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Abstract: The Plug-and-Play framework has demonstrated that a denoiser can implicitly serve as the
image prior for model-based methods for solving various inverse problems such as image restoration
tasks. This characteristic enables the integration of the flexibility of model-based methods with the
effectiveness of learning-based denoisers. However, the regularization strength induced by denoisers
in the traditional Plug-and-Play framework lacks a physical interpretation, necessitating demanding
parameter tuning. This paper addresses this issue by introducing the Constrained Plug-and-Play
(CPnP) method, which reformulates the traditional PnP as a constrained optimization problem.
In this formulation, the regularization parameter directly corresponds to the amount of noise in
the measurements. The solution to the constrained problem is obtained through the design of an
efficient method based on the Alternating Direction Method of Multipliers (ADMM). Our experiments
demonstrate that CPnP outperforms competing methods in terms of stability and robustness while
also achieving competitive performance for image quality.

Keywords: plug-and-play priors; constrained formulation; image restoration; inverse problems;
regularization by denoising; discrepancy principle

1. Introduction

The challenge of reconstructing a high-quality image x ∈ Rn from its degraded mea-
surement b ∈ Rn is commonly formulated as a linear inverse problem. Such a problem has
to be addressed in several imaging frameworks, such as in medicine [1–4], microscopy [5–7],
and astronomy [8–10]. Although these are different and maybe distant topics, they share a
common linear model [11] for the image acquisition process: namely,

b = Ax + η, (1)

where A ∈ Rn×n is a known blur operator called the Point Spread Function (PSF) [12], and
η ∈ Rn represents additive random noise with a standard deviation of ση. Linear inverse
problems, due to the physics underlying the data acquisition process, often suffer from
ill-posedness [12], necessitating the formulation of the solution x⋆ ∈ Rn as a minimizer of a
regularized objective function.

The standard model-based approach involves minimizing a regularized objective
function of the form:

x∗ ∈ argmin
x∈Rn

ℓ(x; A, b) + µρ(x), (2)

where ℓ(x; A, b) encodes data fidelity information, and ρ(x) is the regularization term.
The choice of the function ℓ depends on the statistical noise perturbing the data. In the
presence of additive Gaussian noise (AWGN), the natural choice is the least square func-
tion, whilst signal-dependent noise requires tailored functionals: for example, Poisson
noise induces the employment of the Kullback–Leibler functional [13–15]. Defining the
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regularization parameter µ > 0 is crucial, and it is often selected by hand. The imaging
community has developed several techniques for the automatic choosing of such a parame-
ter. For example, well established methods such as the discrepancy principle, L-curve, or
cross-validation [16] have been considered for Gaussian noise, while the discrepancy prin-
ciple has been adapted also in the presence of Poisson noise [17,18]. Alternatively, another
interesting approach consists of recasting the optimization problem (2) as a constrained
one [19–21]: namely,

x∗ ∈ argmin
x∈Rn

ρ(x) s.t. ℓ(x; A, b) ≤ c. (3)

The positive scalar c represents the strength of the constraints, and different from the
parameter µ in (2), it has a physical meaning. For example, the value of c in (3) usually
depends on the amount of noise.

Another grand challenge for the model-based approach is the design of an effective
regularization functional ρ(x) capable of capturing intricate image features. Some examples
include the well-known Tikhonov regularization [22], known as ridge regression in statisti-
cal contexts, and its variant that promotes diffuse components on the final reconstruction;
the total variation functional, which aims to preserve sharp edges [2,23,24]; the ℓp-norms
regularizers, with 0 ≤ p ≤ 1, which induce sparsity on the image and/or gradient do-
mains [19,25,26]; and the elastic-net functional [4], which is a convex combination of ℓ1 and
ℓ2 norms.

