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Abstract

We show how to construct in an elementary way the invariant of the KHK discreti-
sation of a cubic Hamiltonian system in two dimensions. That is, we show that this
invariant is expressible as the product of the ratios of affine polynomials defining the
prolongation of the three parallel sides of a hexagon. On the vertices of such a hexagon
lie the indeterminacy points of the KHK map. This result is obtained by analysing
the structure of the singular fibres of the known invariant. We apply this construction
to several examples, and we prove that a similar result holds true for a case outside
the hypotheses of the main theorem, leading us to conjecture that further extensions
are possible.
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1 Introduction

In recent years a lot of interest has arisen regarding the problem of finding good dis-
cretisations of continuous systems. By good discretisation, here we mean a discretisation
which preserves the properties of its continuous counterpart as much as possible. Within
this framework a procedure called Kahan-Hirota-Kimura (KHK) discretisation became
popular. This discretisation method, defined for quadratic ordinary differential equations
(ODEs), was first discovered by Kahan [20, 21]. It was rediscovered independently by
Hirota and Kimura, who used it to produce integrable discretisations of the Euler top
[18] and the Lagrange top [23]. More recently, the KHK method has been generalised to
birational discretisation of ODEs of higher order and/or degree. These novel methods are
called polarisation methods (see [25] and references therein).

The results of Hirota and Kimura attracted the attention of Petrera, Suris, and collabo-
rators, who extended the work to a significant number of other integrable quadratic ODEs
[27–29]. This in turn led to the work of Celledoni, Owren, Quispel, and collaborators,
[6, 8] who showed that the KHK method is the restriction of a Runge-Kutta method to
quadratic differential equations. That is, given a quadratic system

ẋ = f (x) , x : R → RN , f : RN → RN , (1)

its KHK discretisation is given by the following formula:

x′ − x

h
= 2f

(
x′ + x

2

)
− f (x′) + f (x)

2
, (2)

where x = x (nh), x′ = x ((n+ 1)h), and h is an infinitesimal parameter, i.e. h → 0+.
While the form of eq. (2) makes it clear that the KHK method is the reduction of a

Runge-Kutta method (and hence e.g. commutes with affine coordinate transformations),
and it invariant under x ↔ x′, h ↔ −h. It is less clear that the method is in fact birational,
i.e. the map x → x′ and the inverse map x′ → x are both rational functions. In particular,
from eq. (2) it is clear that the inverse map is obtained from the substitution h → −h in
formula (2). These statements becomes more clear in the equivalent form [8]:

x′ = Φ (x, h) = x+ h

(
IN − h

2
f ′ (x)

)−1

f (x) , (3)

where f ′ (x) is the Jacobian of the function f . From the above remark, we write the inverse
map as Φ−1 (x, h) = Φ (x,−h).

Some of the properties found in [27–29] were later explained in [6, 8]. For instance,
the following theorem on the existence of invariants in the case when the system (1) is
Hamiltonian. That is, when there exists a function H : RN → R, the Hamiltonian, and a
constant skew-symmetric matrix J ∈ MN,N (R) such that:

ẋ = J∇H (x) . (4)

We observe that throughout this paper the capital letter H will always denote a Hamilto-
nian function, while the lower-case h will denote a time step in a discrete-time map. Then,
the statement proven in [8] is the following:
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Theorem 1.1 ([8]). Consider a Hamiltonian vector field (4) with cubic Hamiltonian i.e.
the function H is a degree 3 polynomial. Then its KHK discretisation (3) is birational and
admits the following invariant:

H̃ (x, h) = H (x) +
h

3
∇H (x)T

(
IN − h

2
f ′ (x)

)−1

f (x) . (5)

Moreover the KHK discretisation (2) preserves the following measure on Rn:

m (x) =
dx1 ∧ . . . dxN

det (IN − hf ′ (x) /2)
. (6)

Remark 1.2. The invariant (5) is the ratio of two polynomials. If N is even (resp. odd), the
degree of the numerator is at most N +1 (resp. N +2), and the degree of the denominator
is at most N (resp. N − 1). In the particular case N = 2, which we will consider in this
paper, the invariant (5) has the following shape:

H̃ (x, y, h) =
C (x, y, h)

D (x, y, h)
, (7)

where degC = 3 and degD = 2.
While Theorem 1.1 does not requires integrability in this paper we restrict to the two-

dimensional case, because we are interested in integrable discretisation. To be more specific,
we show that in the two-dimensional case the integrability of the KHK discretisation of
a cubic Hamiltonian system is completely characterised by its singularities. Moreover, we
show that these singularities lie on the vertices of a “hexagon” and the invariant can be
written as the product of the ratios of affine polynomials defining the prolongation of the
three parallel sides of a hexagon. More importantly, these lines are the singular fibres of the
pencil associated with the invariant. Our result is based on a previous investigation of the
geometry of the two-dimensional integrable KHK discretisation given in [32]. Furthermore,
our main result permits us to write down the KHK invariant knowing only the base points,
plus trivial operations. In this sense with our result we show how to do a KHK discretisation
for dummies.

The structure of the paper is as follows: in Section 2 we give the preliminary definitions
we will use throughout the paper and prove our main result: Theorem 2.5. Section 3 is
devoted to examples of the general construction. We also present an example belonging to a
different class of integrable KHK discretisations presented in [7], but lying outside Theorem
2.5. In such a case, we show that a similar result holds, even though the invariant is not
the product of ratios of parallel lines. In Section 4 we summarise our results and discuss
open questions, motivated both by the general results and the considered examples. In
particular, we discuss that some results that recently appeared in the literature, see [1,
11], hint at a possible extension of this work to higher-dimension, at least in the integrable
case.

2 Main result

In this section we state the preliminary definitions and then proceed to state and prove
the main result of this paper contained in Theorem 2.5
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2.1 Preliminaries

Consider a pencil of curves in the affine plane C2:

p (x, y; e0 : e1) = e0p0 (x, y) + e1p1 (x, y) , [e0 : e1] ∈ CP1. (8)

Then, we recall the following definitions:

Definition 2.1. Given a pencil of plane curves p (x, y; e0 : e1) if a point (x0, y0) ∈ C2 is
such that p0 (x0, y0) = p1 (x0, y0) = 0, then it is called a base point of the pencil (8).

Definition 2.2. Given a pencil of plane curves p (x, y; e0 : e1) if a point (x0, y0; e
′
0, e

′
1) ∈

C2 × CP1 is such that

p
(
x0, y0; e

′
0 : e

′
1

)
=

∂p

∂x

(
x0, y0; e

′
0 : e

′
1

)
=

∂p

∂y

(
x0, y0; e

′
0 : e

′
1

)
= 0. (9)

then it is called a singular point for the pencil (8).

Intuitively, a base point is a point lying on each curve of the pencil (8). On the other
hand, a singular point lies on the curve and its gradient vanishes. This means that, in
general, for cubic pencils the singular points lie only on specific members of a pencil, called
singular fibres. More formally:

Definition 2.3. Given a pencil of plane curves p (x, y; e0 : e1) if the curve ps(x, y) :=
p (x, y; e′0 : e

′
1), with [e′0 : e

′
1] ∈ CP1 contains a singular point then it is called a singular

fibre of the pencil (8).

If the pencil p is a pencil of elliptic curves, on a singular fibre either the genus drops
to zero or the polynomial is factorisable. A general classification of the singular fibres of
elliptic curves is due to Kodaira [24]. In addition, all the possible arrangements of singular
fibres on an elliptic fibration have been classified in [26]. This classification is reported
in the monograph [36], where the different elliptic fibrations are distinguished using the
associated Dynkin diagram, of the A, D, E series, see [36, Proposition 5.15] The application
of this theory to discrete integrable systems has been discussed in the monograph [10], and
more recently in [14].

In the literature on the algebro-geometric structure of integrable systems the notion of
singular fibres has appeared in several cases. For instance, in [33] a classification of the
singular fibres of the QRT biquadratics, (see [34, 35]) was presented. In [4] it was noted
that for minimal elliptic curves of degree higher than three the singular fibre is unique.
Finally, in [3] the notion of singular fibre was used to build several de-autonomisations of
QRT maps, see [17].

