: Ug X Ur — Ug X Uy, asdiscussed in the Introduction.

A one degree of freedom symplectic realisation of sL(R) on (&, m) € R, x Risgivenby:

Dm>=ﬁ+§; DU =€, DUy = &m, 2.12)

1

for arbitrary b; € R.Indeed, from the canonical commutation relations (2.11) it is readily verified that:

{DU2), DU} =4D(s),  {DUs), DUx)} = £2D(J1). (2.13)

Moreover, this realisation is generic, since N = 1, m = 3 and r = 1. So, following the literature (see for example
[7, 16]), we will call this realisation the generic one d.o.f. symplectic realisation of sl,(R). That said, we will identify
the generators with the corresponding functions on the right hand side of (2.12). The image of the Casimir
functions (2.2) through the realisation (2.12) reads:

D(CO) =CMDJ) =b R (2.14)

Once arealisation has been constructed, the primitive coproduct can be used to raise the number of degrees
of freedom. For example, from formula (2.3) we obtain the following functions on Ri x R2:
b b
D ®© DAL =& + &, w®mmm=ﬁ+ﬁ+?+§
1 2
(D @ D)A() = §m + &, (2.15)

once two copies of the one degree of freedom symplectic realisation (2.12) are considered, each of them
associated to the corresponding site in the tensor product space 1 ® 2 with associated free parameters b; € R,
i=1,2.

The functions (2.15) provide a two degrees of freedom symplectic realisation for the same Lie—Poisson
algebra s[,(R), now w.r.t. the canonical Poisson bracket in R? x R2.The crucial point is that at this level the
image of the Casimir element, which is now given by (2.6), turns out to be:

2 2
(D ® D)A(C() = C((D @ D)AQJ) = (§m — §;m)* + bl% + bz% + b + by, (2.16)
1 2

that s, it is no longer a constant, but a function. Moreover, by construction, this function Poisson commutes
with the generators in the two degrees of freedom symplectic realisation (2.15).

So, by applying the coproduct map iteratively, and extending its definition through the following
generalization of the coassociativity property:

N—-2 N-2
AN = (Id® ... ®Id ® AR AN-11 = (AP @ Id® ... ®Id)o AN-1I (2.17)

where A":=Id and A®!:=A, one ends up with the N degrees of freedom symplectic realisation:

N 2 bk N 2 N
Je =Y | T+ ) = Y& =Y &m (2.18)
k=1 k=1

k=1 k

where the canonical variables are defined on Rf x RN, and b € R,k=1,...,Nare Nassociated arbitrary
constants. In equation (2.18) and the following, we omit the symbol (D ® ... ® D), because we will not consider
different realisations. At this level, the crucial fact is that a total number of 2N — 3) left and right Casimir
invariants can be obtained from the left and right embedding of the m-th order (2 < m < N) coproduct on the
Casimir function (2.2):
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N—m N—m
——t— ——
Clml:= AM(C) ® 1®...®1, Cpy = 18..81 @ A"(C). (2.19)
The image of these elements under the N d.o.f. symplectic realisation (2.18) reads as:
m g 52 m
Clml= S |LL 4+ bi— + b= | + > b m=2,.,N, (2.20a)
1<i<j fl f]- =1
N 52 52 N
Cm= ., |Li+bi—S+b=|+ > b m=2,,N, (2.20b)
N-m+1<i<j 5, E j=N-m+1
where we indicated the N(N — 1)/2 rotation generators as:
Lij=§m — §j7r,~. (2.21)

These (2N — 3) quadratic (in the momenta) functions Poisson commute with the generators (2.18) by
construction. Moreover, they turn out to be functionally independent.

Remark 2.3. We remark that if we restrict to the case N = 2 the left and right Casimir functions collapse to the
same expression:

Cl2l = Cppy = AZ(O) (2.22)

which is nothing but (2.6), the latter leading to the invariant (2.16) at a fixed realisation, as expected. This extends
toany N, in fact for m = N the two expressions collapse to:

CINl = Ciyy = AMI(O), (2.23)

where the action of the Nth-order coproduct is given by (2.17). This is why formulz (2.20) give us 2N — 3
functionally independent invariants and not 2N — 2.

So, if the variables (§, 7) := (Q, P) € Uy x Up C Rf x RN are continuous, we can conclude that the
family of Hamiltonian systems:

h = h(U-, J+» ]3)—h(Q2 P2 + Z 2’Q P) (2.24)
k=1 Kk
where h is any smooth function of the generators of the Lie—Poisson algebra s[,(IR), is QMS. This is because the
above Hamiltonian is automatically endowed with the 2N — 3 functionally independent invariants (2.20). On
the other hand, in the discrete-time setting, there is no exact equivalent of the Hamiltonian function and the
notion of coalgebra symmetry is replaced by definition 1.3. Thus, the problem of characterising discrete-time
(symplectic) systems admitting s[,(IR) as a hidden coalgebra symmetry is much less trivial. In the case of systems
in quasi-standard form, this problem is solved in theorem 3.1. Moreover, due to the absence of the Hamiltonian,
these systems are not naturally born QMS, and in fact not even Liouville integrable. The problem of integrability
is tackled in section 4.

Remark 2.4. We remark that the symplectic realisation with b; = 0, for i = 1,..., N, is connected to radially
symmetric systems. In this particular case, the left and right Casimir invariants are:

N
clml = ZL,], Cm= », L m=2,.,N, (2.25)
1<i<j N—m+1<i<j

which are nothing but the Casimir invariants associated with rotation subalgebras so(m) C so(N). In the
continuous setting, the Hamiltonian function (2.24) is given by:

h = h(]*) I+) ]3) - h(Q2> PZ) Q ° P) (226)

As expected, rotational symmetry is sufficient to provide quasi-maximal superintegrability. Notice that if we
restrict to natural Hamiltonian systems defined in Euclidean N-space, i.e. we take:

h(-s Jes J3) =T + V(D) (2.27)
then as a consequence of Bertrand’s theorem [2, 15], only two MS subcases arise. Namely, the Harmonic and
Kepler-Coulomb (KC) systems, with the corresponding potentials given by:

V() =al and V(L) = ——==, (2.28)

NA

respectively. In [29], proposition 4.2 it was proved that discrete-time radial systems in standard form admit
s (R) coalgebra. In the present paper in corollary 3.3 the converse is proved.

6
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In general, the presence of non-central terms has the effect of breaking the radial symmetry, but by
preserving quasi-maximal superintegrability, which is kept thanks to the existence of the new integrals obtained
through the image of the left and right Casimir invariants under the realisation (2.18). Let us conclude the
section by mentioning that with the same choice of potentials (2.28), but now in terms of the new realisation
involving non-central terms, would result respectively in the N d.o.f. Smorodinsky-Winternitz system [21] and
the Nd.o.f. generalized KC system, the latter being the N d.o.f. generalization of the (fourth-order)
superintegrable Hamiltonian introduced in [62].