Nowadays, it has been recognized that among the possible strategies to solve imaging
inverse problems, learning-based techniques represent the most efficient alternative. The
advancements in deep learning for imaging problems were driven by the application of
neural networks to learn an inverse mapping from measurements to the image space to
obtain an approximate solution. In particular, a dataset is composed by considering several
acquisitions and their corresponding ground truths, and a neural network is trained in
order to minimize the empirical risk. This end-to-end approach is very interesting since the
forward degradation model (1) is not needed. This property is extremely useful when the
problem of interest is physically unknown or hard to express with an analytical expression.
Another appealing characteristic of these inverse learning methods is their computational
efficiency during the inference, as they outperform standard variational techniques. How-
ever, the major limitation of learning approaches regards the stability of the models [27].
The presence of noise in the measurement can produce various artifacts in the reconstruc-
tion obtained through a neural network [28]. Moreover, when a measurement falls outside
the training set distribution, the model may produce hallucinated reconstructions contain-
ing misleading artifacts [29]. Such undesired behavior is particularly problematic in some
applications. In addition, different from variational approaches, learned models have to be
retrained whenever the acquisition model changes.

A popular technique to construct a model that is adaptable to various imaging tasks
with loose dependence on the training data consists of decoupling the degradation model
from the learning-based prior. The fast development of learning-based techniques in the
field of imaging inverse problems has allowed the defining of data-driven regularizers that
have largely outperformed handcrafted ones [30]. This approach is often referred to as
Plug-and-Play (PnP) and represents a versatile and innovative paradigm to impose a statis-
tically learned prior within a variational framework. The PnP prior framework [31–35] has
emerged as a potent approach that leverages advanced denoisers as regularizers without
explicitly defining ρ(x). However, the lack of an explicit objective function complicates
theoretical analyses [35]. Regularization by denoising (RED) [36] addresses this by formu-
lating an explicit regularization functional, but practical challenges persist, especially in
ensuring denoisers align with the manifold of natural images.

The complexity of selecting an appropriate regularizer prompts exploration beyond
traditional handcrafted terms. While model-based approaches often rely on handcrafted
terms, this paper advocates for the PnP framework and demonstrates that closed-form
regularizers are not always optimal for inducing prior information. The PnP approach,
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rooted in proximal algorithms, allows substituting the regularization term with off-the-shelf
denoisers, diversifying prior information sources. The paper concludes with an overview
of existing PnP studies that highlights the modular structure’s flexibility and the versatility
of employing various proximal algorithms and denoisers.

The presented work is organized as follows. Section 2 is devoted to provide a brief
introduction to the PnP method (Section 2.1), and then it presents the novel constrained
approach (Section 2.2). Section 3 addresses the performance of the the proposed model. In
particular, we define the implementation settings (Section 3.1); we discuss selection of the
optimal denoiser, examining how different denoising priors influence the overall perfor-
mance of the proposed model (Section 3.2); we show the robustness of the proposed method
with respect to its parameters (Sections 3.3 and 3.4); we provide comparisons from a quan-
titative and qualitative perspective with similar state-of-the-art algorithms (Section 3.5).
Finally, Section 4 draws the conclusion and future perspectives.

Notations

Bold small letters refer to vectors, while bold capital letters refer to matrices. The operator
prox f (x) stands for the proximity operator of f : prox f (x) = argmin

y
f (y) + γ/2∥x − y∥2

2.

The projection on a setA is denoted with projA. Square or rectangular images are vectorized:
an image x ∈ Rp×q is seen as a vector belonging to Rn, where n = pq and the elements of x
are stacked column-wise. The term ιA denotes the indicator function of the setA. R+ denotes
the set of positive real numbers.

2. Constrained PnP Model

This section briefly introduces the Plug-and-Play approach: showing its main idea and
convergence properties. The second part is devoted to presenting the novel constrained
strategy.

