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Abstract
Alzheimer’s disease (AD) is a multifactorial and severe neurodegenerative disorder characterized by progressive memory
decline, the presence of Aβ plaques and tau tangles, brain atrophy, and neuronal loss. Available therapies provide moderate
symptomatic relief but do not alter disease progression. This study demonstrated that PaPE-1, which has been designed to
selectively activate non-nuclear estrogen receptors (ERs), has anti-AD capacity, as evidenced in a cellular model of the disease.
In this model, the treatment of mouse neocortical neurons with Aβ (5 and 10 μM) induced apoptosis (loss of mitochondrial
membrane potential, activation of caspase-3, induction of apoptosis-related genes and proteins) accompanied by increases in
levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as reduced cell viability. Following 24 h of
exposure, PaPE-1 inhibited Aβ-evoked effects, as shown by reduced parameters of neurotoxicity, oxidative stress, and apoptosis.
Because PaPE-1 downregulated Aβ-induced Fas/FAS expression but upregulated that of Aβ-induced FasL, the role of PaPE-1
in controlling the external apoptotic pathway is controversial. However, PaPE-1 normalized Aβ-induced loss of mitochondrial
membrane potential and restored the BAX/BCL2 ratio, suggesting that the anti-AD capacity of PaPE-1 particularly relies on
inhibition of the mitochondrial apoptotic pathway. These data provide new evidence for an anti-AD strategy that utilizes the
selective targeting of non-nuclear ERs with PaPE-1.
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Introduction

Alzheimer’s disease (AD) is a multifactorial and severe neu-
rodegenerative disorder characterized by progressive memory
decline, the presence of Aβ plaques and tau tangles, brain
atrophy, and neuronal loss. The sporadic form of AD has a
late onset and accounts for over 95% of all cases. Aβ has a
pivotal role in the pathogenesis of AD, and insoluble clusters
or intermediary soluble oligomers of Aβ have been implicated
in neurotoxicity and cell death. Aβ peptides are produced by
proteolytic cleavage of APP (Nicolas and Hassan 2014). In the
amyloidogenic pathway, APP is initially cleaved by β-
secretase to produce a soluble secreted form of amyloid

precursor protein (APP) and a fragment βAPP-CTF; subse-
quent cleavage of βAPP-CTF by γ-secretase yields the Aβ
peptide and amyloid precursor protein intracellular domain
(AICD). Because γ-secretase can cleave at several alternative
sites, the resulting Aβ peptides vary in length. The most abun-
dant forms found in amyloid plaque are the 40-mer and the 42-
mer (De Strooper 2010). However, there are inconsistencies
and controversies surrounding the amyloid hypothesis of AD
(Morris et al. 2014). Recently, an age-dependent hypothe-
sis of AD has been proposed that integrates the old
amyloid cascade hypothesis as part of the pathological
progress ion. A repor t f rom the World Heal th
Organizat ion (WHO) and Alzheimer ’s Disease
Internat ional (ADI) cal ls for governments and
policymakers to make dementia a global public health
priority because approximately 44 million people world-
wide have the disease, a number that is predicted to
triple by 2050. Currently, there is no cure to stop the
progression of Alzheimer’s disease. With an estimated
global cost of over $600 billion, new therapeutic ap-
proaches are urgently needed. As available therapies
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provide moderate symptomatic relief but do not alter
disease progression, novel therapies are needed.

AD is accompanied by dysregulation of estrogen receptor
(ER) signaling, including non-nuclear ER signaling.
Transcriptome meta-analysis has revealed a central role for
sex steroids in the degeneration of neurons in AD (Winkler
and Fox 2013). Indeed, risk for AD is associated with age-
related loss of sex steroid hormones in both women and men.
In postmenopausal women, the precipitous depletion of estro-
gens and progestogens is hypothesized to increase susceptibil-
ity to AD pathogenesis. Similarly, age-related testosterone
loss is associated with an increased risk of the disease in
men (Pike et al. 2009). Despite similarities, the incidence of
dementia and AD is at least twofold higher in women than in
men. Several studies have suggested that decreased adult
neurogenesis plays a role in the initiation and progression of
neuropathology in AD. Furthermore, the combined effect of
slightly elevated Aβ levels and oxidative stress due to aging
has been proposed to initiate AD long before clinical onset
(Stockburger et al. 2014).