Although the many advances pursued in the framework of superintegrable systems with an arbitrary number
of d.o.f. using the method described above, which has also been applied to the analysis of many other Lie—
Poisson coalgebras [8, 16], the problem of finding MS subcases is usually left open. This is due to the fact that
additional integrals, not directly obtainable following this algebraic approach, may arise. From this perspective,
even for the s[,(R) Lie—Poisson algebra, we have recalled how it is possible to reach quasi-maximal
superintegrability at most, as a total number of 2N — 3 functionally independent integrals can be constructed,
besides the Hamiltonian, from the left and right Casimir invariants. Thus, for MS subcases, the search for an
additional missing functionally independent constant would be required.

3. Classification results
We state and prove the following classification result:

Theorem 3.1. A system in quasi-standard form (1.2) possesses coalgebra symmetry with respect to s[(R) ifand only

13
we) = [" 1 Pan, beer, v=v@. (3.1
n

This implies that the dLagrangian and the associated pairs of canonical variables are well-defined in the open set
U = (RY)*? C (RN)*?, oran open subset of it depending on the form of the function V.= V (x).

Remark 3.2. The if’ part of this theorem is a generalisation of [29], proposition 4.2, where it is proved that radial
systems in standard form admit coalgebra symmetry. The converse will be explicitly stated in corollary 3.3.

Proof. Consider the N d.o.f. realisation of sL(R) given in equation (2.18) with respect to the discrete canonical
variables (q(¢), p(t)). Then, the evolution of the J, () under the system (1.4) is:
N b
k

Jet + by = Y[ a2 D)@/ (@ (D q ¢ + W) +

—_. (3.2)
k=1 qkz(t + h)

The right-hand side needs to be independent from q, (¢t 4 h). To ensure this independence, we can differentiate
equation (3.2) with respect to q;(¢ + h) and put the result identically equal to zero:

by

2ql3(t)zﬁ’(ql(t)ql(t + 4" (q,()q,(t + h) — ZW =0, I=1,.,N. (3.3)
Interpreting the equation in terms of the variable §; = g,(t)g,(t + h), we can integrate equation (3.3) to:
@'Y = — b—i, I=1,..,N. (3.4)
I
Plugging back into equation (3.2) we obtain:
J(t+ h) = ki Cral (D). (3.5)
=1

Imposing that the right-hand side of the equation is in C*(s[,(IR)) we easily obtain that C; = C forall k. Note
that, when integrating we obtain a condition of the following form:

¢ b
ﬁ(gl):f’ /C—n—lzdn+Dl, 1=1,...N, (3.6)

but the additive constant D, is inessential to equations of motion (1.2) and can be safely put to zero. Then, using
the scaling:

by — Cb, V(g) — JCV(q), (3.7)
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we see that we can choose without loss of generality C = 1. This proves the first part of the theorem, represented
by the first identity in (3.1). Moreover, from this follows that the dLagrangian and the associated pairs of
canonical variables are well-defined in the open set U = (RY)*? C (RN)*? or an open subset of it depending on
the form of the function V = V (q(¥)).

We fixed the form of the coefficients £}, so now we proceed to derive the full system in order to check the
conditions of definition 1.3. By direct computations we have:

Je(t + h) = J(t), (3.8a)
J(t+h)=J](@) —2p-VV+ (VV)? (3.8b)
B+ h) = -k +q-VV. (3.8¢)

While it is possible to prove that the system (3.8) satisfies condition (ii), is it clear that conditions (i) and (iii) are
not satisfied in general. As outlined in the last section of [29] we start by imposing that condition (iii) holds.
Evaluating the translation of the Casimir function (2.2) we have:

Clt+h=CH —[2¢°(p - VV) = 2(q-p)q - VV) = @(VV)* = (q- VV)?]. 3.9)
To have the preservation of the Casimir functions, we impose that the term in square brackets is identically zero:
2¢°(p - VV) — 2(q - p)(q - VV) — ¢*(VV)> — (¢ - VV)* = 0. (3.10)

Since V' does not depend on p we can take coefficients with respect to it. In this way we obtain that V'has to satisfy
the following system of equations:

Pf= ng_v —4q;,9-VV=0, (3.11a)
q;
P’ A(VV)2 — (q- VV)? =0. (3.11b)

Apply Lagrange’s identity [65]:

N N N 2 N-1 N
DIV Wi — (Z Vka) SN iwy — viwi)? (3.12)
k=1 k=1

i=1 j=i+1

to equation (3.11b) to obtain:

2
N-1 N
ov ov
GVVY —(q-VV)i=3 3 ( q,»a—) =o0. (3.13)
i=1 j=i+1 ] qi
This readily implies:
ov. oV . .
; =0, 1=1,..,N, =1+ 1,...,N. 3.14
9 oq, q; %, J (3.14)

Notall equationsin (3.14) are independent: one can only consider the subset with i = 1 and j=2,...,N. The
solution of this system of N — 1 partial differential equations is given by V = V (q?), as in formula (3.1). The
introduction of V = V (q?) makes equation (3.11a) vanish identically meaning that condition (iii) is satisfied.
We observe then that further restrictions on the domain of the symplectic map can only come from the
singularities of the function V' = V (). Finally, the s[,(IR) associated dynamical system has the following form:

Ji(t + h) = J(1), (3.15a)

J(t +h) =T (1) — 4O V' J(1) + 4 [V'J ()], (3.15b)

J5(t + h) = —J5(t) + 2J-V'(J(1)). (3.15¢)

Hence, condition (i) is satisfied, and this ends the proof of the theorem. O

From theorem 3.1 we have that the most general form of the s[,(R) coalgebrically symmetric Lagrangian is:

N g (g (t+h) b
1=% [ - 50— V@) (3.16)
=1

whose associated discrete Euler—Lagrange equations are:

bk bk
t+h |l - ——— +q@t—h |l —- ———— =2V'(g*()q,. (3.17)
£ \/ O \/ 22O — ) R
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From formula (1.3) the symplectic form of the system is:

by
t+h 1 - —m8 M —— + 1) = 2V/(q? N 3.18
q;( )\/ qkz(t)q,f(t T h P(®) (q“(1) g, ( a)
by
Pt + h) = qk(t)\/l - (3.18b)

;O (t+h)

We conclude this section with a corollary which represents the inverse of [29], proposition 4.2:

Corollary 3.3. A system in standard form

N
L= gt + hgt) + V(q), (3.19)

i=1
possesses coalgebra symmetry with respect to sl,(R) if and only if it is radially symmetric, i.e. V = V (q?).