2.1. Plug-and-Play Models: A Brief Overview

The building block of Plug-and-Play methods is the established Alternating Direc-
tion of Multipliers Method (ADMM) used to solve Problem (2): this method introduces
a novel variable that induces a further constraint; in this way, one is led to solve the
following problem.

argmin
x=v

ℓ(x; A, b) + µ ρ(v). (4)

The augmented Lagrangian function for (4) reads as

L(x, v, µ) = ℓ(x; A, b) + µρ(v) + ⟨λ, x− v⟩+ β

2
∥x− v∥2

2,

where β ∈ R+ is a penalty parameter and λ ∈ Rn is the Lagrangian parameter relative
to the constraint x = v. After minimal algebraic manipulations, the new unconstrained
problem to be solved is

min
x,v∈Rn

max
λ∈Rn

ℓ(x; A, b) + µ ρ(v) +
β

2

∥∥∥∥x− v +
λ

β

∥∥∥∥2

2
− 1

2

∥∥∥∥λ

β

∥∥∥∥2
. (5)

Such a problem is addressed by the Alternate Direction Method of Multipliers, which
is shown in Algorithm 1. The astute reader will recognize that Steps 3 and 4 in Algorithm 1
are the proximity operators [37] of ℓ and µ ρ computed at vk − λk/β and at xk+1 + λk/β,
respectively. For classical choices for ℓ, such as the least square or the Kullback–Leibler
functionals, the proximity operators have explicit expressions (see [38] for a comprehensive
list of proximity operators for several families of functions). The straightforward expression
for the proximity operator of µ ρ is available for particular regularizations: such as, for
example, ℓ1, whose prox is the soft thresholding operator, and Tikhonov regularization,
whose prox is simply a rescaling of the input [38].
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Algorithm 1 Alternating Direction Method of Multipliers (ADMM)

1: Select parameters β, µ ∈ R+, set x0, v0, λ0.
2: for k = 0, 1, . . . do

3: xk+1 = argmin
x∈R

ℓ(xk; b) +
β

2

∥∥∥∥∥x− vk +
λk

β

∥∥∥∥∥
4: vk+1 = argmin

v∈R
µ ρ(v) +

β

2

∥∥∥∥∥xk+1 − v +
λk

β

∥∥∥∥∥
5: λk+1 = λk + β(xk+1 − vk+1)
6: end for

Under the framework presented in [31], Step 3 of Algorithm 1 is considered as a
reconstruction step and provides the maximum a priori estimate given the data b and the
operator A. Step 4 is the denoising operator: this depends obviously on the design choice
in (2), namely, in the choice for ρ. The strategy depicted in [31] instead suggests bypassing
this designing and directly employing a denoising operator D in Step 3.

This is tantamount to still considering an objective function as in (2), but regularization
functional ρ is unknown. Algorithm 2 assumes that the operator D is the proximity operator
of the unknown function µρ computed at x + λ/β:

v = D(x + λ/β) = proxµρ(x + λ/β).

After its first presentation to the scientific community, several researcher showed that
under a suitable hypothesis, Plug-and-Play methods converge to a solution of the original
problem. In [39], the authors showed fixed-point convergence under the usage of denoisers
belonging to the bounded denoiser class. The authors in [40] adopt an incremental version
of PnP algorithm and prove its convergence under some explicit hypothesis on ℓ and on
the chosen denoiser. Ref. [41] shows that under the hypotheses of D being averaged [41]
(Definition 2.1) and ℓ being convex, Algorithm 2 converges and, moreover, that it can be
proved that some denoisers are actually the prox of some particular functions (e.g., the
non-local-mean filter is the prox of a quadratic convex function).

Algorithm 2 Plug-and-Play method (PnP)

1: Select parameters β ∈ R+, set x0, v0, λ0, select a denoiser D : Rn → Rn.
2: for k = 0, 1, . . . do

3: xk+1 = argmin
x∈R

ℓ(xk; b) +
β

2

∥∥∥∥∥x− vk +
λk

β

∥∥∥∥∥
4: vk+1 = D(xk+1)
5: λk+1 = λk + β(xk+1 − vk+1)
6: end for

2.2. The Proposed Constrained Model

Under the hypothesis of additive noise in (1) and following the constrained approach [42]
shown in (3), Problem (2) is reformulated as

argmin
x∈Rn

ρ(x) s.t. ℓ(x; A, b) ≤ δ,

where δ =
√

n τ ση, with τ ∈ [0, 1] and ση being the known noise level. Hereafter, we
assume that an AWGN framework, i.e., additive Gaussian noise is perturbing the image,
and hence, the choice of a fit-to-data functional consists of the least square:

ℓ(x; A, b) =
1
2
∥Ax− b∥2

2.