Consider now a birational map Φ : C2 → C2. As usual an invariant is a scalar function
h = h(x, y) constant under iteration of the birational map h(Φ(x, y)) = h(x, y). In the case
of a rational invariant h = p0/p1, with pi ∈ C[x, y], the associated pencil p = e0p0+ e1p1 is
covariant with respect to the map Φ. So, in general we have a one-to-one correspondence
between covariant pencils of curves and rational invariants, and we will go from one to the
other throughout the paper.

Birational maps are not always defined on C2. Using projective geometry it is possi-
ble to give a meaning to the cases when a denominator goes to zero, but there are still
undetermined points, defined as follows:
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Definition 2.4. Consider a birational map Φ : C2 → C2. A point (x0, y0) ∈ C2 such that
all the entries of Φ or its inverse Φ−1 is of the form 0/0 is called an indeterminacy point.

In the integrable case the set of indeterminacy points of the map and the set of base
points of the associated covariant pencil are the same, see [4, 10, 40]. In the non-integrable
case the analysis of the singularities proves the non-integrability of the birational map, see
[9]. In particular, for non-integrable systems the analysis of singularities can prove that
the algebraic entropy of the system is positive, (meaning that the system is non-integrable
[2]), and that no invariant exists [39].

2.2 Main theorem and its proof

We state and prove the following result:

Theorem 2.5. Consider a cubic Hamiltonian H = H (x, y). Then, the invariant (7) is
representable as the ratio of two products of three affine polynomials:

H̃ (x, y) =
ℓ (x, y;µ1, b2) ℓ (x, y;µ2, b6) ℓ (x, y;µ3, b4)

ℓ (x, y;µ1, b5) ℓ (x, y;µ2, b3) ℓ (x, y;µ3, b1)
(10)

where:

ℓ (x, y;µ, b) = y − µx− b. (11)

Remark 2.6. The lines in (10) are three pairs of parallel lines:

ℓ (x, y;µ1, b2) ∥ ℓ (x, y;µ1, b5) , (12a)
ℓ (x, y;µ2, b3) ∥ ℓ (x, y;µ2, b6) , (12b)
ℓ (x, y;µ3, b1) ∥ ℓ (x, y;µ3, b4) . (12c)

These lines intersect pairwise in the following six points in the finite part of the plane C2:

B1 =

(
b1 − b6
µ2 − µ3

,
b1 µ2 − µ3 b6

µ2 − µ3

)
, B2 =

(
b1 − b2
µ1 − µ3

,
b1 µ1 − µ3 b2

µ1 − µ3

)
,

B3 =

(
− b2 − b3
µ1 − µ2

,−b2 µ2 − µ1 b3
µ1 − µ2

)
, B4 =

(
− b3 − b4
µ2 − µ3

,−b3 µ3 − µ2 b4
µ2 − µ3

)
,

B5 =

(
b4 − b5
µ1 − µ3

,
b4 µ1 − µ3 b5

µ1 − µ3

)
, B6 =

(
− b5 − b6
µ1 − µ2

,−b5 µ2 − µ1 b6
µ1 − µ2

)
.

(13)

In general, any combinations of three or more points of the previous list are not collinear.
A set of points with such property is said to be in general position.

The proof of theorem 2.5 is based on the following technical lemmas:

Lemma 2.7 ([32]). Consider a cubic Hamiltonian H = H (x, y). Then, the invariant (7)
is represented by the ratio of the following polynomials:

C (x, y, h) = (y − µ1x)(y − µ2x)(y − µ3x) + c5x
2 + c6xy + c7y

2 + c8x+ c9y, (14a)

D (x, y, h) = d1x
2 + d2xy + d3y

2 + d4x+ d5y + b1b3b5 − b2b4b6. (14b)

The explicit form of the coefficients ci and di is given in equation (91) in Appendix A.
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Remark 2.8. The free parameters in (14) and (91) depend on the original parameters of
the cubic Hamiltonian H using the formulas contained in Appendix A of [32]. All the
parameters depend explicitly on the time-step h. However, we note that to give the proof
of Theorem 2.5 we don’t need to use this explicit expression, but it is sufficient that
given the polynomials (14) it is possible to uniquely determine the corresponding KHK
discretisation. This in turn implies that the result of Theorem 2.5 holds independently of
the KHK structure of the underlying continuous system.

Remark 2.9. Since degD = 2 (14b) it follows that the base points of a KHK map lie on a
conic section, i.e. on a curve of genus zero [37]. Moreover, by explicit computation, the set
D = {D = 0} is the common denominator of the maps Φ and Φ−1. From the explicit form
of the parameters di from Appendix A it can be proved that the real part of this conic curve
is either an ellipse or an hyperbola, but not a parabola. In Section 3 we will see examples
of base points lying both on (real) ellipses and hyperbolas. Finally, we observe that the
fact that degD = 2 implies that when adding the line at infinity CP2 = C2 ∪ { t = 0 },
there are always three base points at infinity coming from the solutions of:

Ch(x : y : 0, h) = 0, Ch(x : y : t, h) = t3C
(x
t
,
y

t
, h
)
. (15)

Lemma 2.10. The pencil of cubic curves:

p (x, y; e0 : e1) = e0C (x, y, h) + e1D (x, y, h) , (16)

where the functions C and D are given by equation (14), admits two singular fibres for the
following values of [e0 : e1] ∈ CP1:[

e′0 : e
′
1

]
= [∆ : b2b4b6] ,

[
e′′0 : e′′1

]
= [∆ : b1b3b5] , (17)

where ∆ is given by equation (92). Moreover, the corresponding singular curves in the
pencil (16) factorise into affine polynomials as follows:

p
(
x, y; e′0 : e

′
1

)
= ∆ℓ (x, y;µ1, b2) ℓ (x, y;µ2, b6) ℓ (x, y;µ3, b4) , (18a)

p
(
x, y; e′′0 : e′′1

)
= ∆ℓ (x, y;µ1, b5) ℓ (x, y;µ2, b3) ℓ (x, y;µ3, b1) . (18b)

Proof. The proof is achieved by direct computation using computer algebra software, e.g.
Maple. In principle, we have to solve the system (9) where p is given by the pencil (16).
This approach is quite cumbersome from the computational point of view, as it involves the
solution of nonlinear algebraic equations. We propose the following approach, which proved
to be easier to implement. Take a general affine polynomial with unspecified coefficients:

L = αx+ βy + γ. (19)

Using polynomial long division with respect to x we can write:

p (x, y; e0 : e1) = Q (x, y; e0 : e1)L (x, y) +R (y; e0 : e1) . (20)
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If we impose R ≡ 0, then we will have R | p. We can obtain such conditions by setting
to zero all the coefficients with respect to the various powers of y in R. For instance the
coefficient of y3 is:

∆e0(βµ3 + α)(βµ2 + α)(βµ1 + α) = 0. (21)

So, we can choose three different values for α. This already suggests that there will be
three different affine factors.

We start by choosing α = −βµ1. Substituting it back into R we obtain the following
value for [e0 : e1]:

[e0 : e1] = [β (b2 − b5)∆ : β (b1b2b3b5 − b2b4b5b6)− γ∆] . (22)

This finally yields the following values for γ:

γ = −βb2,−βb5,−
µ1β(b1b3 − b4b6)

(b1 − b4)µ2 + (b3 − b6)µ3
. (23)

Substituting (23) back into (22) we obtain the two solutions presented in (17), plus a third
one:

[
e′′′0 : e′′′1

]
=

[
∆(b2 − b5) ((b1 − b4)µ2 + (b3 − b6)µ3) :

(b1b3 − b4b6) (−∆µ1 + b2b5(b1 − b4)µ2 + b2b5(b3 − b6)µ3)

]
. (24)

While substituting (17) into the pencil (16) we obtain the two singular fibres (18), this
third one does not give rise to a singular fibre.