Proof. Observe that, from equation (3.16), if by = 0 for all k=1,...,N the corresponding system becomes in
standard form. So, since theorem 3.1 is a necessary and sufficient condition the statement follows. O

Remark 3.4. We remark that the dynamical system associated with the sl,(R) (3.15) is independent from the
value of the constants by. So, from the coalgebra point of view systems in standard form, that is by = 0 for all

k = 1,...,N,and in quasi-standard form can be considered in the same way: the (super)integrability of a system
in standard form can be transferred to a system in quasi-standard form and vice-versa.

4. Polynomial invariants of the associated dynamical system

As discussed in [29] in the discrete-time setting the existence of a rank one coalgebra symmetry alone it is not
enough to guarantee the Liouville integrability of the underlying discrete-time system. This is different from the
continuum setting, when this has been proven to be true, see [7, 9].

So, in this section, we will discuss the integrability of the system (3.15) assuming the existence of an
additional polynomial invariant:

L= > adils. (4.1)

1<i+j+k<d
Then we have the following result:

Theorem 4.1.If1 < d < 3 thesystem (3.15) admits a polynomial invariant of the form (4.1), and in such cases we

have:
L=J] +] — &5 (4.2a)
L=X U +]) — Ns — AJ5, (4.2b)
L=y + ] F 2B =215+ 1)) (4.2¢)
with the corresponding functions f (§) = V/(&):
K
f= > (4.3a)
Al 1
= 4.3b
SRS 0
1 71
=+—+ ——. 4.3
f=45+ 55 (430

Remark 4.2. We remark that through degeneration of parameters in (4.3) the functions f, and f; are both
connected to the function f;. Indeed, if A, — 0 then f, degenerates to f;, provided we make the identification
Kk = N/ As. Similarly, if 7 — 0 then f; degenerates to the particular case of f; with kK = +1. A graphical
representation of this degeneration scheme is given in figure 1. Moreover, we observe that there are countably
many values of k such that the associated evolution map, i.e. the map:

Je(®), J(1), J3(8)) = (ot + h), J(t + h), 3(t + h)) (4.4)

from equation (3.15) with f; = k/2 is periodic. In appendix B we show how to find these values, but we shall not
discuss these degenerate cases further.
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ﬂ 1
T2 A3—Apé

K1:/11//13
Ay —0

Figure 1. Degeneration scheme for the functions f;in (4.3).

Proof. The proof of this result is through direct computation by considering the three cases d = 1, 2, 3.Indeed,
the system already possesses one Casimir function, so if we are able to prove the existence of a functionally
independent invariant, we have proven integrability.

Case d = 1. This case is prototypical for the other two which can be proven directly, so we will give all the
details of the proof. If d = 1 the invariant has the following form:

L(t) = a00/4+(t) + a0,1,0/-(1) + a0,0,1/3(1). (4.5)
Then, applying the translation by the step h and using the form of the system (3.15) we obtain:

L(t + h) = ay00)-(t) + ao1004(t) — 4J5(1)f U-(1) + 4J- f2(-(1))
+ ao0,1(—J5(t) + 2J_ f J_(1))). (4.6)
Weimpose that I} (t + h) = L(¢). This yields a polynomial expression of degree one in J; and J5. Taking

coefficients with respect to these two variables, we obtain (after removing the non-zero common factors):

ao,1,0 — 00 = 0, 2J[(L)flo,l,o + ago,1 = 0,

4f2(J)ao0 + 2f U-)a001 — ao,10 + di00 = 0. (4.7)
The first equation in (4.7) implies a; o9 = ay,,0 with no other possibilities:
2f(J-)ao0 + a001 =0, fU)CfU-)ao0 + aop,1) = 0. (4.8)

Ifag1o = O thefirstequation in (4.8) implies that f = constant. This is not restricting because ag; o = 0 yields
I} = 0, which must be discarded. Then, we write f (§) = /2, with k = 0, and the system reduces to the single
algebraic equation:

Kdg,1,0 + doo,1 = 0. (4.9

Then the invariant (4.5) has the form:
L(t) = a0 () + () — KJ5(1)). (4.10)

Scaling away the constant g, o we proved formula (4.24a), while formula (4.3a) was already established. The
functional independence of the set { I, C} is trivial, so the system is clearly integrable. This concludes the
cased = 1.

Case d = 2.1f d = 2 then the invariant has the following form:

L(t) = axo0)i + aoa20]>(t) + ago.Js (1)
+ ay,1,0J4(OJ-() + a0, () (@) + ao 1 J-()3(F)
+ a1,0,0/4+(t) + a0,1,0/-() + a0,0,1/5(). (4.11)

Writing L(t + h) = L(¢) using the system (3.15) and taking the coefficients with respect to ], and J5 we have
the following equations (divided by total degree D):

agp0 — 00 =0,  fU-)[4agp0fU-) + ag11] =0,

D =2:
8ap0fU-) + agry + aip1 =0, (4.12a)
800,2,0]71[2(]7) + 2a0,1,1)- fUJ-) + ao1,0 — a0 = 0,

D—1 4_ f2(J-)Baopo f J-) + 3a041,1)

+4[(ao0,2 + a,1,0))- + ao01f U-)
+(ao,11 + @mp1)J- + 24001 = 0, (4.12b)

10
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4 f2UJ)(4aopo f U 4 2a0,1,1 fU-) + aop,)
D=0:  +4(a,10)- + a010)f*U-) + 2(a01]- + a00,1)fU-)
—(a0,2,0 — 42,00))- — (do,1,0 — d1,00) = 0. (4.12¢)

We solve these equations starting from the highest degree: D = 2 (4.12a). To obtain a non-trivial solution not
considered for d = 1 we have to impose that all the coefficients with respect to f (J_) in (4.12a) vanish:

@2,0,0 = 40,2,0 = do,1,1 = d1,01 = 0. (4.13)
This reduces our system to:

aop,1,0 — di00 = 0,

D=1
2[(a002 + aL10))- + ao10 1f U-) + agp1 =0, (4.14a)

4[(ao0, + @10 + a0101f202)
+2a0,0,1 f UJ-) — 0,10 + a0 = 0. (4.14b)

Solving the first equation for D = 1, i.e. putting aq ; o = 4,00, and discarding the trivial solutions, we have that
all the equations reduce to:

2[(aop2 + a10))- + ao0 1f U-) + age1 = 0. (4.15)
That is:

1 ao,0,1
fU)=—= = . (4.16)
2 (ao0,2 + a1,1,0)J- + ao10

Of these last four parameters we can choose three independent ones as follows:
a001 = A, o2 = —A — a0, do10 = As. (4.17)
This brings (4.16) into the form of (4.3), and the invariant (4.11) into the following form:

L) = MU0 + (O] = MB(1) = M5 () + a0 (1) = (0] (4.18)

Now, note that the coefficient of the a; ¢ is exactly the Casimir function C of s|,(R), see formula (2.2). From
theorem 3.1 this invariant is admitted by the system (3.15) regardless of the function f = f (£). So, this invariant is
trivial and we can safely discard it by putting a, ; o = 0 in (4.18) (we are already taking into account its existence).
This proves formula (4.20). The functional independence of the set { L, C} is trivial, so the system is clearly
integrable. This concludes the case d = 2.