J. Imaging 2024, 10, 50 5 of 15

The constrained formulation, hence, has the following form:

argmin
x∈Rn

ρ(x) subject to
1
2
∥Ax− b∥2

2 ≤ δ, (6)

We make the following assumption:

Assumption 1. The function ρ is continuous.

The constraint set is compact; thus, under Assumption 1, Problem (6) has at least
one solution by Weierstrass theorem. Problem (6) can be equivalently recast into the
following form:

argmin
x,v,r∈Rn

ρ(x) + ιBδ
(r), s.t r = Ax− b, x = v, (7)

where Bδ := {r ∈ Rn | ∥r∥2
2 ≤ δ} is a closed disk with a zero center and radius δ. Adopting

the approach of Section 2.1, the augmented Lagrangian function relative to Equation (7)
reads as

L(x, r, v; λv, λr) = ρ(v) + iBδ
(r)

+
βr

2

∥∥∥∥Ax− b− r +
λr

βr

∥∥∥∥2

2

+
βv

2

∥∥∥∥x− v +
λv

βv

∥∥∥∥2

2
− 1

2

∥∥∥∥λr

βr

∥∥∥∥2

2
− 1

2

∥∥∥∥λv

βv

∥∥∥∥2

2
,

(8)

where λr and λv are the Lagrange multipliers, and βr and βv are the proximity penalties.
The new task to be addressed is, hence,

min
x,v,r

max
λr,λv
L(x, r, v; λv, λr)

and then the PnP-ADMM approach can be adopted to solve the above optimization prob-
lem. As previously shown, this amounts to substituting the proximity operator of ρ
computed at x + λv/βv with a denoiser computed at the same point. Algorithm 3 shows
the implementation of this strategy.

The noise level δ may be a priori known; on the other hand, when information only
about the type of noise is available, one can find in the literature several methods to
estimate the noise level (see for example [43]). The computation of xk+1 seems to pose
some computational issues since it requires the inversion of a matrix, which could be
cumbersome in terms of computational cost. Nonetheless, under a suitable hypothesis for
the operator A, which is practically satisfied in real-life applications, such an update can be
easily pursued in Fourier spaces via FFTs.

Remark 1 (Convergence of the ADMM approach). We discuss some observations about the
convergence of the presented scheme in Algorithm 3.

• A well-established result [44] states that ADMM converges even when more than two variables
are considered in the formulation.

• The substitution of the proximity operator in Step 4 may hinder the convergence behavior of the
whole algorithm. Coupling the result from [44] with [41], for example, assures the convergence
for a suitable denoiser D.
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Algorithm 3 Constrained Plug-and-Play approach (CPnP)

1: Set δ, x0, v0 = 0, and r0 = b−Ax0, select βu, βr > 0, and initialize λ0
r , λ0

v. Choose a denoiser D.
2: for k = 0, 1, . . . do

3: xk+1/2 =
βr

βv
A⊤
(

b + rk − λk
r

βr

)
+

(
vk − λk

v
βv

)

4: xk+1 ←
(

βr

βv
A⊤A + I

)−1
xk+1/2

5: vk+1 = D

(
xk+1 +

λk
v

βv

)

6: rk+1 = projBδ

(
Axk+1 − b +

λk
r

βr

)
7: λk+1

r ← λk
r + βr(rk+1 −Axk+1 + b)

8: λk+1
v ← λk

v + βv

(
xk+1 − vk+1

)
9: end for

Remark 2. We point out that the constrained approach has a remarkable positive outcome: it avoids
selection of the regularization parameter in Problem (2).