Emerging evidence suggests that there is a “critical period”
for estradiol’s beneficial effect in the brain. The critical win-
dow hypothesis suggests that hormone therapy initiated at a
younger age in closer temporal proximity to menopause may
reduce the risk of AD (Scott et al. 2012). However, the appli-
cation of estrogens as neuroprotectants in humans presents
numerous limitations, including adverse effects on peripheral
tissues. In addition to classical nuclear ERα (ESR1) and ERβ
(ESR2) acting as ligand-activated transcription factors, it has
become evident that non-nuclear ERs govern numerous cell
processes in the brain and exert beneficial cardiometabolic
effects without uterine or breast cancer growth in mammals.
Non-nuclear ERs are localized on cell membranes and include
mERα, mERβ, GPR30 (GPER1), and Gq-mER. Activators
of non-nuclear ERs share neuroprotection attributed to estra-
diol and phytoestrogens, but there is no report on their in-
volvement in anti-AD therapy.

PaPE-1 ((S)-5-(4-hydroxy-3,5-dimethyl-phenyl)-indan-
1-ol) is a “pathway preferential estrogen” that interacts
with the extranuclear ER signaling pathway without ac-
tivating the nuclear signaling pathway (50,000 less
bound to nuclear receptors). The mechanism of action
of PaPE-1 does not result in negative effects on the
reproductive system or breast cancer cell proliferation
(Madak-Erdogan et al. 2016). PaPE-1 does not induce
ERα or ERK2 recruitment to gene enhancers or stimu-
late expression of proliferation-associated genes, as seen
with E2. However, similar to E2, PaPE-1 strongly acti-
vates the MAPK and mTOR pathways, and as based on
the effects of MAPK and mTOR inhibitors, PaPE-1 re-
lies on these pathways for a considerable proportion of
its gene regulation. In non-reproductive tissues, PaPE-1
has been demons t ra ted to repa i r the vascular

endothelium after injury and reduce adipose stores and
blood triglyceride concentrations. Moreover, PaPE-1 de-
creased stroke severity, attenuated neuroinflammation,
and promoted functional recovery in mice without un-
desirable uterotrophic effects (Selvaraj et al. 2018).
Regarding the neuroprotective capacity of membrane
estrogen receptors, it has recently been shown that
activation of GPR30 ameliorates memory impairment
in a mouse model of AD (Kubota et al. 2016) and
protects against Aβ toxicity in vitro (Gray et al. 2016;
Deng et al. 2017).

Since PaPE-1 has the ability to selectively activate non-
nuclear ERs without evoking adverse hormonal effects, we
aimed to assess the neuroprotective properties of it in a cellular
model of sporadic AD. We hypothesized that targeting non-
nuclear ERs with PaPE-1 will prevent Aβ-induced toxicity in
mouse brain neurons in primary culture.

Materials and Methods

Primary Neuronal Cell Culture

Primary neocortical cultures were prepared from E15 embryos
(CD-1® IGS Swiss mouse, Charles River, Germany) as pre-
viously described (Wnuk et al. 2020). Embryonic cortices
were minced into small pieces and incubated with 0.1% tryp-
sin for 15 min at 37 °C. The cells were placed in medium
containing 10% fetal bovine serum (Sigma-Aldrich, USA)
and centrifuged for 5 min at 1500×g. The neuronal cells were
seeded on poly-L-ornithine-coated (0.1 mg per ml; Sigma-
Aldrich, USA) plates at a density of 2.0 × 105 cells per cm2

in multiwell plates (TPP Techno Plastic Products AG,
Switzerland) and cultured in neurobasal medium (Thermo
Fisher Scientific, USA) containing L-glutamine (Sigma-
Aldrich, USA), B27 (Thermo Fisher Scientific, USA) and
penicillin-streptomycin antibiotics (Sigma-Aldrich, USA) at
37 °C in a humidified atmosphere containing 5% CO2 for
7 days in vitro (DIV).

All animals used in the research were maintained according
to the principles of the Three Rs in compliance with European
Union Legislation (Directive 2010/63/EU, amended by
Regulation (EU) 2019/1010).