Case d = 3. Let us consider now the case L(¢) in formula (4.1) (we omit the explicit form because it is rather
cumbersome). We employ the same strategy we employed before: from the identity I (t + h) = L(¢) equateall
the coefficientsin J,, J5 to zero starting from the higher degree. Taking the coefficients of degree 3in J,, J3in
L(t + h) = L(t) we have the following equations:

Jtaos0 — as00 = 0,
JiT:—12f (J-)ags0 — @021 — @01 = 0,
JJ3 - 48f2(J ) a0 + 8f U-) a0 + Go12 — o2 = 0,
J3 =32 )aos0 — 8f2(J)ag1 — 2f U )ap12 — ages = 0. (4.19)
Since the only possible solution for ffrom this set of equations is the constant, we can safely put all the coefficients
of fto zero and obtain:

Ao = do,12 = Ao, = Ao3,0 = di,02 = d20,1 = 430,00 = 0. (4.20)

Inserting these values into (¢t + h) = L(t) the degree three terms disappear, and we can consider the degree
two ones:
Ji (@0 — ar,10))- + o0 — 200 = 0,
JiJ5 1 8U-an20 — a020)f U-) + 2)-ai,11 + o1 + a1 = 0,
J5 s fUDAU_a20 + a020)f U-) + J-ay11 + ag11] = 0. (4.21)
Taking the coefficients with respect to J_ the first equation in (4.21) yields:
A10 = W20 G200 = A02,0- (4.22)

Discarding the trivial solution f (J_) = 0 we have that f (J_) from the second and the third equation in (4.21)
must be compatible. The compatibility condition is:

11
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ao,1 = 4o,1,1- (4.23)
This yields a unique value for f (J_):
1 a1+ o1

4 ] ayp0 + aop0

fUo) =- (4.24)
At this point we can insert this value into L (¢t + h) = L(t) which now consists only of the linear and the degree
zero terms. Now we can clear denominators and take coefficients with respect to J_. This leaves us with a system
of 26 algebraic equations we can solve with a CAS, e.g. Maple. We omit the explicit form of the system, but we
comment that we obtain 12 different solutions with the so1ve command from Maple 201 6. Upon inspection
only two new solutions do not produce trivial solutions and satisfy the condition that a; , gag, = 0. The final
form of the coefficients we obtained is shown in appendix A.

This yields the following form for the function f:

1 ao1,1 1
fo)=+— - ——— (4.25)
2 4(11,2,0 ],
Since a; 59 = 0 we perform the scaling ag1; = —24aj 7. This proves formula (4.3¢). To conclude the proof we

notice that using the results as displayed in appendix A and the scaling just presented we have:

L=ao00:(t) + J-(t) F 230 [72 — 2755(8) + J(H]-(1)]
+ a0 LM (t) — J3(D]. (4.26)

Now, note that the coefficient of the a; ; ¢ is exactly the Casimir function C of s|,(R), see formula (2.2). From
theorem 3.1 this invariant is admitted by the system (3.15) regardless of the function f = f (). So, this invariant is
trivial and we can safely discard it by putting a, ; o = 0 (we are already taking into account its existence). Then,
analogously to the case d = 1 we can scale away the constant a; , o and we arrive at the expression (4.2¢). The
functional independence of the set { 5, C} is trivial, so the system is clearly integrable. This concludes the case

d = 3 and hence concludes the proof of the theorem. O

For invariants of degree d > 3, by direct computation it is possible to prove the following result:
Lemma 4.3. Forall d > 3 the translated polynomial (4.1) on the solution of the system (3.15) is:

k
Id(t + h) - Z Z Z Ai,j,k;p,q,r;s]f]frprkisfq+2r+kis(]7)]3?+s) (427)

1<i+j+k<d p+q+r=j s=0

where

j k
Ajjkpars = (— 1)q+sai,j,k( / )( )22‘1+2’+k‘5. (4.28)
A AN
Then, with a technique analogue to the one that we used to prove Theorem 4.1 we can see that for d=4,5 no
different integrable systems are found. The calculations are of increasing complexity, so we don’t show them
here. However, this leads to the following conjecture:

Conjecture 1.If d > 3 and the function fis different from the ones in the formula (4.3), then only trivial
invariants are possible. Here, by a trivial invariant, we mean a linear combination of the power of the Casimir
function (2.2):
[d/2]
Leiw(t) = > axCk. (4.29)
k=1

5. Study of the obtained systems

In this section, we present a more detailed study of the realisation in canonically conjugated coordinates (q(#),
p(®) of the integrable systems we found in the previous section.

5.1. Degree one invariant
We consider the system (4.3a) in the realisation of s[,(R) (2.11) with canonical coordinates (q(¢), p(t)). The
equation assumes the following form:

b by

k
— 4+ qt—-h |1 - ———F—— = kg, (5.1)
g+ " \/ g —n

q,(t + h)\/l —

12
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From formula (1.3) the symplectic form of the system is:

by
t+h) 1——% L5t = kay (5.2a)
b \/ qogarn T

by

S — (5.2b)
;i (Dq; (& + h)

Pt +h) = qk(t)\/l -

The case when by = 0 for all k=1,...,Nis a linear system and it was considered in [29], Example 1, so we will
consider only the case when by, = 0.

Remark 5.1. We remark that the system (5.1) is symmetric with respect to the transformation:

41 = (q,(1)s-..,—q;(1)s..q5 (1)), (5.3)
or its symplectic form (5.2) is symmetric under the transformation:

qO) = (q,(1)--,—q;(0),.. g5 (D)), (5.4a)

PO = (P, (). es—P; (1) spp (D)) (5.4b)

This implies that the system can be defined outside its natural domain as described theorem 3.1 by reflection.
Reflecting with respect to each coordinate axis we obtain that the symplectic map (5.2) can be defined on the set

N X2
U—(H {xk¢0}) ) (5.5)
k=1

The coalgebraic invariant (4.24) has the following explicit form’:

_ l N 2 bk 2 _
H = zkz_:l[pk (1) + —qkz o + q, (1) fﬂqk(t)Pk(t)l- (5.6)

From the coalgebra construction, we get the following two sets of invariants
'21 = {I_Ilr C[Z]’“.’C[N]}’ le = {I_Ila C[z],...,C[N]}, (5'7)

Byinduction on the d.o.f. N, it is easy to see that both sets are functionally independent. As expected, this implies
that the system (5.1) is Liouville integrable. Similarly the set