Repeating the same argument with the other possible values of α in (21) we obtain the
same result. This concludes the proof. ■

Proof of Theorem 2.5. Consider the pencil built with the two polynomials in (18):

P = ε0p
(
x, y; e′0 : e

′
1

)
+ ε1p

(
x, y; e′′0 : e′′1

)
, (25)

where [ε0 : ε1] ∈ CP1. The following invertible change of parameters:

[e0 : e1] = [− (ε0 + ε1)∆ : b1b3b5ε1 + b2b4b6ε0] , (26)

transforms the pencil (16) into the pencil (25). Using the result of Lemma 2.7 we have
that the pencil (25) is covariant on the KHK discretisation of a cubic Hamiltonian vector
field in the variables (x, y) (7). This in turn implies that the ratio (10) is an invariant for
the KHK discretisation of a cubic Hamiltonian vector field. This concludes the proof of
the theorem. ■

Remark 2.11. An alternative proof of Theorem 2.5 can be obtained through the theory
of Darboux polynomials [5]. Indeed, consider the KHK discretisation associated with the
most general cubic Hamiltonian in (x, y):

x′ − x

h
= a2x

′x+ a3(x
′y + xy′) + a4y

′y + a6(x
′ + x) + a7(y

′ + y) + a9, (27a)

y′ − y

h
= −a1x

′x− a2(x
′y + xy′)− a3y

′y − a5(x
′ + x)− a6(y

′ + y)− a8. (27b)
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The coefficients ai are linked to the coefficients bi and µi through the results of [32], which
we report in formula (93) presented in Appendix B. Now, consider the two polynomials
given in Equation (18) evaluated on (x′, y′) from Equations (27a) and (27b):

p
(
x′, y′; e′0 : e

′
1

)
= −b14b25b36P1P2P3

µ12µ13µ23Q3
p
(
x, y; e′0 : e

′
1

)
, (28a)

p
(
x′, y′; e′′0 : e′′1

)
= −b14b25b36P1P2P3

µ12µ13µ23Q3
p
(
x, y; e′′0 : e′′1

)
. (28b)

where bij = bi − bj , µij = µi − µj and the polynomials Pi and Q are given in formula (95)
presented in Appendix C. This implies that the polynomials (18) are Darboux polynomials
with the same cofactor. From the general theory of Darboux polynomials this implies that
their ratio is an invariant.

In Figure 1 we show an example of pencil (16) where we highlight the two singular
curves C and D.

−4 −3 −2 −1 0 1 2 3 4

x

−4

−3

−2

−1

0

1

2

3

4

y

Figure 1. An example of pencil (16) with b1 = −b4 = 2, b2 = b3 = −b5 = −b6 = 1 µ1 = 0,µ1 = 1,
and µ2 = −1. In red and purple are shown the two singular curves factorised in three lines. The
base points are highlighted in black.



]ocnmp[ Elementary construction of the invariants of 2D Kahan maps 9

Theorem 2.5 implies a simple algorithm to construct the invariant of the given KHK
discretisation (3) of a cubic Hamiltonian vector field (4). Using the correspondence between
base points of a pencil and the indeterminacy points of the corresponding map we obtain
that given such a map the corresponding indeterminacy points will lie on the vertices of a
hexagon. Considering the lines obtained prolonging the edges of the hexagon we form the
lines composing the invariant (10). In the next section we will see several examples of this
phenomenon.

Before moving to the example section, we give an interpretation of the content of The-
orem 2.5 in the context of Oguiso and Shioda’s classification of 74 types of singular fibre
configurations of rational elliptic surfaces [26]:

Corollary 2.12. Consider a cubic Hamiltonian H = H (x, y) for generic values of the pa-
rameters. Then, the singular fibres configurations of the pencil of elliptic curves associated
to the invariant (7) are of type A2

2 ⊕A1.

Proof. From Lemma 2.7 and the proof of Theorem 2.5 we know that the pencil of ellip-
tic curves associated to the invariant (7) has two different representations, one given by
Equation (16) and one given by Equation (25).

From Remark 2.9 we have that the fibre [e0 : e1] = [0 : 1] is singular. Compactifying
again to CP2 we have that the zero locus D is reducible:

D = { tDh(x : y : t, h) = 0 } = { t = 0 } ∪ {Dh(x : y : t, h) = 0 } , (29)

where

Dh(x : y : t, h) = t2D
(x
t
,
y

t

)
. (30)

Now, for generic D, by the properties of homogenenous polynomials in two variables we
have that:∣∣∣{ t = 0 } ∩ {Dh(x : y : t, h) = 0 }

∣∣∣ = 2, (31)

i.e. the singular fibre associated to D is of type A1 (two non-tangential intersections).
From Equation (25) we have two singular fibres at [ε0 : ε1] = [1 : 0], [0 : 1]. In both

cases, we have three lines, which for generic values of the parameters intersect in three
different points. That is, they form two singular fibres of type A2. This concludes the
proof of the corollary. ■

Remark 2.13. The rational elliptic surface with singular fibres configuration of type A2
2⊕A1

is listed in [36, Table 8.2] as number 20. Note that, for particular values of the parameters,
cases whose singular fibre configuration contains A2

2 ⊕ A1 are possible, e.g. number 40 or
number 61.

3 Examples

In this section we show in some concrete examples how to construct the invariant from
the indeterminacy points of a given map. We will also show that a similar result holds in
the case of KHK discretisation obtained from quadratic Hamiltonians with an affine gauge
function.
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3.1 Henon-Heiles potential

Consider the so-called Henon-Heiles (HH) potential [16]:

H =
y2 + x2

2
+ yx2 − y3

3
. (32)

The corresponding system of Hamiltonian equations is:

ẋ = x2 − y2 + y, ẏ = −2xy − x. (33)

It is well known that in the continuous case the HH potential is factorisable in three
lines forming a triangle. These three lines govern the behaviour of the complete HH system
H ′ = T+H, where T = T (px, py) is the standard kinetic energy in the conjugate momenta
of x and y, px and py respectively. For a complete discussion on this topic we refer to [38].

In [8] it was shown that the continuous triangle was preserved by the KHK discretisation
of (33). Here, following Section 2, we will show that there exist two more sets of lines which
give a factorised representation of the invariant of the discrete systems. We will comment
on how these two invariants are pushed to infinity in the continuum limit h → 0.

The KHK discretisation of equation (33) is:

x′ − x

h
= x′x− y′y +

y′ + y

2
,

y′ − y

h
= −xy′ − x′y − x+ x′

2
. (34)

The indeterminacy points of the associated map are the following six:

B1 =

(√
3

4
+

1

2h
,
1

4
−

√
3

2h

)
, B2 =

(
1

h
,−1

2

)
, B3 =

(
−
√
3

4
+

1

2h
,
1

4
+

√
3

2h

)
,

B4 =

(√
3

4
− 1

2h
,
1

4
+

√
3

2h

)
, B5 =

(
−1

h
,−1

2

)
, B6 =

(
−
√
3

4
− 1

2h
,
1

4
−

√
3

2h

) (35)

The indeterminacy points are numbered in clock-wise direction and lie on the vertices of a
regular hexagon. Following remark 2.9 we observe that these base points lie on the circle:

x2 + y2 =
1

4
+

1

h2
, (36)

of radius r =
√
1/4 + 1/h2.