3. Results

In this section, we delve into the outcomes of our study. The first subsection begins
with an overview of the methodological setting. This encompasses the experimental setup,
the metrics employed for the evaluation of the results, and a comprehensive presentation of
the comparative methods. Subsequently, we focus on the analysis of the proposed method
with respect to the choice of the ADMM penalty sequences. The final section offers a
detailed examination, both qualitatively and quantitatively, of our approach in comparison
to its competitors.

3.1. Settings, Evaluation Metrics, and Competing Baseline Methods

As a case study, we focus on the task of image deblurring with AWGN assumptions.
Accordingly, in Equation (1), A represents a Gaussian blurring operator with a standard
deviation of σA, and η denotes zero-mean Gaussian noise with a standard deviation of
ση. We generate blurry and noisy data by applying the image formation model (1) to the
images from Set5 [45] and Set24 [46], which are referred to as the ground truths (GTs).

Our method is compared with two baselines: (1) the original unconstrained Plug-
and-Play model [47] solved via the half-quadratic splitting (HQS) algorithm and (2) the
unconstrained RED formulation [36] solved via ADMM. The former is referred to as PnP
and the latter is referred to as RED in the following.

We evaluate the quality of restored images using the peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) metrics: both assess the quality of the reconstruction.
PSNR offers a numerical perspective by measuring the ratio between the maximum possible
power of a signal and the power of corrupting noise that affects the fidelity of its represen-
tation. It quantifies the degree of distortion present in the restored image compared to the
original and considers the full range of pixel values. Higher PSNR values typically indicate
better-quality reconstruction as they suggest lower levels of distortion. SSIM evaluates the
structural similarity between the restored image and the original from a perceptual stand-
point. It considers factors such as luminance, contrast, and structure—mimicking human
visual perception. SSIM scores closer to 1 indicate greater similarity between the restored
and original images and reflect higher perceived quality. Additionally, from a theoretical
standpoint, considering a ground truth image x and its blurred and noisy simulated data
b, we use σx := ∥Ax−b∥2√

n−1
as an unbiased estimator of ση. Thus, we compare the real noise

standard deviation ση with σx∗ , where x∗ refers to the output of the algorithms.
We point out that, as one could expect, the quality of the restored images computed

using PnP and RED strongly depends on the choice of the regularization parameters (since
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they consider unconstrained models). In the experiments, the regularization parameters
are selected in order to maximize the PSNR metric. We stress that the proposed CPnP
automatically selects the strength of the regularization, thus avoiding highly demanding
parameter tuning.

Finally, as the stopping criterion, we choose the relative difference of the iterates within
a tolerance of 10−4. The maximum number of iterations is set to 100 for all the methods.

All the experiments are conducted on a PC with an Intel(R) Core(TM) i7-8565U CPU
@ 1.80 GHz 1.99 GHz (Intel Corporation, Santa Clara, CA, USA), running Windows 10 Pro
and MATLAB 2023b. The codes of the proposed CPnP are available at https://github.com/
AleBenfe/CPNP (accessed on 25 January 2024).

3.2. On the Choice of the Denoiser

In this section, we evaluate the CPnP method’s efficacy: specifically, by analyzing its per-
formance when considering various state-of-the-art denoising techniques as denoising engines.
Our investigation encompasses the Block-Matching and 3D Filtering (BM3D) [48], Non-Local
Means (NLM) [49], and Deep Convolutional Neural Network (DnCNN) [47] methods.

BM3D [48] employs a multi-step process wherein it partitions the image into blocks,
identifies similar blocks, collaboratively filters them to estimate clean signals, applies 3D
transform filtering to reduce noise, and aggregates these filtered blocks to produce the final
denoised image. In contrast, NLM [49] compares local image patches, averages similar
patches to estimate clean pixels, and then outputs a denoised image. Lastly, DnCNN [47]
utilizes a deep neural network to directly map noisy images to denoised counterparts,
utilizing residual learning to boost its performance.

