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Abstract
In this paper, we classify all the variational discrete-time systems in quasi-standard form inN degrees
of freedom admitting coalgebra symmetrywith respect to the generic realisation of the Lie–Poisson
algebra ( )sl 2 . This approach naturally yields several quasi-maximally andmaximally superintegrable
discrete-time systems, both known andnew.We conjecture that this exhausts the (super)integrable
cases associatedwith this algebraic construction.

1. Introduction

This paper is devoted to the classification and the study of a class of discrete-time systems inN degrees of
freedomadmitting coalgebra symmetry with respect to the Lie–Poisson algebra ( )sl 2 .Wemake use of the
notion of coalgebra symmetry for discrete-time systemswe recently introduced in [29]. Themain outcome of
this paper is that the coalgebra symmetry approach can be fruitfully used to systematically produce
superintegrable discrete-time systems in an analogousway as its continuous counterpart introduced in [11, 13].
In particular, within this paperwe introduce several seemingly new discrete-time systems, including anN
degrees of freedommaximally superintegrable discretisation of the celebrated Smorodinski–Winternitz system
[21, 23], one of the firstmaximally superintegrable systems ever introduced [44].

To bemore specific, we consider a class of discrete-time systemswe call the systems in quasi-standard form
whichwe define as the discrete Euler–Lagrange equations (dEL) of the following class of discrete Lagrangians
(dLagrangian) [41]:

ℓ ( ( ) ( )) ( ( )) ( ) ( ( ) ( )) ( )å= + - = ¼
=

L q t h q t V t t q t q tq q, , , . 1.1
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Here h> 0 is a (fixed) constant and Î t h , while the functions qk(t) are not supposed to be defined for all
Î t . Following the tradition of [42, 54–56]we choose such notation to avoid confusing double indexing in the

formulæ. Furthermore, we suppose that the functionsℓk= ℓk(ξ) are smooth and locally invertible functions in a
given open domain of . That is, the dLagrangian (1.1) is supposed to be awell-defined function on

( )´ Ì ´U U N
1 2

2, whereUi, i= 1,2are open subsets of N . After we fix the explicit formof the functionsℓk we
will specify the formof the setsUi, i= 1,2, see theorem3.1.

Computing the discrete Euler–Lagrange equations associated to the dLagrangian (1.1)we have that a system
in quasi-standard formhas the following explicit expression:

ℓ ℓ( ( ) ( )) ( ) ( ( ) ( )) ( ) ( ( ))
( )

( )¢ + + + ¢ - - =
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k

for k=1,K,N. The numberN is called the degrees of freedom of the system, andwill be denoted throughout the
paperwith the shorthand notation d.o.f.. Because of the local invertibility assumptions on the functionsℓk we
have that equation (1.2) is step-by-step solvable to determine the next iterate, as it was done in [54] in a particular
case. In general, wewill not show the solved equations to avoid cumbersome expressions.
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Remark 1.1.Before going furtherwe give a few remarks on the terminologywe chose to adopt and themeaning
of the parameters.

• Thefixed parameter >h 0 has themeaning of time step between two different stages of the evolution of the
system. If  +h 0 we have the so-called continuum limit. To bemore precise, the limit  +h 0 gives a
(possibly trivial) continuous-time systemwhich needs to be discussed case-by-case. Indeed, each discrete-
time systemneed an ad-hoc scaling of the parameters.Wewill discuss the continuum limits of the discrete-
time systemswe found in this paper in section 5.

• Wechoose to call “system in quasi-standard form” the systems (1.2) because if ℓ ( )x x=k for all k=1,K,N the
system is in the so-called standard form, as defined in [32, 57].

From the general theory of discrete variational systems, see [17, 61]we have that they are naturally
symplectic. Indeed, we can introduce the following canonicalmomenta:

ℓ( ) ( ( ) ( )) ( ) ( )= ¢ - - = ¼p t q t q t h q t h k N, 1, , , 1.3k k k k k

andwrite the the dEL equations (1.2) in canonical form as:

ℓ ( ( ) ( )) ( ) ( ) ( ( ))
( )
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q
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ℓ( ) ( ( ) ( )) ( ) ( )+ = ¢ +p t h q t h q t q t b, 1.4k k k k k

with k=1,K,N. Since in the right hand side of equation (1.4b)q(t+ h) is present, the iteration step in
equation (1.4) is intended as a two-step procedure. That is, itmust be accomplished in the followingway:

( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( )
( ) ( )
 +  + +t t t h t t h t hq p q p q p, , , . 1.5

a b1.4 1.4

Wewill denote the iteration from step t to t+ h byjh. As amapwewill assume thatjh:U1×U2→U1×U2,
where theUi are properly chosen open subsets of N . Once the setsUi, i= 1, 2, arefixed there is a one-to-one
correspondence between the discrete-time system in the form (1.4) and itsmap form. So, in this paper wewill
use interchangeably thewords ‘discrete-time system’ and ‘map’.

From the general theory of discrete-time variational system the equations (1.4) preserve the canonical
Poisson bracket:

{ ( ) ( )} { ( ) ( )} { ( ) ( )} ( )d= = =q t q t p t p t q t p t, , 0, , , 1.6i j i j i j i j,

see [17, 54, 63]. Here, by preservation of a Poisson bracket wemean that the following relation holds true:

{ ( ) ( )} { ( ) ( )} ( )+ + =q t h q t h q t q t a, , , 1.7i j i j

{ ( ) ( )} { ( ) ( )} ( )+ + =p t h p t h p t p t b, , , 1.7i j i j

{ ( ) ( )} { ( ) ( )} ( )+ + =q t h p t h q t p t c, , . 1.7i j i j

This implies that themapjh is aPoissonmap. In particular, since the canonical Poisson bracket (1.6) has
maximal rankwe have that themapjh is a symplecticmap.

From the general theory of integrable symplecticmaps, we recall the following definitions:

• A symplecticmapjh:U1×U2→U1×U2 possessingN functionally independent invariants in involution
with respect to a non-singular Poisson bracket for all values of h> 0 is said to be a Liouville integrablemap.

• ALiouville integrablemapjh:U1×U2→U1×U2 possessingN+ k, with k> 0, functionally independent
invariants in involutionwith respect to a non-singular Poisson bracket for all values of h> 0 is said to be a
superintegrablemap.

• ALiouville integrablemapjh:U1×U2→U1×U2 possessing 2N− 2 functionally independent invariants in
involutionwith respect to a non-singular Poisson bracket for all values of h> 0 is said to be a quasi-maximally
superintegrable (QMS)map.

• ALiouville integrablemapjh:U1×U2→U1×U2 possessing 2N− 1 functionally independent invariants in
involutionwith respect to a non-singular Poisson bracket for all values of h> 0 is said to be amaximally
superintegrable (QMS)map.

These definitions naturally generalise to the case of Poissonmaps: a Poissonmapjh:U1×U2→U1×U2 is said
to be Liouville–Poisson integrable if, for all values of h> 0, it admitsM− r functionally independent invariants in
involution, whereM is the number of equations and 2r is the rank of the preserved Poisson structure.
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Remark 1.2.Differently from the review [44] on continuous superintegrability we consider superintegrability to
require Liouville integrability, making it a stronger property.We decide to adopt this definition because as
noticed already in [29]not all discrete-time systems admittingmore thanNnon-commuting invariants are
integrable with respect to other commonly accepted notions of integrability for discrete-time systems, e.g.
algebraic entropy [14].

For a complete overview on the integrability of Poisson and symplecticmapswe refer to [17, 61, 63], the
review part of the thesis [60], and our previous paper [29].

Before recalling the construction of coalgebra symmetry for discrete-time systemswemake afinal
observation on continuum limits, i.e. the limits as h→0+. Given a (super)integrable discrete-time system, if a
continuum limit is known then it is expected to be (super)integrable as well. However, we observe that this does
not necessarily follow from the (super)integrability of the associated discrete system. For instance, in [27]were
presented several examples where in the continuum limit one invariant of a system in twod.o.f. is lost, yet the
continuous-time systempossesses two invariants. If both the discrete-time system for h> 0 and its continuum
limit as h→ 0 are (super)integrable, we say that the discrete system is a (super)integrable discretisation.

We nowbriefly recall the definition of coalgebra symmetry for discrete-time systemswe introduced in [29].
The concept of coalgebra was formulated in the theory of quantum groups [18, 19]. Precisely, a coalgebra is a pair
of objects ( )DA, where A is a unital, associative algebra andD  ÄA A A: is a coassociativemap. That is,Δ
satisfies the following condition:

and it is an algebra homomorphism from A to ÄA A:

( · ) ( ) · ( ) ( )D = D D " Î AX Y X Y X Y, . 1.9

ThemapΔ is called the coproductmap.When there is no possible confusion on the coproductmap, it is
customary to denote the coalgebra simply by A.

In [29]we gave the following definition:

Definition 1.3.APoissonmapjh is said to possess the coalgebra symmetrywith respect to the Poisson coalgebra
( )DA, if for all Î N the evolution of generatorsAi, i= 1,K,K in aN degrees of freedom realisation of the
Poisson coalgebra is:

(i) closed in the Poisson coalgebra, that is:

( ) ( ( ) ( )) ( )+ = ¼ = ¼A t h a A t A t i K, , , 1, , , 1.10i i K1

with ( )Î ¥ Aai ,

(ii) it is a Poissonmapwith respect to the Poisson algebra A, i.e.:

{ ( ) ( )} ({ ( ) ( )}) ( )j+ + = = ¼A t h A t h A t A t i j K, , , , 1, , , 1.11i j h i j

(iii) assuming that the Poisson algebra A admits r independent Casimir functions { ( ) ( )}¼C t C t, , r1 , these are
preserved as invariants by themapjh, i.e.:

( ( )) ( ) ( )j = = ¼C t C t i r, 1, , . 1.12i h i

This definition allows us to provide an analogue of the construction of the invariants forHamiltonian systems
given in [11, 13], a result stated in [29], theorem3.3.