Treatments

Aβ 1-42 (rPeptide, USA) was prepared as previously de-
scribed (Messori et al. 2013). Briefly, aggregates of Aβ 1-42
were eliminated with HFIP (hexafluoroisopropanol, Sigma-
Aldrich, USA). Next, HFIP was removed under N2 flux, and
Aβ was dissolved in DMSO (Sigma-Aldrich, USA). Primary
neocortical cell cultures were treated with 5–20 μM Aβ for 6
and 24 h. The neuroprotective effect against Aβ was
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examined with the use of PaPE-1 ((S)-5-(4-hydroxy-3,5-di-
methyl-phenyl)-indan-1-ol, 0.01–10 μM) purchased from
Sigma-Aldrich, USA. All compounds were dissolved in
DMSO (dimethyl sulfoxide, Sigma-Aldrich, USA), not ex-
ceeding a concentration of 0.1% in the culture medium.

Measurement of Lactate Dehydrogenase Release

Lactate dehydrogenase (LDH) release was measured in the
cell culture supernatant at 6 and 24 h after Aβ and/or PaPE-
1 administration with the use of a Cytotoxicity Detection Kit
(Roche, Switzerland) as previously described (Wnuk et al.
2020) and according to the manufacturer’s protocol. The in-
tensity of the red color (formazan salt) was measured at
490 nm and determined as a proportion of the LDH activity.
The measurements were performed using an Infinite
M200PRO microplate reader (Tecan, Switzerland), and the
results were analyzed by i-control software. The data were
normalized to the blank, and the results are presented as a
percentage of the control ± SEM.

Assessment of Caspase-3 Activity

Caspase-3 activity was assessed as described previously
(Wnuk et al. 2020). Briefly, cells were lysed with lysis buffer
containing DTT (DL-dithiothreitol, Sigma-Aldrich, USA) and
incubated with caspase-3 colorimetric substrate—Ac-DEVD-
pNA (N-acetyl-asp-glu-val-asp-p-nitroanilide; Sigma-
Aldrich, USA) at 37 °C. Levels of the caspase-3 reaction
product (p-nitroanilide) were measured for 60 min at
405 nm with an Infinite M200PRO microplate reader
(Tecan, Switzerland). The results were analyzed by using i-
control software and normalized to the absorbance of vehicle-
treated cells. The data are presented as a percentage of the
control ± SEM.

Assessment of theMitochondrial Membrane Potential

Mitochondrial membrane potential was measured with JC-1
Assay Kit (Biotium Inc., USA) as previously described
(Rzemieniec et al. 2018; Wnuk et al. 2018a; Wnuk et al.
2018c; Kajta et al. 2019). According to the manufacturer’s
protocol, aggregation of the JC-1 dye occurs in healthy cells
with intact mitochondrial membranes, with intense red fluo-
rescence. In cells with lowmitochondrial membrane potential,
the JC-1 dye remains in the cytoplasm in a green fluorescent
monomeric form. Red (550 nm/600 nm) and green (485 nm/
535 nm) fluorescence intensities were measured using an
Infinite M200PRO microplate reader (Tecan, Switzerland).
The data were analyzed using Tecan i-control software and
normalized to the fluorescence intensity of vehicle-treated
cells; the results are expressed as the red to green fluorescence
ratio.

Measurement of ROS Activity

Reactive oxygen species (ROS) activity was measured with
the use of H2DCFDA (2′,7′-dichlorodihydrofluorescein
diacetate, 5 μM) as previously described (Wnuk et al.
2018a). H2DCFDA is cell permeable and deacetylated by cel-
l u l a r e s t e r a s e s t o p r o d u c e H 2 DC F ( 2 ′ , 7 ′ -
dichlorodihydrofluorescein), which is rapidly oxidized by
ROS to highly fluorescent 2,7′-dichlorofluorescein (DCF).
DCF fluorescence was measured with excitation and emission
wavelengths of 498 and 522 nm, respectively, using an
Infinite M200PRO microplate reader (Tecan, Switzerland).
The data were analyzed using Tecan i-control software and
normalized to the fluorescence intensity of vehicle-treated
cells (% of control).

