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Simple Summary: Studies comparing performances of machine learning (ML) methods in building
predictive models of toxicity in RT are rare. Thanks to the availability of a large cohort (n = 1314) of
breast cancer patients homogeneously treated with tangential fields, different ML approaches could
be compared. This work shows how more complex models typically achieve higher performances.
At the same time, for this test case, the importance is given mainly by a few variables, and toxicity
can be predicted by simpler models with similar performances. The availability of more individually
characterizing features (here partially missing) is expected to have a likely much higher impact than
the choice of the best-performing ML/DL approach.

Abstract: Purpose. Different ML models were compared to predict toxicity in RT on a large cohort
(n = 1314). Methods. The endpoint was RTOG G2/G3 acute toxicity, resulting in 204/1314 patients
with the event. The dataset, including 25 clinical, anatomical, and dosimetric features, was split
into 984 for training and 330 for internal tests. The dataset was standardized; features with a
high p-value at univariate LR and with Spearman ρ > 0.8 were excluded; synthesized data of the
minority were generated to compensate for class imbalance. Twelve ML methods were considered.
Model optimization and sequential backward selection were run to choose the best models with a
parsimonious feature number. Finally, feature importance was derived for every model. Results.
The model’s performance was compared on a training–test dataset over different metrics: the best
performance model was LightGBM. Logistic regression with three variables (LR3) selected via
bootstrapping showed performances similar to the best-performing models. The AUC of test data is
slightly above 0.65 for the best models (highest value: 0.662 with LightGBM). Conclusions. No model
performed the best for all metrics: more complex ML models had better performances; however,
models with just three features showed performances comparable to the best models using many
(n = 13–19) features.

Keywords: AI models; early-stage breast cancer; modeling; radiotherapy; toxicity

1. Introduction

To date, the use of artificial intelligence (AI)/machine learning (ML) models in the
medical field is increasing thanks to their ability to learn from training data without
being explicitly programmed. For this reason, these techniques are being more and more
considered in the field of cancer therapy, going towards an era of “precision oncology” [1,2].
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The topics span from medical imaging [3], personalized drug discovery [4], target auto-
contouring, and dose distribution calculation [5], to the outcome and toxicity prediction,
which is the focus of the current work.

In particular, in the field of breast cancer, the majority of patients [6,7] are proven to
reduce local recurrence [8] and overall mortality [6,7,9]. However, breast radiotherapy has
several side effects, both acute and late [10–13]. Early toxicity includes breast erythema and
desquamation occurring within 90 days after treatment and generally recovers with time.
Late toxicity (e.g., telangiectasia, fibrosis, and hyperpigmentation of the skin) may, on the
contrary, often become irreversible and progressive over time.

Developing accurate prediction models for radiotherapy-related side effects (e.g.,
toxicity) is crucial to minimize their impact [14]. This would allow clinicians to deliver
more personalized treatments by identifying the main factors influencing toxicity and
incorporating them into the therapy decision and optimization. Although severe late
toxicities following adjuvant radiotherapy for breast cancer are relatively rare [6,7,11], the
number of patients treated in high-income countries is huge and with an annual increase
of about 4% [15], pushing researchers to spend much energy in predicting and, possibly,
preventing them. In addition, an association between the intensity of transient acute effects
and the insurgence of late toxicity has also been reported [16], keeping high the interest
also on predictive models of early toxicities.

ML techniques are widely used for making predictions on new data, but they require
a diverse and large enough dataset to be trained on. This is one of the reasons why clinical
application is still poor together with a lack of model interpretability [17,18]. Despite this,
several attempts to use ML in developing predictive models of toxicity in radiotherapy
appeared in the last years [17], including the breast cancer case [19–21]. ML holds the
potential to enhance prediction capabilities given sufficient patient data. However, studies
comparing the performances of ML methods in predicting radiation-induced toxicity, trying
to assess the best approach, are largely lacking [17]. In particular, the interpretability issue
remains relevant when trying to find the “best” approach: advanced ML/deep learning
(DL) methods often result in “black-box” models and/or may tend to include a large set of
clinically low-relevance variables, making the picture quite obscure to the clinicians [18].
Metrics typically used to evaluate classifier performance for high-risk toxicity patients,
such as the area under the receiver operating system (ROC) called AUC, can be significantly
misleading for strong unbalanced data. Thus, metrics like f1 and balanced accuracy should
also be considered. Establishing a common preprocessing strategy involving scaling,
encoding, and feature cleaning is crucial for comparing model performances.

To our knowledge, few studies comparing different modeling approaches have been
conducted on breast toxicity. They are always on limited-size populations and/or con-
sider only a few ML approaches [22–25]. In particular, these studies were performed
on different outcomes (acute toxicity [22,25], acute desquamation [23], radiation-induced
dermatitis [24]). The input variables used are diverse, going from spectrophotometric
variables [25], baseline characteristics, comorbidities [23], and clinical variables [22], to
radiomics features [24]. Some considered small [24,25] or large [22,23] cohorts. Their
performances differ depending on the features used. In this regard, our work is better
comparable with the one of Rattay et al. [22]. The availability of a large, single-institute
cohort of patients, homogeneously treated with whole-breast irradiation using tangential
fields with the same fractionation schedule and following similar contouring and planning
procedures, made it possible to explore the issue. The rate of events pushed us to focus on
early toxicity, considering the number of patients/events as large enough to successfully
apply many ML methods. Ref. [25] shows a high performance improvement thanks to the
other variables considered.

2. Materials and Methods

This study has made use of a large, single-institute cohort (n = 1325) of breast cancer
patients homogeneously treated with tangential fields. Patient data were analyzed within
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the retrospective study approved by the Institutional Ethical committee (registered to
ClinicalTrials.gov, Identifier No.: NCT03077191). Concerning the sample details, it is
possible to refer to previously published papers [26,27]. A total of 11 patients were excluded,
either because they received a boost or because they were treated with the VMAT technique.
This study involved a single-institute cohort with the advantage of higher homogeneity,
similar patients typology and large numbers, but with the disadvantage of not having
an external validation as for multi-institutional studies. All procedures described were
implemented in Python version 3.7.9 together with Microsoft SQL Server v15.0 via SQL
Server Management Studio version 18.11.1. Preprocessing and modeling analysis were
performed using an in-house code (medicalAI in mAItre (Medical Artificial Intelligence
Toolkit for REsearch, https://github.com/pymaitre, accessed on 16 January 2024)).