The plan of the paper is the following: in section 2we remind themain properties of the Lie–Poisson algebra
( )sl 2 and its generic symplectic realisation. In particular, we discuss the construction of the corresponding left

and right Casimir invariants. In section 3we classify all systems in quasi-standard form admitting coalgebra
symmetrywith respect to the generic realisation of the Lie–Poisson algebra ( )sl 2 . This result is contained in
theorem3.1. In section 4we study the Liouville–Poisson integrability of the dynamical systemof the form (1.10)
associated to the generic realisation of the Lie–Poisson algebra ( )sl 2 . To bemore specific, we impose the
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existence of an additional polynomial invariant and prove in theorem 4.1 that it exists if the degree of the
invariant is 1, 2, or 3. For invariants of higher degree we conjecture, based on the evidence obtained for degrees 4
and 5, that no polynomial invariants exist. In section 5we identify the systemswe found in section 4 in the
explicit symplectic realisation. This gives us several integrable systems, whichwe put in the context of the
literature. In particular, wefind a discrete-timemaximally superintegrable version of the Smorodinski–
Winternitz system.Wenote that themaximal superintegrability of this discrete-timemodel follows froma
peculiar construction of the ( )sl 2 coalgebrawhich is possible only in this specific case.We alsofind aQMS
reduction of the discrete-timeWojciechowski system, introduced in [56], and a generalisation of aN degrees of
freedomautonomous discrete-time Painlevé I equationwe obtained in our earlier work [29]. In section 6we
provide some concluding remarks and discuss the further possible developments.

2. The ( )sl 2 Lie–Poisson coalgebra

The three-dimensional Lie–Poisson algebra ( )sl 2 , spanned by the generators J≔ {J−, J+J3}, is characterized by
the following Lie–Poisson brackets:

{ } { } { } ( )= = = -- + + + - -J J J J J J J J J, 4 , , 2 , , 2 , 2.13 3 3

and it is endowedwith theCasimir invariant:

( ) ( )= = -+ -C C J J JJ . 2.23
2

This Lie–Poisson algebra can be endowedwith a ‘natural’ coproductmap called the primitive coproduct [59]. Its
explicit action on the basis generators and the unit element is given by (μ=± , 3):

( ) ( ) ( )D = Ä + Ä D = Äm m mJ J J1 1 , 1 1 1, 2.3

and extends to polynomial elements through the homomorphism property:

( ) ( ) ( ) ( )m nD = D D = m n m nJ J J J , , ,3. 2.4

For example, the coproduct of the Casimir function (2.2) is computed as:

( ) ( ) ( ) ( ) ( )
( )( ) ( )

( )
( ) ( ) ( )

D = D - = D D - D
= Ä + Ä Ä + Ä - Ä + Ä

= Ä + Ä + Ä + Ä - Ä + Ä + Ä

= - Ä + Ä - + Ä + Ä - Ä

+ - + -

+ + - -

+ - + - - + + -

+ - + - + - - +

C J J J J J J

J J J J J J

J J J J J J J J J J J J

J J J J J J J J J J J J

1 1 1 1 1 1

1 1 1 2 1

1 1 2 , 2.5

3
2

3
2

3 3
2

3
2

3 3 3
2

3
2

3
2

3 3

wherewe used the definition primitive coproduct (2.3) and the properties of the tensor products. From the
definition of theCasimir invariant (2.2)we obtain the final result:

( ) ( )D = Ä + Ä + Ä + Ä - Ä+ - - +C C C J J J J J J1 1 2 . 2.63 3

Note that theCasimir of ( )Äsl 2
2 genuinely contains new information because it is not just two tensor copies of

the casimirC, but additional terms are present.
After giving this summary of the abstract properties related to the ( )sl 2 Lie–Poisson coalgebra we need a

way to ‘embed’ these properties in the setting of (continuous or discrete-time) dynamical systems. To this end,
we use the concept of symplectic realisation of a Lie–Poisson algebra as expressed in the following definition:

Definition 2.1.Assumewe are given a Lie–Poisson algebra A generated by { }¼J J, , m1 , associated structure
constants m n

rc , such as:

{ } ( )å m n= = ¼m n
r

m n
r

r
=

AJ J c J m, , , 1, , , 2.7
m

1
,

andCasimir invariants { }¼C C, , r1 . ANdegrees of freedom symplectic realisation of the Lie–Poisson algebra A is a
map

( ) WAD: , 2.8

whereΩ is an open subset of a symplecticmanifold ( )wM, with =M Ndim 2 , such that it preserves the
commutation relations (2.7):

{ ( ) ( )} ( ) ( )å m n= = ¼m n w
r

m n
r

r
=

D J D J c D J m, . , 1, , . 2.9
m

1
,

Moreover, the realisation  WAD: is called generic if the dimension ofM equals the number of generators of
Aminus the number of its Casimir functions, i.e.:
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( )= -N m r2 . 2.10

Remark 2.2.We remark that on a symplecticmanifold ( )wM, , byDarboux theorem [2] and its discrete-time
analog [17]we can introduce two sets of canonically conjugated variables ( ) ( )x p Î ´ Íx p

´U U, N 2, where
x are the canonical coordinates, and p their corresponding canonicalmomenta, defined on some open sets

Íx p U U, N , and satisfying the canonical Poisson relations (analogous to (1.6)):

{ } { } { } ( )x x p p x p d= = =, , 0, , . 2.11i j i j i j i j,

Throughout the paper, wewill denote the discrete-time variables in lowercase Latin letters and the continuous
time variables in capital Latin letters. TheGreek letters x and p will denote variables that can be either
continuous or discrete-time. The difference between the discrete-time and the continuous-time cases is that in
the continuous-time setting the dynamics is specified by a smooth function ( )x p=H H , , while in the discrete-
time setting by a symplecticmapj ´  ´x p x pU U U U:h , as discussed in the Introduction.

A one degree of freedom symplectic realisation of ( )sl 2 on ( )x p Î ´+ ,1 1 is given by:

( ) ( ) ( ) ( )p
x

x x p= + = =+ -D J
b

D J D J, , , 2.121
2 1

1
2 1

2
3 1 1

for arbitrary Î b1 . Indeed, from the canonical commutation relations (2.11) it is readily verified that:

{ ( ) ( )} ( ) { ( ) ( )} ( ) ( )= = - +  D J D J D J D J D J D J, 4 , , 2 . 2.133 3

Moreover, this realisation is generic, sinceN= 1,m= 3 and r= 1. So, following the literature (see for example
[7, 16]), wewill call this realisation the generic one d.o.f. symplectic realisation of ( )sl 2 . That said, wewill identify
the generators with the corresponding functions on the right hand side of (2.12). The image of theCasimir
functions (2.2) through the realisation (2.12) reads:

( ( )) ( ( )) ( )= = Î D C C D bJ J . 2.141

Once a realisation has been constructed, the primitive coproduct can be used to raise the number of degrees
of freedom. For example, from formula (2.3)we obtain the following functions on ´+ 2 2:

( ) ( ) ( ) ( )

( ) ( ) ( )

x x p p
x x

x p x p

Ä D = + Ä D = + + +

Ä D = +

- +D D J D D J
b b

D D J

,

, 2.15

1
2

2
2

1
2

2
2 1

1
2

2

2
2

3 1 1 2 2

once two copies of the one degree of freedom symplectic realisation (2.12) are considered, each of them
associated to the corresponding site in the tensor product space 1⊗ 2with associated free parameters Î bi ,
i= 1, 2.

The functions (2.15) provide a two degrees of freedom symplectic realisation for the same Lie–Poisson
algebra ( )sl 2 , noww.r.t. the canonical Poisson bracket in ´+ 2 2. The crucial point is that at this level the
image of theCasimir element, which is now given by (2.6), turns out to be:

( ) ( ( )) (( ) ( )) ( ) ( )x p x p
x

x

x

x
Ä D = Ä D = - + + + +D D C C D D b b b bJ J , 2.161 2 2 1

2
1

2
2

1
2 2

1
2

2
2 1 2

that is, it is no longer a constant, but a function.Moreover, by construction, this function Poisson commutes
with the generators in the two degrees of freedom symplectic realisation (2.15).

So, by applying the coproductmap iteratively, and extending its definition through the following
generalization of the coassociativity property:

≔ ( )◦ ( )◦ ( )[ ] [ ] [ ] [ ] [ ]D Ä Ä Ä D D = D Ä Ä Ä D
-

-

-

-
     
Id ... Id Id ... Id 2.17N

N

N

N

N

2

2 1 2

2

1

whereΔ[1]≔Id andΔ[2]≔Δ, one ends upwith theN degrees of freedom symplectic realisation:

⎜ ⎟
⎛

⎝

⎞

⎠
( )å å åp

x
x x p= + = =+

=
-

= =

J
b

J J, , , 2.18
k

N

k
k

k k

N

k
k

N

k k
1

2
2

1

2
3

1

where the canonical variables are defined on ´+ N N , and Î bk , k=1,K,N areN associated arbitrary
constants. In equation (2.18) and the following, we omit the symbol (D⊗ ...⊗D), becausewewill not consider
different realisations. At this level, the crucial fact is that a total number of (2N− 3) left and rightCasimir
invariants can be obtained from the left and right embedding of them-th order (2�m�N) coproduct on the
Casimir function (2.2):
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C C≔ ( ) ≔ ( ) ( )[ ] [ ]
[ ]

[ ]D Ä Ä Ä Ä Ä Ä D
- -     

C C1 ... 1 , 1 ... 1 . 2.19m m

N m

m

N m

m

The image of these elements under theN d.o.f. symplectic realisation (2.18) reads as:

C
⎡

⎣
⎢

⎤

⎦
⎥ ( )[ ] å å

x

x

x

x
= + + + =

< =
L b b b m N a2 ,..., , 2.20m

i j

m

i j i
j

i

j
i

j j

m

j
1

,
2

2

2

2

2
1

C
⎡

⎣
⎢

⎤

⎦
⎥ ( )[ ] å å

x

x

x

x
= + + + =

- + < = - +
L b b b m N b2 ,..., , 2.20m

N m i j

N

i j i
j

i

j
i

j j N m

N

j
1

,
2

2

2

2

2
1

wherewe indicated theN(N− 1)/2 rotation generators as:

≔ ( )x p x p-L . 2.21i j i j j i,

These (2N− 3) quadratic (in themomenta) functions Poisson commutewith the generators (2.18) by
construction.Moreover, they turn out to be functionally independent.

