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Abstract: Inflammation impacts human hematopoiesis across physiologic and pathologic conditions,
as signals derived from the bone marrow microenvironment, such as pro-inflammatory cytokines
and chemokines, have been shown to alter hematopoietic stem cell (HSCs) homeostasis. Dysreg-
ulated inflammation can skew HSC fate-related decisions, leading to aberrant hematopoiesis and
potentially contributing to the pathogenesis of hematological disorders such as myelodysplastic
syndromes (MDS). Recently, emerging studies have used single-cell sequencing and muti-omic ap-
proaches to investigate HSC cellular heterogeneity and gene expression in normal hematopoiesis as
well as in myeloid malignancies. This review summarizes recent reports mechanistically dissecting
the role of inflammatory signaling and innate immune response activation due to MDS progres-
sion. Furthermore, we highlight the growing importance of using multi-omic techniques, such as
single-cell profiling and deconvolution methods, to unravel MDSs’ heterogeneity. These approaches
have provided valuable insights into the patterns of clonal evolution that drive MDS progression
and have elucidated the impact of inflammation on the composition of the bone marrow immune
microenvironment in MDS.
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1. Introduction

Inflammation is a complex biological response that occurs in the body when it is ex-
posed to various triggers, such as an infection, tissue damage, or autoimmune disorders [1].
While inflammation serves as an important defense mechanism to protect against harmful
insults, prolonged or uncontrolled inflammation can have adverse effects on different
cellular processes, including hematopoiesis [2,3].

Hematopoietic stem cells (HSCs) are the foundation of the hematopoietic system that
are responsible for the continuous production of all blood cell lineages throughout life.
HSCs possess the unique ability to self-renew, generating identical copies of themselves,
and differentiating into different cell types, including red blood cells, white blood cells,
and platelets [1]. Inflammation can significantly impact HSCs’ function and behavior,
thereby influencing hematopoiesis [4,5]. Inflammatory signals derived from the bone
marrow microenvironment impact hematopoietic stem and progenitor cells, leading to
dysregulated hematopoiesis, as described in myelodysplastic syndromes (MDS) [6,7]. These
conditions arise from the dysfunction of hematopoietic stem cells, resulting in the impaired
differentiation and function of all types of blood cells [8].

The involvement of inflammation and innate immune responses in MDS pathogenesis
have been recently reviewed elsewhere and are beyond the scope of this review [4–7,9].
Briefly, a plethora of inflammatory cytokines have been found to be elevated in MDS
patients, contributing to dysplastic differentiation [10,11]. Specifically, the activation of
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inflammatory signals promotes the growth of aberrant MDS HSCs, while inhibiting healthy
hematopoiesis [5].

Here, we aim to highlight recent significant advancements in understanding the mech-
anisms by which innate immune signaling and inflammation contribute to the development
of MDS. A common theme that has emerged from recent studies is the induction of HSC
expansion and altered responses in MDS HSC due to inflammation. This contributes to
sustained myelopoiesis and a more competitive advantage compared to that of normal
cells. Furthermore, we place special emphasis on the increasing importance of employing
multi-omic approaches to comprehend immune dysregulation in MDS, with a focus on the
role of single-cell profiling and deconvolution methods.

2. Inflammation Impact on MDS Hematopoiesis

Inflammation impacts human hematopoiesis across physiologic and pathologic condi-
tions, such as infections, autoimmune disorders, and ageing. It is widely recognized that
the activation of the immune system due to an infection or inflammation results in the
activation of normal HSCs, ultimately causing to loss of their normal self-renewal capabil-
ity [12]. In response to environmental stressors like infections, the released inflammatory
mediators trigger the active cycling of HSCs (Figure 1). These molecules derived from the
bone marrow microenvironment, such as pro-inflammatory cytokines and chemokines,
have been shown to alter the fate and behavior of HSCs (reviewed in [1,2]). In this context,
cytokines and chemokines have also been shown to regulate HSCs and promote disease
progression in animal models [13]. Chronic exposure to inflammatory cytokines can result
in persistent HSC cycling, and ultimately, to HSC loss (Figure 1). This process can con-
tribute to bone marrow (BM) failure and may trigger preleukemic conditions or leukemia
by inducing genetic and epigenetic changes in HSCs (Figure 1).
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Figure 1. Inflammation impact on hematopoiesis (A,B). Hematopoietic stem cells (HSCs) in healthy 
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Cytokines and chemokines are released from bone marrow microenvironment in response to 
stressors such as ageing, chronic inflammation, infections, and immune disorders (B). Prolonged or 
excessive exposure to these proinflammatory mediators can induce the loss of normal self-renewal 
HSCs capability and can lead to ineffective hematopoiesis. A common theme that has emerged from 
recent studies is that mutations in genes associated with CHIP (Clonal Hematopoiesis of 
Indeterminate Potential) and myeloid malignancies, such as Tet2 and Dnmt3a, render HSCs more 
susceptible to inflammation and chronic infections. In this scenario, the induction of HSCs clonal 
expansion due to inflammation contributes to sustained myelopoiesis and a more competitive 
advantage compared to that of normal cells. 