Assessment of Cell Viability

For monitoring cell viability, CellTiter-Blue® Cell Viability
Assay (Promega, USA) was applied according to the manu-
facturer’s protocol. The assay is based on the reduction of
resazurin to resorufin and is proportional to the number of
viable cells. Cells were incubated with CellTiter-Blue®
Reagent for 1 h, and then fluorescence was measured at 560/
590 nm using an InfiniteM200PROmicroplate reader (Tecan,
Switzerland). The data were analyzed using Tecan i-control
software and normalized to the fluorescence intensity of
vehicle-treated cells (% of control).

qPCR Analysis of Fas, FasL, Bax, Bcl2, and Gsk3b
mRNA

Total RNA was extracted from neocortical cell cultures at 7
DIV with reagents from an RNeasy Mini Kit (Qiagen, USA)
according to the manufacturer’s protocol, as previously de-
scribed (Wnuk et al. 2018b; Wnuk et al. 2019; Wnuk et al.
2020). The RNA was eluted in 40 μl of RNAse-free water.
The amount of RNA was spectrophotometrically determined
at 260 nm, and a 260/280 nm ratio was obtained (ND/1000
UV/Vis; Thermo Fisher, NanoDrop, USA). An A260/A280
ratio of ~ 2.0 is accepted as indicative of pure RNA. The RNA
extract was reverse transcribed immediately after isolation to
avoid freeze-thaw cycles. The RNA quality (integrity) was
analyzed using PrimePCR™ RNA Quality Probe Assay,
Mouse (Bio-Rad, USA). Total RNA was reverse transcribed
with a High-Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific, USA) according to the manufac-
turer’s protocol with a T100 Thermal Cycler (Bio-Rad, USA).
The collected cDNAwas stored overnight at − 20 °C and used
for quantitative polymerase chain reaction (qPCR) on the next
day. The cDNA was amplified using FastStart Universal
Probe Master (Roche, Switzerland) containing TaqMan
Gene Expression Assays (Thermo Fisher Scientific, USA)
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specific for Fas, FasL, Bax, Bcl2, and Gsk3b. For amplifica-
tion, a mixture containing 10 μl of FastStart Universal Probe
Master, 1 μl of cDNA as template, 1 μl of the TaqMan Gene
Expression Assay mix, and 8 μl of RNase-free water in a total
volume of 20 μl was used. The qPCR procedure using a
CFX96 Real-Time system (Bio-Rad, USA) was performed
as follows: 2 min at 50 °C and 10 min at 95 °C, followed by
40 cycles of 15 s at 95 °C and 1 min at 60 °C. The data were
analyzed using the delta Ct method. The reference gene was
chosen with the use of the following algorithms: geNorm,
NormFinder, BestKeeper, and delta Ct; the 3 algorithms rec-
ommended glyceraldehyde-3-phosphate dehydrogenase
(Gapdh) as the most stable reference gene.

ELISAs of FAS, BAX, and BCL2

Protein expression of FAS, BAX, and BCL2 in neocortical
cells at 24 h after exposure to Aβ was determined using
enzyme-linked immunosorbent mouse-specific assays
(ELISAs; Bioassay Technology Laboratory, China) according
to the manufacturer’s protocol and as described previously
(Wnuk et al. 2020). Absorbance was measured at 450 nm,
and the values were correlatedwith the amounts of the specific
proteins. The total concentrations of the proteins in the sam-
ples were estimated with a Bio-Rad protein assay based on the
method of Bradford (Bio-Rad, USA) using bovine serum al-
bumin (Sigma-Aldrich, USA) as a standard. The level of each
protein measured is expressed as a percentage of the control ±
SEM.

Western Blot Analysis

After experiment, the neocortical cells were lysed in RIPA
lysis buffer with protease inhibitor. The solution was sonicat-
ed and centrifuged at 15,000×g for 20 min at 4 °C. To deter-
mine protein concentration, Bradford reagent (Bio-Rad
Protein Assay, USA) and bovine serum albumin (as a stan-
dard) were used. Samples that contained 35 μg of total protein
reconstituted and denaturated in the Laemmli sample buffer
and next the proteins were separated using 7.5% SDS-
polyacrylamide gel (Bio-Rad, USA). After electrophoresis,
the proteins were electrotransferred from gel to the PVDF
membranes using the Bio-Rad Mini Trans-Blot apparatus.
To block the non-specific binding sites, the membranes were
washed with 5% dried milk and 0.2% Tween-20 in 0.02 M
TBS (Tris-buffered saline) for 2 h. During the night, the incu-
bation of membranes at 4 °C with one of the chosen primary
antibody (Santa Cruz Biotechnology, USA) diluted in TBS/
Tween: anti-β-Actin mouse monoclonal antibody (diluted
1:3500), anti-BAX rabbit polyclonal antibody (diluted
1:100), anti-BCL2 rabbit polyclonal antibody (diluted
1:100), and anti-FAS rabbit polyclonal antibody (diluted
1:100) occurred. Following, the membranes were washed