2.1. Patient Characteristics, Endpoint Definition, and Available Variables

All considered patients underwent breast conservative surgery for pTis-pT3 pNx-
pN1a M0 disease in the period from 02/2009 to 05/2017. Radiotherapy was delivered
with whole-breast (WB)-IMRT to a total dose of 40 Gy in 15 fractions, without boost. Most
patients showed invasive ductal carcinoma (n = 961, 72.5%), while n = 116 (8.8%) patients
showed lobular invasive carcinoma. There were 194 patients with pT stage greater than one
(14.6%). Patients also received chemotherapy (n = 371, 28%) and monoclonal antibodies
(n = 109, 8.2%). The details of the characteristics of the patients and of the treatment are
reported in Tables 1–3 and in the papers by Fodor et al. [26,27].

Table 1. Eleven dichotomic variables selected with intrafeature variance > 0.02 and with p-value at
univariate LR < 0.8. NA stands for not accorded.

Column Names No Yes NA %No %Yes %NA

Axillary Dissection 1073 241 0 82 17 0
Type Chemo 1022 292 0 78 21 0
Right 677 637 0 52 47 0
Bolus 1007 307 0 77 22 0
Obesity 959 313 42 73 23 3
Diabetes 1119 79 116 85 6 8
Hypertension 751 450 113 57 33 8
Thyroid Disorders 1018 178 118 78 13 8
Smoke 1054 260 0 80 19 0
No Nipple/Retraction 124 1190 0 9 90 0
Hormonal Type 582 732 0 44 54 0

Table 2. The categorical variable selected with intrafeature variance > 0.02 and with p-value at
univariate LR < 0.8. NA stands for not accorded, equivalent to right breast for this table. With * are
shown the most predictive categories (univariate LR p-value < 0.2).

Quadrant Position Count %Count

QSE * 597 45.4
QSI 223 17.0
QIE 142 10.8
QSE/QSI * 100 7.6
QII 96 7.3
Q retroareolar 54 4.1
QIE/QII 47 3.6
QSE/QIE 42 3.2
QSI/QII 12 0.9
NA 1 0.1

https://github.com/pymaitre
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Table 3. Seven continuous variables selected with intrafeature variance > 0.02 and with p-value
at univariate LR < 0.8. NA stands for not accorded. Continuous variables where NA values were
avoided in deriving the other columns.

Column Names Median IQR Mean Std Min Max Count NA

Age 62.16 [51.57, 70.65] 61.32 11.92 27.98 91.20 0
T Size 1.30 [0.9, 1.8] 1.43 0.80 0.00 6.70 14
No fr with bolus 0.00 [0.0, 0.0] 1.64 3.07 0.00 15.00 41
PTV Volume 642.25 [445.62, 914.47] 709.51 359.56 114.80 2649.00 0
PTV V105% 2.46 [1.07, 4.39] 3.32 3.45 0.00 33.63 0
Body D1% 41.02 [40.78, 41.27] 41.03 0.42 38.37 46.23 0
Asymmetry 1.00 [1.0, 2.0] 1.22 0.83 0.00 3.00 0

The endpoint was RTOG (Radiation Therapy Oncology Group) G2/G3 acute toxicity,
resulting in 204 and 1110 patients with or without the event, respectively. The dataset,
including 25 clinical, anatomical, and dosimetric features, was split into 984 for training and
330 for independent internal test. Variables considered for this study were “Age”, “Axillary
Dissection”, “Quadrant Position”, “T Size”, “Chemo”, “Type Chemo”, “AB Monoclonal”,
“Hormonal Therapy”, “Bilateral RT”, “Right”, “Number of Fractions (fr) with Bolus”,
“Bolus”, “PTV Volume”, “PTV V105%” (i.e., volume of PTV receiving more than 105% of
prescribed dose), “Body D1%” (i.e., dose received by 1% of the body volume), “Obesity”,
“Diabetes”, “Hypertension”, “Thyroid Disorders”, “Smoke”, “Alcohol”, “Asymmetry”,
“Overall Cosmesis”, “No Nipple/Retraction”, and “Hormonal Type”. In Tables 1–3, the
characteristics of the cohort, according to the considered features, are shown, except for a
few parameters with low variance and a high LR univariate p-value, as explained later.

2.2. Data Preprocessing

First, the training dataset was standardized using the robust scaling method [28] (see
Table A2 for details), limiting the impact of outliers. The test dataset was consequently
scaled accordingly. A one-hot encoder on categorical features (i.e., “quadrant position”; see
Tables 1–3) was applied, and just the most predictive categories for this specific outcome,
out of nine, were selected with a low p-value at univariate LR (global < 0.2): “QSE/QSI”
and “QSE” i.e., QSE and QSI correspond to the external and internal superior quadrant,
respectively). This choice was approved by the referring clinician. Moreover, variables
with low intrafeature variance and with a high p-value at univariate LR were excluded
[29]. Features, indeed, with too-low intrafeature variance (<0.02) cannot be predictive
for the model and may just confuse a multivariate model. First, a high p-value threshold
(global > 0.8) was preliminarily applied to skip features surely not associated with the
endpoint. Consequently, “Bilateral RT”, “Alcohol”, “Hormonal Therapy”, “Overall Cosme-
sis”, “Chemo”, and “AB monoclonal” were thus dropped. Then, Spearman correlation was
computed on the remaining 20 features (see Figure 1), and features with Spearman |ρ| >0.8
were dropped, namely “Bolus”, as it is possible to see in Figure 1. Between correlated
features, the one with a lower LR univariate p-value was chosen [30]. In Appendix A
(Table A4), a summary of how features were selected is reported.

The synthetic minority oversampling technique (SMOTE, see Table A2 for details)
was applied to create synthesized data of the minority to compensate for class imbalance.
The ratio between minority and majority sample numbers was set to be 0.5. This results
in the percentage of classes with/without the event of 32% and 68%, respectively. For
completeness, models with a ratio of 1:1 were run, finding better results for some models
and worse for others. It was thus decided to keep a more conservative approach, adding
fewer synthetic data. Note that SMOTE was not used for the LightGBM and AutoGluon
models due to their intrinsic balanced approach.
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Figure 1. Spearman correlation matrix on the 20 features obtained after preprocessing. Feature
order decreases following their LR univariate p-value. The color bar shows the correlated Spearman
ρ factor.