2.1. Inflammation Promotes HSC Expansion in CHIP 
Since MDSs primarily affect older individuals, age-related inflammation may also play 

a role in MDS development in elderly patients. MDS can be preceded by a condition known 
as clonal hematopoiesis of indeterminate potential (CHIP), in which specific clones carrying 
pre-leukemic mutations are stably over-represented in the blood in the absence of a 
hematological disease [3]. The genes most frequently mutated in CHIP (such asDnmt3a, Tet2, 
and Asxl1) are also often found in other myeloid malignancies, such as MDS [14]. 

A common theme coming from recent studies is the association of CHIP with chronic 
inflammation or immune activation, such as associations between CHIP and various pro-
inflammatory cytokines [15,16]. More interestingly, several mutations in genes associated 
with myeloid malignancies have been shown to render HSCs more susceptible to 
inflammation. The emerging picture is that inflammation plays a role in driving the 
expansion of CHIP clones [14]. In this context, HSCs’ depletion of Tet2 has been shown to 
display a survival advantage and proliferative phenotype in response to inflammatory 
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and chemokines are released from bone marrow microenvironment in response to stressors such
as ageing, chronic inflammation, infections, and immune disorders (B). Prolonged or excessive
exposure to these proinflammatory mediators can induce the loss of normal self-renewal HSCs
capability and can lead to ineffective hematopoiesis. A common theme that has emerged from recent
studies is that mutations in genes associated with CHIP (Clonal Hematopoiesis of Indeterminate
Potential) and myeloid malignancies, such as Tet2 and Dnmt3a, render HSCs more susceptible to
inflammation and chronic infections. In this scenario, the induction of HSCs clonal expansion due to
inflammation contributes to sustained myelopoiesis and a more competitive advantage compared to
that of normal cells.

MDSs encompass a group of BM failure disorders distinguished by the presence of
myeloid cell dysplasia. This is a heterogeneous group of hematological disorders character-
ized by ineffective hematopoiesis, resulting in the dysplastic and insufficient production
of blood cells. In addition to inefficient hematopoiesis, a component of chronic inflamma-
tion has been consistently reported. Although the exact etiology of MDS remains elusive,
emerging evidence suggests the significant involvement of innate immune signaling and
inflammation in its pathogenesis [4,6,7]. Although MDS pathologies are heterogenous,
a common characteristic appears to be dysregulated innate inflammation, which influ-
ences both the disease’s phenotype and its progression by inducing changes in both the
hematopoietic and stromal components [5]. Specifically, MDSs frequently mirror chronic
inflammatory conditions, and increased levels of serum cytokines have been reported in
MDS patients [10,11]. As the disease advances, dysplastic HSCs progressively take over
the BM niche, displacing normal HSCs in a process referred to as clonal expansion. In this
section, we highlight recent reports mechanistically dissecting the role of inflammatory
signaling and innate immune response activation due to MDS progression.

2.1. Inflammation Promotes HSC Expansion in CHIP

Since MDSs primarily affect older individuals, age-related inflammation may also
play a role in MDS development in elderly patients. MDS can be preceded by a condition
known as clonal hematopoiesis of indeterminate potential (CHIP), in which specific clones
carrying pre-leukemic mutations are stably over-represented in the blood in the absence of
a hematological disease [3]. The genes most frequently mutated in CHIP (such asDnmt3a,
Tet2, and Asxl1) are also often found in other myeloid malignancies, such as MDS [14].

A common theme coming from recent studies is the association of CHIP with chronic
inflammation or immune activation, such as associations between CHIP and various
pro-inflammatory cytokines [15,16]. More interestingly, several mutations in genes as-
sociated with myeloid malignancies have been shown to render HSCs more susceptible
to inflammation. The emerging picture is that inflammation plays a role in driving the
expansion of CHIP clones [14]. In this context, HSCs’ depletion of Tet2 has been shown
to display a survival advantage and proliferative phenotype in response to inflammatory
challenges [17,18]. More recently, elevated HSCs proliferation following an immune chal-
lenge, such as atherosclerotic development, has been shown to drive the expansion of
the Tet2-mutated clone [19]. On the same vein, a new mouse model carrying a recurrent
Tet2missense mutation frequently found in individuals with CHIP was recently gener-
ated. Using sc-RNAseq profiling, it has been shown in this animal model that MDS/acute
myeloid leukemia (AML) phenotype progression in aged animals correlates with an en-
hanced inflammatory response and the emergence of an aberrant inflammatory monocytic
cell population [20]. Furthermore, the expression profile characteristic of this inflammatory
population is linked to worse outcomes in AML patients, highlighting the connection be-
tween inflammation and leukemia progression (Table 1). Overall, these results indicate that
leukemia development in these mice is influenced by secondary non-mutational age-related
factors, as they appeared normal during their youth, but developed leukemia-like char-
acteristics as they aged. This study also uncovered the increased activation of interferon
pathways and inflammatory cytokines in the bone marrow of older mice, suggesting that
an inflammatory stimulus reconfigures the transcriptional program of hematopoietic cell
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differentiation, accelerating myeloid leukemia development and skewing myelopoiesis
toward the production of the proinflammatory monocyte type [20]. From a mechanis-
tic point of view, the reduction of the transcription factor PU.1, a master regulator of
hematopoietic stem cell and myeloid lineage, has been shown to cooperate with the Tet2
loss of function to trigger the leukemia phenotype, specifically in the setting of aging [21].
Using transposase-accessible chromatin sequencing (ATAC-seq) and bisulfite sequencing,
Tet2mediated hypermethylated sites were identified on the PU.1 enhancer, driving the
dysregulation of PU.1 expression and subsequent clonal expansion during aging [21].