Following the algorithm presented at the end of Section 2 we introduce the following
set of lines:

B1B2 = y −
(
3h− 2

√
3
)
x

h
√
3− 2

+

√
3h2 − 4

√
3 + 4h

2h
(
h
√
3− 2

) , (37a)

B2B3 = y +

(
3h+ 2

√
3
)
x

h
√
3 + 2

+

√
3h2 − 4

√
3− 4h

2h
(
h
√
3 + 2

) , (37b)

B3B4 = y − h+ 2
√
3

4h
, (37c)

B4B5 = y −
(
3h+ 2

√
3
)
x

h
√
3 + 2

+

√
3h2 − 4

√
3− 4h

2h
(
h
√
3 + 2

) , (37d)
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B5B6 = y +

(
3h− 2

√
3
)
x

h
√
3− 2

+

√
3h2 − 4

√
3 + 4h

2h
(
h
√
3− 2

) , (37e)

B6B1 = y +
h− 2

√
3

4h
. (37f)

We then build the invariant (10) as:

H̃ =
B1B2B3B4B5B6

B2B3B4B5B6B1

. (38)

Taking the continuum limit h → 0 we have:

H̃ = −1−
√
3h− 3

2
h2 +−

(
4√
3
H +

19

36

√
3

)
h3 +O

(
h4
)
, (39)

so we see that we recover the continuum first integral (32).
Given the hexagon formed by Bi we can construct three additional lines:

B1B4 = y − 1 +
√
3x, B3B6 = y − 1−

√
3x, B2B5 = y +

1

2
, (40)

These lines form the original triangle of the continuous potential HH system. The we can
form the polynomial:

P = B1B4B3B6B2B5, (41)

and prove by direct computation that it is the Darboux polynomial with the same cofactor
as the numerator and denominator of (38), see Remark 2.11. This implies that in the
potential HH case we can construct the two additional following invariants:

H̃1 =
B1B4B3B6B2B5

B2B3B4B5B6B1

. H̃2 =
B1B4B3B6B2B5

B1B2B3B4B5B6

. (42)

Taking the continuum limit h → 0 we have:

H̃1 = −H̃2 = −9
√
3

2h3

(
H − 1

6

)
+O

(
1

h2

)
, (43)

where we used the fact P = −3H + 1/2. So we see that also in this case we recover the
continuum first integral (32) through the continuum limit.

A graphical representation of the situation is given in Figure 2. In particular we see
that the lines in 40 are independent of h, so they are preserved by the continuum limit.
On the other hand the lines in 37 as h → 0 are pushed to infinity. This explains why in
the continuous HH system in the finite part of the plane only the triangle defined by (32)
is present. Finally, from a direct computation we see that the singular fibres configuration
of the pencil associated to the invariant (38) is of type A3

2 ⊕ A1, and there is a singular
fibres of type A0 represented by a nodal cubic, i.e. it is the elliptic fibration number 61
from [36, Table 8.2]. That is, the structure is more special than the generic one, described
in Corollary 2.12, and explains the additional triangle-like structure observed.
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Figure 2. The HH case (34) with h = 1/2: the lines B1B2, B3B4, and B5B6 in red, the lines
B2B3, B4B5, and B6B1 in blue, and the h independent lines B1B4, B2B5, and B3B6 in green.
The HH tringle [16] is visualised in light green, while the circle (36) is drawn in purple.

3.2 The most general factorisable example

In this subsection we consider a generalisation of the HH example. That is, we consider
the most general cubic Hamiltonian H factorisable in three affine factors. Up to canonical
transformations, this Hamiltonian is:

H = (x− x0) (y − y0) (Ax+By + C) , (44)

where x0, y0, A, B, and C are arbitrary constants. The corresponding system of Hamilto-
nian equations is:

ẋ = (x− x0)(Ax+ 2By + C −By0), ẏ = −(y − y0)(2Ax+By + C −Ax0). (45)

The factorisation structure preserves a triangle-like configuration like in the HH case. We
will discuss how this structure transforms after the KHK discretisation.



]ocnmp[ Elementary construction of the invariants of 2D Kahan maps 13

The KHK discretisation of equation (45), constructed with the rule (2) is

x′ − x

h
=

B

2

[
(2y − y0)x

′ − 2(y − y0 + y′)x0 − x(y0 − 2y′)
]

− x0
2

[
A(x+ x′) + 2C

]
+

1

2
(2Ax+ C)x′ +

C

2
x,

(46a)

y′ − y

h
= −A

2

[
(2x− x0)y

′ − 2(x− x0 + x′)y0 − y(x0 − 2x′)
]

+
y0
2

[
B(y + y′) + 2C

]
− 1

2
(2Ax+ C)y′ − C

2
y,

(46b)

and possesses the following indeterminacy points:

B1 =

(
x0,+

y0
2

− 1

B

(
Ax0 + C

2
− 1

h

))
, B2 =

(
x0
2

− 1

A

(
By0 + C

2
− 1

h

)
, y0

)
,

B3 =

(
x0
2

− 1

A

(
By0 + C

2
− 1

h

)
,
y0
2

− 1

B

(
Ax0 + C

2
+

1

h

))
,

B4 =

(
x0,

y0
2

− 1

B

(
Ax0 + C

2
+

1

h

))
, B5 =

(
x0
2

− 1

A

(
By0 + C

2
+

1

h

)
, y0

)
,

B6 =

(
x0
2

− 1

A

(
By0 + C

2
+

1

h

)
,
y0
2

− 1

B

(
Ax0 + C

2
− 1

h

))
(47)

The indeterminacy points are numbered in clock-wise direction and lie on the vertices of a
hexagon. Following remark 2.9 we observe that these base points lie on the ellipse:

x2

B2
+

y2

A2
+

xy

AB
+

1

B2

(
C

A
− x0+

)
x+

1

A2

(
C

B
− y0

)
y +

(
x0 + y0

2

)2

=
1

h2A2B2
+

C

2AB

(
x0

B
+

y0

A

)
− 1

4

C2

A2B2
.

(48)

In the same way as in the previous section we introduce the following set of lines:

B1B2 = x+
By

A
− Ahx0 +Bhy0 − Ch+ 2

2Ah
, (49a)

B2B3 = x− Ahx0 −Bhy0 − Ch+ 2

2Ah
, (49b)

B3B4 = y +
Ahx0 −Bhy0 + Ch+ 2

2Bh
, (49c)

B4B5 = x+
By

A
− Ahx0 +Bhy0 − Ch− 2

2Ah
, (49d)

B5B6 = x− Ahx0 −Bhy0 − Ch− 2

2Ah
, (49e)

B6B1 = y +
Ahx0 −Bhy0 + Ch− 2

2Bh
. (49f)

We then build the invariant (10) as:

H̃ =
B1B2B3B4B5B6

B2B3B4B5B6B1

. (50)
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Taking the continuum limit h → 0 we have:

H̃ = −1− (Ax0 +By0 + C)h+ (Ax0 +By0 + C)2
h2

2
+

+ [2ABH (x, y)− κ]h3 +O
(
h4
)
,

(51)

where κ = κ (A,B,C, x0, y0) is a constant. So, also in this case the continuum first integral
(44) arises at the third order in h.

In addition, we have the following lines:

B1B4 = x− x0, B3B6 = Ax+By + C, B2B5 = y − y0, (52)

which are three factors of the original Hamiltonian (44). Then we can form the polynomial:

P = B1B4B3B6B2B5, (53)

and prove by direct computation that it is the Darboux polynomial with the same cofactor
as the numerator and denominator of (50), see Remark 2.11. This implies that we can
construct the two additional following invariants:

H̃1 =
B1B4B3B6B2B5

B2B3B4B5B6B1

. H̃2 =
B1B4B3B6B2B5

B1B2B3B4B5B6

. (54)

Taking the continuum limit h → 0 we have:

H̃1 = −H̃2 = −A2BH (x, y)h3 +O
(
h4
)
, (55)

So we see that also in this case we recover the continuum first integral (44) through the
continuum limit.

To summarise, in the most general factorisable case the three factorised lines are pre-
served independently from h. This explains why in the continuous factorised system in the
finite part of the plane only the triangle defined by (44) is present. On the other hand,
the two families of lines (49), alongside of the base points (47) are pushed to the line at
infinity as h → 0. See Figure 3 for a graphical representation. Like in the case of the HH
potential, it is possible to see that the singular fibres configuration of the pencil associated
to the invariant (50) is of type A3

2⊕A1, and there is a singular fibres of type A0 represented
by a nodal cubic, i.e. it is the elliptic fibration number 61 from [36, Table 8.2]. So, the
structure is more special than the generic one, described in Corollary 2.12, and explains the
additional triangle-like structure observed. To conclude, note that even though the most
general factorisable case depends on five parameters after a proper choice of coordinates,
can be constructed essentially in the same way as the “parameterless” HH case.