2.3. Statistical and ML Methods

Several ML methods (listed in Table 4 with their acronyms) were considered: LR, Lasso,
ElasticNet, KNN, SVM, GNB, MLP, RF, LightGBM, and AutoGluon. Lasso and ElasticNet
are part of the same typology of models (i.e., logistic regression). They differ just for the
chosen penalty, which is a kind of regularization used to reduce overfitting and to help
interpretability. ElasticNet, in particular, is a combination of the other two [31]. KNN is a
nonparametric classifier, which uses proximity methods to distinguish between classes [32].
SVM is an algorithm that classifies through the choice of a hyperplane in N-dimensional
space [33,34]. GNB is part of the so-called probabilistic classifiers, and it is based on Bayes’
theorem with the assumption of strong independence between input features and of a
normal distribution for each class [35]. MLP is a feedforward artificial neural network
(ANN) with multiple layers where the mapping between input and output layers is a
nonlinear activation function [36]. RF [37] and LightGBM [38] are both algorithms that
combine multiple decision trees to reach one final result (decision trees are constructed
by a series of nodes in order to split the data), where the second one is typically more
accurate than the first one. RF constructs them independently, while LightGBM, which is a
gradient-boosting-based algorithm, builds them one after another. This means that data
instances with large gradients are kept, while the ones with small gradients are randomly
dropped. Finally, AutoGluon is an AutoML code operating in supervised machine learning,
typically used for tabular predictions. It is focused on automated stack ensembling, which
consists of combining a set of individually trained classifiers to reduce their intrinsic error.
Here, it serves as a comparison with the other codes considered [39]. The models previously
reported were chosen due to their typical use in ML with regard to classification problems
(e.g., [17,40]). AutoGluon and LightGBM are less quoted in previous literature, considering
their recent implementation as a future development of previous models.
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Table 4. Models’ description with acronyms and reference paper. Links to the model implementation
used are in Table A2. * Model typically used.

Model Acronym Reference Paper Description

Logistic Regression * LR [31] The event probability is a function of a linear combination of independent variables.
Lasso Lasso [31] It is part of the same typology of models of LR, differing for the chosen penalty.

ElasticNet ElasticNet [31] It is a combination of LR and Lasso, regarding the chosen penalty.
k-Nearest Neighbors KNN [32] It is a nonparametric classifier, which uses proximity methods to distinguish between classes.

Support Vector Machines SVM [33,34] It is an algorithm that classifies through the choice of a N-dimensional hyperplane.

Gaussian Naïve Bayes GNB [35] It is part of the so-called probabilistic classifiers, based on the Bayes’ theorem with the assumption
of a strong independence between input features and of a normal distribution for each class.

Multi-Layer Perceptron MLP 1 [36] It is a feedforward artificial neural network (ANN) with multiple layers where
the mapping between input and output layers is a nonlinear activation function.

Random Forest RF [37] It combines multiple decision trees, constructed independently, to reach one final result.

Light Gradient Boosting Machine LightGBM [38] Development of RF. It is a gradient-boosting based algorithm, which builds
multiple decision trees one after another.

AutoGluon AutoGluon [39] It is an AutoML code, focused on automated stack ensembling of individually trained
classifiers to reduce their intrinsic error, here used as a comparison with the other codes.

1 Note that the version of MLP here used is a simplified version by sklearn, and thus it does not offer all the
potentialities of a more complex one (using TensorFlow), which will be investigated in future work.

All models, except for AutoGluon and LightGBM, were run by applying a Bayesian
search (see Table A2 for details) to maximize the chosen metric (the best one between
balanced accuracy, f1 weighted, f1 macro, and AUC; see metricsfs in Table 5) on a stratified
k-fold cross-validation sample (see Table A2 for details). This means that the training
set is split into k = 5 sets of data with the ratio between each patient class fixed. The
model is trained using k-1 fold and validated on the one left outside. The results obtained
on the k validation sets varying the parameters were then combined by averaging the
score defined to choose the hyperparameters that maximize the score for each model,
described in Appendix A (Table A1). Moreover, asequential backward floating selection
(SBFS, see Table A2 for details) was applied, from which a parsimonious feature number
was chosen. This means that the chosen metric (see metricmod opt in Table 5) must fall
inside the minimum between 1% of the maximum metric value and its SD error. The
feature number is, indeed, considered as one of the free model parameters optimized, and
thus, models possibly end up with a different feature number. For each model, the feature
importance was derived together with complementary metric scoring for both training
and test datasets. A more complete approach to address explainability would be to use an
agnostic global explainer (e.g., SHAP [41] or LIME [42]); however, this was not the main
goal of the current work, and it will be addressed in a follow-up paper. For each metric, the
whole process was run, and the metric with less discrepancy in AUC between training and
internal test was chosen. The metric chosen in metricsfs is, indeed, itself a free parameter
for this study. This is better explained in Appendix A (Table A3).

In addition, LR was applied using two different approaches: the first follows the same
process described above, while the second one follows an approach similar to the one de-
scribed in [43–45]. While both the procedures followed the same preprocessing, as described
in Section 2.2, a different strategy was used for the feature selector of the second procedure.
In particular, a multivariate LR was computed with a fixed number of three or four variables
chosen among all the feature combinations selected after computing their correlation. This
was performed for each combination by applying bootstrapping (1000 random sampling
with replacement) in parallel to select the combination with better performance.

A different approach was followed with regard to AutoGluon and LightGBM. Con-
sidering they are provided with data augmentation and feature selection, no SMOTE-
augmented data were given to these models. While AutoGluon also provides hyperparam-
eter optimization in its own code, this is not possible with LightGBM, and thus, a more
complex tool, called “optuna” [46] (see Table A2 for details), was used. The best parameters
chosen for all these models are described in Appendix A (Table A1).
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Table 5. Youden threshold derived for training/test data, number of parsimonious features selected,
metrics used for SBFS (metricsfs) and model hyperparameters optimization (metricmod opt). The value
of the training Youden threshold here presented was used for the confusion matrix, while the one of
the ROC plots is derived as the average of bootstrap computation (for KNN, the training threshold
was derived by adding an ϵ = 0.01).