3 = {H,, CP,...,CN, Cpyp,....Cin-11}» (5.8)
is made of functionally independent functions which implies the system (5.1) is QMS. As remarked in [29] this is

the best we expect for general discrete-time systems with s[,(R) coalgebra symmetry. However, this case is
special because it is possible to consider a different set of invariants constructed from the following elements:

k-1 N—k
Hy = 18..01 @ H® 1®..01, k=1,.,N, (5.9)
where:
1
H= E(]+ + - — KJ). (5.10)
Those N elements, at fixed realisation, result in the following functions:
_ 1 2, bx _
Hy = 5 pp +a, + ? — kqpr |, k= 1,...,N. (5.11)
k
This gives us another set of commuting invariants:
& = {Hap--HiN ) (5.12)
which proves Liouville’s integrability again. Note that:
N
H =) Hp. (5.13)
k=1
Then, the following set of invariants:
61 - {H[I])-~~)H[N]) C[z],...,C[N]}, (514)

isaset of 2N — 1 functionally independent invariants. For explicit commutation relations involving left and
right Casimir invariants, also with these additional constants, we refer the reader to [37-39]. Functional

3 . . .
Weadded a cosmetic 1/2 factor to better compare with the continuous case.
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independence can be proven as follows. Define the pointm = (1,...,1,0,...,0). Then from direct computation
we have:

mth element mth element

—— —_—
Vi = VHilm = (0,..,0, —bp + 1, 0,...,0, 0,....0, =K ,0,...,0), (5.15a)
N N
w,, = VCI" |, = (by — mby,....by — mb,,, 0,...,0), (5.15b)
m
fork=1,...,N,and m = 2,...,Nrespectively and we defined by = " ; b;. Then we can define:
m .
_ W, — Z b() mb1Vi
i1 —-b; +1
m=2,...N. (5.16)
bo — mb1 bo — mbm
= ] 0,...,0, enns N N
_F -b+1 b, +1
m

So, we have that the Jacobian inm

Vi
(2] [N] :
I = O(Hy,....Hy, C%,...C"H | ZVN ’ 5.17)
9(q, p) m 2
Wy
is equivalent through Gauss elimination to the upper triangular matrix:
Vi
~ VN
Jm = w | (5.18)
uy

Since all the pivots of Jp, are non-zero it follows that J, = 2N — 1 proving functional independence in the open
set

Uyt = O,y X R, (5.19)

Udg,..)= O, .y x RN, O, 4= {£q, >0,...,&qy > 0}, (5.20)

.....

evaluating the Jacobian on the points (+1,..., £ 1,0,...,0) € U, 1. Noting that solutions in one orthant
evolve inside the same orthant, while the coordinate lines {g, = 0};—,, .. y are notaccessible by the evolution we
have that these sets exhaust all the points of the phase space, because:

.....

Uc ) U Uti....inp» (5.21)

where the set Uwas defined in formula (5.5). So, this proves the functional independence of the invariants
everywhere they are defined. This allows us to conclude that the dSW system (5.1) is MS.
In figure 2 we show an orbit of (5.1) near the fixed point

b 1/4 by 1/4
qO = [(m) ,,(m) ] (5.22)

Note that the fixed points of the map (5.1) are all of the following form:

b 1/4 b 1/4
(&) _ 1 N
T . -

Next, we note that the system (5.1) is a discretisation of the Smorodinsky—Winternitz (SW) oscillator (caged
isotropic harmonic oscillator) [21, 23]. Indeed, under the following scaling:

9(t) = hQi(t), by =h6r, k=2 — h*w? (5.24)

14
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0.0
0:2 0.4

06 g o
9 1.2

Figure 2. An orbit of the dSW system (5.1) in three d.o.f. for an initial condition near the fixed point (5.22). The value of the parameters
areb; = 0.01,b, = 0.03, b5 = 0.02,and x = 4~/2 /3 with M = 10000 iterations. The projections of the orbit on the coordinate planes
are shown.

in equation (5.1) we obtain that the leading order as h — 0is SW oscillator in Lagrangian form:

h3(Qk + w?Qx — %) + O(h% = 0. (5.25)

k

In the same way, writing the invariant (5.2a) using the definition of the canonical momentum (3.18b) and
Qi = P, weobtain:

N
H, = h*Hsw + O(W%), Hgy = Z(P,f + Ww2QF + %) (5.26)
k=1 k

That s, at order 4 the Hamiltonian of the SW oscillator appears. The SW system is a well-known MS system
whose invariants can be produced through the coalgebra symmetry method [7]. In particular, we note that the
other invariants (2.20) and (5.10) are preserved in form through the scaling (5.24). Indeed, noting that in the
limit h — 0:

Lij = ¢;h* + O(W’), &= PQi— PiQ;. (5.27)
we have that the invariants (2.20) are self-similar at order 6 in h:
Clml(q, p) = h°C"/(Q, P) + O(H),  Cpm(q, p) = h°Ciu(Q, P) + O(H), (5.28)
while:
1
Hk = h4H[k] + O(hs), H[k] = E(sz + wszZ + %) (529)
k

A natural generalisation of the SW system arises if we consider anisotropy. That is, considering the following
dynamical system:

1N
H(w) = —Z(P,f + wiQf + i’;) (5.30)
2ic Qi
This system is clearly integrable considering the separation of variables in Cartesian coordinates. Following [22],
seealso [28, 52], the case when w = w(l,,...,Iy) where (I,...,Iy) € ZN and the integers /; are coprime is MS. In
the discrete-time setting we consider the Lagrangian:

N O R I
L(c)_kzl[f I & - Sa0 | (5.31)

15
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1.4 1 1.4
< /7<\~
124 1.2
1.0 4 1.01
& &
0.8 1 0.8 A
0.6 0.6
& .~ 4
O:4 0;6 018 110 1j2 114 1:6 1:8 014 Ojﬁ 0j8 110 1:2 114 le 1;8
e} Gl
(A) M =1000 iterations. (B) M =10000 iterations.

1.4 -

1.2 4

1.0 1

&
0.8 1
0.6 4 i
014 026 018 le 1j2 1j4 116 1.‘8 0t4 0:6 0j8 110 1t2 114 1j6 1:8
Q1 q1
(¢) M =100000 iterations. (D) M =1000000 iterations.

Figure 3. An orbit of the two d.o.f. anisotropic dSW oscillator (5.31) scale according to (5.33) with values h = 1/50, 3, = 2, 3, = 4,
w; = 2,and w, = 3 with initial datum in a neighbourhood of the fixed point (5.34).

Then, using the analogue invariants (5.10)

1 b
Hi(c) = =| p2 + a7 + = — aqpe |, k= 1...N, (5.32)
2 q;.

we prove that the dEL equations of the Lagrangian (5.31) are integrable. Finally, under the scaling, the associated
dEL equations:

4 (1) = hQi(), b =hBy =2 — hwyp, (5.33)

reduce to the Hamiltonian system associated to (5.30).