3.3 A non-factorisable example

In the past two subsections we gave some examples of continuum Hamiltonians factorisable
in three affine polynomials. In this subsection we show what happens in the case such
factorisation is not possible. Consider the following Hamiltonian:

H = y
(
x2 − y2 − 1

)
. (56)
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Figure 3. The general factorisable case (46) with h = 1/10, x0 = 1, y0 = 1/2, A = 3, B = 4, and
C = 5: the lines B1B2, B3B4, and B5B6 in red, the lines B2B3, B4B5, and B6B1 in blue, and the
h independent lines B1B4, B2B5, and B3B6 in green. The analog of the HH triangle is visualised
in light green, while the ellipse (48) is drawn in purple.

The polynomial P = x2 − y2 − 1 ∈ C [x, y] is not factorisable. So, the Hamiltonian (56)
is made of a linear factor and an irreducibile quadratic one. The corresponding system of
Hamiltonian equations is:

ẋ = x2 − 3y2 − 1, ẏ = −2xy. (57)

In Figure 4 we show the level curves of the continuous Hamiltonian (56), where it is clear
that no triple linear factorisation occurs.

Following the rule (2) we have the following KHK discretisation

x′ − x

h
= xx′ − 3yy′ − 1,

y′ − y

h
= −xy′ − x′y, (58)
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Figure 4. The level curves H = ε with H given by equation (56) and 32 different values of ε. It
it possible to note that there is only a linear factor (the line y = 0) and that the base points are
pushed to the line at infinity in CP2.

which possesses the following indeterminacy points:

B1 =

(
−1

2

(
h+

1

h

)
,

√
δ

6h

)
, B2 =

(
1

2

(
h+

1

h

)
,

√
δ

6h

)
, B3 =

(
1

h
, 0

)
,

B4 =

(
1

2

(
h+

1

h

)
,−

√
δ

6h

)
, B5 =

(
−1

2

(
h+

1

h

)
,−

√
δ

6h

)
, B6 =

(
−1

h
, 0

)
,

(59)

where

δ = 3
(
1− h2

) (
h2 + 3

)
. (60)

Following remark 2.9 we observe that these base points lie on the ellipse:

h2x2 + 3h2y2 = 1. (61)
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Remark 3.1. Note that δ > 0 if −1 < h < 1 which justifies taking the square roots in (59).
Since we are interested in the limit h → 0+ this is no restriction. If one wishes to consider
different values of h one can consider the base points as lying on a hexagon on the plane
in Π = R× iR ⊂ C2.

In the same way as in the previous section we introduce the following set of lines:

B1B2 = y −
√
δ

6h
, (62a)

B2B3 = y +
1

3

√
δ

1− h2
x− 1

3h

√
δ

1− h2
, (62b)

B3B4 = y − 1

3

√
δ

1− h2
x+

1

3h

√
δ

1− h2
, (62c)

B4B5 = y +

√
δ

6h
, (62d)

B5B6 = y +
1

3

√
δ

1− h2
x+

1

3h

√
δ

1− h2
, (62e)

B6B1 = y − 1

3

√
δ

1− h2
x− 1

3h

√
δ

1− h2
. (62f)

We then build the invariant (10) as:

H̃ =
B1B2B3B4B5B6

B2B3B4B5B6B1

. (63)

Taking the continuum limit h → 0+ we have:

H̃ = −1− 4H (x, y)h3 +O
(
h4
)
, (64)

so we see that we recover the continuum first integral (56).
Like in the previous cases, given the hexagon formed by Bi we can construct three

diagonal lines:

B1B4 = x+
3(h2 + 1)√

δ
y, B3B6 = y, B2B5 = y − 1

3

√
δ

h2 + 1
x. (65)

Considering their product:

P = B1B4B3B6B2B5, (66)

we find that this polynomial is not a Darboux polynomial for the map (58). In particular
we have:

P = (H + y) +O(h), (67)

which does not reduce to the continuous Hamiltonian, but to its factorisable part: H+y =
(x− y) (x+ y).
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To prove that the only linearly factorisable singular fibres are numerator and denomi-
nator of (63) we consider the associated pencil:

p = e0B1B2B3B4B5B6 + e1B2B3B4B5B6B1. (68)

Excluding the trivial singular fibres at [e0 : e1] = [0 : 1] and [e0 : e1] = [1 : 0] this pencil
has the following singular fibres:

p1,s = y

[(
1 +

h2

3

)
x2 −

(
1− h2

)
y2 − 1− h2

3

]
(69a)

p2,s =

√
3δ

6
h3
√

3 + h2
[
4h3 + i

√
δ
(
3 + h2

)] [
1−

(
x2 + 3y2

)
h2
]

+
h3

3

(
3 + h2

) [
ih3

√
δ − δ

4

(
3 + h2

)]
p1,s

(69b)

p3,s =
√
3δh3

√
3 + h2

[
4h3 − i

√
δ
(
3 + h2

)] [
1−

(
x2 + 3y2

)
h2
]

− 9h3

2

(
3 + h2

) [
δ
(
3 + h2

)
+ 4ih3

√
δ
]
p1,s.

(69c)

The first singular fibre, equation (69a) is a deformation of order h2 of the original Hamil-
tonian (56). It is possible to check that the quadratic polynomial is not factorisable, i.e.
such a singular fibre is of type A1. In the same way, the two cubic curves in equations
(69b) and (69c) do not admit any affine factors, but rather are nodal cubics, i.e. singular
fibres of type A0. At infinity except from the common D fibre of type A1, see Remark 2.9,
there is no other new singular fibre.

To summarise, with this example we showed that when the continuum cubic Hamil-
tonian is not factorisable the corresponding KHK discretisation admits, in general, only
two singular fibres factor in the product of three affine polynomials. Other singular fibres,
are either union of a line and a conic or nodal cubics. In particular this means that the
complete singular fibre configuration is of type A2

2 ⊕ A2
1, i.e. number 40 from [36, Table

8.2]. These considerations underline the differences with the factorisable cases discussed
in the previous sections. See Figure 5 for a graphical representation.

3.4 Quadratic irreducible Hamiltonians and non-convex hexagons

In this subsection we consider an example which shows that the base points can be arranged
in interesting non-convex hexagonal shapes. The system we consider is the following:

H2 = (x− 2)
(
x2 + y2 − 1

)
, (70)

which was discussed in [5, Example 1]: Like in the previous example the cubic Hamiltonian
is made of an quadratic irreducible term and a linear factor. The corresponding system of
Hamiltonian equations is:

ẋ = 2(x− 2)y, ẏ = −3x2 − y2 − 4x+ 1. (71)

Following the rule (2) we have the following KHK discretisation

x′ − x

h
= (x− 2)y′ + y(x′ − 2),

y′ − y

h
= (−3x+ 2)x′ − y′y + 2x+ 1. (72)
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Figure 5. The non-factorisable case (58) with h = 1/5: the lines B1B2, B3B4, and B5B6 in red,
the lines B2B3, B4B5, and B6B1 in blue, and the singular pencil p1,s = 0 in green. Finally, the
ellipse (61) is displayed in purple.

possessing the following indeterminacy points:

B1 =

(
2,

1

h

)
, B2 =

(
10h3 +

√
δ2 − 6h

2h (4h2 − 3)
,−2h

√
δ2 − h2 + 3

2h (4h2 − 3)

)
,

B3 =

(
10h3 +

√
δ2 − 6h

2h (4h2 − 3)
,
2h

√
δ2 − h2 + 3

2h (4h2 − 3)

)
, B4 =

(
2,−1

h

)
,

B5 =

(−10h3 +
√
δ2 + 6h

2h (4h2 − 3)
,
2h

√
δ2 + h2 − 3

2h (4h2 − 3)

)
,

B6 =

(−10h3 +
√
δ2 + 6h

2h (4h2 − 3)
,
2h

√
δ2 + h2 − 3

2h (4h2 − 3)

)
(73)

where

δ2 = −3
(
1− h2

) (
3− 7h2

)
. (74)
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Following remark 2.9 we observe that these base points lie on the conic:

3h2x2 − h2y2 − 8h2x+ 4h2 + 1 = 0, (75)

whose real part represents an hyperbola.