Remark 2.3.We remark that if we restrict to the caseN= 2 the left and right Casimir functions collapse to the
same expression:

C C ( ) ( )[ ]
[ ]

[ ]= = D C 2.222
2

2

which is nothing but (2.6), the latter leading to the invariant (2.16) at afixed realisation, as expected. This extends
to anyN, in fact form=N the two expressions collapse to:

C C ( ) ( )[ ]
[ ]

[ ]= = D C , 2.23N
N

N

where the action of theNth-order coproduct is given by (2.17). This is why formulæ (2.20) give us -N2 3
functionally independent invariants and not -N2 2.

So, if the variables ( ) ≔ ( )x p Î ´ Ì ´+ U UQ P, , N N
Q P are continuous, we can conclude that the

family ofHamiltonian systems:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) · ( )å= = +- +
=

h h J J J h
b

Q
Q P Q P, , , , 2.24

k

N
k

k
3

2 2

1
2

where h is any smooth function of the generators of the Lie–Poisson algebra ( )sl 2 , is QMS. This is because the
aboveHamiltonian is automatically endowedwith the 2N− 3 functionally independent invariants (2.20). On
the other hand, in the discrete-time setting, there is no exact equivalent of theHamiltonian function and the
notion of coalgebra symmetry is replaced by definition 1.3. Thus, the problemof characterising discrete-time
(symplectic) systems admitting ( )sl 2 as a hidden coalgebra symmetry ismuch less trivial. In the case of systems
in quasi-standard form, this problem is solved in theorem3.1.Moreover, due to the absence of theHamiltonian,
these systems are not naturally bornQMS, and in fact not even Liouville integrable. The problemof integrability
is tackled in section 4.

Remark 2.4.We remark that the symplectic realisationwith bi= 0, for =i N1 ,..., , is connected to radially
symmetric systems. In this particular case, the left and right Casimir invariants are:

C C ( )[ ]
[ ]å å= = =

< - + < 
L L m N, 2 ,..., , 2.25m

i j

m

i j m
N m i j

N

i j
1

,
2

1
,
2

which are nothing but theCasimir invariants associatedwith rotation subalgebras ( ) ( )Íso som N . In the
continuous setting, theHamiltonian function (2.24) is given by:

( ) ( · ) ( )= =- +h h J J J h Q P Q P, , , , . 2.263
2 2

As expected, rotational symmetry is sufficient to provide quasi-maximal superintegrability. Notice that if we
restrict to naturalHamiltonian systems defined in EuclideanN-space, i.e. we take:

( ) ( ) ( )= +- + + -h J J J J V J, , 2.273

then as a consequence of Bertrand’s theorem [2, 15], only twoMS subcases arise. Namely, theHarmonic and
Kepler-Coulomb (KC) systems, with the corresponding potentials given by:

( ) ( ) ( )a
a

= = -- - -
-

V J J V J
J

and , 2.28

respectively. In [29], proposition 4.2 it was proved that discrete-time radial systems in standard form admit
( )sl 2 coalgebra. In the present paper in corollary 3.3 the converse is proved.
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In general, the presence of non-central terms has the effect of breaking the radial symmetry, but by
preserving quasi-maximal superintegrability, which is kept thanks to the existence of the new integrals obtained
through the image of the left and right Casimir invariants under the realisation (2.18). Let us conclude the
section bymentioning that with the same choice of potentials (2.28), but now in terms of the new realisation
involving non-central terms, would result respectively in theN d.o.f. Smorodinsky-Winternitz system [21] and
theN d.o.f. generalizedKC system, the latter being theN d.o.f. generalization of the (fourth-order)
superintegrableHamiltonian introduced in [62].

Although themany advances pursued in the framework of superintegrable systemswith an arbitrary number
of d.o.f. using themethod described above, which has also been applied to the analysis ofmany other Lie–
Poisson coalgebras [8, 16], the problemoffindingMS subcases is usually left open. This is due to the fact that
additional integrals, not directly obtainable following this algebraic approach,may arise. From this perspective,
even for the ( )sl 2 Lie–Poisson algebra, we have recalled how it is possible to reach quasi-maximal
superintegrability atmost, as a total number of 2N− 3 functionally independent integrals can be constructed,
besides theHamiltonian, from the left and right Casimir invariants. Thus, forMS subcases, the search for an
additionalmissing functionally independent constant would be required.

3. Classification results

We state and prove the following classification result:

Theorem3.1.A system in quasi-standard form (1.2) possesses coalgebra symmetry with respect to ( )sl 2 if and only
if:

ℓ ( ) ( ) ( )òx
h

h= - Î =
x

b
q1 d , b , V V . 3.1k

k
k2

2

This implies that the dLagrangian and the associated pairs of canonical variables are well-defined in the open set
( ) ( )= Ì+

´ ´ U N N2 2, or an open subset of it depending on the form of the function ( )c=V V .

Remark 3.2.The ‘if’ part of this theorem is a generalisation of [29], proposition 4.2, where it is proved that radial
systems in standard form admit coalgebra symmetry. The conversewill be explicitly stated in corollary 3.3.

Proof.Consider theN d.o.f. realisation of ( )sl 2 given in equation (2.18)with respect to the discrete canonical
variables ( ( ) ( ))t tq p, . Then, the evolution of the ( )+J t under the system (1.4) is:

⎡

⎣
⎢

⎤

⎦
⎥ℓ( ) ( )( ( ( ) ( )))

( )
( )å+ = ¢ + +

+
+

=

J t h q t q t q t h
b

q t h
. 3.2

k

N

k k k k
k

k1

2 2
2

The right-hand side needs to be independent from ( )+t hqk . To ensure this independence, we can differentiate
equation (3.2)with respect to ( )+q t hl and put the result identically equal to zero:

ℓ ℓ( ) ( ( ) ( )) ( ( ) ( ))
( )

( )¢ +  + -
+

= = ¼q t q t q t h q t q t h
b

q t h
l N2 2 0, 1, , . 3.3

l l l l l l l
l

l

3
3

Interpreting the equation in terms of the variable ( ) ( )x = +q t q t hl l l , we can integrate equation (3.3) to:

ℓ( ( )) ( )x
x

¢ = - = ¼C
b

l N, 1, , . 3.4l l l
l

l

2
2

Plugging back into equation (3.2)we obtain:

( ) ( ) ( )å+ =+
=

J t h C q t . 3.5
k

N

k k
1

2

Imposing that the right-hand side of the equation is in ( ( ))¥ sl 2 we easily obtain that =C Ck for all k. Note
that, when integratingwe obtain a condition of the following form:

ℓ ( ) ( )òx
h

h= - + = ¼
x

C
b

d D , l 1, ,N, 3.6l l
l

l2

l

but the additive constantDl is inessential to equations ofmotion (1.2) and can be safely put to zero. Then, using
the scaling:

( ) ( ) ( ) b Cb V C Vq q, , 3.7l l
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we see that we can choose without loss of generalityC= 1. This proves the first part of the theorem, represented
by thefirst identity in (3.1).Moreover, from this follows that the dLagrangian and the associated pairs of
canonical variables arewell-defined in the open set ( ) ( )= Ì+

´ ´ U N N2 2 or an open subset of it depending on
the formof the function ( ( ))=V V tq .

Wefixed the formof the coefficientsℓk, so nowwe proceed to derive the full system in order to check the
conditions of definition 1.3. By direct computations we have:

( ) ( ) ( )+ =+ -J t h J t a, 3.8

( ) ( ) · ( ) ( )+ = -  + - +J t h J t V V bp2 , 3.82

( ) ( ) · ( )+ = - + J t h J t V cq . 3.83 3

While it is possible to prove that the system (3.8) satisfies condition (ii), is it clear that conditions (i) and (iii) are
not satisfied in general. As outlined in the last section of [29]we start by imposing that condition (iii) holds.
Evaluating the translation of theCasimir function (2.2)wehave:

( ) ( ) [ ( · ) ( · )( · ) ( ) ( · ) ] ( )+ = -  -  -  - C t h C t V V V Vq p q p q q q2 2 . 3.92 2 2 2

Tohave the preservation of theCasimir functions, we impose that the term in square brackets is identically zero:

( · ) ( · )( · ) ( ) ( · ) ( ) -  -  -  =V V V Vq p q p q q q2 2 0. 3.102 2 2 2

SinceV does not depend on p we can take coefficients with respect to it. In this waywe obtain thatVhas to satisfy
the following systemof equations:

· ( )¶
¶

-  =p
V

q
q V aq q: 0, 3.11

i
i

i
1 2

( ) ( · ) ( ) -  =p V V bq q: 0. 3.11
i
0 2 2 2

Apply Lagrange’s identity [65]:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )å å å å å- = -
= = = =

-

= +

v w v w v w v w 3.12
k

N

k
k

N

k
k

N

k k
i

N

j i

N

i j j i
1

2

1

2

1

2

1

1

1

2

to equation (3.11b) to obtain:

⎛

⎝
⎜

⎞

⎠
⎟( ) ( · ) ( )å å -  =

¶
¶

-
¶
¶

=
=

-

= +

V V q
V

q
q

V

q
q q 0. 3.13

i

N

j i

N

i
j

j
i

2 2 2

1

1

1

2

This readily implies:

( )¶
¶

-
¶
¶

= = ¼ = + ¼q
V

q
q

V

q
i N j i N0, 1, , , 1, , . 3.14i

j
j

i

Not all equations in (3.14) are independent: one can only consider the subset with i= 1 and j=2,K,N. The
solution of this systemof -N 1partial differential equations is given by ( )=V V q2 , as in formula (3.1). The
introduction of ( )=V V q2 makes equation (3.11a) vanish identicallymeaning that condition (iii) is satisfied.
We observe then that further restrictions on the domain of the symplecticmap can only come from the
singularities of the function ( )c=V V . Finally, the ( )sl 2 associated dynamical systemhas the following form:

( ) ( ) ( )+ =+ -J t h J t a, 3.15

( ) ( ) ( ) ( ( )) [ ( ( ))] ( )+ = - ¢ + ¢- + - - -J t h J t J t V J t J V J t b4 4 , 3.153
2