Table 1. List of the most relevant references discussed in the review.

Reference Publication Relevance

[20] Yeaton et al., Cancer
Discov (2022)

By sc-RNAseq of bone marrow from mice carrying Tet2 mutations, MDS/AML
progression in aged animals has been shown to correlate with an enhanced
inflammatory response and with the emergence of a novel population of
inflammatory monocytes.

[22] Hormaechea-Agulla et al., Cell
Stem Cell (2021)

IFNγ signaling induced by chronic infection promoted the expansion of mouse
Dnmt3aloss-of-function HSCs.

[23] Muto et al., Nat Immunol (2020) In a mouse model with increased TRAF6 expression in HSCs, an inflammatory
stimulus has been shown to induce sustained myelopoiesis.

[24] Schneider at al.,
Leukemia (2023)

Bulk RNA-seq profiling in a large cohort of MDS patients revealed distinct
inflammatory pathways in subgroups of LR-MDS.

[25] van Galen et al., Cell (2019) sc-RNAseq and genotyping profiling of bone marrow from AML patients were
used to characterize the heterogeneity of this disease.

[26] Guess et al., Blood Cancer
Discov (2022)

Single-cell sequencing of MDS and sAML bone marrow patients revealed
patient-specific clonal evolution patterns.

[27] Menssen et al., Blood Cancer
Discov (2022)

Single-cell sequencing of MDS and sAML indicated that subclone expansion is a
hallmark of MDS progression.

[28] Ganan-Gomez et al., Nat
Med (2022)

In this study, by sc-RNAseq of HSCs from MDS patients combined with
immunophenotypic characterization, they found MDS HSCs in two distinct
differentiation states.

[29] Lasry et al., Nat Cancer (2023)
Single-cell CITE-seq profiling was used to characterize the effects of inflammation
on the composition of bone marrow immune microenvironment in adult and
pediatric patients with AML.

[30] Dai et al., Front Cell Dev
Biol (2021)

In this study, a novel prognostic model based on cell type composition
deconvolution of bulk RNA-seq datasets of AML bone marrow or peripheral
blood patients was developed.

[31] Wang et al., Front Blood
Adv (2021)

CIBERSORTx was used to estimate immune cell type compositions in bone
marrow of MDS patients. A CIBERSORTx-based scoring system could predict the
patients’ prognosis.

On the same vein, interferon gamma (IFNγ)-signaling induced during chronic inflam-
mation has been demonstrated to lead the proliferation of HSCs carrying loss-of-function
mutations in Dnmt3a, the gene most commonly mutated in CHIP [22] (Table 1). In this
study, a chimeric mouse model was used, where recipient mice received a transplant of 10%
Dnmt3a−/− HSCs and 90% Dnmt3a+/+ HSCs. Subsequently, these mice were infected
with Mycobacterium avium, which triggered an IFNγ-mediated immune response that
typically depletes normal HSCs. Remarkably, within this experimental framework, there
was a significant expansion of both phenotypically and functionally defined Dnmt3a−/−
HSCs and multipotent progenitors (MPPs) only in the mice exposed to M. avium. Interest-
ingly, a similar effect was also observed in the mice lacking one functional copy of Dnmt3a,
resembling the situation observed in humans with Dnmt3amutations [22].

Collectively, the findings from these mechanistic studies conducted on mouse models
could hold significant implications for human hematopoietic disorders, as a link may
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be established between a history of chronic infections and an increased prevalence of
clonal hematopoiesis. Further epidemiological studies are needed to address the strong
correlation between inflammation markers and the growth of clones. Finally, addressing the
underlying inflammation of patients is of utmost clinical importance and could potentially
decelerate or prevent clonal expansion, thereby reducing the risk of cancer transformation.

2.2. MDS HSCs Show Altered Response to Chronic Inflammation

The innate immune system acts as the first line of defense against various pathogens
and cellular stresses, and its deregulation can lead to autoimmune diseases and cancer, in-
cluding MDS. Toll-like receptors (TLRs) are essential components of the innate immune sys-
tem, recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs). Aberrant TLR signaling has been observed in MDS patients,
leading to the production of pro-inflammatory cytokines, such as tumor necrosis factor
alpha (TNF-α), interleukin-1-beta (IL-1β), and interleukin-6 (IL-6), which contribute to the
inflammatory microenvironment in the bone marrow [32]. Genetic studies of BM cells from
MDS patients have revealed that more than half of them exhibited an increased expression
of Toll-like receptors (TLRs) and other immune-related genes [33,34]. Also, TLRs down-
stream effectors, such as Myd88 and IRAK1 and IRAK4 kinases, are also overexpressed or
constitutively activated in MDS patients [35,36]. Moreover, the aberrant expression of tu-
mor necrosis factor receptor-associated factor 6 (TRAF6), a TLR effector with ubiquitin (Ub)
ligase activity, has been observed to contribute to ineffective hematopoiesis in MDS [37].
In this context, previous studies have indicated that MDS bone marrow cells harboring
del(5q) are dependent on TRAF6-mediated NF-κB signaling, an essential regulator of innate
immunity and inflammation [36,38].