Remark 3.2. Differently from Remark 3.1 δ2 is positive if only if 3/7 < h2 < 1. This
implies that to take the limit h → 0 we will go through a region where the base points lie
in the complex space C2. However, since the proof of Theorem 2.5 is based on algebraic
geometry, we can still apply it. To draw pictures in this subsection we will assume that
the base points lie within this range, so that they are points in the real plane.

In the same way as in the previous section we introduce the following set of lines:

B1B2 = y +
2h

√
δ2 + 7h2 − 3

6h(1− h2) +
√
δ2
x− 1

h

4
√
δ2h

2 + 8h3 +
√
δ2

6h(1− h2) +
√
δ2

, (76a)

B2B3 = x− 10h3 +
√
δ2 − 6h

2h (4h2 − 3)
, (76b)

B3B4 = y − 2h
√
δ2 + 7h2 − 3

6h(1− h2) +
√
δ2
x+

1

h

4
√
δ2h

2 + 8h3 +
√
δ2

6h(1− 6h2) +
√
δ2

, (76c)

B4B5 = y − 2h
√
δ2 − 7h2 + 3

6h(6h2 − 1) +
√
δ2
x+

1

h

4
√
δ2h

2 − 8h3 +
√
δ2

6h(6h2 − 1) +
√
δ2

, (76d)

B5B6 = x− 10h3 −
√
δ2 − 6h

2h (4h2 − 3)
, (76e)

B6B1 = y +
2h

√
δ2 − 7h2 + 3

6h(h2 − 1) +
√
δ2
x− 1

h

4
√
δ2h

2 − 8h3 +
√
δ2

6h(h2 − 1) +
√
δ2

(76f)

We then build the invariant (10) as:

H̃ =
B1B2B3B4B5B6

B2B3B4B5B6B1

. (77)

Taking the continuum limit h → 0+ we have:

H̃ = −1− 4ih+ 8h2 +
4

3
i(3H2 + 10)h3 +O

(
h4
)
, (78)

so we see that we recover, up to the addition of an inessential constant, the continuum
first integral (70). Computing the limit we used that when h → 0 δ2 < 0.

Like in the previous example we can consider the singular fibres of the pencil associated
to H̃ (77). These singular fibres are again union of three lines, union of a line and a
conic, and nodal cubics. So, the singular fibres configuration is again of type A2

2 ⊕A2
1, i.e.

number 40 from [36, Table 8.2]. In this case we do not present the explicit expression of
these curves since it is rather cumbersome and it does not add any further information.

To summarise, this example adds to the previous one the fact that there exist cases
when the “hexagon” formed by the base points is a non-convex polygon, and that the base
points can become complex in a neighbourhood of zero. In Figure 6 we give a graphical
representation of this occurrence.
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Figure 6. The non-factorisable case (70) with h = 7/10: the lines B1B2, B3B4, and B5B6 in
red, the lines B2B3, B4B5, and B6B1 in blue. The hyperbola (75) is displayed in purple, while the
non-convex hexagon formed by the base points is highlighted in cyan.

3.5 The degenerate case: the conic curve

The results of this section do not follow from the general results presented in Theorem 2.5,
but rather form an extension for another case. As it will be more clear later this might be
a bridge for further developments of the results presented in this paper to other cases of
interest.

In this example we consider the case when the Hamiltonian is the most general quadratic
Hamiltonian:

H =
1

2
ax2 + bxy +

1

2
cy2 + dx+ ey, (79)

where an additional constant term was omitted because it is inessential for the equation
of motion. If the skew-symmetric matrix J is constant, then the associated Hamiltonian
system is linear. However, we can impose that the associated Hamiltonian system is
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quadratic by considering a system of the form:

ẋ = G(x, y)J∇H(x, y). (80)

with an affine gauge function G. In a similar way as it was discussed in [13], up to canonical
transformations we can always put G = x. So, the associated Hamilton equations are:

ẋ = x (bx+ cy + e) , ẏ = −x (ax+ by + d) . (81)

Following rule (2) we construct the following discretisation:

x′ − x

h
=
(
bx+

c

2
y +

e

2

)
x′ +

c

2
xy′ +

e

2
x, (82a)

y′ − y

h
= −

(
ax+

b

2
y +

d

2

)
x′ − b

2
xy′ − d

2
x. (82b)

An invariant can be constructed following [7]:

H̃ =
H +∆2h

2x2/8

1 + ∆1h2x2/4
, ∆1 = ac− b2, ∆2 = −ae2 + 2bde− cd2, (83)

since Theorem 1.1 does not apply. The associated pencil is:

p(x, y; e0 : e1) = e0

(
a

2
x2 + bxy +

c

2
y2 + dx+ ey +

∆2

8
h2x2

)
+ e1

(
1 +

∆1

4
h2x2

)
,

(84)

and it has vanishing genus. That is, the curve p = 0 is a conic like the level surfaces of H.
From Definition 2.2 the singular points of the pencil (84) are obtained for:[

e′0 : e
′
1

]
=
[
2ch2 : e2h2 − 4

]
,
[
e′′0 : e′′1

]
= [2∆1 : −∆2] . (85)

In both cases the pencil factorises as follows:

p(x, y; e′0 : e
′
1)= c∆1ℓ

(
x, y;−beh− cdh+ 2b

2c
,−eh+ 2

ch

)
·ℓ
(
x, y;

beh− cdh− 2b

2c
,−eh− 2

ch

)
,

(86a)

p(x, y; e′′0 : e′′1)= c∆1ℓ

(
x, y;

−b+
√−∆1

c
,
cd−

(
b−√−∆1

)
e

c
√−∆1

)

·ℓ
(
x, y;−b+

√−∆1

c
,
cd−

(
b+

√−∆1

)
e

c
√−∆1

)
.

(86b)

On the other hand the indeterminacy points of the map (82) are:

B1 =

(
− 2

h
√−∆1

,
2b− h (be− cd)

ch
√−∆1

− eh− 2

ch

)
, (87a)
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B2 =

(
2

h
√−∆1

,−2b+ h (be− cd)

ch
√−∆1

− eh+ 2

ch

)
, (87b)

B3 =

(
− 2

h
√−∆1

,
2b+ h (be− cd)

ch
√−∆1

− eh+ 2

ch

)
, (87c)

B4 =

(
2

h
√−∆1

,−2b− h (be− cd)

ch
√−∆1

− eh− 2

ch

)
. (87d)

This is consistent with the general theory of conic pencils. Considering the lines:

B1B2 = ℓ

(
x, y;−b+

√−∆1

c
,
cd−

(
b+

√−∆1

)
e

c
√−∆1

)
, (88a)

B2B3 = ℓ

(
x, y;−beh− cdh+ 2b

2c
,−eh+ 2

ch

)
, (88b)

B3B4 = ℓ

(
x, y;

−b+
√−∆1

c
,
cd−

(
b−√−∆1

)
e

c
√−∆1

)
, (88c)

B4B1 = ℓ

(
x, y;

beh− cdh− 2b

2c
,−eh− 2

ch

)
, (88d)

we can write down the invariant (81) as:

Ĥ =
B1B2B3B4

B2B3B4B1

. (89)

That is, in this case the invariant is expressible as the ratio of four lines. In this case the
lines are not necessarily pairwise parallel, as is evident from the expression of the angular
coefficients of the lines in (88), as shown in Figure 7. Moreover, note that the invariant
(89) is a multiple of (83):

Ĥ =
h2c2

∆1
H̃. (90)

This implies that the continuum limit of Ĥ is the Hamiltonian H (79) at order h2.