and incubated for 2 h with horseradish peroxidase-
conjugated IgG in TBS/Tween 20 (diluted 1:1000). The
chemiluminescent signal was detected using BM
Chemiluminescence Blotting Substrate (Roche Diagnostics
GmBH) and visualized with a Luminescent Image Analyzer
Fuji-Las 4000 (Fuji, Japan). Immunoreactive bands were
quantified using MultiGauge V3.0 (ScienceLab).

Statistical Analysis of the Data

Statistical tests were performed on raw data. The results are
expressed as the mean absorbance or fluorescence intensity (in
arbitrary units) per well containing 50,000 cells for analyses of
caspase-3 activity and LDH release and as fluorescence units
per 1.5 million cells for qPCR or as the pg per μg of total
protein for the ELISAs. One-way analysis of variance
(ANOVA) was preceded by the Levene test of homogeneity
of variances and was used to determine overall significance.
Differences between control and experimental groups were
assessed with a post hoc Newman-Keuls test. Significant
differences were indicated as follows: **p < 0.01, and
***p < 0.001 (versus control cultures) and #p< 0.05, ##p< 0.01,
and ###p < 0.001 (versus the cultures exposed to Aβ). The results
are expressed as the mean ± SEM of 3 independent experiments.
The number of replicates ranged from 5 to 12.

Results

PaPE-1 Inhibited Aβ-Induced LDH Release and
Caspase-3 Activity in 7 DIV Neocortical Cultures After
24 H of Exposure

In 7 DIV neocortical cultures, 24 h of exposure to Aβ (5–
10 μM) induced LDH release in the range of 141–258%
of the control. Cotreatment with 5 μM PaPE-1 inhibited
the effects of Aβ, reaching levels of 118–166% of the
control, i.e., reduced by 23–92% (Fig. 1, panel b).
Moreover, Aβ (5–10 μM) increased caspase-3 activity
to 148–278% of the control value. PaPE-1 (5 μM) effec-
tively reduced Aβ-enhanced caspase-3 activity by 30–79%
(Fig. 1, panel c).

Six hours of Aβ exposure to 5–10 μM Aβ did not activate
LDH or caspase-3 . Following exposure to 20μMAβ, caspase-
3 activity increased to 280% of the control. PaPE-1 (0.01–
10μM, alone) did not change LDH release or caspase-3 activity
in 7 DIV neocortical cultures (Fig. 1, panel a).

PaPE-1 Partially Reversed Aβ-Reduced Mitochondrial
Membrane Potential in 7 DIV Neocortical Cultures

In the present study, 24 h exposure to Aβ (5–10 μM) substan-
tially reduced the mitochondrial membrane potential to 50–
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70% of the control value. The effect of Aβ was partially re-
versed by treatment with 5 μM PaPE-1, which increased the
mitochondrial membrane potential by 12–21% (Fig. 2).

Twenty-four hours of exposure to PaPE-1 (5 μM, alone)
did not alter the mitochondrial membrane potential in 7 DIV
neocortical cultures.
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Fig. 1 Time course and concentration response of Aβ and/or PaPE-1 on
caspase-3 activity and LDH release in primary cultures of mouse neocor-
tical cells at 7 DIV. Six hour exposure to 5-10 μMAβ as well as 24 hour
treament with PaPE-1 (0.01-10 μM) did not activate LDH or caspase-3
(panel a). After 24 hour treatment, 5 μM PaPE-1 inhibited the effects of

Aβ in response to LDH release (panel b) and caspase-3 activity (panel
c). The results are presented as a percentage of the control. Each bar
represents the mean ± SEM of 3 independent experiments, consisting of
5 to 8 replicates per group. ***p < 0.001 versus the control and
###p < 0.001 versus Aβ-treated cells
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PaPE-1 Inhibited Aβ-Increased ROS Activity in 7 DIV
Neocortical Cultures

After 24 h of exposure to 5 and 10μMAβ, ROS productionwas
enhanced and reached values of 173% and 240%, respectively.
Cotreatment with 5μMPaPE-1 inhibited the effects of Aβ, with
levels 125–180%of the control, i.e., reduced by48–60% (Fig. 3).