More recently, a mouse model with increased TRAF6 expression specifically in hematopoi-
etic cells (Vav-Traf6-YFP) was used to mechanistically deconvolute the role of TRAF6 in
MDS [23]. The RNA sequencing analysis of TRAF6-overexpressing HSCs showed that,
despite the elevated TRAF6 levels, these cells did not exhibit a heightened inflammatory
state compared to what was initially observed in MDS patients. These results indicate
that while disrupted innate immune signaling is connected to MDS, additional factors,
such as the inflammatory microenvironment, might be essential to fully mimic the human
disease state.

On the other hand, when the mice with increased TRAF6 expression levels were
subjected to an inflammatory stimulus like lipopolysaccharide (LPS), a component of bac-
terial cell walls that acts to induce chronic inflammation, there was a notable increase in
TRAF6-overexpressing HSCs, leading to enhanced myeloid cell production when com-
pared to that of the untreated mice [23] (Table 1). Clearly, these findings indicate that
inflammation may work synergistically with dysregulated innate immune processes to pro-
mote the self-renewal of MDS HSCs, suggesting that inflammation might be more than just
a modifying force, but rather an initiating factor in the progression of MDS. Thus, chronic
inflammation from external sources exacerbates intrinsic immune dysregulation, contribut-
ing significantly to the competitive advantage of MDS. Mechanistically, MDS hematopoietic
stem/progenitor cells (HSPCs) switched from canonical to noncanonical NF-kappaB sig-
naling, a process that is dependent on TLR-TRAF6 signaling [23]. In conclusion, unlike
normal HSPCs, MDS HSPCs showed an altered response to chronic inflammation, which
contributed to sustained myelopoiesis and a more competitive advantage compared to that
of normal cells [23].

2.3. Heterogeneity of Inflammatory States in MDS

NLRP3 (NOD-like receptor family, pyrin domain containing 3) is an essential compo-
nent of the inflammasome, which is a multi-protein complex involved in the regulation of
the immune response. In the context of MDS, it is well established that dysregulation of
NLRP3 inflammasome activation plays a role in the pathogenesis and progression of the
disease. The aberrant activation of NLRP3 has been associated with increased inflammation
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and cytokine production, potentially contributing to the altered hematopoiesis and immune
dysfunction characteristics of MDS [39].

Moreover, the current research on the activation of the NLRP3 inflammasome pathway
in MDS has elucidated how a self-sustaining cycle of sterile inflammation can result
in progressive pyroptosis and impairment of the hematopoietic niche [40]. Specifically,
increased levels of proinflammatory cytokines, reactive oxygen species, and alarmins
induced the NF-kB-driven expression of key inflammasome components, such as NLRP3,
PYCARD (pyrin domain and caspase recruitment domain), and caspase-1, as well as pro-
interleukin-1b and pro interleukin-18 [40]. This evidence has been recently confirmed
in a large cohort of MDS patients [24]. In this study, inflammatory pathways mediated
by caspase-1, interleukin-1b, and interleukin-18 have been identified in low-risk MDS
(LR-MDS) bone marrow patients [24]. Bulk RNA-seq experiments revealed a previously
unrecognized heterogeneity of inflammation in these patients, as two different phenotypes
with different levels of IL-1b were identified [24] (Table 1). These two different groups of
patients were characterized by different mutational profiles, as one cluster contained 14/17
SF3B1-mutated cases, while the other cluster contained 8/8 del(5q) cases [24]. Moreover, the
gene expression of sorted cell populations showed that the majority of the inflammasome-
related genes, including IL-1b, were mainly expressed in the monocyte compartment [24].
This result confirms the dominant role of these cells in determining the bone marrow
environment in MDS. Overall, this evidence reveals distinct inflammatory profiles in
LR-MDS that might be a prerequisite for the stratification of anti-inflammatory therapies.

3. Multi-Omic Approaches to Dissect Immune Dysregulation in MDS

MDS and secondary AML (sAML) present unique challenges related to their complex
differentiation hierarchies and similarities between malignant and normal cells in the
ecosystem [41]. The cell population involved in MDS pathogenesis is mainly CD34-positive,
as indicated in a plethora of molecular cytogenetics, transcriptional profiles, and xenograft
animal studies. In this regard, it is worthy to note that CD34+ cells are heterogenous, and
ongoing research is aimed at categorizing their subtypes through immunophenotyping,
with recent studies indicating that defined CD34+ subsets based on immunophenotyping
may display even greater diversity than previously anticipated [42].