4 Conclusions

In this paper we have shown how to construct in an elementary way the invariant of the
KHK discretisation of a two-dimensional Hamiltonian system. This construction was pos-
sible because of the particular structure of the KHK birational map, as highlighted in [32],
and the concept of singular fibre of a pencil of curves. Our main result, Theorem 2.5,
tells us that such an invariant can be written down as the product of the ratios of affine
polynomials defining the prolongation of the three parallel sides of a hexagon. From this
result, in Corollary 2.12, we identified the singular fibre configuration of the generic KHK
discretisation of a Hamiltonian cubic system to be of type A2

2 ⊕ A1, i.e. number 20 from
[36, Table 8.2]. Then, we noticed that Theorem 2.5 enables us to construct the invariant
of a KHK discretisation of a Hamiltonian cubic system simply by looking at its indeter-
minacy points. We presented several examples of this construction. In particular, in those
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Figure 7. The pencil of conics (84) with parameters a = 1, b = c = 2, d = e = 1/2, and h = 1/5.
In total 24 different combinations of [e0 : e1] ∈ CP1 are considered. The lines B1B2, B3B4 are in
red, while the lines B2B3, B4B1 are in blue.

examples we observed that in some cases the configuration of singular fibres is bigger than
in the general cases, presenting examples with singular fibres configuration of type A3

2⊕A1

(number 61) and A2
2 ⊕ A2

1 (number 40). In the first case, the additional triple of lines
allowed the construction of multiple representations of the invariant in terms of ratios of
linearly factorised cubic polynomials. Finally, we showed an example of conic curves which
is outside the hypotheses of Theorem 2.5, but where a similar final result is obtained.

The conic example is built using the ideas of [7], although the conic case was not
considered there. That example belong to the class of the discrete Nahm systems which
are some of the most studied KHK discretisation since their appearance in [27], see for
instance [7, 12–14, 31, 41] and their interpretation in terms of generalised Manin transform
in [22, 30].

We hope that our result will be useful in shedding light on why integrability is preserved
or not preserved by the KHK discretisation, and we hope that it will be possible to extend
our result to other known integrable systems, both in the plane or in higher dimensions.
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Regarding the last topic, we observe that recently some construction of integrable systems
in three dimensions where singular fibres play a fundamental rôle appeared in the literature
[1, 11].
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A Explicit form of the coefficients in eq.(14)

Here are the formulas referred to in the statement of Lemma 2.7:

d1 = b1µ1µ2 − b2µ2µ3 + b3µ1µ3 − b4µ1µ2 + b5µ2µ3 − b6µ1µ3, (91a)
d2 = −b1µ1 − b1µ2 + b2µ2 + b2µ3 − b3µ1 − b3µ3 + b4µ1

+ b4µ2 − b5µ2 − b5µ3 + b6µ1 + b6µ3,

(91b)

d3 = b1 − b2 + b3 − b4 + b5 − b6, (91c)
d4 = b1b3µ1 + b1b5µ2 − b2b4µ2 − b2b6µ3 + b3b5µ3 − b4b6µ1, (91d)
d5 = −b1b3 − b1b5 + b2b4 + b2b6 − b3b5 + b4b6, (91e)

c5 =

(
b1b2b3b5µ2µ3 − b1b2b4b6µ1µ2 + b1b3b4b5µ1µ2

+b1b3b5b6µ1µ3 − b2b3b4b6µ1µ3 − b2b4b5b6µ2µ3

)
∆

, (91f)

c6 = −

 b1b2b3b5µ2 + b1b2b3b5µ3 − b1b2b4b6µ1 − b1b2b4b6µ2

+b1b3b4b5µ1 + b1b3b4b5µ2 + b1b3b5b6µ1 + b1b3b5b6µ3

−b2b3b4b6µ1 − b2b3b4b6µ3 − b2b4b5b6µ2 − b2b4b5b6µ3


∆

, (91g)

c7 =

(
b1b2b3b5 − b1b2b4b6 + b1b3b4b5

+b1b3b5b6 − b2b3b4b6 − b2b4b5b6

)
∆

, (91h)

c8 =

(
b1b2b3b4b5µ2 − b1b2b3b4b6µ1 + b1b2b3b5b6µ3

−b1b2b4b5b6µ2 + b1b3b4b5b6µ1 − b2b3b4b5b6µ3

)
∆

, (91i)

c9 = −

(
b1b2b3b4b5 − b1b2b3b4b6 + b1b2b3b5b6

−b1b2b4b5b6 + b1b3b4b5b6 − b2b3b4b5b6

)
∆

, (91j)

and

∆ = b2b4b6 − b1b3b5. (92)
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B Explicit form of coefficients in equation (27)

Here are the formulas referred to in Remark 2.11:

a1 =
b25b36µ

2
12µ

3
3 − b14b36µ

2
23µ

3
1 + b14b25µ

2
13µ

3
2

hD
, (93a)

a2 =
−b25b36µ

2
12µ

2
3 + b14b36µ

2
23µ

2
1 − b14b25µ

2
13µ

2
2

hD
, (93b)

a3 =
b25b36µ

2
12µ3 − b14b36µ

2
23µ1 + b14b25µ

2
13µ2

hD
, (93c)

a4 =
−b25b36µ

2
12 + b14b36µ

2
23 − b14b25µ

2
13

hD
, (93d)

a5 =

{
(b1 + b4)b25b36µ

2
3µ

2
12 − (b2 + b5)b14b36µ

2
1µ

2
23

+(b3 + b6)b14b25µ
2
2µ

2
13

}
2hD

, (93e)

a6 =

{
−(b1 + b4)b25b36µ3µ

2
12 + (b2 + b5)b14b36µ1µ

2
23

−(b3 + b6)b14b25µ2µ
2
13

}
2hD

, (93f)

a7 =
(b1 + b4)b25b36µ

2
12 − (b2 + b5)b14b36µ

2
23 + (b3 + b6)b14b25µ

2
13

2hD
, (93g)

a8 =
b1b4b25b36µ3µ

2
12 − b2b5b14b36µ1µ

2
23 + b3b6b14b25µ2µ

2
13

hD
, (93h)

a9 =
−b1b4b25b36µ

2
12 + b2b5b14b36µ

2
23 − b3b6b14b25µ

2
13

hD
, (93i)

where

D =
1

2
b14b25b36µ12µ13µ23 (94)

and bij = bi − bj , µij = µi − µj . These formulas, with h = 1, were first presented in
Appendix B in [32]. We note that since ai = O (1), the coefficients bi and µi depend on h.

C Explicit form of the polynomials in equation (28)

Here are the polynomials forming the cofactors of the Darboux polynomial in Remark 2.11:

P1 = [(b4µ2 − b3µ3)µ12 + (b5µ2 − b6µ1)µ23]x

+ [(b3 − b4)µ12 − (b5 − b6)µ23] y + b4b6µ12 − b3b6µ13 + b3b5µ23,

(95a)

P2 = [(b1µ1 − b2µ3)µ23 + (b3µ3 − b4µ2)µ13]x

− [(b1 − b2)µ23 + (b3 − b4)µ13] y − b1b4µ12 + b1b3µ13 − b2b4µ23,

(95b)

P3 = [(b1µ1 − b2µ3)µ12 + (b5µ2 − b6µ1)µ13]x

− [(b1 − b2)µ12 + (b5 − b6)µ13] y + b1b5µ12 − b2b6µ13 + b2b5µ23,

(95c)
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Q = (b14µ1µ2 + b36µ1µ3 − b25µ2µ3)x
2

− [b14 (µ1 + µ2)− b25 (µ2 + µ3) + b36 (µ1 + µ3)]xy

+ (b12 + b34 + b56)y
2

+ [(b1b3 − b4b6)µ1 + (b1b5 − b2b4)µ2 − (b2b6 − b3b5)µ3]x

− (b1b3 + b1b5 − b2b4 − b2b6 + b3b5 − b4b6)y + b1b3b5 − b2b4b6.

(95d)

References

[1] J. Alonso, Y. B. Suris, and K. Wei. “A Three-Dimensional Generalization of QRT
Maps”. In: J. Nonlinear Sci. 33.6 (2023), Paper No. 117.

[2] M. Bellon and C.-M. Viallet. “Algebraic entropy”. In: Comm. Math. Phys. 204 (1999),
pp. 425–437.