Model thryouden Train thryouden Test n. Features metricsfs metricmod opt

LightGBM 0.162 0.130 14 - -
AutoGluon 0.177 0.090 19 - -
LR 3 Variables 0.294 0.283 3 - -
Random Forest 0.511 0.509 5 AUC f1 macro
SVC 0.250 0.294 10 AUC AUC
MLP 0.500 0.489 3 f1 macro f1 macro
ElasticNet 0.322 0.406 13 balanced acc. balanced acc.
LR Multivariable 0.303 0.415 11 balanced acc. balanced acc.
LR 4 Variables 0.264 0.327 4 - -
Lasso 0.356 0.475 9 balanced acc. balanced acc.
Naïve Bayes 0.448 0.469 9 f1 weight f1 weight
KNN 0.010 0.517 10 AUC AUC

2.4. Metrics to Compare ML Methods

Different metrics were used to compare the ML models considered in terms of perfor-
mance. For the first type of procedure previously described, in addition to the well-known
AUC, the metrics used are F1, separately on patients with/without the event; Brier score;
and slope/R2 of the calibration plot. Balanced accuracy was also used for model optimiza-
tion and SBFS.

F1 score can be considered as a harmonic mean of the precision and recall metrics. The
best value is one, and the worst is zero (Equation (1)).

F1 =
2 · Precision · Recall
Precision + Recall

(1)

Precision (or positive predictive value) and recall (or sensitivity) are defined as follows
(Equation (2)):

Precision =
TP

TP + FP
, Recall = Sensitivity =

TP
TP + FN

(2)

In particular, F1 may be computed for each class separately and then combined in
different ways, which give different results if the dataset is unbalanced: micro F1, macro
F1, and weighted F1. The first is traditionally called accuracy, the second is the arithmetic
mean of F1 classes, and the third is the weighted average of F1 classes considering each
class’s numerosity.

The known metric, AUC, is calculated as the area under the curve of sensitivity
(Equation (2)) versus 1-specificity, defined as (Equation (3)):

Specificity =
TN

FP + TN
(3)

From the same two metrics, balanced accuracy can be defined as the average of recall
obtained on each class as in Equation (4):

Balanced Accuracy = (specificity + recall)/2 (4)

Both F1 and balanced accuracy are typically used in cases with unbalanced classifi-
cation like this one, with the difference that F1 performs better when the attention has
to be focused on positives, while for balanced accuracy, negatives and positives have the
same importance.
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The Brier score (Equation (5)) is the mean squared error computed between predicted
probabilities ( ft) and observed values (ot), and it is always between 0 and 1. The best model
must minimize the Brier score value.

BS =
1
N

N

∑
t=1

( ft − ot)
2 (5)

For the second procedure applied on LR with bootstrap, instead, a model was consid-
ered good when the global and inter variable multivariate LR p-value was found below
0.05. Just models with the best bootstrap frequency were kept. Moreover, the remaining
ones were ordered to maximize the ones with better AUC average between training and
test data, and of them, the best one was taken as the best model.

Finally, in both the procedures, maximizing the Youden J metric (Equation (6)) was
used together with the ROC in order to define the threshold used to discriminate between
the two classes.

J = sensitivity + specificity − 1 (6)

3. Results
3.1. Models’ Performances

A summary of overall model performances is shown in Tables 5 and 6 and in Figure 2
where different metrics are compared on training–test dataset on the x-axis. The best
settings chosen for the models are described in Table A1. The models are plotted in
ascending order, starting from the one with less training–testing discrepancy. LightGBM
was the best model in terms of absolute metric value and discrepancy between training and
test sets. Good performances are also given by AutoGluon, RF, SVC, and MLP. ElasticNet
and LR, more often used in the literature, did not show largely different performances (as
also shown in the ROC plots of Figure 3). KNN, instead, was strongly overfitted. Possibly,
this is related to the fact that it is a nonparametric classifier, which uses proximity methods
to distinguish between classes. The sample is unbalanced, and it is not trivial to define
a correct value for hyperparameters (e.g., n neighbors). Moreover, this model deals with
groups of data and thus more easily tends to better fit training data (forgetting test) if it
does not find strong discrimination groups.

The AUC of the test data is slightly above 0.6 overall. The f1 score on patients with
toxicity is around 0.3, while it depends on the model for patients without toxicity (mostly
above 0.7). A calibration plot was derived for every model, from which the slope, R2, and
Brier score were extracted. AutoGluon and LightGBM showed the best Brier score, while
MLP, RF, and GNB showed the worst values in the test set. ElasticNet and LightGBM
training and test slopes have similar values, even if ElasticNet has slope values lower than
expected, while LightGBM values are higher. This can be due to the probability distribution
derived (see Appendix A, Figure A2 for calibration plots). However, considering the similar
slope between training and test sets, it could be easily recalibrated. LR, instead, for example,
even if its training slope is near to one, is more difficult to analyze considering the large
discrepancy with the test set slope, which could create difficulties in re-calibration. RF
slopes were very discrepant if we consider the training data augmented. However, the
training slope becomes similar to the one of the test set (see Appendix A, Figure A1) if the
same model is applied considering the original training data. MLP resulted in the worst
difference between training and test slopes, both considering the original training set and
the SMOTE-augmented one. Finally, regarding R2, RF and LightGBM showed the least
discrepant values closer to one, while LR was the most discrepant with a test value closer
to zero. The Youden thresholds shown in Table 5 were separately derived for training and
test sets from the ROC plots. The values were typically found similar between training
and test sets independently from the model used. The absolute values, instead, focus
sometimes on the outcome percentage average (∼0.2) or on the value typically used for
classification models (∼0.5). In Table 6, a summary of the precision, specificity, sensitivity,
f1 score, and AUC of all the mentioned models for both training and test sets is shown.
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Confusion matrixes were extracted by choosing as discriminant threshold the one derived
by the Youden metric from training data, and consequently, the other metrics were derived.
For almost all the models, the training data were presented with SMOTE-augmented data,
while the test set was considered without it. For AutoGluon and LightGBM, instead, they
were augmented inside the code, and thus, the augmentation was not visible here.