Traditional bulk RNA sequencing techniques have provided valuable insights into the
transcriptional profiles of different hematopoietic populations. However, they fail to cap-
ture the heterogeneity and transcriptional dynamics at the single-cell level. In recent years,
experimental methods for analyzing single cells, such as by single-cell genomic sequencing
and single-cell RNA-seq (scRNA-seq), has emerged as a powerful tool used to dissect cellu-
lar heterogeneity, lineage commitment, and regulatory networks during hematopoiesis.

Recent studies have indicated that precise clonal trajectories in MDS progression are
made possible via single-cell genomic sequencing. In parallel, sc-RNAseq approaches
have been increasingly used to address questions related to developmental hierarchies and
interactions between malignant and immune cells. A milestone in this field was the use of
single-cell transcriptomic and genotyping to parse heterogeneous AML ecosystems [25].

Furthermore, advancements in computational techniques used to decode the composi-
tion of distinct cell types within the tumor microenvironment have recently emerged. These
innovative methods leverage bulk gene expression profiles to identify and characterize
different cell populations, offering a comprehensive view of the complex cellular landscape
in hematopoietic disorders.

The potential of single-cell sequencing techniques to elucidate hematopoiesis in phys-
iological conditions and MDS at the single-cell resolution has been recently reviewed else-
where [43]. In brief, sc-RNAseq studies have been instrumental in resolving cellular hetero-
geneity within a specific niche [44,45]. Specifically, the single-cell methods allowed researchers
to comprehend that distinct bone marrow populations are able to influence the local mi-
croenvironment, thereby impacting the spatial organization of hematopoiesis [46–48]. In this
section, we highlight the impact of recent studies using single-cell sequencing techniques
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to understand both intratumoral and interpatient heterogeneities in MDS, which have
provided valuable insights in such a heterogeneous cell population in unprecedented detail.
Specifically, we discuss how innovative single-cell sequencing methods have recently been
used: (i) to uncover the patterns of clonal architecture and clonal evolution that drive the
transformation from MDS to secondary AML; (ii) to elucidate the effect of inflammation
on the composition of the BM immune microenvironment. In the end, deconvolution ap-
proaches used to infer the cellular composition of bulk-RNAseq samples are also discussed
as valuable tools to unravel MDS heterogeneity.

3.1. Single-Cell Sequencing Approaches to Characterize Clonal Evolution of MDS to sAML

In the classical model supported by lineage-tracing studies on mice [49], human
hematopoiesis is believed to follow a hierarchical sequence of stages, starting with HSCs
and advancing towards a population of specialized progenitor cells. Conversely, with
the advancements of the methods for cell-surface marker identification via fluorescence-
activated cell sorting (FACS) and gene expression profiling in bulk and at the single-cell
level, the idea of a continuum of undifferentiated hematopoietic stem and progenitor cells
from which unilineage-restricted cells emerge was proposed [50]. This refined model of
hematopoiesis challenges one of the concepts in the classical model by suggesting that mul-
tipotent progenitors have the capacity to make an initial commitment toward the megakary-
ocyte lineage at a very early stage, before subsequently transitioning to either an erythroid,
myeloid, or lymphoid [42]. In this context, scRNA-seq data combined with the assays of
chromatin accessibility at the single-cell level (scATAC-seq) were used to characterize the
differentiation trajectories of hematopoietic cells [51]. More recently, high-throughtput
sc-RNAseq has provided the comprehensive profiling of human HSPCs [52], revealing
a continuum of cell fate bifurcations and a hierarchical-like structure in hematopoiesis.
A breakthrough in this field came from a study that used single-cell transcriptomic and
genotyping to comprehensively analyze the heterogeneity of AML [25] (Table 1).

By optimizing nanowell-based technology for high-throughput scRNA-seq and geno-
typing, over 30 thousand cells from AML patients and healthy donors were analyzed. These
data were integrated into a machine learning classifier, which successfully distinguishing
malignant from normal cells. In this way, six malignant AML cell types aligned along the
hematopoietic stem cell-and-myeloid differentiation axis were identified [25]. This innova-
tive approach linked developmental hierarchies to genotypes, assessed the characteristics
and prognostic significance of primitive AML cells, and identified differentiated AML cells
with immunomodulatory properties.

In the case of the clonal evolution of MDS to sAML, which is driven by the expansion
of clones with leukemia-driver mutations, understanding clonal heterogeneity and muta-
tion frequency is crucial for predicting the clinical outcomes. Recent single-cell sequencing
studies of MDS and sAML bone marrow have unveiled distinct differentiation hierarchies
linked to specific oncogenic drivers [26,27]. Implementing high-throughput single-cell
DNA sequencing, patient-specific clonal evolution patterns, with some patients displaying
linear evolution and others showing branching evolution, were identified [26] (Table 1). Fur-
thermore, proteogenomic analysis revealed that leukemia-associated mutations are more
prevalent in primitive and myeloid cells, suggesting a myeloid bias for these mutations.
Investigating clonal evolution patterns also revealed that these mutations were acquired in
specific orders [26]. In parallel, scRNA-seq was performed in two patients with paired MDS
and sAML samples to analyze transcriptional changes associated with disease progression
in primitive and mature cells. The disease progression was marked by an increase in
primitive cell markers, and some markers of inflammation were upregulated in mature
cells. However, transcriptional analyses showed complex and heterogeneous changes
between the patients and cell types. For instance, one patient exhibited the downregulation
of MHC genes in mature cells and interferon signatures in both primitive and mature
cells, while the other patient displayed the upregulation of interferon signatures in mature
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cells [26]. Overall, these findings highlight the power of single-cell sequencing approaches
in providing a deeper understanding of clonal evolution during disease progression.