PaPE-1 (5 μM, alone) exposure for 24 h did not alter ROS
activity in 7 DIV neocortical cultures.

PaPE-1 Partially Reversed Aβ-Decreased Cell Viability
in 7 DIV Neocortical Cultures

Cell viability decreased by 28% following 24 h of exposure to
10 μM Aβ compared with control values. After treatment
with 5 μM PaPE-1, the Aβ-induced decrease in cell viability
was partially reversed by 10%. However, PaPE-1 alone
(5 μM) did not significantly affect neuronal viability (Fig. 4).

PaPE-1 Affected the Aβ-Increased mRNA Expression
Levels of Apoptosis-Related Genes

After 24 h of treatment with 10 μM Aβ, the mRNA expres-
sion levels of apoptosis-related genes, i.e., Fas (16.32-fold

increase), FasL (11.78-fold increase), Bax (1.13-fold in-
crease), and Gsk3b (0.37-fold increase), were increased,
though expression of Bcl2 was unaffected. Cotreatment with
PaPE-1 (5 μM) inhibited Aβ-induced mRNA expression of
Fas and Bax to 13.90-fold and 0.84-fold, respectively, com-
pared with the control cells, whereas it stimulated expression
of FasL to 16.11-fold. PaPE-1 did not influence expression of
Bcl2 or Gsk3b (Fig. 5).

PaPE-1 Changed the Aβ-Increased Apoptosis-Related
Protein Expression Levels

Changes inprotein levelswereobserved inmouseneocortical cells
at 24hafter treatment.Theprotein levelsofFAS,BAX,andBCL2
in control neocortical cultures reached 0.00092, 0.00159, and
0.01003pgperμgof total protein, respectively, and treatmentwith
10μMAβfor24hincreasedtheselevelsto46–310%ofthecontrol
values.CotreatmentwithPaPE-1(5μM)decreasedproteinexpres-
sion of FAS andBAXby 89–153%of theAβ-induced values but
increased the level of BCL2 protein expression to 182% of the
control (Fig. 6, panel a). The western blot results are similar to the
ELISAs. Ithasbeenobservedthat the treatmentwith10μMAβ for
24 h increased protein levels of FAS, BAX, and BCL2 to 121–
195% of the control values. After the cotreatment with PaPE-1
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(5μM), theprotein expressionofFASandBAXdecreasedby15–
100% of the Aβ-induced values but the level of BCL2 protein
expression increased to 198% (Fig. 6, panel b).

Discussion

This study demonstrates for the first time that PaPE-1, which
has been designed to selectively activate non-nuclear ERs, has
anti-AD capacity, as evidenced in a cellular model of the dis-
ease. Following 24 h of exposure, PaPE-1 inhibited Aβ-evoked
effects, as shown by reduced parameters of neurotoxicity and
apoptosis, including suppressed expression of Fas/FAS and
Bax/BAX and increased expression of the antiapoptotic protein

BCL2. Intriguingly, we observed Aβ-stimulated expression of
BCL2, which is in line with human studies showing elevated
amounts of the protein in the brains of AD patients (Satou et al.
1995; O’Barr et al. 1996; Kitamura et al. 1998). Moreover,
upregulation of BCL2 has been observed in APP transgenic
mice, restricted to amyloid-containing brain regions
(Karlnoski et al. 2007). However, PaPE-1 did not affect Aβ-
stimulated expression of Gsk3b mRNA in our model, which
suggests no interference of GSK3β-mediated apoptosis or tau
hyperphosphorylation. PaPE-1 is a selective non-nuclear ER
activator that does not activate classic nuclear ERs acting as
transcription factors and targets only non-nuclear ERs acting
via second messengers. This property positions PaPE-1 as a
unique pharmacological tool that possesses the neuroprotective
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reversed Aβ-decreased cell via-
bility in 7 DIV neocortical cul-
tures. The results are presented as
a percentage of the control. Each
bar represents the mean ± SEM of
3 independent experiments,
consisting of 8–12 replicates per
group. ***p < 0.001 versus the
control and ###p < 0.001 versus
Aβ-treated cells
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potential of estrogen with limited uterotrophic effects and can-
cer risks. Recently, PaPE-1 was shown to decrease stroke se-
verity in a mouse model of tMCAO (Selvaraj et al. 2018), in
addition to exerting cardiometabolic benefits (Gourdy et al.
2018). Therefore, our present studywidens the window of phar-
macological utility of PaPE-1 for the treatment of AD.