Figure 2. Model comparison on training (red) and test (blue) datasets for acute toxicity. The following
metrics were compared: AUC, f1 separately on patients with/without the event, Brier score, slope,
and R2 of the calibration plot. F1 scores were derived through a threshold chosen by the Youden
criterion (see Table 5). Training data of all models, except for AutoGluon and LightGBM, are shown
with SMOTE-augmented data, and this is the reason for the large discrepancy.
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Figure 3 shows the ROC for the best models (i.e., ElasticNet, LR, SVC, and LightGBM).
Error intervals were derived through a bootstrap of the population considered, and the
lines are the resulting mean values. The optimal thresholds shown in Figure 3 were taken
from the mean curves, and thus they are slightly different from the ones in Table 6. For the
first three models, training data are shown with SMOTE-augmented data, while LightGBM
does augmentation inside the code, and it is not visible here. Although the training data
were not considered with augmented data, LightGBM was still the one with better test
AUC score and less discrepancy between training and test data, less evident than what is
shown in Figure 3.

Models ROC curves

Figure 3. ROC of the acute toxicity outcome with training (red) and test (blue) data. Training data of
all models, except for LightGBM, are shown with SMOTE-augmented data. Error bands (gray) and
the derived average (lines) are given by a bootstrap computed on training and test sets. The optimal
points are the threshold computed through the Youden method on the mean curves.
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Table 6. Model comparison for training and test datasets for the outcome of acute toxicity. Models
are in descending order following the AUC performed on test dataset. The confusion matrix was
extracted by choosing as discriminant threshold the value derived from the Youden training metric
(see Table 6), and from this, the other metrics were derived. f1class0 and f1class1 are, respectively, the f1
score on classes 0 and 1.

Train Internal Test
Model Precision Specificity Sensitivity f1class0 f1class1 AUC Precision Specificity Sensitivity f1class0 f1class1 AUC

LightGBM 0.249 0.662 0.608 0.760 0.350 0.680 0.248 0.673 0.588 0.770 0.350 0.662
AutoGluon 0.249 0.481 0.935 0.640 0.390 0.701 0.216 0.712 0.431 0.780 0.290 0.633
LR 3 variables 0.438 0.583 0.693 0.680 0.540 0.681 0.205 0.568 0.608 0.690 0.310 0.627
Random Forest 0.511 0.714 0.599 0.746 0.551 0.709 0.245 0.709 0.329 0.787 0.329 0.616
SVC 0.472 0.522 0.854 0.655 0.607 0.759 0.206 0.514 0.583 0.640 0.304 0.614
MLP sklearn 0.474 0.678 0.582 0.719 0.522 0.637 0.225 0.637 0.510 0.733 0.312 0.602
ElasticNet 0.497 0.651 0.691 0.721 0.578 0.725 0.219 0.658 0.437 0.738 0.292 0.602
LR sklearn 0.487 0.618 0.728 0.705 0.584 0.717 0.204 0.647 0.417 0.730 0.274 0.578
LR 4 variables 0.417 0.487 0.783 0.610 0.540 0.675 0.169 0.471 0.588 0.610 0.260 0.559
Lasso 0.542 0.720 0.665 0.763 0.597 0.713 0.224 0.733 0.354 0.783 0.274 0.554
Naïve Bayes 0.542 0.735 0.627 0.765 0.582 0.711 0.253 0.747 0.396 0.795 0.309 0.554
KNN 1.000 1.000 1.000 1.000 1.000 1.000 0.173 0.050 0.917 0.290 0.094 0.533

3.2. Importance and Number of Selected Features: Measuring Redundancy

In Figure 4, the feature importances obtained for the best models are shown, respec-
tively, for ElasticNet and LR, for which the importance is given by the model coefficient
values, and for SVC and LightGBM derived as feature permutation. ElasticNet and LR have
similar derived feature importance which, however, are not shared with more performant
models such as SVC and LightGBM, where one of the most prominent features is PTV
Volume, which has instead a low coefficient value for ElasticNet, and it is not present for
LR. Obesity is among all models always in the first four best variables.

Figure 4. Feature importance of ElasticNet (top left), LR (bottom left), SVC (top right), and LightGBM
(bottom right) for acute toxicity. For ElasticNet and LR, the values are the coefficients of the model
derived on scaled data and thus clinically relevant; for SVC and LightGBM, the values are derived as
feature permutation through different intrinsic methods.
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Figure 5 shows two examples (ElasticNet and SVC) of the methods used in SBFS,
illustrating the effect of limiting feature redundancy. The same plot derived for all the
other models is shown in Appendix A (Figure A4). LightGBM and AutoGluon performed
a different kind of feature selector, already inside the code, then their plot could not be
explicitly derived. Figures show how the performance chosen for models (see metricsfs,
Table 5) increased by varying the number of features used. The thick line is computed on
a cross-validation sample, and the light error interval is the standard deviation (SD). The
maximum in this plot is shown through the vertical line, and it represents the number of
features associated with the best performance. To be more conservative, a parsimonious
feature number was chosen, such as the chosen metric falling inside the minimum between
1% of the maximum metric value and its SD error (gray vertical line). This criterion was
set to be shared between models to make the performance comparison fair. In the plots,
the scores obtained in both cases and their confidence interval of 95% are shown. The
parsimonious number of features derived is also summarized in Table 5. Importantly,
depending on the model, the number of features building the model could be substantially
reduced in most cases up to nine variables, without any relevant impact on the model’s
performance. Another approach could be to fix a priori the number of variables, but
this would not allow quantifying the different convergence of ML models with regard to
number of features chosen.

Figure 5. Sequential backward floating selection of ElasticNet (left) and on SVC (right). The
metric performance is computed on the cross-validation dataset. The standard deviation, best, and
parsimonious feature numbers are, respectively, represented with a light-blue error band and vertical
black and gray lines.

3.3. Bootstrap-Based Logistic Regression with Small Number of Features

Finally, as described in Section 2.3, LR models were developed through a previously
suggested bootstrap-based method, fixing the number of variables to three or four. ROC
results are presented in Figure 6 for both training and test sets. Training data are presented
with SMOTE-augmented data. “Axillary Dissection” and “PTV Volume” were shared
by the two models. “Quadrant Position_QSE” completed the three-feature model, while
“Age” and “Type Chemo” were added to the four-feature model. In the list of ML model
performances, the three-variable model gained the third and fourth positions thanks to
its high AUC and f1 score, respectively. However, the model with four variables did not
confirm all three variables and showed a worse performance in terms of the AUC of the
test set compared with most of the models considered. This means that, also, if this method
could give very good performances, it is important to know its large instability by changing
the number of features fixed.
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ROC curve LR bootstrap

Figure 6. ROC using the method of bootstrap to predict acute toxicity. Training data are shown with
SMOTE-augmented data. Models with three (left) and four (right) features fixed are shown.