On the same vein, a recent study has revealed previously unrecognized cell popu-
lations within MDS bone marrow, providing insights into the underlying mechanisms
of the disease [28]. In this study, the analysis of sc-RNA seq data from HSPCs isolated
from two MDS patients combined with the immunophenotypic characterization of a large
cohort of MDS patients revealed that MDS HSCs display two distinct patterns, one with
an increased content of common myeloid progenitors (CMP), while the other has a higher
number of granulocyte-monocytic progenitors (GMP) [28] (Table 1). Using single-cell pro-
filing, healthy patients followed differentiation trajectories (erythroid/megakaryocyte and
myeloid/lymphoid) in line with the current view of hematopoiesis. In contrast, the MDS
samples predominantly displayed a myeloid differentiation trajectory [28]. Furthermore,
the analysis of differential gene expressions in these two MDS patients indicated that
the CMP pattern MDS HSCs retained the transcriptional profile of the more immature
long-term HSCs (LT-HSC), including the expression of transcription factors like PBX1, HLF,
and MLLT3. On the contrary, GMP-pattern MDS HSCs were characterized by a myeloid
signature, including the transcription factor CEBPa [28]. Concurrently, the analysis of bulk
RNA-seq datasets from CMP pattern and GMP pattern MDS patients who had developed
a resistance to hypomethylating agent (HMA)-based therapy revealed several significant
findings. First of all, the CMP pattern MDS patients exhibited an increase expression of
genes involved in promoting cell proliferation and survival, including the anti-apoptotic
regulator B cell lymphoma 2 (BCL-2) [28]. Conversely, the genes associated with TNF
signaling through NFkB and inflammatory responses were upregulated in the GMP pattern
MDS patients with blast progression [28]. These discoveries could carry significant clinical
implications, as CMP pattern MDS patients with upregulated BCL-2 were shown to benefit
from venetoclax therapy.

3.2. sc-RNAseq Technology to Dissect Inflammatory Microenvironment

The inflammatory microenvironment in the bone marrow of MDS patients plays
a crucial role in disease pathogenesis. The bone marrow stroma consists of various
non-hematopoietic cells that support HSC functions during normal conditions and tissue
repair. However, some stromal cells have been shown to directly contribute to myelodyspla-
sia or leukemia development and can be altered during leukemia progression to promote
tumor growth. In response to inflammation, stromal cells and the bone marrow microen-
vironment undergo alterations in their secretory profiles, promoting the survival and
proliferation of MDS-initiating cells. Furthermore, the interactions between HSCs and the
inflammatory bone marrow microenvironment are critical in shaping HSCs’ behavior. In-
flammatory signals can alter the expression of adhesion molecules and chemokine receptors
on HSCs, affecting their interactions with the bone marrow niche. The disruption of these
interactions can lead to the egress of HSCs from the bone marrow and their mobilization
into the bloodstream, impairing their ability to support proper hematopoiesis.

In studies characterizing the bone marrow stroma, the sc-RNAseq approach was
fundamental to identifying distinct cell populations in the stem cell niche, regulating
hematopoietic regeneration and potentially initiating leukemia [47]. In this study, by em-
ploying machine learning methods to identify different stromal cell types from scRNA-seq
data, a detailed map of the BM stroma and its perturbation during pathological states
has been generated [47]. Seventeen stromal subsets were identified, expressing distinct
hematopoietic regulatory genes, including fibroblastic and osteoblastic subpopulations
with different osteoblast differentiation trajectories [47]. The gene expression profiles of BM
stromal cells indicated that heterogeneity exists within most cell types, and the presence
of leukemia cells disrupts normal hematopoiesis. Emerging acute myeloid leukemia im-
paired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary
for normal hematopoiesis. Altogether, these data suggest that tissue stroma responds to
malignant cells by disadvantaging normal parenchymal cells. Overall, the sc-RNAseq
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profiling approach provided a powerful means to reveal both discrete and continuous
mechanisms of cellular identities and complexities within the bone marrow stroma. It also
highlights how leukemia cells reshape the stromal environment to support their growth,
while disadvantaging normal cells.