There is no relevant study comparing the effects of PaPE-1,
though the model of AD is widely recognized and valuable. We
showed that inmouse neocortical neurons, 24 h of treatmentwith
Aβ (5and10μM)inducedapoptosis(lossofmitochondrialmem-
brane potential, activation of caspase-3, induction of apoptosis-
related genes and proteins) accompanied by increased levels of
ROSandLDHaswellasareducednumberofviablecells.Similar
effects of Aβ were observed by Su et al. (2003), who noted up-
regulated expression of Fas and FasL in primary neurons, and
Marquardt et al. (2017),who showed caspase-dependent apopto-
sis in mouse hippocampal HT22 cells following treatment with
Aβ 1-42. Previous established cellular models of AD include
mammalian neurons in primary cultures, human neuroblastoma
SH-SY5Y and SK-N-MC cells, and teratocarcinoma NT2 cells.
These cells,when treatedwithAβ peptide or toxicAβoligomers
or transfected with mtDNA from AD patients, exhibit senile
plaque formation, elevated ROS production, and/or cell death.
Furthermore, SH-SY5Y cells with inhibited complex I and
transfected with an additional copy of the human AβPP gene

show slightly elevated Aβ levels, moderately decreased ATP
levels, impaired mitochondrial membrane potential, and de-
creasedmitochondrial respiration (Stockburger et al. 2014).

According to our study, preferential activation of ER extranu-
clear pathways with PaPE-1 inhibits Aβ-induced apoptosis in
terms of caspase-3 activity, mitochondrial membrane potential,
and expression of apoptotic genes and proteins belonging to the
internal (mitochondrial) or external (FAS-dependent) apoptotic
pathways. Furthermore, PaPE-1 inhibits Aβ-induced ROS for-
mation, which might in turn inhibit apoptosis, as well as prevent
neuronal cell death in terms of LDH release from dead cells and
CellTiter-Blue staining of viable cells. Because PaPE-1 down-
regulated Aβ-induced Fas/FAS expression but upregulated Aβ-
induced FasL mRNA, the role of PaPE-1 in controlling the ex-
ternal apoptotic pathway is controversial. Nonetheless, PaPE-1
normalized the Aβ-induced loss of mitochondrial membrane
potential and restored the BAX/BCL2 ratio, which suggests that
the anti-AD capacity of PaPE-1 particularly relies on inhibition
of the mitochondrial apoptotic pathway.

Conclusion

In summary, our study is the first to provide evidence that pref-
erential activation of ER extranuclear pathways with PaPE-1

0

50

100

150

200

250

FAS BAX BCL2

re
la

tiv
e

ba
nd

 d
en

si
ty

[%
 o

f t
he

 
co

nt
ro

l]

control
Aβ 10 μM
Aβ 10 μM + PaPE-1

##

###

##

**

***

***

FAS 48 kDA

BAX 21 kDA

BCL2 26 kDA

β-actin 42 kDA

b

5 µM

0

100

200

300

400

500

FAS BAX BCL2

pr
ot

ei
n 

le
ve

l[
%

 o
f t

he
 c

on
tr

ol
]

control
Aβ 10 µM
Aβ 10 µM + PaPE-1 5 µM

#

*** ***

**

##

#

a

pg/μg of the protein FAS BAX BCL2

control 0.00092 ± 0.002 0.00159 ± 0.0004 0.01003 ± 0.002

Aβ 10 µM 0.00377 ± 0.001 0.00625 ± 0.0006 0.01464 ± 0.001

Aβ 10 µM + PaPE-1 5 µM 0.00245 ± 0.003 0.00483 ± 0.0007 0.01821 ± 0.003

Fig. 6 PaPE-1 changed the Aβ-induced increase in apoptosis-related
protein expression levels in mouse neocortical cells. Levels of the recep-
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(panel b) after 24 h of treatment. Each result is presented as a percentage
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versus control cultures, #p < 0.05, ##p < 0.01, and ###p < 0.001 versus Aβ-
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protects brain neurons against Aβ-induced toxicity and that the
mechanism involves inhibition of oxidative stress and apoptosis,
with particular modulation of the internal/mitochondrial pathway.
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