Differently from the continuum case, the experimental evidence seems to suggest that the system (5.31) is
not MS. Indeed, from an experimental study of the orbits of the system (5.31) it is evident that they do notlieon a
closed curve, but rather they are a space-filling curve, dense in the phase space. For instance, figure 3 shows an
orbit of the system (5.31) in two d.o.f. in the scaling (5.33) with parameters such that w; /w, = 2/3 € Q.
However, despite the frequency ratio is rational after M = 1000000 iterations a rectangle in the phase space is
almost completely filled.

The orbit is taken in a neighbourhood of the fixed point:

(s Y [2( 8 )
qolwr, wy) = \/51(4—7;1244}12) > \/5(4—72%3) . (5.34)

The above remarks imply that for w € wZV, the system (5.31) is an integrable, but not a MS discretisation of
the anisotropic SW system (5.30). At the same time, the discussion made suggests that there might be some MS
subcases of the system (5.31) for given values of the parameters ¢;. The search for this kind of MS system is
outside the possibilities given by the coalgebra approach and will be the subject of future research. Here we limit
ourselves to noting that in [28] the conditions for the MS of [22] for the anisotropic SW oscillator (5.30) were
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derived using a perturbative multiple scales approach. This hints at the possibility of a similar procedure to
isolate the MS subcases using, for instance, the multiple scales method for discrete-time systems in the spirit
of [30].

5.2. Degree two invariant
We consider the system (4.3b) in the realisation of sh(R) (2.11) with canonical coordinates (q(#), p(¢)). The
equation assumes the following form:

by
(R e — S—
o \/ 202+ h)
by g,
+q,(t —h) |1 — = . (5.35)
o \/ GZORE—D - eyl k0

From formula (1.3) the symplectic form of the system is:

by Ay
t+h |1l - ——F——— +p(t) = . (5.36a)
& \/ qi (g (¢ + h) P As = XXl g ()
p0+m:qﬁ)1————ﬂ——— (5.36b)
‘ ¢ At +h) '

Remark 5.2. We remark thatif A\; = 0 and by = 0 forall k = 1,...,N, this system is a generalisation of the
McMillan map [43] introduced in [42]. Indeed in such a case if A3 = 0 considering the scaling g, — /| As| g
and \; = \;0 we obtain:

O'qk

41+ gt —h) = —— T
dx qk lqzzi\]:lqkz(t)

(5.37)

We discussed the coalgebra symmetry properties in [29], Subsection 6.2, where the method was used to prove
that the system is QMS. We finally recall that the system (5.37) is an example of N d.o.f. integrable system in
standard form [32, 57], which was later extended in a series of papers [55, 56]. For a general review on N d.o.f.
integrable systems in standard form we refer also to [58], Chapter 25.

To complete the study on this system, including continuum limits and relation to known discrete-time
integrable systems we distinguish the cases A3 = 0 and A\; = 0.

Case A3 =0. For by = 0 forsome k € {1, 2,...,N}and A3 = 0 we can scale away this constant through the
reparametrisation (A, A;) = (A301, A30,) and obtain the system:

by
by 1 B
& \/ 202+ h)
by 014y
- _ 5.38
e )\/ 92 (0a2 — h) 539

N .
1 - UZZ qlz(t)
=1

Remark 5.3. We remark that the discrete-time system (5.38) is symmetric with respect to the coordinate
transformation (5.3), thus allowing us to extend the domain of definition for negative values of the coordinates.
However, from the right hand side of equation (5.38) we might need to restrict the domain of definition of this
discrete-time system. Indeed, if o, > 0 we need to exclude the N-sphere S¥ (0, ') = {q(t) = 05 }. So, in the
end we have that the domain of definition of the discrete-time system (5.38) is:

U

N1y
_ {UﬂS (03 ifoy >0, (5.39)

U ifO'z < 0.

where the set U1is given in equation (5.5).
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In this case the coalgebraic invariant (4.2b) has the following explicit form:*

Fo(ds = 0) = lZ(PE bait - mqkpk) - ﬁ(i qﬁ)2, (5.40)
25 un 2\im
From the coalgebra construction, we get the following two sets of invariants
£, = {H(As = 0), CB%,...,CINT}, (5.41a)
R, = {H, (A3 = 0), Cpzp,--..Civp}- (5.41b)

Byinduction on the d.o.f. N, it is easy to see that both sets are functionally independent. As expected, this implies
that the system (5.38) is Liouville integrable. Similarly the set

J, = {H,(\; = 0), C[z],. . .,C[N], C[z],. . -aC[N— 1 1, (5.42)
is made of functionally independent functions which implies the system (5.38) is QMS.

Coming to the continuum limit, we see that applying the scaling (5.24) as h — 0 we obtain from the dEL
equations (5.38):

N
R | Qr + w?Qr — % +20,Qc) sz] + O(h*) =0, (5.43)
k I=1
while for the invariant (5.40) we have:
1Y 16} o[ ’
H, = W*HMS + O(h%), HQMS = EZ(P,E + w¥Qf + Q—’; + 72 S Qi (5.44)
k=1 k k=1

The classical continuum system defined by HR*'® clearly possesses coalgebra symmetry with respect to sl (RR),
and in fact it turns out to be a QMS deformation of the SW system:
¢

H™ = How + ooF (¢, F(©) = = (5.45)

The continuum first integrals are again given by formula (5.28).
The system (5.45) is a particular case of the Wojciechowski system defined by the following Hamiltonian
[66]:

2
1Y o[
Hy = —Z(Pﬁ +wfQ} + ﬂ’;) + —2(2 Q;f) . (546)
25 Qi 2o
In general, this system is proven to be integrable both through direct construction of the integrals or by the
existence of a Lax pair, see [66].
This system was discretised in [54] as:

by
t+h[1— ——
o \/ al(al (& + h)
by 2ckq,
o \/ ZOTC B 1o ar®

Clearly, this system is a generalisation of the system (5.35) with A; == 0, using the identification ¢, = ¢,/2 and
making the proper scaling in the coordinates gy and the parameters by”. So, we have that the system (5.38) is a
coalgebraic QMS subcase of the discrete-time Wojciechowski system (5.47).

Remark 5.4. We remark that there might be superintegrable subcases of the Wojciechowski system (5.46) if
wi/w; € Qforsomei, j € {1,...,N}. At present, we did not prove the existence of these superintegrable
subcases, but we limit ourselves to notice that the proofs of integrability of both [54, 66] do not work in the QMS
case. So, it is reasonable to believe that the presented first integrals are not exhaustive of all the integrable cases
and there might be intermediate cases between the Liouville integrable case (N invariants) and the QMS case
(2N — 2 invariants). The problem of the existence of superintegrable subcases of the Wojciechowski system
(5.46) and its (possible) superintegrable discretisation will be the subject of future research.