Interestingly, sc-RNAseq technology has recently been used to elucidate the effect
of inflammation on the composition of the BM immune microenvironment and clinical
outcomes in AML [29]. This novel study has uncovered the distinct remodeling of bone
marrow in response to inflammation. Specifically, distinctive inflammatory patterns present
in malignant cells of AML bone marrow, which correlates with the infiltration of atypical B
cells, a dysfunctional B-cell subtype enriched in patients with high-level inflammation AML,
were identified. By using scRNA-seq combined with cell surface markers (CITE-seq) on a
large cohort of AML samples coupled with advanced computational methods, the RNA
expression patterns of both leukemic and immune cells in the bone marrow microenviron-
ment were distinguished [29] (Table 1). Interestingly, using CITE-seq, the authors identified
a subset of patients expressing high levels of inflammatory genes in both leukemic and
non-leukemic bone marrow cells. The inflammatory signature in the malignant cells in-
cluded genes associated with class II antigen presentation, alarmins, chemokines, and
interferon response pathways [29]. These findings appear to be clinically relevant, as
the investigation of extensive bulk RNA-seq datasets revealed that patients exhibiting a
high-level inflammation signature had worse overall survival chances [29]. These studies
provide the conceptual basis for classifying patients with AML based on the immune mi-
croenvironment. It has to be established whether monitoring and regulating inflammation
in patients with MDS/AML is important in determining their treatment and prognosis.

3.3. Deconvolution Methods to Dissect MDS Heterogeneity

Though scRNA-seq has been instrumental in understanding transcriptional dysregu-
lation in MDS, uncovering the changes in gene expression profiles and signaling pathways,
its high costs make it impractical for studying the large patient cohorts needed to effec-
tively manage MDS heterogeneity. In parallel, bulk RNA sequencing (bulk RNA-seq) has
been widely used to study gene expression profiles in heterogeneous samples. However,
interpreting bulk RNA-seq data can be challenging due to the presence of multiple cell
types, each with distinct gene expression signatures. This cellular heterogeneity, especially
in hematopoietic tissue, hinders the identification of specific gene activity in individual
cell types.

To address this issue and achieve the more accurate molecular profiling of complex
biological samples, the inference of relative cellular composition has emerged as a powerful
tool. In recent decades, various computational techniques have been developed, employing
deconvolution methods to disentangle cell mixtures and calculate the relative proportions
of the different cellular components (Figure 2).

These methods utilize computational algorithms to estimate the proportions of differ-
ent cell types within bulk RNA-seq samples by analyzing the observed gene expression
patterns. In simpler terms, deconvolution algorithms break down a mixture of various
cell types into their individual components and calculate their respective proportions or
ratios. In some cases, these algorithms can also calculate the overall expression signal of
genes in each cell types. In addition, to validate the accuracy of deconvolution predictions,
experimental validation using independent techniques like flow cytometry or single-cell
RNA-seq can be performed.

The fundamental principles of deconvolution methods rely on using reference ex-
pression profiles or reference datasets that represent distinct cell types (Figure 2). There
are two main categories of deconvolution methods: reference-based and reference-free
methods. Reference-based methods use these reference expression profiles to estimate
the cell-type proportions. On the other hand, reference-free methods employ statistical
and machine learning approaches to infer cell-type proportions without relying on prior
knowledge of reference profiles.
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Figure 2. Deconvolution workflow of bulk RNA-seq dataset from CD34 positive hematopoietic stem
cells. Available sc-RNAseq datasets from CD34 positive cells from human bone marrows (1–3) are
used to generate a signature matrix (4). In the second step, the deconvolution methods (7) require the
expression profiles of CD34-positive mixed population (5–6) and the signature matrix (4) as input bulk
data to estimate the abundance of cell types in each sample (8). FACS (Fluorescence-Activated Cell
Sorting), HSC (Hematopoietic Stem Cell), MPP (MultiPotent Progenitor), CMP (Common Myeloid
Progenitor), GMP (Granulocyte-Monocyte Progenitor), MEP (Megakaryocyte-Erythrocyte Progenitor),
MLP (Multi-Lymphoid Progenitor), and PreB/NK (Pre-B cells and Natural Killer Cells).

Thus, the significant limitation of most deconvolution approaches is the requirement
for a reference profile of cell-type expression. The choice of reference has been found to be
more crucial than the methodology itself is in determining deconvolution performance [53].
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However, selecting appropriate cell types for the reference is not always straightforward,
and obtaining matched samples for reference generation can be challenging. To improve the
robustness and generalization of deconvolutions, it has been suggested that researchers in-
tegrate multiple studies with varying experimental conditions and technical platforms [54].
In addition, both bulk deconvolution methodologies and those that use scRNA-seq data
as a reference perform best when applied to data on a linear scale, and the choice of nor-
malization can significantly impact some methods. Additionally, neglecting to include
cell types present in a mixture within the reference leads to considerably poorer results,
regardless of the previous choices made during the deconvolution process [53].

To date, increasingly computational methods have been developed to infer cell type
proportions from bulk transcriptomics data. For example, CIBERSORT (Cell-type Identifi-
cation By estimating Relative Subsets Of known RNA Transcripts) uses the support vector
regression algorithm to deconvolute the bulk gene expression profiles (GEPs) into cell type
compositions (CTCs) based on a reference matrix that comprises the gene expression signa-
tures (GES) of cell types of interest [55,56]. Other approaches focusing on bulk RNA-seq
include methods such as MuSiC [57], Scaden [58], DeconRNASeq [59], and SCDC [60].
Recently, also, a pre-trained, context-free, deep learning foundation model for universal
cell-type deconvolution called “UniCell” was introduced [61].