4. Discussion

The issues concerning the application of advanced ML/DL methodologies in training
predictive models to predict RT-induced toxicity (and, more in general, outcome after
RT) are multiple and complex. As a matter of fact, the growing availability of AI tools
and skills makes their use more accessible and affordable, even in this field. Extending
the field to include imaging biomarkers, the large number of image-based quantitative
features, which may be extracted from medical imaging, largely contributed to the interest
toward advanced ML/DL approaches in handling information and training/validating
prediction models [47]. A similar process, with likely minor emphasis, is happening even
in the case complex dose metrics are extracted from the 3D dose distributions of individual
patients, i.e., dosiomics [48,49]. A large variety of AI-based methods may be considered
and applied together, considering issues related to the clinical meaning of the resulting
models with different attitudes. This may give the impression of generating controversial
reactions in the radiation oncology community, ranging from “easy” enthusiasm to deep
skepticism. Despite the many open issues, very few studies dealt with the attempt to
rigorously compare the performances of models trained with different ML/DL approaches
to the same patient’s cohort [17,50]. This is likely due to several reasons, such as the usually
limited number of patients/events, the difficulty of setting up different methodologies using
common criteria for data processing, and, highly relevant, the possibility of successfully
applying “easier” statistic methods as well as a “priori” knowledge (for instance, NTCP
models based on DVH reduction). The availability of a reasonably large cohort of patients
treated at a single institute in a quite homogeneous way and followed by the consistent
collection of toxicity information pushed us to investigate this issue in a real-life clinically
relevant scenario as the one of acute toxicity after WBI. We note that the model of logistic
regression can be considered as a benchmark model traditionally used and that the AUC
metric on the test set can be considered for comparison between models.

With this aim, first of all, a robust preprocessing pipeline shared between all the
routines (scaling, encoding, feature cleaning, data augmentation) was created, and 12
different approaches were consistently implemented in the Python environment, aiming
to compare the resulting models to highlight strengths and weaknesses of each of them.
The setting of the whole machinery needed a lot of effort for proper model tuning to make
model performances quantifiable and comparable. As expected, more complex models
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(e.g., LightGBM and AutoGluon) achieved a higher test score compared to the other models.
However, these models typically ended up having more features and thus being more
difficult to be clinically interpretable. It was possible to study their importance thanks
to feature permutation algorithms, as shown in Figure 4. Anyway, the first three or four
features clearly gave the principal contribution. Thanks to methods such as SBFS, it was
also possible to see how performances vary with feature number, confirming that the
main gain is obtained with the first few features except for KNN, where, in any case, the
model is heavily overfitted. More familiar models in the field of predictive models for
toxicity, such as LR, gave better performances in test scores when methods with a fixed
number of variables and bootstrapping were used. LR run through the first procedure
(SBFS starting from all the features) did not find features as predictive as using the LR
bootstrapping method. However, these methods seem to be unstable considering the large
discrepancy in the performance of the test set of models with three versus four variables,
as well as if the training score was similar. Moreover, these models were automatically
chosen considering the average between training and test AUC scores, thus introducing
a “data leakage” (i.e., information from outside the training dataset is somehow used to
choose the best model). This may have caused a too-optimistic result as compared to the
case where the cross-validation model was not influenced at all by the internal test, as for
more complex models. From the study of a learning curve (Appendix A Figure A3) for
both training and test sets, it was also possible to see that the metrics performance is still
increasing, suggesting an improvement with more data. Possibly, this may have an impact
on ML models, which were not yet able to fully exploit their maximum potential with the
available numbers.

Concerning the interpretability of the models, it is without a doubt that the ones with
few features have a much larger chance of being preferred for clinical use. In the current
case, MLP and LR3 variables would be the best ones representing a good compromise
between accuracy and interpretability: LR3 variables are particularly relevant, giving the
possibility to easily represent the risk of toxicity in a single plot, taking the “continuous”
variable (i.e., the PTV volume) on the x-axis and modifying the logistic curve in case
of presence of the two other adverse factors (Axillary node resection and the superior
external Quadrant QSE). Of note, the two clinical factors selected by LR3 variables were
considered as clinically motivated by the reference clinician after discussion. On the other
hand, LR with fixed variables number and bootstrapping, as mentioned, also seems to
be quite “unstable”; thus, the current result should not be generalized to other situations.
Importantly, future work could address pushing ML models to stay with the same smaller
set of features in order to study how they significantly lower (or not) their performance.

The issue of using models too complex with respect to clinical explainability and
usability has already been widely addressed (see, for instance, [18]). For all previously
discussed issues; thus, a reasonable approach would be to consider more models at the
same time to exploit their different strengths, possibly “forcing” models to limit the number
of features and finally considering the “best” models based on the compromise between
accuracy and interpretability. To this end, it is highly important to include clinicians in the
final model evaluation to better assess clinical interpretations and the model’s usability.

The performance of few-feature LR models was similar to the one of more complex
ML models, and this is not what one could expect. The relatively low performances
are in line with what was previously found with comparable sample size and features
selected in the field of breast toxicity after radiotherapy [22], where our results achieve
an AUC on the test set of 0.66 and their results report an AUC of 0.65. A reason could be
found in the unbalanced dataset with an outcome with not many positives. Dataset more
heterogeneously treated [23], shows slightly higher performance, possibly simply reflecting
major differences between the sub-groups of patients, compatible with our population
that is homogeneously treated and thus without this phenomenon present. Moreover, ML
models tend to work better when there is a higher variable number, which contributes to
the result. For this reason, they tend to improve their performance with higher variables
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used. Furthermore, some important variables are missing. In order to obtain better-
performing models (say, AUC > 0.80), the availability of other potential predictors would
be highly relevant: in the case of toxicity after breast WBI, more accurate DVH information,
information on the genotype and/or the phenotype, densitometry characteristics of the
breast may all importantly contribute to improving the accuracy of the resulting models, as
seldom reported [13,23–25]. The availability of more individually characterizing features
(here in part missing) is expected to have a likely much higher impact than the choice
of the best-performing ML/DL approach. For example, Cilla et al. [25] (with the same
outcome: acute toxicity) reached performances of AUC = 0.87 for LR model using a small
dataset (n = 129) and spectrophotometric features, not easy to extract for each patient
and not present in our database. On the other hand, the availability of highly detailed
individual information is harder to obtain in large cohorts like ours. Due to this, regarding
the current breast toxicity cohort, ongoing and future studies will focus on the incorporation
of skin DVH information and of densitometry/radiomics features in the models, being
both individual features that may be recovered. In addition, the study will be extended to
late toxicities.