Case A3 = 0. Let us assume now that A; = 0 and that by are arbitrary (possibly also zero for allk = 1, 2,...,N).
In such a case, we can rescale A} = — \,0 and the system (5.35) reduces to:

4 . A .
We remove the common factor \; and add a cosmetic 1/2 factor to mimic the continuum case.

> Itis needed to go through the original system (5.35) and properly scale the parameters.
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by
t+h |1 - 55—
o \/ 202+ h)
+q,(t —h) |1 — + = qu(ﬁ]: qlz(t))l. (5.48)
q; (t)qk - h) I=1

Remark 5.5. We remark that the discrete-time system (5.48) is symmetric with respect to the coordinate
transformation (5.3), thus allowing us to extend the domain of definition for negative values of the coordinates.
In this case the right hand side does not give any additional restriction, so the system can be defined on the whole
set U given in equation (5.5).

The coalgebraic invariant (4.2b) has the following explicit form®:
g N 1 N 2 ?
B =0 = 23 ap + 7|24 | » (5.49)
k=1 =1

From the coalgebra construction, we get the same two sets of invariants as for A; = 0 (5.41) case with
Hj(As = 0) replaced by H,(A; = 0). The two sets are clearly functionally independent. In the same way replacing
Hj(A; = 0) with Hy(A; = 0) in (5.42) we obtain a set of 2N — 2 functionally independent invariants for (5.48).
Summing up, we proved that the system (5.48) is Liouville integrable and moreover is QMS.

Differently from the A\; = 0 the continuum limit of the case A; = 0 is not known. Analogously to [29],
Subection 5.3 itis possible to prove that no scaling of the form

q(t) = q, + APQ(), o=oc(h), q,€SY, ~eN, (5.50)
where o(h) is an analytic function of its argument, balances the terms in the systems (5.48).
5.3.Degree three invariant

We consider the system (4.3¢) in the realisation of s, (R) (2.11) with canonical coordinates (q(t), p(¢)). The
equation assumes the following form:

q,(t + h) F q(0)

P S
THOYRGED)

by Al -
+q.t—h) |l - ————— =19 ( q (t)) . (5.51)
¢ \/ O L 21
From formula (1.3) the symplectic form of the system is:
by N, B
q;(t + h) 1——¥Q(t)+P(t)=TQ( Q(f)) ) (5.52a)
¢ \/ g gie+h ¢ ¢ ; :
Pt + h) = q(t) L S— (5.52b)
¢ ¢ aiMait+h '
Remark 5.6. We remark thatif by = 0 forallk = 1,...,N, the system (5.51) with the plus sign
N -1
4t +h) 4+ q.() +q,0—h) = qu(z qkz(t)) . (5.53)
k=1

is a particular case of an autonomous version of the discrete-time Painleve I equation [25, 32] we introduced in
[29], section 5 with the parameter 3 = 0. The coalgebra symmetry properties of the system (5.53) were
discussed in [29], where we showed that the system is QMS. We also recall that the continuum limit of the system
(5.53) is unknown.

6 .
We remove the common factor A\, and add a cosmetic 1/2 factor.
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Table 1. Known integrable cases of equation (3.17). The novel systems are highlighted in italic.

degl V(&) Standard form Quasi-standard form

1 % Discrete-time isotropic harmonic oscillator [29] Discrete-time SW system (5.1)

2 — %‘2 log(1 — a,€) Nd.o.f. McMillan system [42, 55] QMS Wojciechowski system (5.38) [54]
2 %logﬁ New QMS system (5.48) New QMS system (5.48)

3 :t% + % log& Nd.o.f. aut-dPI system (5.53) [29] New QMS system (5.48)

Considering by = 0 for some k € {1,...,N} the coalgebraic invariant (4.2¢) has the following explicit form”:

N

1 b N :
Hy==>"|(p ¥ 9> + = [T -3 qkpk) + CIVI . (5.54)
2,3 q; k=1

From the coalgebra construction, we get the following two sets of invariants
£3 = {H3, C[Z],...,C[N]}, %3 = {H3, C[ZJ)~'-’C[N]}- (555)

By induction on the d.o.f. Nit is easy to see that both sets are functionally independent. As expected, this implies
that the system (5.51) is Liouville integrable. Similarly the set

J; = {H;, C3,...,CIM, Cpapp....Civ—11}» (5.56)

is made of functionally independent functions which implies the system (5.51) is QMS.

Based on the above discussion we have that the system (5.51) for by = 0 for some k € {1,...,N}isanovel
QMS system, generalising the already known system (5.53).

We finally note that at present no continuous analogue of the system (5.51) is known. Indeed, analogously to
the system (5.53) mentioned in remark 5.6 and to [29], Subection 5.3, it is possible to prove that no scaling of the
form (5.50) with 7(h) analytic functions of its argument balances the terms in the systems (5.51).

6. Conclusions

In this paper, we gave the necessary and sufficient conditions for a discrete-time system in quasi-standard form
(1.2) to admit coalgebra symmetry with respect to the generic symplectic realisation of the Lie—Poisson algebra
s5hL(R) (2.18) in N degrees of freedom. In particular, from theorem 3.1 we see that the most general form of this
system is the one considered in [54]. In this sense, we see that the coalgebra symmetry approach naturally selects
the functional form for the functions £ = £(§), k = 1,...,N.

As already discussed in [29] the systems in quasi-standard form (1.2) admitting coalgebra symmetry with
respect to the generic symplectic realisation Lie—Poisson algebra s[,(IR) (2.18) in N degrees of freedom naturally
possess 2N — 3 functionally independent invariants. However, in general these systems are not Liouville
integrable. This is because we are missing an exact discrete-time equivalent of the Hamiltonian. So, to
characterise the Liouville integrable cases we searched for polynomial invariants in the variables of the algebra
5L (R) of increasing degree for the associated dynamical systems (3.15). It turns out that such invariants do exist
for degrees 1, 2, and 3, while for degrees 4, and 5 no new systems arise. This led us to conjecture that the only
non-trivial Liouville integrable systems with a polynomial invariant are those admitting an invariant of degrees
1,2, and 3. The proof of this conjecture is particularly challenging because, in general, it does not seem possible
to resum the expression (4.27) to:

d
Lot + k) = 32 RODJLE, (6.1)
1=0

which will make the claim easier to prove. Unfortunately, since in general not even the degree of the function
f=f(&)isknown it is not possible to apply the ‘destructive’ test of algebraic entropy [14, 24, 26] °. For the very
same reason it is not possible to apply the ‘constructive’ singularity confinement test [24, 25]. Under the
(reasonable) assumption that f(£) is a rational function, one could try to apply a Nevanlinna theory for maps [1].
However, at present, such a theory is not enough developed to treat a system of the form (3.15). So, this topic will
be the subject of further research.