In the context of MDS, deconvolution approaches are becoming increasingly valuable.
This is due to the availability of a growing number of RNA-seq datasets generated from
different subsets of MDS patients, making them a valuable resource for understanding MDS
heterogeneity (Figure 2). In addition, robust signature matrix can be obtained via the published
sc-RNAseq of CD34-positive HSCs (Figure 2). Furthermore, it is crucial to keep in mind
that CD34+ cells in MDS are not a homogenous cell population (Figure 2). The proportion
of each cell type varies during the progression of the disease. For instance, there has
been evidence of the expansion of common myeloid progenitors (CMP) and granulocyte-
monocyte progenitor (GMP) populations, while the common lymphoid progenitor (CLP)
cell compartment decreases [62].

Recently, the potential significance of identifying CTCs in the bone marrow of patients
to predict the outcome of AML was explored [30]. In this study, a cell-type-specific gene ex-
pression signature (GES) reference matrix was generated by analyzing AML single-cell RNA
sequencing data. Then, the CIBERSORT algorithm was used to estimate CTCs from bulk
gene expression profiles using this custom reference matrix. The resulting AML prognostic
model showed a comparable performance to those of previous gene expression-based
models and served as an independent prognostic factor for AML (Table 1) [30].

In the context of MDS, a recent study applied CIBERSORTx to assess the relative
percentages of immune cells in the bone marrow of 316 patients with primary MDS [31]
(Table 1). Deconvolution analysis revealed that patients with a lower percentage of un-
polarized macrophages (M0), but higher infiltration of macrophages M2 and eosinophils
in the bone marrow, had adverse prognoses. Furthermore, high-risk immune cell scores
were associated with NF-κB signaling, oxidative stress, and leukemic stem cell signature
pathways [31]. Interestingly, this study utilized the deconvolution method to create an im-
mune cell scoring system (ICSS), which was closely linked to the clinical characteristics and
mutation patterns of patients. This scoring system could predict prognoses independently
from established risk stratification systems and gene mutation statuses, offering a novel
complementary approach to refine risk stratification and guide future therapeutic strategies
for MDS patients. This study is one of the first to utilize CIBERSORTx for analyzing the
clinical significance of immune cells in the entire bone marrow in the context of MDS [31].
With these promising findings, it is expected that more studies using similar approaches on
larger cohorts of MDS patients will emerge in the near future.

4. Discussion and Conclusions

Inflammation has emerged as a significant player in MDS pathogenesis and progres-
sion. Inflammatory signals from the bone marrow microenvironment impact hematopoietic
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stem and progenitor cells, disrupting normal hematopoiesis and contributing to disease
progression [14]. A common theme that has emerged from recent studies is that mutations
in genes associated with CHIP and myeloid malignancies, such as TET2 and DNMT3A, ren-
der HSCs more susceptible to inflammation and chronic infection [20,22]. In this scenario,
the induction of HSC expansion due to inflammation contributes to sustained myelopoiesis
and a more competitive advantage compared to that of normal cells [23].

scRNA-seq studies on MDS bone marrow have been instrumental in discovering previ-
ously unknown cell populations and subpopulations, providing valuable insights into the
underlying mechanisms of the disease. These studies have unveiled abnormal hematopoietic
stem and progenitor cells, dysplastic erythroid and myeloid lineages, as well as dysregulated
immune cells, shedding light on the cellular changes driving MDS progression.

However, it is essential to keep in mind that scRNA-seq generates a static snapshot of
the transcriptional landscape, which limits its ability to provide conclusive information on
the dynamic changes during cell state transitions.

Single-cell RNA sequencing studies have also been valuable in understanding the
role of an inflamed tumor microenvironment in myeloid malignancies, revealing distinct
inflammatory cell subsets associated with a poor prognosis. Nevertheless, the complexity
of the data presents computational challenges due to inherent noise and nonlinearity. Ana-
lyzing such complex data requires advanced mathematical methods beyond conventional
statistics, making the mapping of complex tissues like the bone marrow a challenging task
that demands expertise in both experimental and computational techniques.

Deconvolution methods applied to bulk RNA-seq data have been highly beneficial in
unraveling the cellular composition and heterogeneity of hematopoietic tissue. These com-
putational approaches allow us to extract meaningful biological insights and explore the
dynamics of different cell types by identifying cell-type-specific gene expression patterns.
Despite their advantages, there are still important limitations that can impact analysis,
especially in the context of MDS. Among these, the similarity between different cell types
can affect the accuracy of deconvolution methods, particularly when a specific cell type
is present in small proportions compared to those of others. However, ongoing progress
in deconvolution methods is expected to address and overcome these limitations, leading
to more robust and accurate analyses. In the near future, the development of innova-
tive deconvolution approaches has the potential to enable clinicians to extract valuable
insights from the increasing number of bulk RNA-seq datasets from MDS patients. These
advancements might facilitate the more precise molecular profiling of such complex and
heterogenous biological samples.
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