( ) ( ) ( ( )) ( )+ = - + ¢- -J t h J t J V J t c2 . 3.153 3

Hence, condition (i) is satisfied, and this ends the proof of the theorem. ,

From theorem3.1we have that themost general formof the ( )sl 2 coalgebrically symmetric Lagrangian is:

( ( )) ( )
( ) ( )

òå h
h= - -

=

+
L

b
q1 d V t , 3.16

k

N q t q t h
k

1
2

2k k

whose associated discrete Euler–Lagrange equations are:

( )
( ) ( )

( )
( ) ( )

( ( )) ( )+ -
+

+ - -
-

= ¢q t h
b

q t q t h
q t h

b

q t q t h
V t qq1 1 2 . 3.17k

k

k k
k

k

k k
k2 2 2 2

2
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From formula (1.3) the symplectic formof the system is:

( )
( ) ( )

( ) ( ( )) ( )+ -
+

+ = ¢q t h
b

q t q t h
p t V t q aq1 2 , 3.18k

k

k k
k k2 2

2

( ) ( )
( ) ( )

( )+ = -
+

p t h q t
b

q t q t h
b1 . 3.18k k

k

k k
2 2

Weconclude this sectionwith a corollary which represents the inverse of [29], proposition 4.2:

Corollary 3.3.A system in standard form

( ) ( ) ( ) ( )å= + +
=

L q t h q t V q , 3.19
i

N

i i
1

possesses coalgebra symmetry with respect to ( )sl 2 if and only if it is radially symmetric, i.e. ( )=V V q2 .

Proof.Observe that, from equation (3.16), if =b 0k for all k=1,K,N the corresponding systembecomes in
standard form. So, since theorem 3.1 is a necessary and sufficient condition the statement follows. ,

Remark 3.4.We remark that the dynamical system associatedwith the ( )sl 2 (3.15) is independent from the
value of the constants bk. So, from the coalgebra point of view systems in standard form, that is =b 0k for all
= ¼k N1, , , and in quasi-standard form can be considered in the sameway: the (super)integrability of a system

in standard form can be transferred to a system in quasi-standard form and vice-versa.

4. Polynomial invariants of the associated dynamical system

As discussed in [29] in the discrete-time setting the existence of a rank one coalgebra symmetry alone it is not
enough to guarantee the Liouville integrability of the underlying discrete-time system. This is different from the
continuum setting, when this has been proven to be true, see [7, 9].

So, in this section, wewill discuss the integrability of the system (3.15) assuming the existence of an
additional polynomial invariant:

( )å=
+ +

+ -
 

I a J J J . 4.1d
i j k d

i j k
i j k

1
, , 3

Thenwe have the following result:

Theorem4.1. If  d1 3 the system (3.15) admits a polynomial invariant of the form (4.1), and in such cases we
have:

( )k= + -+ -I J J J a, 4.21 3

( ) ( )l l l= + - -+ -I J J J J b, 4.22 3 1 3 2 3
2

( )( ) ( )t t= + - ++ - + -I J J J J J J c2 2 4.23 3
2

3

with the corresponding functions ( ) ( )x x= ¢f V :

( )k
=f a

2
, 4.31

( )l
l l x

=
-

f b
2

1
, 4.32

1

3 2

( )t
x

=  +f c
1

2 2

1
. 4.33

Remark 4.2.We remark that through degeneration of parameters in (4.3) the functions f2 and f3 are both
connected to the function f1. Indeed, if l  02 then f2 degenerates to f1, providedwemake the identification
k l l= 1 3. Similarly, if t  0 then f3 degenerates to the particular case of f1 with k = 1. A graphical
representation of this degeneration scheme is given infigure 1.Moreover, we observe that there are countably
many values ofκ such that the associated evolutionmap, i.e. themap:

( ( ) ( ) ( )) ( ( ) ( ) ( )) ( )+ + ++ - + -J t J t J t J t h J t h J t h, , , , 4.43 3

from equation (3.15)with k=f 21 is periodic. In appendix Bwe showhow tofind these values, butwe shall not
discuss these degenerate cases further.
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Proof.The proof of this result is through direct computation by considering the three cases =d 1, 2, 3. Indeed,
the system already possesses oneCasimir function, so if we are able to prove the existence of a functionally
independent invariant, we have proven integrability.

Case d= 1. This case is prototypical for the other twowhich can be proven directly, sowewill give all the
details of the proof. If d= 1 the invariant has the following form:

( ) ( ) ( ) ( ) ( )= + ++ -I t a J t a J t a J t . 4.51 1,0,0 0,1,0 0,0,1 3

Then, applying the translation by the step h and using the formof the system (3.15)we obtain:

( ) ( ) ( ( ) ( ) ( ( )) ( ( )))
( ( ) ( ( ))) ( )

+ = + - +
+ - +

- + - - -

- -

I t h a J t a J t J t f J t J f J t

a J t J f J t

4 4

2 . 4.6
1 1,0,0 0,1,0 3

2

0,0,1 3

We impose that ( ) ( )+ =I t h I t1 1 . This yields a polynomial expression of degree one in +J and J3. Taking
coefficients with respect to these two variables, we obtain (after removing the non-zero common factors):

( )
( ) ( ) ( )
- = + =

+ - + =
-

- -

a a f J a a

f J a f J a a a

0, 2 0,

4 2 0. 4.7

0,1,0 1,0,0 0,1,0 0,0,1

2
0,1,0 0,0,1 0,1,0 1,0,0

Thefirst equation in (4.7) implies =a a1,0,0 0,1,0 with no other possibilities:

( ) ( )( ( ) ) ( )+ = + =- - -f J a a f J f J a a2 0, 2 0. 4.80,1,0 0,0,1 0,1,0 0,0,1

If ¹a 00,1,0 thefirst equation in (4.8) implies that =f constant. This is not restricting because =a 00,1,0 yields
ºI 01 , whichmust be discarded. Then, wewrite ( )x k=f 2, with k ¹ 0, and the system reduces to the single

algebraic equation:

( )k + =a a 0. 4.90,1,0 0,0,1

Then the invariant (4.5) has the form:

( ) ( ( ) ( ) ( )) ( )k= + -+ -I t a J t J t J t . 4.101 1,0,0 3

Scaling away the constant a1,0,0 weproved formula (4.2a), while formula (4.3a)was already established. The
functional independence of the set { }I C,1 is trivial, so the system is clearly integrable. This concludes the
case d= 1.

Case d= 2. If d= 2 then the invariant has the following form:

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

= + +
+ + +
+ + +

+ -

+ - + -

+ -

I t a J a J t a J t

a J t J t a J t J t a J t J t

a J t a J t a J t . 4.11

2 2,0,0
2

0,2,0
2

0,0,2 3
2

1,1,0 1,0,1 3 0,1,1 3

1,0,0 0,1,0 0,0,1 3

Writing ( ) ( )+ =I t h I t2 2 using the system (3.15) and taking the coefficients with respect to +J and J3 we have
the following equations (divided by total degreeD):

( )[ ( ) ]
( ) ( )

=
- = + =

+ + =
- -

-
D

a a f J a f J a

a f J a a a
2:

0, 4 0,

8 0, 4.12
0,2,0 2,0,0 0,2,0 0,1,1

0,2,0 0,1,1 1,0,1

( ) ( )
( )( ( ) )

[( ) ] ( )
( ) ( )

=

+ + - =
+

+ + +
+ + + =

- - - -

- - -

- -

-

D

a J f J a J f J a a

J f J a f J a

a a J a f J

a a J a b

1:

8 2 0,

4 8 3

4

2 0, 4.12

0,2,0
2

0,1,1 0,1,0 1,0,0

2
0,2,0 0,1,1

0,0,2 1,1,0 0,1,0

0,1,1 1,0,1 0,0,1

Figure 1.Degeneration scheme for the functions fi in (4.3).

10

Phys. Scr. 98 (2023) 045209 GGubbiotti andDLatini



( )( ( ) ( ) )
( ) ( ) ( ) ( )

( ) ( ) ( )
=

+ +
+ + + +
- - - - =

- - - -

- - - -

-

D

J f J a f J a f J a

a J a f J a J a f J

a a J a a c

0:

4 4 2

4 2

0. 4.12

2
0,2,0

2
0,1,1 0,0,2

1,1,0 0,1,0
2

1,0,1 0,0,1

0,2,0 2,0,0 0,1,0 1,0,0

We solve these equations starting from the highest degree:D= 2 (4.12a). To obtain a non-trivial solution not
considered for d= 1we have to impose that all the coefficients with respect to ( )-f J in (4.12a) vanish:

( )= = = =a a a a 0. 4.132,0,0 0,2,0 0,1,1 1,0,1

This reduces our system to:

[( ) ] ( ) ( )=
- =

+ + + =- -
D

a a

a a J a f J a a
1:

0,

2 0, 4.14
0,1,0 1,0,0

0,0,2 1,1,0 0,1,0 0,0,1

[( ) ] ( )
( ) ( )

=
+ +

+ - + =
- -

-
D

a a J a f J

a f J a a b
0:

4

2 0. 4.14
0,0,2 1,1,0 0,1,0

2

0,0,1 0,1,0 1,0,0

Solving the first equation forD= 1, i.e. putting =a a0,1,0 1,0,0, and discarding the trivial solutions, we have that
all the equations reduce to:

[( ) ] ( ) ( )+ + + =- -a a J a f J a2 0. 4.150,0,2 1,1,0 0,1,0 0,0,1

That is:

( )
( )

( )= -
+ +

-
-

f J
a

a a J a

1

2
. 4.160,0,1

0,0,2 1,1,0 0,1,0

Of these last four parameters we can choose three independent ones as follows:

( )l l l= = - - =a a a a, , . 4.170,0,1 1 0,0,2 2 1,1,0 0,1,0 3

This brings (4.16) into the formof (4.3b), and the invariant (4.11) into the following form:

( ) [ ( ) ( )] ( ) ( ) [ ( ) ( ) ( )] ( )l l l= + - - + -+ - + -I t J t J t J t J t a J t J t J t . 4.182 3 1 3 2 3
2

1,1,0 3
2

Now, note that the coefficient of the a1,1,0 is exactly the Casimir functionC of ( )sl 2 , see formula (2.2). From
theorem3.1 this invariant is admitted by the system (3.15) regardless of the function ( )x=f f . So, this invariant is
trivial andwe can safely discard it by putting =a 01,1,0 in (4.18) (we are already taking into account its existence).
This proves formula (4.2b). The functional independence of the set { }I C,2 is trivial, so the system is clearly
integrable. This concludes the case d= 2.