7 Weadded a cosmetic 1/2 factor.

8 . ¢ . s . . . s . s 1s

Quoting from [64] ‘Algebraic entropy. pro: it is canonical (invariant by birational changes of coordinates), and the vanishing of the entropy
may serve as a characterisation of integrability, as the sign of catastrophic drop of the complexity, con: destructive rather than constructive,
since it gives a yes/no answer to the question is this model integrable?’. Italics from the original text.
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In the sequent section we carefully analysed the obtained systems in the realisation (2.18) and proved
explicitly their Liouville integrability and quasi-maximal superintegrability. In addition, we found a maximally
superintegrable system given by the discrete Lagrangian (5.1) which is a discretisation of the well-known SW
system [21, 23]. We also discussed the possible generalisation (5.31) discretising the so-called caged anisotropic
oscillator [22], which we showed to be Liouville integrable. Unfortunately, differently from its continuous
counterpart, the system (5.31) does not appear to be maximally superintegrable from a numerical study of its
orbits. Since this kind of analysis goes outside the applicability of the coalgebra method, this topic will be the
subject of future research. Besides these cases, we found the coalgebraic subcase of the discrete-time
Wojciechowski system (5.35), whose general case was constructed in [54]. Finally, we found a non-birational
generalisation of a system we proposed in [29], which we deem to be new. In table 1 we give a compendium of the
known Liouville integrable cases of equation (1.2).

Summing up, in this paper we proved that the coalgebra symmetry method can be applied to systematically
produce N d.o.f. discrete-time superintegrable systems.

An interesting open problem is the existence of a coalgebraic discretisation of the Kepler—Coulomb system:

1 N N —-1/2
Hyc = EZ P - a(z qiz) . (6.2)
i=1 i=1

This model is MS, through the existence of an additional integral of motion called the Laplace-Runge—Lenz
vector [40, 44]. It would be interesting to show if it is possible to construct such an invariant in the discrete-time
setting.

Another open problem is the generalisation to non-Euclidean manifolds. For the coalgebra approach to
these systems, see for example a series of papers by Italian—Spanish school [3—7] culminating in the proof of a
Bertrand-like theorem on curved space [12], linked to the so-called Perlick classification [51]. For a different,
more geometric perspective on the subject, see the recent classification in [34, 35]. Finding a connection between
these two approaches and building the discrete-time analogue will be subject of future research.

Finally, we note that the present construction can be applied to other Lie—Poisson algebras, especially the
ones related to classified Lie algebras for which the Casimir functions are known, see [36, 45-50]. In the
continuous setting this was done by Ballesteros and Blasco [8, 16]. We note that the most natural extension
would be the two-photon or ki Lie—Poisson algebra [67], a Lie—Poisson algebra containing many other
interesting Lie—Poisson algebras as subalgebras, including s,(R), whose associated Hamiltonian integrable
systems have been discussed in [10, 16].
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Appendix A. Explicit form of the coefficients in the case d =3

We list the explicit formulas for the coefficients obtained in the case d = 3 during the proof of theorem 4.1. We
divide the polynomial I; into its homogeneous components:

L(t) = V() + I21) + IP(1). (A1)

and list the coefficients by the degree of the component.

21



10P Publishing

Phys. Scr. 98 (2023) 045209 G Gubbiottiand D Latini

Degree three:
a3 = do,12 = Ao, = Ao30 = di02 = A1 = 0, azpo = 0,
ay10 = G120, AL, = —24120, A0 = di20 (A2)
Degree two:
40,0 = dop0 = 0, a1 = a0, Aoz = —2dg,1,1 — d1,1,0- (A3)
Degree one:
2 2 2
1ag11 14ag,,1 1‘1011
app) = F— ,  ag10 = s Ao = (A4)
@20 4 a0 4 ﬂlzo

Appendix B. Periodic cases of the system (3.15) for V= k&/2

If V= k&/2 then the system (3.15) becomes:

Ji(t + h) = J(2), (Bla)
J(t+ h) =T () — 26J5(t) + K1), (B1b)
J(t + h) = —J5(t) + £]-(1). (Ble)

This system is linear and it can be written in matrix form as follows:
J(t + h) = MJ(@), (B2)

where J(£) = (J.(¥), J_(), J5(¢)) and
[o 1 0 ]
M=11 g* -2k (B3)
0 r -1

From standard techniques in systems of linear difference equations [20], Chap. 3 we have that the solution is
given by:
J(to + Ih) = M'J(t0). (B4)

Still following [20], Chap. 3 we can compute the Ith power of the matrix M (B3) through diagonalisation or
Jordan block-form reduction. The characteristic polynomial of (B3) is:

P = (= DIp* + @ — £)Hp + 1], (B5)
Hence, the eigenvalues are:
2 2
=1 p,= 7—1—4— EJk? =4, u3:%—1—§/<;2—4. (B6)

The eigenvalues are different for all k = £ 2. This readily implies that the matrix is diagonalisable for every
k = + 2. When k = =+ 2 the matrix is not diagonalisable because the only eigenvalue is 1+, = 1, which has
geometric multiplicity one.

Then for x = &+ 2 we have:

1
= Gdiag(l, (%2 -1+ \/n - ) (— -1 5\//42 - 4))G1. (B7)

The periodicity condition is that there existsa L € N such that M* = T3, where I is the identity matrix. From
equation (B7) this is true if and only if:

K2 K2 K L
(——1+ n—) (——1——#—4):1. (B8)
2 2 2

Since the second equation in (B8) is the same as the first up to the discrete symmetry x — — &, we can just
consider the solution of the first equation in (B8). That is, the solutions of (B2) are periodic of period L € N if
and only if x satisfies the following algebraic equation:

L
(%2 1+ gx/nz - 4) — 1. (B9)

That s, the left hand side of equation (B9) must be a Lth root of unity. Recalling that Lth roots of unity can be
written in complex exponential form as z; = exp(2ikw/L) withk=0,...,L — 1 we have:
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2 2ik
K——l+£\/52—4:exp( ST k=0,.,L — 1. (B10)
2 2 L
That s, the solution can be written as:
K= iZCOS(I%T), k=0,...,L — 1. (B11)
However, this is not definitive: we need to discard k = 0 because it yields x = = 2 which is not acceptable, and

since the cosine function is antiperiodic of antiperiod 7 we can choose the sign plus in (B11). So we denote the
final expression of the solutions as k. ; and its expression is:

KkL = 2 €08 (k%), k=1,.,L — 1. (B12)
We underline that from formula (B12) we have | ki 1| < 2, and for all values of k and L except for
k112 (B13)
L 32 3

the numbers £y ; are irrational numbers. In particular, this implies that, for every L prime we will obtain new
solutions. This implies that the set of values of 1 ; such that the dynamical system is periodic is a countably
infinite set.

Remark B.1. We remark that for L = 3 we have:
Ro,3 = 1, R13 = —1. (B14)

That is, these cases correspond to the degenerate case of the function f; as 7 — 0, see figure 1.
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