In this section, the focus is on images belonging to the Set5 dataset. We simulate blurred
and noisy data by employing the linear image formation model defined in Equation (1)
with parameters set to (σA = 0.8, ση = 15). Through this setup, we aim to assess how each
of the aforementioned denoising methods impacts the quality of the restored images with
respect to PSNR and SSIM metrics and visual quality.

In Table 1, we report the mean values of PSNR and SSIM for images in the Set5 dataset
for NLM, BM3D, and DnCNN. DnCNN consistently demonstrates superior performance
compared to both BM3D and NLM across both PSNR and SSIM metrics. Specifically, this
suggests that DnCNN induces better regularization compared to BM3D and NLM.

In Figure 1, we report the restored images using DnCNN, BM3D, and NLM alongside
their respective ground truth and corrupted input data. DnCNN (Figure 1e) produces
reconstructions that are noticeably more accurate and clearer (less blurred) and with fine
details better preserved. In contrast, NLM (Figure 1c) tends to overly smooth out details,
while the BM3D reconstruction (Figure 1d) appears out of focus.

These observations align with the findings from Table 1. The visual assessment further
reinforces the superiority of DnCNN and highlights its ability to preserve image details
and enhance overall image clarity when compared to traditional denoising methods like
NLM and BM3D. Based on these findings, we solely consider DnCNN as the embedded
denoiser in our CPnP framework for the subsequent sections.

Table 1. Mean values of PSNR and SSIM for the images in Set5 by varying the embedded denoiser:
namely, NLM, BM3D, and DncNN. The best results are highlighted in bold. DnCNN outperforms
both BM3D and NLM in terms of the considered metrics.

Set5 (σA = 0.8, ση = 15)

Metric NLM BM3D DnCNN

PSNR 30.27 31.14 31.52

SSIM 0.90 0.91 0.92

https://github.com/AleBenfe/CPNP
https://github.com/AleBenfe/CPNP


J. Imaging 2024, 10, 50 8 of 15

(a) GT (b) Degraded

(c) NLM (d) BM3D (e) DnCNN
Figure 1. Restoration of the Butterfly image from Set5 obtained when selecting different denoising
engines: namely, NLM, BM3D, and DnCNN. From left to right: two close-ups of ground truth,
degraded image, and the CPnP restorations with NLM, BM3D, and DnCNN. Our CPnP provides
more reliable restorations characterized by enhanced clarity and reduced noise when using DnCNN
as the denoiser.

3.3. On the Choice of the Penalty Sequence for the Proposed CPnP

In this section, we investigate the performance of the implemented CPnP method
by systematically varying the ADMM penalty sequences. We define increasing penalty
sequences according to the relations:

βk+1
r = γ · βk

r ,

βk+1
v = γ · βk

v,

where γ ≥ 1. Our experimental setup involves initializing the pair of parameters
(
β0

r , β0
t
)

from
the set {0.2, 0.4, 0.6, 0.8, 1}2 and testing different values of γ: specifically, γ = 1, 1.01, 1.05.

We set τ = 1, and for the purposes of our experiments, we assume a known level of
noise denoted by ση. Further discussion on the rationale behind choosing these parameters
will be provided in the subsequent section.

As discussed in the previous section, we adopt the DnCNN introduced in [47] as the
denoising prior due to its state-of-the-art performance in the field and its fast computation.

We consider the sole butterfly image from Set5. We simulate a degraded acquisition by
setting σA = 1.2 and ση = 30. We investigate the stability of CPnP with respect to the choice
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of γ, β0
r , and β0

t . We point out that in the experiments, we did not observe any significant
difference when choosing different images.

The stability of the implemented CPnP is depicted in Figure 2a,b. The figures il-
lustrate the distribution of the PSNR and SSIM metrics, respectively, while varying the
starting points (β0

r , β0
t ) of the increasing ADMM penalty sequences for different values of γ.