Case d= 3. Let us consider now the case ( )I t3 in formula (4.1) (we omit the explicit formbecause it is rather
cumbersome).We employ the same strategywe employed before: from the identity ( ) ( )+ =I t h I t3 3 equate all
the coefficients in +J , J3 to zero starting from the higher degree. Taking the coefficients of degree 3 in +J , J3 in

( ) ( )+ =I t h I t3 3 wehave the following equations:

( )
( ) ( )

( ) ( ) ( ) ( )

- =

- - - =

+ + - =

- - - - =

+

+ -

+ - -

- - -

J a a

J J f J a a a

J J f J a f J a a a

J f J a f J a f J a a

: 0,

: 12 0,

: 48 8 0,

: 32 8 2 0. 4.19

3
0,3,0 3,0,0

2
3 0,3,0 0,2,1 2,0,1

3
2 2

0,3,0 0,2,1 0,1,2 1,0,2

3
3 3

0,3,0
2

0,2,1 0,1,2 0,0,3

Since the only possible solution for f from this set of equations is the constant, we can safely put all the coefficients
of f to zero and obtain:

( )= = = = = = =a a a a a a a 0. 4.200,0,3 0,1,2 0,2,1 0,3,0 1,0,2 2,0,1 3,0,0,0

Inserting these values into ( ) ( )+ =I t h I t3 3 the degree three terms disappear, andwe can consider the degree
two ones:

( )
( ) ( )
( )[ ( ) ( ) ] ( )

- + - =
- + + + =

+ + + =

+ -

+ - - -

- - - -

J a a J a a

J J J a a f J J a a a

J f J J a a f J J a a

: 0,

: 8 2 0,

: 4 0. 4.21

2
1,2,0 2,1,0 0,2,0 2,0,0

3 1,2,0 0,2,0 1,1,1 0,1,1 1,0,1

3
2

1,2,0 0,2,0 1,1,1 0,1,1

Taking the coefficients with respect to -J thefirst equation in (4.21) yields:

( )= =a a a a, . 4.222,1,0 1,2,0 2,0,0 0,2,0

Discarding the trivial solution ( ) =-f J 0wehave that ( )-f J from the second and the third equation in (4.21)
must be compatible. The compatibility condition is:
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( )=a a . 4.231,0,1 0,1,1

This yields a unique value for ( )-f J :

( ) ( )= -
+
+

-
-

-
f J

J a a

J a a

1

4
. 4.241,1,1 0,1,1

1,2,0 0,2,0

At this point we can insert this value into ( ) ( )+ =I t h I t3 3 which now consists only of the linear and the degree
zero terms. Nowwe can clear denominators and take coefficients with respect to -J . This leaves uswith a system
of 26 algebraic equations we can solvewith aCAS, e.g.Maple.We omit the explicit formof the system, butwe
comment that we obtain 12 different solutions with thesolve command fromMaple2016. Upon inspection
only twonew solutions do not produce trivial solutions and satisfy the condition that ¹a a 01,2,0 0,2,0 . Thefinal
formof the coefficients we obtained is shown in appendix A.

This yields the following form for the function f:

( ) ( )=  --
-

f J
a

a J

1

2 4

1
4.250,1,1

1,2,0

Since ¹a 01,2,0 weperform the scaling t= -a a20,1,1 1,2,0 . This proves formula (4.3c). To conclude the proof we
notice that using the results as displayed in appendix A and the scaling just presentedwe have:

( ( ) ( ) ( ))[ ( ) ( ) ( )]
[ ( ) ( ) ( )] ( )

t t= + - +

+ -
+ - + -

+ -

I a J t J t J t J t J t J t

a J t J t J t

2 2

. 4.26

3 1,2,0 3
2

3

1,1,0 3
2

Now, note that the coefficient of the a1,1,0 is exactly the Casimir functionC of ( )sl 2 , see formula (2.2). From
theorem3.1 this invariant is admitted by the system (3.15) regardless of the function ( )x=f f . So, this invariant is
trivial andwe can safely discard it by putting =a 01,1,0 (we are already taking into account its existence). Then,
analogously to the case d= 1we can scale away the constant a1,2,0 andwe arrive at the expression (4.2c). The
functional independence of the set { }I C,3 is trivial, so the system is clearly integrable. This concludes the case
d= 3 and hence concludes the proof of the theorem. ,

For invariants of degree d> 3, by direct computation it is possible to prove the following result:

Lemma4.3. For all >d 3 the translated polynomial (4.1) on the solution of the system (3.15) is:

( ) ( ) ( )å å å+ =
+ + + + = =

+ -
+ + - + + -

-
+

 
I t h A J J f J J , 4.27d

i j k d p q r j s

k

i j k p q r s
p i r k s q r k s q s

1 0
, , ; , , ;

2
3

where

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )= - + + + -A a
j

p q r

k

s
1

, ,
2 . 4.28i j k p q r s

q s
i j k

q r k s
, , ; , , ; , ,

2 2

Then, with a technique analogue to the one thatwe used to prove Theorem 4.1we can see that for d=4,5 no
different integrable systems are found. The calculations are of increasing complexity, sowe don’t show them
here.However, this leads to the following conjecture:

Conjecture 1. If >d 3 and the function f is different from the ones in the formula (4.3), then only trivial
invariants are possible. Here, by a trivial invariant, wemean a linear combination of the power of theCasimir
function (2.2):

( ) ( )
⌊ ⌋

å=
=

I t a C . 4.29
k

d

k
k

triv
1

2

5. Study of the obtained systems

In this section, we present amore detailed study of the realisation in canonically conjugated coordinates (q(t),
p(t)) of the integrable systemswe found in the previous section.

5.1.Degree one invariant
Weconsider the system (4.3a) in the realisation of ( )sl 2 (2.11)with canonical coordinates (q(t),p(t)). The
equation assumes the following form:

( )
( ) ( )

( )
( ) ( )

( )k+ -
+

+ - -
-

=q t h
b

q t q t h
q t h

b

q t q t h
q1 1 . 5.1k

k

k k
k

k

k k
k2 2 2 2
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From formula (1.3) the symplectic formof the system is:

( )
( ) ( )

( ) ( )k+ -
+

+ =q t h
b

q t q t h
p t q a1 , 5.2k

k

k k
k k2 2

( ) ( )
( ) ( )

( )+ = -
+

p t h q t
b

q t q t h
b1 . 5.2k k

k

k k
2 2

The casewhen bk= 0 for all k=1,K,N is a linear system and it was considered in [29], Example 1, sowewill
consider only the case when bk≠ 0.

Remark 5.1.We remark that the system (5.1) is symmetric with respect to the transformation:

( ) ( ( ) ( ) ( )) ( )( ) = ¼ - ¼ t q t q t q tq , , , , , 5.3i
i N1

or its symplectic form (5.2) is symmetric under the transformation:

( ) ( ( ) ( ) ( )) ( )( ) = ¼ - ¼ t q t q t q t aq , , , , , 5.4i
i N1

( ) ( ( ) ( ) ( )) ( )( ) = ¼ - ¼ t p t p t p t bp , , , , . 5.4i
i N1

This implies that the system can be defined outside its natural domain as described theorem3.1 by reflection.
Reflectingwith respect to each coordinate axis we obtain that the symplecticmap (5.2) can be defined on the set

⎜ ⎟
⎛
⎝

⎞
⎠

{ } ( )= ¹
=

´

U x 0 . 5.5
k

N

k
1

2

The coalgebraic invariant (4.2a) has the following explicit form3:

⎡

⎣
⎢

⎤

⎦
⎥( )

( )
( ) ( ) ( ) ( )å k= + + -

=

H p t
b

q t
q t q t p t

1

2
. 5.6

k

N

k
k

k
k k k1

1

2
2

2

From the coalgebra construction, we get the following two sets of invariants

C C C C{ } { } ( )[ ] [ ]
[ ] [ ]= ¼ = ¼L RH H, , , , , , , , 5.7N

N1 1
2

1 1 2

By induction on the d.o.f.N, it is easy to see that both sets are functionally independent. As expected, this implies
that the system (5.1) is Liouville integrable. Similarly the set

C C C C{ } ( )[ ] [ ]
[ ] [ ]= ¼ ¼ -I H , , , , , , , 5.8N

N1 1
2

2 1

ismade of functionally independent functionswhich implies the system (5.1) is QMS. As remarked in [29] this is
the best we expect for general discrete-time systemswith ( )sl 2 coalgebra symmetry. However, this case is
special because it is possible to consider a different set of invariants constructed from the following elements:

H H≔ ( )[ ] Ä Ä Ä Ä Ä Ä = ¼
- -     

k N1 ... 1 1 ... 1 , 1, , , 5.9k

k N k1

where:

H ( ) ( )k= + -+ -J J J
1

2
. 5.103

ThoseN elements, atfixed realisation, result in the following functions:

H ⎛

⎝
⎜

⎞

⎠
⎟ ( )[ ] k= + + - = ¼p q

b

q
q p k N

1

2
, 1, , . 5.11k k k

k

k
k k

2 2
2

This gives us another set of commuting invariants:

H H{ } ( )[ ] [ ]= ¼C , , , 5.12N1 1

which proves Liouville’s integrability again. Note that:

H ( )[ ]å=
=

H . 5.13
k

N

k1
1

Then, the following set of invariants:

H H C C{ } ( )[ ] [ ]
[ ] [ ]= ¼ ¼S , , , , , , 5.14N

N
1 1

2

is a set of 2N− 1 functionally independent invariants. For explicit commutation relations involving left and
right Casimir invariants, alsowith these additional constants, we refer the reader to [37–39]. Functional

3
We added a cosmetic 1/2 factor to better comparewith the continuous case.
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independence can be proven as follows. Define the pointm= (1,K,1, 0,K,0). Then fromdirect computation
we have:

∣ ( ) ( )k=  = ¼ - + ¼ ¼ - ¼
  

     H b av 0, ,0, 1 , 0, ,0 , 0, ,0, , 0, ,0 , 5.15k k m

m

N

m

N

m

th element th element

C ∣ ( ) ( )[ ]=  = - ¼ - ¼  b mb b mb bw , , , 0, ,0 , 5.15m
m

m

m

m 0 1 0

for k= 1,K,N, andm= 2,K,N respectively andwe defined = å =b bi
m

i0 1 . Thenwe can define:

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )

å

k

= -
-

- +

= ¼
-

- +
¼

-
- +

¼
= ¼

=

  
  

b mb

b

b mb

b

b mb

b

m N

u w v
1

0, ,0 ,
1

, ,
1

, 0, ,0 ,

2, , . 5.16

m m
i

m
i

i
i

N

m

m

m

1

0

0 1

1

0

So, we have that the Jacobian inm

H H C C

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

( )
( )

( )
[ ] [ ]

=
¶ ¼ ¼

¶
=





J
q p

v

v
w

w

, , , , ,

,
, 5.17N

N
N

N

m

m

1
2

1

2

is equivalent throughGauss elimination to the upper triangularmatrix:

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

( )=





J

v

v
u

u

. 5.18N

N

m

1

2

Since all the pivots of Jm are non-zero it follows that Jm= 2N− 1 proving functional independence in the open
set

( )( ) ( )= ´+ ¼ + + ¼ + U O , 5.19N
, , , ,

whereO(+,K,+) is the open positive orthant of N [53]. A similar argument runs in all other possible open sets

{ } ( )( ) ( ) ( )= ´ =  > ¼  > ¼   ¼   ¼ U O O q q, 0, , 0 , 5.20N
N, , , , , , 1

evaluating the Jacobian on the points (±1,K,± 1, 0,K,0) äU(±,K,±). Noting that solutions in one orthant
evolve inside the same orthant, while the coordinate lines { }= = ¼q 0k k N1, , are not accessible by the evolutionwe
have that these sets exhaust all the points of the phase space, because:

⋃ ( )
{ }

( )Ì
Î 

¼U U , 5.21
i

i i, ,

k

N1

where the setUwas defined in formula (5.5). So, this proves the functional independence of the invariants
everywhere they are defined. This allows us to conclude that the dSW system (5.1) isMS.

Infigure 2we show an orbit of (5.1)near thefixed point

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
⎟( ) ( )

( )
k k

=
- -

b b
q

1 2
,...,

1 2
. 5.22N

0
1

2

1 4

2

1 4

Note that thefixed points of themap (5.1) are all of the following form:

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
⎟( ) ( )

( )( )

k k
= 

-


-
 ¼  b b

q
1 2

,...,
1 2

. 5.23N
0

, , 1
2

1 4

2

1 4

Next, we note that the system (5.1) is a discretisation of the Smorodinsky–Winternitz (SW) oscillator (caged
isotropic harmonic oscillator) [21, 23]. Indeed, under the following scaling:

( ) ( ) ( )b k w= = = -q t hQ t b h h, , 2 , 5.24k k k k
6 2 2
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in equation (5.1)we obtain that the leading order as h→ 0 is SWoscillator in Lagrangian form:

⎜ ⎟
⎛
⎝

⎞
⎠

̈ ( ) ( )w
b

+ - + =h Q Q
Q

hO 0. 5.25k k
k

k

3 2
3

4

In the sameway, writing the invariant (5.2a) using the definition of the canonicalmomentum (3.18b) and
=Q Pk k we obtain:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )å w
b

= + = + +
=

H h H h H P Q
Q

O , . 5.26
k

N

k k
k

k
1

4
SW

5
SW

1

2 2 2
2

That is, at order 4 theHamiltonian of the SWoscillator appears. The SW system is awell-knownMS system
whose invariants can be produced through the coalgebra symmetrymethod [7]. In particular, we note that the
other invariants (2.20) and (5.10) are preserved in form through the scaling (5.24). Indeed, noting that in the
limit h→ 0:

ℓ ℓ( ) ( )= + = -L h h P Q P QO , . 5.27i j i j i j j i i j, ,
3 3

,

wehave that the invariants (2.20) are self-similar at order 6 in h:

C C C C( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] [ ]
[ ] [ ]= + = +h h h hq p Q P q p Q P, , O , , , O , 5.28m m
m m

6 7 6 7

while:

H ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )[ ] [ ] w
b

= + = + +h H h H P Q
Q

O ,
1

2
. 5.29k k k k k

k

k

4 5 2 2 2
2

Anatural generalisation of the SW system arises if we consider anisotropy. That is, considering the following
dynamical system:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )åw w
b

= + +
=

H P Q
Q

1

2
. 5.30

k

N

k k k
k

k1

2 2 2
2

This system is clearly integrable considering the separation of variables inCartesian coordinates. Following [22],
see also [28, 52], the case when ( )w w= ¼l l, , N1 where ( )¼ Î l l, , N

N
1 and the integers li are coprime isMS. In

the discrete-time settingwe consider the Lagrangian:

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )
( ) ( )

òå x
x= - -

=

+
L

b
c 1 d

c

2
q t . 5.31

k

N q t q t h
k k

k
1

2
2k k

Figure 2.Anorbit of the dSW system (5.1) in three d.o.f. for an initial condition near thefixed point (5.22). The value of the parameters
are b1 = 0.01, b2 = 0.03, b3 = 0.02, and k = 4 2 3withM = 10000 iterations. The projections of the orbit on the coordinate planes
are shown.
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Then, using the analogue invariants (5.10)

H ⎛

⎝
⎜

⎞

⎠
⎟( ) ( )= + + - = ¼c p q

b

q
c q p k N

1

2
, 1, , , 5.32k k k k

k

k

k k k
2 2

2

weprove that the dEL equations of the Lagrangian (5.31) are integrable. Finally, under the scaling, the associated
dEL equations:

( ) ( ) ( )b w= = = -q t hQ t b h c h, , 2 , 5.33k k k k k k
6 2 2

reduce to theHamiltonian system associated to (5.30).
Differently from the continuum case, the experimental evidence seems to suggest that the system (5.31) is

notMS. Indeed, from an experimental study of the orbits of the system (5.31) it is evident that they do not lie on a
closed curve, but rather they are a space-filling curve, dense in the phase space. For instance, figure 3 shows an
orbit of the system (5.31) in two d.o.f. in the scaling (5.33)with parameters such that w w = Î 2 31 2 .
However, despite the frequency ratio is rational afterM= 1000000 iterations a rectangle in the phase space is
almost completely filled.

The orbit is taken in a neighbourhood of the fixed point:

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
⎟( ) ( )w w

w
b

w w
b

w
=

- -h h
q ,

2

4
,

2

4
. 5.340 1 2

1

1

2
1
2

2

2

2
2
2

1
4

1
4

The above remarks imply that for w wÎ N , the system (5.31) is an integrable, but not aMS discretisation of
the anisotropic SW system (5.30). At the same time, the discussionmade suggests that theremight be someMS
subcases of the system (5.31) for given values of the parameters ck. The search for this kind ofMS system is
outside the possibilities given by the coalgebra approach andwill be the subject of future research.Herewe limit
ourselves to noting that in [28] the conditions for theMSof [22] for the anisotropic SWoscillator (5.30)were

Figure 3.Anorbit of the two d.o.f. anisotropic dSWoscillator (5.31) scale according to (5.33)with values h = 1/50,β1 = 2,β2 = 4,
ω1 = 2, andω2 = 3with initial datum in a neighbourhood of the fixed point (5.34).
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derived using a perturbativemultiple scales approach. This hints at the possibility of a similar procedure to
isolate theMS subcases using, for instance, themultiple scalesmethod for discrete-time systems in the spirit
of [30].

5.2.Degree two invariant
Weconsider the system (4.3b) in the realisation of ( )sl 2 (2.11)with canonical coordinates (q(t),p(t)). The
equation assumes the following form:

( )
( ) ( )

( )
( ) ( ) ( )

( )
l

l l

+ -
+

+ - -
-

=
- å =

q t h
b

q t q t h

q t h
b

q t q t h

q

q t

1

1 . 5.35

k
k

k k

k
k

k k

k

l
N

l

2 2

2 2

1

3 2 1
2

From formula (1.3) the symplectic formof the system is:

( )
( ) ( )

( )
( )

( )
l

l l
+ -

+
+ =

- å =

q t h
b

q t q t h
p t

q

q t
a1 . 5.36k

k

k k
k

k

k
N

k
2 2

1

3 2 1
2

( ) ( )
( ) ( )

( )+ = -
+

p t h q t
b

q t q t h
b1 . 5.36k k

k

k k
2 2

Remark 5.2.We remark that if l ¹ 03 and =b 0k for all k= 1,K,N, this system is a generalisation of the
McMillanmap [43] introduced in [42]. Indeed in such a case if l ¹ 03 considering the scaling ∣ ∣lq qk k3 ,
and l l s=1 3 we obtain:

( ) ( )
( )

( )
s

+ + - =
å =

q t h q t h
q

q t1
. 5.37k k

k

k
N

k1
2

Wediscussed the coalgebra symmetry properties in [29], Subsection 6.2, where themethodwas used to prove
that the system isQMS.Wefinally recall that the system (5.37) is an example ofN d.o.f. integrable system in
standard form [32, 57], whichwas later extended in a series of papers [55, 56]. For a general review onN d.o.f.
integrable systems in standard formwe refer also to [58], Chapter 25.

To complete the study on this system, including continuum limits and relation to knowndiscrete-time
integrable systemswe distinguish the casesλ3≠ 0 andλ3= 0.