5. Conclusions

The comparison between 12 ML models predicting acute toxicity was performed
on a large cohort of patients (n = 1314). No model performed the best for all metrics:
more complex ML models have better performances; ElasticNet performs better than the
typically used LR when run with no fixed number of variables. For all of them, the feature
importance was studied to address the explainability issue, finding that typically the main
gain is given by the first few features. LR with three fixed features and bootstrap showed
performances similar to the ones of more complex models. Thanks to its simplicity and
performance, this model feasibly could be tested and possibly implemented into clinical
practice. It could be reasonable to suggest, ideally, considering more models at the same
time to exploit their different strengths, possibly “limiting” the number of features. The
“best” models should be considered based on the compromise between accuracy and
interpretability, including clinicians in the final model evaluation, to better assess clinical
interpretations and model usability.
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Appendix A

In this section, a description of the hyperparameters and metrics used for each model,
the calibration plot, the learning curve for ElasticNet, the backward feature selector, and
the same as Figure 2 and Table 6 (but with non-SMOTE-augmented data and with the
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threshold at 0.5) is presented. Moreover, the computational resources used and running
time spent are described.

Appendix A.1

In Table A1, the hyperparameters chosen by the best models are shown and in Table A2,
links to the procedures used with their versions are described.

Table A1. Best values chosen for the hyperparameters explored for each model described. Bold
parameters were found through a cross-validated optimization procedure, while the others were kept
fixed. RF, SVC, MLP, ElasticNet, LR, Lasso, GNB, and KNN were all implemented through sklearn.
Note that for LR with bootstrap, statsmodels was used instead.

Model Hyperparameters

LightGBM objective: binary, metric: binary error, boosting type: gbdt,
lambda l1: 4.17, lambda l2: 7.20, num leaves: 2, min child samples: 2, max depth: 10, bagging freq: 6,

min data in leaf: 84, bagging fraction: 0.57, learning rate: 0.20, feature fraction: 0.65
AutoGluon eval metric: roc auc, sample weight: auto weight, num bag folds: 2,

num bag sets: 3, num stack levels: 1, presets: best quality
RF criterion: gini, max leaf nodes: 17, bootstrap: True, ccp alpha: 0.02, class weight: balanced, max depth: 7,

min samples split: 12, min samples leaf: 7, n estimators: 75, min impurity decrease: 0.0
SVC class weight: balanced, probability: True, C: 0.8, kernel: poly, degree: 3
MLP solver: Adam, max iter: 5000, learning rate: adaptive, epsilon: 6 × 10−8 ,

activation: relu, alpha: 1.0, hidden layer sizes: 5, learning rate init: 0.001
ElasticNet fit intercept: True, max iter: 1000, penalty: ElasticNet, solver: Saga, C: 4.83, l1 ratio: 0.70
LR C: 1, solver: newton-cg, fit intercept: True, max iter: 1000, penalty: none
Lasso fit intercept: True, intercept scaling: 1, max iter: 1000, penalty: l1, C: 4.83, solver: saga
GNB priors: None, var smoothing: 0.001
KNN algorithm: auto, p: 1, leaf size: 30, metric: minkowski, n neighbors: 17, weights: distance

Table A2. Links to the models and procedures used in the paper.

Models / Methods Links to the Code Version Used

LightGBM https://lightgbm.readthedocs.io/en/v3.3.2 4.1.0
AutoGluon https://auto.gluon.ai/stable/index.html 0.8.2
RF https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 0.0
SVC https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC 0.0
MLP https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html 0.0
ElasticNet https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html 0.0
LR Multivariate https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 0.0
LR bootstrap https://www.statsmodels.org/devel/generated/statsmodels.discrete.discrete_model.Logit.html 0.13.2
Lasso https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html 0.0
GNB https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html 0.0
KNN https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html 0.0
Robust scaling https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html 0.0
SMOTE https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html 0.8.0
Bayesian search https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html 0.9.0
K-Fold cross-validator https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html 0.0
SBFS https://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector 0.21.0
Optuna https://optuna.org/ 2.10

It is important to note that all LR models run without bootstrap were implemented in
sklearn and with hyperparameters described in Table A1, while LR3/LR4 with bootstrap
were implemented through statsmodels. Bold parameters were tuned through a cross-
validated optimization procedure, while the others were kept fixed. In particular, for RF,
SVC, MLP, ElasticNet, LR, Lasso, GNB, and KNN, a Bayesian search was used, aimed
at optimizing the metrics (balanced accuracy, f1 weighted, f1 macro, AUC). Moreover,
all models, except for AutoGluon and LightGBM, were implemented using the sklearn
Python library.

https://lightgbm.readthedocs.io/en/v3.3.2
https://auto.gluon.ai/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://www.statsmodels.org/devel/generated/statsmodels.discrete.discrete_model.Logit.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector
https://optuna.org/
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In order to select the best model, a combination of different metrics was run both
to find the best hyperparameters of the model and the best features. For all of them, the
AUC of training and internal tests was obtained. In Table A3, the AUC of the internal
test is shown, with the best value found in bold (same as the one quoted in Table 6). The
best metrics chosen are the same as quoted in Table 5. Typically, this corresponds to a
model with less discrepancy in AUC between training and internal tests. This was carried
out to avoid penalizing one method against another by considering the “best” metric for
each method. In this regard, the test AUC was chosen only as the final criterion. Despite
the limits of AUC, we chose it because it is the metric mostly used and most familiar
to clinicians.

Table A3. Model comparison for different modalities for cross-validation, varying the metrics used
for SBFS (metricsfs) and model hyperparameters optimization (metricmod opt). Here, the final AUC
of the best models on the outcome of acute toxicity, obtained for the internal test, are shown for a
comparison. Models are in decrescent order following the AUC performed on test dataset. In bold,
the best metric combination, AUC, is shown (same as in Table 6).