More specifically, for each β0
r , we consider the distribution of the considered metrics (aver-

age ± standard deviation) with respect to β0
t for different values of γ. In-depth analysis

reveals that CPnP consistently maintains high performance levels, as assessed by PSNR and
SSIM metrics, even when varying the parameter γ and employing different initializations
for β0

r and β0
t . This robustness across different settings underscores the reliability and

effectiveness of the CPnP approach for deblurring and denoising tasks. For all subsequent
sections, we set β0

r = 1, β0
t = 1, and γ = 1.01 as fixed parameters.

(a) Plot of PSNR(β0
r ). (b) Plot of SSIM(β0

r ).

Figure 2. Distribution of PSNR (a) and SSIM (b) by varying the starting points (β0
r , β0

t ) of the
increasing ADMM penalty sequences for different value of γ. In (a,b), for each β0

r , we present
the PSNR and SSIM distributions (average ± standard deviation), respectively, with respect to β0

t .
The solid lines represent the means of these distributions. The results demonstrate the stability of
CPnP and reveal comparable performance in terms of PSNR and SSIM across various γ values and
initializations of β0

r and β0
t .

3.4. On the Choice of the Constraint Parameters for the Proposed CPnP

In this section, we consider the images belonging to Set5. We generate blurred and
noisy data by applying the linear image formation model (1) with two different degradation
settings (σA = 1, ση = 15) and (σA = 1.3, ση = 30). We examine the impact on the restored
images of δ = τ

√
n ση with τ ranging in [0,1]. Two distinct scenarios are taken into account.

In the first, which is referred to as the ideal scenario in the following, we assume that the
magnitude of ση is exactly known. In the second, which is referred to as the realistic scenario
in the following, we assume that only an estimate ση of ση is provided. The estimation is
computed following the approach outlined in [43].

In Figure 3a–d, we illustrate the variations in σx∗ and PSNR as a function of τ for
the two different degradation levels considered. For each τ, we display the distribution
(average ± standard deviation) across all images in Set5 (depicted as shaded regions). The
red and blue lines denote the means of these distributions for the idealized and realistic
scenarios, respectively. Additionally, in Figure 3a,c, the yellow dashed line represents the
true standard deviations (namely ση = 15 and ση = 30) of the Gaussian noise affecting all
the data in Set5.

In Figure 3a,c, the idealized scenario (blue lines) demonstrates that the computed σx∗

closely aligns with ση when τ = 1 across all images in Set5 (thin shading). In contrast,
within the realistic scenario, where only an estimate ση of the Gaussian noise level is
provided, the optimal approximation of ση is achieved at τ = 0.98 for both degradation
levels. Multiple experiments have consistently revealed that this phenomenon stems from
the algorithm in [43], which tends to overestimate the noise level in the simulated data b.
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Figure 3b,d illustrate the behavior of the PSNR metric with respect to τ. Notably,
comparable performance in terms of PSNR is observed for both scenarios. Additionally,
Figure 3b,d emphasizes that the highest PSNR is achieved when setting τ < 1.

(a) Plot of σx∗ (τ). (b) Plot of PSNR(τ).

(c) Plot of σx∗ (τ). (d) Plot of PSNR(τ).

Figure 3. Distribution of σx∗ (a) and PSNR (b) by varying τ for the ideal (red line) and realistic (blue
line) scenarios. In (a,c), the dashed yellow line represents the standard deviation of the Gaussian
noise corrupting the degraded data (ση = 15 and ση = 30, respectively). In (a–d), for each τ, we
present the σx∗ and PSNR distributions (average ± standard deviation) with respect to all the images
in Set5 for the two different degradation levels considered. The solid red and blue lines represent the
means of these distributions.

Lastly, Figure 3a indicates that smaller values of τ tend to underestimate, while larger
values of τ tend to overestimate ση. Figure 3b shows that the PSNR metric is negatively
affected by these under/overestimations of the noise level.

Figure 4 provides a visual inspection of the behavior of CPnP with respect to τ values.
Small values produce several artifacts in the recovered images, while higher ones induce an
oversmoothing effect on the final result. The most reliable results are obtained for τ close to
1−, i.e., for values close to 1 but still smaller than 1. This behavior is due to overestimation
of the noise level given by the employed algorithm [43].