Caseλ3 ≠ 0. For bk≠ 0 for some { }Î ¼k N1, 2, , andλ3≠ 0we can scale away this constant through the
reparametrisation (λ1,λ2)= (λ3σ1,λ3σ2) and obtain the system:

( )
( ) ( )

( )
( ) ( )

( )
( )

å

s

s

+ -
+

+ - -
-

=
-

=

q t h
b

q t q t h

q t h
b

q t q t h

q

q t

1

1

1

. 5.38

k
k

k k

k
k

k k

k

l

N

l

2 2

2 2

1

2
1

2

Remark 5.3.We remark that the discrete-time system (5.38) is symmetric with respect to the coordinate
transformation (5.3), thus allowing us to extend the domain of definition for negative values of the coordinates.
However, from the right hand side of equation (5.38)wemight need to restrict the domain of definition of this
discrete-time system. Indeed, if s > 02 weneed to exclude theN-sphere ( ) { ( ) }s s= =- - tqN

2
1

2
1 . So, in the

endwe have that the domain of definition of the discrete-time system (5.38) is:

⎧
⎨⎩

( ) ( )s s
s

= Ç >
<

-U U

U

if 0,

if 0.
5.39

N
2

1
2

2

where the setU is given in equation (5.5).
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In this case the coalgebraic invariant (4.2b) has the following explicit form:4

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

( ) ( )å ål s
s

¹ = + + - -
= =

H p q
b

q
q p q0

1

2 2
, 5.40

k
k k

k

k
k k

l

N

l2 3
1

2 2
2 1

2

1

2
2

From the coalgebra construction, we get the following two sets of invariants

C C{ ( ) } ( )[ ] [ ]l= ¹ ¼L H a0 , , , , 5.41N
2 2 3

2

C C{ ( ) } ( )[ ] [ ]l= ¹ ¼R H b0 , , , . 5.41N2 2 3 2

By induction on the d.o.f.N, it is easy to see that both sets are functionally independent. As expected, this implies
that the system (5.38) is Liouville integrable. Similarly the set

C C C C{ ( ) } ( )[ ] [ ]
[ ] [ ]l= ¹ ¼ ¼ -I H 0 , , , , , , , 5.42N

N2 2 3
2

2 1

ismade of functionally independent functionswhich implies the system (5.38) is QMS.
Coming to the continuum limit, we see that applying the scaling (5.24) as h→ 0we obtain from the dEL

equations (5.38):

⎡
⎣⎢

⎤
⎦⎥

̈ ( ) ( )åw
b

s+ - + + =
=

h Q Q
Q

Q Q h2 O 0, 5.43k k
k

k
k

l

N

l
3 2

3 2
1

2 4

while for the invariant (5.40)we have:

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )å åw
b s

= + = + + +
= =

H h H h H P Q
Q

QO ,
1

2 2
. 5.44

k

N

k k
k

k k

N

k2
4

W
QMS 5

W
QMS

1

2 2 2
2

2

1

2
2

The classical continuum systemdefined byHW
QMS clearly possesses coalgebra symmetry with respect to ( )sl 2 ,

and in fact it turns out to be aQMSdeformation of the SW system:

( ) ( ) ( )s x
x

= + =H H F Fq ,
2

. 5.45W
QMS

SW 2
2

2

The continuumfirst integrals are again given by formula (5.28).
The system (5.45) is a particular case of theWojciechowski systemdefined by the followingHamiltonian

[66]:

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )å åw
b s

= + + +
= =

H P Q
Q

Q
1

2 2
. 5.46

k

N

k k k
k

k k

N

kW
1

2 2 2
2

2

1

2
2

In general, this system is proven to be integrable both through direct construction of the integrals or by the
existence of a Lax pair, see [66].

This systemwas discretised in [54] as:

( )
( ) ( )

( )
( ) ( ) ( )

( )

+ -
+

+ - -
-

=
+ å =

q t h
b

q t q t h

q t h
b

q t q t h

c q

c q t

1

1
2

1
. 5.47

k
k

k k

k
k

k k

k k

l
N

l l

2 2

2 2
1

2

Clearly, this system is a generalisation of the system (5.35)withλ3≠ 0, using the identification ck= σ2/2 and
making the proper scaling in the coordinates qk and the parameters bk

5. So, we have that the system (5.38) is a
coalgebraic QMS subcase of the discrete-timeWojciechowski system (5.47).

Remark 5.4.We remark that theremight be superintegrable subcases of theWojciechowski system (5.46) if
w w Î i j for some { }Î ¼i j N, 1, , . At present, we did not prove the existence of these superintegrable
subcases, butwe limit ourselves to notice that the proofs of integrability of both [54, 66] do not work in theQMS
case. So, it is reasonable to believe that the presented first integrals are not exhaustive of all the integrable cases
and theremight be intermediate cases between the Liouville integrable case (N invariants) and theQMS case
( -N2 2 invariants). The problemof the existence of superintegrable subcases of theWojciechowski system
(5.46) and its (possible) superintegrable discretisationwill be the subject of future research.

Caseλ3= 0. Let us assume now thatλ3= 0 and that bk are arbitrary (possibly also zero for all k= 1, 2,K,N).
In such a case, we can rescaleλ1=− λ2σ and the system (5.35) reduces to:

4
We remove the common factorλ3 and add a cosmetic 1/2 factor tomimic the continuum case.

5
It is needed to go through the original system (5.35) and properly scale the parameters.

18

Phys. Scr. 98 (2023) 045209 GGubbiotti andDLatini



⎜ ⎟
⎛
⎝

⎞
⎠

( )
( ) ( )

( )
( ) ( )

( ) ( )ås

+ -
+

+ - -
-

=
=

-

q t h
b

q t q t h

q t h
b

q t q t h
q q t

1

1 . 5.48

k
k

k k

k
k

k k
k

l

N

l

2 2

2 2
1

2
1

Remark 5.5.We remark that the discrete-time system (5.48) is symmetric with respect to the coordinate
transformation (5.3), thus allowing us to extend the domain of definition for negative values of the coordinates.
In this case the right hand side does not give any additional restriction, so the system can be defined on thewhole
setU given in equation (5.5).

The coalgebraic invariant (4.2b)has the following explicit form6:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )å ål
s

= = +
= =

H q p q0
2

1

2
, 5.49

k

N

k k
l

N

l2 3
1 1

2
2

From the coalgebra construction, we get the same two sets of invariants as forλ3≠ 0 (5.41) case with
H2(λ3≠ 0) replaced byH2(λ3= 0). The two sets are clearly functionally independent. In the sameway replacing
H2(λ3≠ 0)withH2(λ3= 0) in (5.42)we obtain a set of 2N− 2 functionally independent invariants for (5.48).
Summing up, we proved that the system (5.48) is Liouville integrable andmoreover isQMS.

Differently from theλ3≠ 0 the continuum limit of the caseλ3= 0 is not known. Analogously to [29],
Subection 5.3 it is possible to prove that no scaling of the form

( ) ( ) ( ) ( )s s g= + = Î Îg  t Ah t hq q Q q, , , , 5.50N
0 0

whereσ(h) is an analytic function of its argument, balances the terms in the systems (5.48).

5.3.Degree three invariant
Weconsider the system (4.3c) in the realisation of ( )sl 2 (2.11)with canonical coordinates (q(t),p(t)). The
equation assumes the following form:

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( ) ( )

( )

( )
( ) ( )

( ) ( )åt

+ -
+

+ - -
-

=
=

-

q t h
b

q t q t h
q t

q t h
b

q t q t h
q q t

1

1 . 5.51

k
k

k k
k

k
k

k k
k

l

N

l

2 2

2 2
1

2
1

From formula (1.3) the symplectic formof the system is:

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( ) ( )

( ) ( ) ( ) ( )åt+ -
+

+ =
=

-

q t h
b

q t q t h
q t p t q q t a1 , 5.52k

k

k k
k k k

l

N

l2 2
1

2
1

( ) ( )
( ) ( )

( )+ = -
+

p t h q t
b

q t q t h
b1 . 5.52k k

k

k k
2 2

Remark 5.6.We remark that if =b 0k for all k= 1,K,N, the system (5.51)with the plus sign

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( )åt+ + + - =
=

-

q t h q t q t h q q t . 5.53k k k k
k

N

k
1

2
1

is a particular case of an autonomous version of the discrete-time Painlevè I equation [25, 32]we introduced in
[29], section 5with the parameter b = 0. The coalgebra symmetry properties of the system (5.53)were
discussed in [29], wherewe showed that the system isQMS.We also recall that the continuum limit of the system
(5.53) is unknown.

6
We remove the common factorλ2 and add a cosmetic 1/2 factor.
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Considering bk≠ 0 for some { }Î ¼k N1, , the coalgebraic invariant (4.2c) has the following explicit form7:

C⎜ ⎟
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥( ) ( )[ ]å åt= + - +

= =

H p q
b

q
q p

1

2
. 5.54

k

N

k k
k

k k

N

k k
N

3
1

2
2

1

2

From the coalgebra construction, we get the following two sets of invariants

C C C C{ } { } ( )[ ] [ ]
[ ] [ ]= ¼ = ¼L RH H, , , , , , , . 5.55N

N3 3
2

3 3 2

By induction on the d.o.f.N it is easy to see that both sets are functionally independent. As expected, this implies
that the system (5.51) is Liouville integrable. Similarly the set

C C C C{ } ( )[ ] [ ]
[ ] [ ]= ¼ ¼ -I H , , , , , , , 5.56N

N3 3
2

2 1

ismade of functionally independent functionswhich implies the system (5.51) is QMS.
Based on the above discussionwe have that the system (5.51) for bk≠ 0 for some { }Î ¼k N1, , is a novel

QMS system, generalising the already known system (5.53).
Wefinally note that at present no continuous analogue of the system (5.51) is known. Indeed, analogously to

the system (5.53)mentioned in remark 5.6 and to [29], Subection 5.3, it is possible to prove that no scaling of the
form (5.50)with τ(h) analytic functions of its argument balances the terms in the systems (5.51).

6. Conclusions

In this paper, we gave the necessary and sufficient conditions for a discrete-time system in quasi-standard form
(1.2) to admit coalgebra symmetrywith respect to the generic symplectic realisation of the Lie–Poisson algebra

( )sl 2 (2.18) inN degrees of freedom. In particular, from theorem3.1we see that themost general formof this
system is the one considered in [54]. In this sense, we see that the coalgebra symmetry approach naturally selects
the functional form for the functionsℓk= ℓk(ξ), k= 1,K,N.