[3] A. S. Carstea, A. Dzhamay, and T. Takenawa. “Fiber-dependent deautonomization
of integrable 2D mappings and discrete Painlevé equations”. In: J. Phys. A: Math.
Theor. 50 (2017), 405202, (41pp).

[4] A. S. Carstea and T. Takenawa. “A classification of two-dimensional integrable map-
pings and rational elliptic surfaces”. In: J. Phys. A 45 (2012), 155206 (15pp).

[5] E. Celledoni, C. Evripidou, D. I. McLaren, B. Owren, G. R. W. Quispel, B. K.
Tapley, and P. H. van der Kamp. “Using discrete Darboux polynomials to detect
and determine preserved measures and integrals of rational maps”. In: J. Phys. A:
Math. Theor. 52 (2019), 31LT01 (11pp).

[6] E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren, and G. R. W. Quispel.
“Integrability properties of Kahan’s method”. In: J. Phys. A: Math. Theor. 47.36
(2014), p. 365202.

[7] E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren, and G. R. W. Quispel. “Two
classes of quadratic vector fields for which the Kahan discretization is integrable”.
In: MI Lecture Notes 74 (2017), pp. 60–62.

[8] E. Celledoni, R. I. McLachlan, B. Owren, and G. R. W. Quispel. “Geometric prop-
erties of Kahan’s method”. In: J. Phys. A: Math. Theor. 46.2 (2013), p. 025201.

[9] J. Diller and C. Favre. “Dynamics of bimeromorphic maps of surfaces”. In: Amer. J.
Math. 123.6 (2001), pp. 1135–1169.

[10] J. Duistermaat. Discrete Integrable Systems: QRT Maps and Elliptic Surfaces. Springer
Monographs in Mathematics. Springer New York, 2011.

[11] M. Graffeo and G. Gubbiotti. “Growth and integrability of some birational maps in
dimension three”. In: Annales Henri Poincaré 2023 (2023), (61pp).

[12] G. Gubbiotti. “Lax pairs for the discrete reduced Nahm systems”. In: Math. Phys.
Anal. Geom. 24 (2021), 9 (13pp).

[13] G. Gubbiotti and N. Joshi. “Space of initial values of a map with a quartic invariant”.
In: Bull. Aus. Mat. Soc. (2020), pp. 1–12.



28 ]ocnmp[ G Gubbiotti, D McLare, and G R W Quispel

[14] G. Gubbiotti and Y. Shi. Determination of the symmetry group for some QRT roots.
arXiv: 2305.17107 [math.GA].

[15] C. R. Harris, K. Jarrod Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S.
Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M. Wiebe, P.
Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C.
Gohlke, and T. E. Oliphant. “Array programming with NumPy”. In: Nature 585.7825
(2020), pp. 357–362.

[16] M. Hénon and C. Heiles. “The applicability of the third integral of motion: some
numerical experiments”. In: Astron. J. 69 (1964), pp. 73–79.

[17] J. Hietarinta, N. Joshi, and F. Nijhoff. Discrete Systems and Integrability. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2016.

[18] R. Hirota and K. Kimura. “Discretization of the Euler Top”. In: J. Phys. Soc. Japan
69.3 (2000), pp. 627–630.

[19] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9 (2007), pp. 90–95.

[20] W. Kahan. Unconventional numerical methods for trajectory calculations. Unpub-
lished lecture notes. 1993.

[21] W. Kahan and R.-C. Li. “Unconventional schemes for a class of ordinary differential
equations - with applications to the Korteweg-de Vries equation”. In: J. Comp. Phys.
134 (1997), pp. 316–331.

[22] P. H. van der Kamp, E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren, and
G. R. W. Quispel. “Three classes of quadratic vector fields for which the Kahan
discretisation is the root of a generalised Manin transformation”. In: J. Phys. A:
Math. Theor. 52 (2019), 045204 (10pp).

[23] K. Kimura and R. Hirota. “Discretization of the Lagrange top”. In: J. Phys. Soc.
Japan 69 (2000), pp. 3193–3199.

[24] K. Kodaira. “On compact analytic surfaces: II”. In: Ann. Math. (1963), pp. 563–626.

[25] R. I. McLachlan, D. I. McLaren, and G. R. W. Quispel. “Birational maps from
polarization and the preservation of measure and integrals”. In: J. Phys. A: Math.
Theor. 56.36 (2023), p. 365202.

[26] K. Oguiso and T. Shioda. “The Mordell-Weil lattice of a rational elliptic surface”. In:
Comment. Math. Univ. St. Pauli 40 (Jan. 1991).

[27] M. Petrera, A. Pfadler, and Y. B. Suris. “On integrability of Hirota–Kimura type
discretizations: Experimental study of the discrete Clebsch system”. In: Exp. Math.
18 (2009), pp. 223–247.

[28] M. Petrera, A. Pfadler, and Y. B. Suris. “On Integrability of Hirota–Kimura Type
Discretizations”. In: Regul. Chaot. Dyn. 16 (2011), pp. 245–289.

[29] M. Petrera and Y. B. Suris. “On the Hamiltonian structure of Hirota-Kimura dis-
cretization of the Euler top”. In: Math. Nachr. 283.11 (2010), pp. 1654–1663.

https://arxiv.org/abs/2305.17107


]ocnmp[ Elementary construction of the invariants of 2D Kahan maps 29

[30] M. Petrera, Y. B. Suris, K. Wei, and R. Zander. “Manin involutions for elliptic pencils
and discrete integrable systems”. In: Math. Phys. Anal. Geom. 24.1 (2021), pp. 1–26.

[31] M. Petrera and R. Zander. “New classes of quadratic vector fields admitting integral-
preserving Kahan-Hirota-Kimura discretizations”. In: J. Phys. A: Math. Theor. 50
(2017), 205203, (13pp).

[32] M. Petrera, J. Smirin, and Y. B. Suris. “Geometry of the Kahan discretizations
of planar quadratic Hamiltonian systems”. In: Proc. Roy. Soc. A. 475.2223 (2019),
20180761, (13pp).

[33] J. Pettigrew and J. A. G. Roberts. “Characterizing singular curves in parametrized
families of biquadratics”. In: J. Phys. A: Math. Theor. 41.11 (2008), 115203, (28pp).

[34] G. R. W. Quispel, J. A. G. Roberts, and C. J. Thompson. “Integrable mappings and
soliton equations”. In: Phys. Lett. A 126 (1988), p. 419.

[35] G. R. W. Quispel, J. A. G. Roberts, and C. J. Thompson. “Integrable mappings and
soliton equations II”. In: Physica D 34.1 (1989), pp. 183–192.

[36] M. Schütt and T. Shioda. Mordell–Weil Lattices. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer
Nature Singapore, 2019.

[37] I. R. Shafarevich. Basic Algebraic Geometry 1. 2nd ed. Vol. 213. Grundlehren der
mathematischen Wissenschaften. Berlin, Heidelberg, New York: Springer-Verlag, 1994.

[38] M. Tabor. Chaos and Integrability in Nonlinear Dynamics. New York: Wiley, 1989.

[39] T. Takenawa. “Algebraic entropy and the space of initial values for discrete dynamical
systems”. In: J. Phys. A: Math. Gen. 34 (2001), p. 10533.

[40] T. Tsuda. “Integrable mappings via rational elliptic surfaces”. In: J. Phys. A: Math.
Gen. 37 (2004), p. 2721.

[41] R. Zander. “On the singularity structure of Kahan discretizations of a class of quadratic
vector fields”. In: Europ. J. Math. 7.3 (2021), pp. 1046–1073.


	Introduction
	Main result
	Preliminaries
	Main theorem and its proof

	Examples
	Henon-Heiles potential
	The most general factorisable example
	A non-factorisable example
	Quadratic irreducible Hamiltonians and non-convex hexagons
	The degenerate case: the conic curve

	Conclusions
	Explicit form of the coefficients in eq.(14)
	Explicit form of coefficients in equation (27)
	Explicit form of the polynomials in equation (28)