To enhance the reliability of our CPnP testing, we employ the noise level estimation
method proposed by [43] to estimate ση, and consistently set τ = 0.98 for all subsequent
experiments.
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(a) GT (b) Degraded (c) τ = 0.80

(d) τ = 0.98 (e) τ = 1.00 (f) τ = 1.20
Figure 4. Restoration of the Bird image obtained with CPnP for different values of τ. From left to
right: two close-ups of ground truth, τ = 0.80, τ = 0.96, τ = 0.98, τ = 1.00, and τ = 1.20. Small
values of τ produce several artifacts on the restored images, whilst large values induce smoothing of
the result. The optimal value for τ is close to one; due to the overestimation of the noise level given
by [43], τ has to be set strictly less than 1.

3.5. Comparisons with PnP and RED

In this section, we conduct a comparative analysis between our CPnP method and
the other two competing methods: PnP and RED. The assessment of reconstruction metric
performance involves utilizing images from Set24 under different degradation levels:
(σA = 1.2, ση = 25) and (σA = 0.8, ση = 35). Table 2 presents the mean PSNR and
SSIM values. For the competing methods, PnP and RED, the regularization parameters
are estimated to achieve optimal performance in terms of the PSNR metric. The results
clearly indicate that our CPnP method outperforms both RED and PnP in terms of both
performance measures. Furthermore, the effectiveness of our CPnP approach is also
assessed from a visual perspective. Figure 5 demonstrates the superiority of CPnP with
respect to RED and PnP by providing two close-up views of the restored images. These
close-ups highlight the superior reconstruction capabilities of CPnP in terms of clarity
and noise reduction compared to both PnP and RED. This visual evidence confirms the
outcomes of the quantitative results presented in Table 2 and emphasizes the enhanced
performance and reliability of CPnP for deblurring and denoising tasks. Moreover, we
finally remark that CPnP exhibits robustness regarding the choice of hyperparameters,
unlike RED and PnP, as underlined in the previous sections. The physical interpretation of
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CPnP hyperparameters enhances the interpretability and practicality of CPnP compared to
traditional methods such as RED and PnP.

Table 2. Mean values of PSNR and SSIM for the images in Set5 and Set24 when varying the
degradation levels. The best results are highlighted in bold. Our CPnP outperforms both RED and
PnP in terms of the considered metrics.

Set24 (σA = 1.2, ση = 25) Set24 (σA = 0.8, ση = 35)

Metric RED PnP CPnP RED PnP CPnP

PSNR 26.29 26.70 26.85 26.59 26.92 27.16

SSIM 0.75 0.77 0.78 0.76 0.77 0.79

(a) GT (b) Degraded

(c) RED (d) PnP (e) CPnP
Figure 5. Restoration of the kodim21 image from Set24 obtained with different methods. From left
to right: two close-ups of ground truth, degraded image, RED, PnP, and CPnP. Our CPnP provides
more reliable restorations characterized by enhanced clarity and reduced noise.

4. Conclusions

In this paper, a novel constrained formulation of the well-established Plug-and-Play
framework is presented and is denoted as CPnP. Within this model, the minimum of
the regularization functional is compelled to adhere to a discrepancy-based threshold.
The solution to the CPnP model is obtained within the ADMM framework and offers a
straightforward yet effective approach for image restoration while allowing the usage of
different denoising priors.

The determination of the threshold, serving as the regularization parameter, holds
physical significance and involves estimating the standard deviation of the noise affecting
the data. Efficient assessment of the noise level in the degraded data is achieved through
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the method outlined in [43] and eliminates the need for extensive parameter tuning as
required by unconstrained models like PnP and RED.

In the experimental section, CPnP demonstrates stability and robustness concerning
both the model and algorithm hyperparameters. Furthermore, it performs comparably, if
not better, than both PnP and RED in terms of PSNR and SSIM metrics as well as visual
inspection. The superior performance, coupled with its stability and robustness, position
CPnP as a promising choice for various image restoration applications.
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