As already discussed in [29] the systems in quasi-standard form (1.2) admitting coalgebra symmetrywith
respect to the generic symplectic realisation Lie–Poisson algebra ( )sl 2 (2.18) inN degrees of freedomnaturally
possess 2N− 3 functionally independent invariants. However, in general these systems are not Liouville
integrable. This is becausewe aremissing an exact discrete-time equivalent of theHamiltonian. So, to
characterise the Liouville integrable cases we searched for polynomial invariants in the variables of the algebra

( )sl 2 of increasing degree for the associated dynamical systems (3.15). It turns out that such invariants do exist
for degrees 1, 2, and 3, while for degrees 4, and 5 no new systems arise. This led us to conjecture that the only
non-trivial Liouville integrable systemswith a polynomial invariant are those admitting an invariant of degrees
1, 2, and 3. The proof of this conjecture is particularly challenging because, in general, it does not seempossible
to resum the expression (4.27) to:

( ) ( ) ( )å+ =
=

- +
-I t h F J J J , 6.1d

l

d

l
l d l

0
3

whichwillmake the claim easier to prove. Unfortunately, since in general not even the degree of the function
f= f (ξ) is known it is not possible to apply the ‘destructive’ test of algebraic entropy [14, 24, 26] 8. For the very
same reason it is not possible to apply the ‘constructive’ singularity confinement test [24, 25]. Under the
(reasonable) assumption that f (ξ) is a rational function, one could try to apply aNevanlinna theory formaps [1].
However, at present, such a theory is not enough developed to treat a systemof the form (3.15). So, this topic will
be the subject of further research.

Table 1.Known integrable cases of equation (3.17). The novel systems are highlighted in italic.

degI V(ξ) Standard form Quasi-standard form

1 a x
2
1 Discrete-time isotropic harmonic oscillator [29] Discrete-time SW system (5.1)

2 ( )a x- -a
a

log 1
2 2

1

2
N d.o.f.McMillan system [42, 55] QMSWojciechowski system (5.38) [54]

2 xa log
2
1 NewQMS system (5.48) NewQMS system (5.48)

3 x +x a log
2 2

1 N d.o.f. aut-dPI system (5.53)[29] NewQMS system (5.48)

7
We added a cosmetic 1/2 factor.

8
Quoting from [64] ‘Algebraic entropy. pro: it is canonical (invariant by birational changes of coordinates), and the vanishing of the entropy

may serve as a characterisation of integrability, as the sign of catastrophic drop of the complexity, con: destructive rather than constructive,
since it gives a yes/no answer to the question is thismodel integrable?’. Italics from the original text.
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In the sequent sectionwe carefully analysed the obtained systems in the realisation (2.18) and proved
explicitly their Liouville integrability and quasi-maximal superintegrability. In addition, we found amaximally
superintegrable system given by the discrete Lagrangian (5.1)which is a discretisation of thewell-known SW
system [21, 23].We also discussed the possible generalisation (5.31) discretising the so-called caged anisotropic
oscillator [22], whichwe showed to be Liouville integrable. Unfortunately, differently from its continuous
counterpart, the system (5.31) does not appear to bemaximally superintegrable from anumerical study of its
orbits. Since this kind of analysis goes outside the applicability of the coalgebramethod, this topic will be the
subject of future research. Besides these cases, we found the coalgebraic subcase of the discrete-time
Wojciechowski system (5.35), whose general casewas constructed in [54]. Finally, we found a non-birational
generalisation of a systemwe proposed in [29], whichwe deem to be new. In table 1we give a compendiumof the
knownLiouville integrable cases of equation (1.2).

Summing up, in this paperwe proved that the coalgebra symmetrymethod can be applied to systematically
produceN d.o.f. discrete-time superintegrable systems.

An interesting open problem is the existence of a coalgebraic discretisation of theKepler–Coulomb system:

⎜ ⎟
⎛
⎝

⎞
⎠

( )å åa= -
= =

-

H p q
1

2
. 6.2

i

N

i
i

N

iKC
1

2

1

2
1 2

Thismodel isMS, through the existence of an additional integral ofmotion called the Laplace–Runge–Lenz
vector [40, 44]. It would be interesting to show if it is possible to construct such an invariant in the discrete-time
setting.

Another open problem is the generalisation to non-Euclideanmanifolds. For the coalgebra approach to
these systems, see for example a series of papers by Italian–Spanish school [3–7] culminating in the proof of a
Bertrand-like theoremon curved space [12], linked to the so-called Perlick classification [51]. For a different,
more geometric perspective on the subject, see the recent classification in [34, 35]. Finding a connection between
these two approaches and building the discrete-time analoguewill be subject of future research.

Finally, we note that the present construction can be applied to other Lie–Poisson algebras, especially the
ones related to classified Lie algebras for which theCasimir functions are known, see [36, 45–50]. In the
continuous setting this was done by Ballesteros and Blasco [8, 16].We note that themost natural extension
would be the two-photon or h6 Lie–Poisson algebra [67], a Lie–Poisson algebra containingmany other
interesting Lie–Poisson algebras as subalgebras, including ( )sl 2 , whose associatedHamiltonian integrable
systems have been discussed in [10, 16].
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AppendixA. Explicit formof the coefficients in the case d= 3

We list the explicit formulas for the coefficients obtained in the case d= 3 during the proof of theorem 4.1.We
divide the polynomial I3 into its homogeneous components:

( ) ( ) ( ) ( ) ( )( ) ( ) ( )= + +I t I t I t I t . A13 3
1

3
2

3
3

and list the coefficients by the degree of the component.
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Degree three:

( )
= = = = = = =
= = - =

a a a a a a a

a a a a a a

0, 0,

, 2 , A2
0,0,3 0,1,2 0,2,1 0,3,0 1,0,2 2,0,1 3,0,0

2,1,0 1,2,0 1,1,1 1,2,0 1,2,0 1,2,0

Degree two:

( )= = = = - -a a a a a a a0, , 2 . A32,0,0 0,2,0 1,0,1 0,1,1 0,0,2 0,1,1 1,1,0

Degree one:

( )= = =a
a

a
a

a

a
a

a

a

1

2
,

1

4
,

1

4
. A40,0,1

0,1,1
2

1,2,0
0,1,0

0,1,1
2

1,2,0
1,0,0

0,1,1
2

1,2,0

Appendix B. Periodic cases of the system (3.15) forV=κξ/2

IfV= κξ/2 then the system (3.15) becomes:

( ) ( ) ( )+ =+ -J t h J t a, B1

( ) ( ) ( ) ( ) ( )k k+ = - +- + -J t h J t J t J t b2 , B13
2

( ) ( ) ( ) ( )k+ = - + -J t h J t J t c. B13 3

This system is linear and it can bewritten inmatrix form as follows:

( ) ( ) ( )+ =t h M tJ J , B2

where J(t)= (J+(t), J−(t), J3(t)) and

⎛

⎝
⎜

⎞

⎠
⎟ ( )k k

k
= -

-
M

0 1 0
1 2
0 1

. B32

From standard techniques in systems of linear difference equations [20], Chap. 3we have that the solution is
given by:

( ) ( ) ( )+ =t lh M tJ J . B4l
0 0

Still following [20], Chap. 3we can compute the lth power of thematrixM (B3) through diagonalisation or
Jordan block-form reduction. The characteristic polynomial of (B3) is:

( ) ( )[ ( ) ] ( )m m m k m= - + - +p 1 2 1 . B5M
2 2

Hence, the eigenvalues are:

( )m m
k k

k m
k k

k= = - + - = - - -1,
2

1
2

4 ,
2

1
2

4 . B61 2

2
2

3

2
2

The eigenvalues are different for allκ≠± 2. This readily implies that thematrix is diagonalisable for every
κ≠± 2.Whenκ=± 2 thematrix is not diagonalisable because the only eigenvalue isμ1= 1, which has
geometricmultiplicity one.

Then forκ≠± 2we have:

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜ ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
⎟ ( )k k

k
k k

k= - + - - - - -M G Gdiag 1,
2

1
2

4 ,
2

1
2

4 . B7l
l l2

2
2

2 1

The periodicity condition is that there exists a Î L such that = ML
3, where 3 is the identitymatrix. From

equation (B7) this is true if and only if:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )k k
k

k k
k- + - = - - - =

2
1

2
4 1,

2
1

2
4 1. B8

L L2
2

2
2

Since the second equation in (B8) is the same as thefirst up to the discrete symmetryκa− κ, we can just
consider the solution of thefirst equation in (B8). That is, the solutions of (B2) are periodic of period Î L if
and only ifκ satisfies the following algebraic equation:

⎜ ⎟⎛
⎝

⎞
⎠

( )k k
k- + - =

2
1

2
4 1. B9

L2
2

That is, the left hand side of equation (B9)must be a Lth root of unity. Recalling that Lth roots of unity can be
written in complex exponential form as ( )p=z k Lexp 2ik with k= 0,K,L− 1we have:
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⎛
⎝

⎞
⎠

( )k k
k

p
- + - = = ¼ -

k

L
k L

2
1

2
4 exp

2i
, 0, , 1. B10

2
2

That is, the solution can bewritten as:

⎛
⎝

⎞
⎠

( )k
p

=  = ¼ -
k

L
k L2 cos , 0, , 1. B11

However, this is not definitive: we need to discard k= 0 because it yieldsκ=± 2which is not acceptable, and
since the cosine function is antiperiodic of antiperiodπwe can choose the sign plus in (B11). Sowe denote the
final expression of the solutions asκk,L and its expression is:

⎛
⎝

⎞
⎠

( )k
p

= = ¼ -
k

L
k L2 cos , 1, , 1. B12k L,

Weunderline that from formula (B12)wehave |κk,L|< 2, and for all values of k and L except for

( )=
k

L

1

3
,

1

2
,

2

3
, B13

the numbersκk,L are irrational numbers. In particular, this implies that, for every Lprimewewill obtain new
solutions. This implies that the set of values ofκk,L such that the dynamical system is periodic is a countably
infinite set.

RemarkB.1.We remark that for L= 3we have:

( )k k= = -1, 1. B140,3 1,3

That is, these cases correspond to the degenerate case of the function f3 as t  0, see figure 1.
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