Metric/Model AUC Internal Test

metricsfs Balacc f1 Weight f1 Macro AUC AUC AUC AUC
metricmod opt Balacc f1 Weight f1 Macro AUC Balacc f1 Weight f1 Macro

Random Forest 0.579 0.599 0.573 0.590 0.612 0.616 0.616
SVC 0.541 0.524 0.537 0.614 0.562 0.547 0.562
MLP sklearn 0.471 0.494 0.602 0.424 0.577 0.577 0.577
ElasticNet 0.602 0.555 0.602 0.514 0.513 0.513 0.513
LR sklearn 0.578 0.578 0.531 0.513 0.513 0.513 0.513
Lasso 0.554 0.554 0.554 0.554 0.513 0.513 0.513
Naïve Bayes 0.548 0.554 0.495 0.521 0.547 0.548 0.547
KNN 0.523 0.459 0.467 0.533 0.486 0.486 0.486

In Figure A1, the same plot presented in the main text (Figure 2) is shown with two
differences. First of all, the training data are shown with no data augmentation. Models are
always the ones generated with SMOTE, but the data plotted here are a subset of the ones
used for training (i.e., the original training data). Moreover, results were derived with the
standard threshold value of 0.5 for all models, with the exception of the most advanced
models (AutoGluon and LightGBM), for which the values derived through the Youden
criterion were considered.

In Figure A2, the calibration plot is shown for two models as an example: ElasticNet on
the top and LightGBM on the bottom. With a red line, the expected profile (y = x equation)
is shown. With blue points, the measured predicted probability over the fraction of positive
samples is presented. The blue line is the linear regression on blue points with its error bar
in light blue. The gray histogram represents the distribution of predicted probability. It is
possible to see that, for the two models shown in the figure, this distribution is different;
in the case of LightGBM, it is more peaked than ElasticNet and ranges between 0 and 0.5.
Training and test calibration plots have similar slopes in both ElasticNet and LightGBM,
with the first being half of what was expected and the second more than two times. This is
given by the different probability distributions obtained. The fact that the slope is similar
between training and test gives us the possibility to recalibrate it a posteriori. This plot
was made with data from both training and testing with no SMOTE-augmented data and
also when augmentation was used. If the plot of training was shown with augmented data,
the distribution would almost match the red line, but the test would still be as is shown
right now. For this reason, it is better to consider data from both training and tests with no
augmentation in order to have the possibility to recalibrate it.
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Figure A1. Model comparison on training (red) and internal test (blue) dataset for acute toxicity. The
following metrics were compared: AUC, f1 on patients with/without the event, Brier score, slope,
and R2 of the calibration plot. Threshold used for all models is 0.5 with the exception of AutoGluon
and LightGBM where the value was derived through the Youden criterion.
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Figure A2. ElasticNet (top) and LightGBM (bottom) calibration plot, respectively, for training (left)
and test (right) data for the outcome acute toxicity. Blue line is the linear regression on blue points
with its error band. The gray histogram represents the predicted probability. Note that the training
data do not show SMOTE-augmented data.

In Figure A3 on the right, the learning curve for ElasticNet is shown for two metrics
(balanced accuracy (top) and AUC (bottom)), varying the number of training instances. It
is possible to see that, while the value of AUC is almost stable, the balanced accuracy score
is still largely increasing, suggesting a plausible strong improvement of the metric with
more data. This effect is visible for most models. On the left, instead, the cross-validation
curve is shown for one of the parameters explored (see Table A1), where it is possible to see
how in both metrics the plateau is reached.
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Figure A3. ElasticNet learning curve (left) and cross-validation curve (right) for both balanced
accuracy (top) and AUC (bottom) metrics.

Finally, in Figure A4, the SBFS is presented for models not shown in the main text
(see Figure 5). It is possible to see how typically the main contribution is given by the first
3–6 features. In Table A4, the feature selection in preprocessing is summarized.
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Figure A4. SBFS, respectively, for logistic regression (top left), Lasso (top right), Gaussian naïve Bayes
(center left), MLP (center right), random forest (bottom left), and KNN (bottom right). Performances
are shown on cross-validation set after training was performed. Light-blue box is the standard
deviation of the performance over the feature number.
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Table A4. Variables given as input to the pipeline are listed on the left. With the number “1“, variables
considered are shown, while with “-“, variables are dropped for that specific criterion. The first step
was to delete variables with interfeature variance < 0.02, then to drop the ones with high p-value at
univariate LR (global > 0.8) and, finally, the ones with Spearman correlation |ρ| > 0.8.

Variables High Variance High LR p-Value High Correlation

Age 1 1 1
Axillary Dissection 1 1 1
Quadrant position 1 1 1
T Size 1 1 1
Chemo 1 -
Type Chemo 1 1 1
AB monoclonal 1 -
Hormonal Therapy 1 -
Bilateral RT -
Right 1 1 -
No fr with bolus 1 1 1
Bolus 1 1 -
PTV Volume 1 1 1
PTV V105% 1 1 1
Body D1% 1 1 1
Obesity 1 1 1
Diabetes 1 1 1
Hypertension 1 1 1
Thyroid Disorders 1 1 1
Smoke 1 1 1
Alcohol 1 -
Asymmetry 1 1 1
Overall Cosmesis 1 -
No Nipple/Retraction 1 1 1
Hormonal Type 1 1 1

Appendix A.2. Computational Resources and Running Time Spent

The computational resources used are CPU Intel(R) Xeon(R) Silver 4110 CPU @
2.10 GHz with 16 cores, 16 logical processors, and 32 GB of RAM. For AutoGluon and
LightGBM, Colab using a CPU was used. The time spent on average to run these models is
about 4.5 min each, of which about 3 min are spent on SBFS feature extraction (minimum,
1 min; maximum, 6 min). For the 8 models run through this procedure (with the exception
of AutoGluon and LightGBM), the total computational time spent was about one hour. The
computational time was not fine-tuned, considering it was not the aim of this work. The
usage is indeed at 15%. AutoGluon and LightGBM were run on Colab, and the time spent
was about 7 min and less than one minute.

References
1. Fiorino, C.; Jeraj, R.; Clark, C.H.; Garibaldi, C.; Georg, D.; Muren, L.; van Elmpt, W.; Bortfeld, T.; Jornet, N. Grand challenges for

medical physics in radiation oncology. Radiother. Oncol. 2020, 153, 7–14. [CrossRef]
2. Fiorino, C.; Guckenberger, M.; Schwarz, M.; van der Heide, U.A.; Heijmen, B. Technology-driven research for radiotherapy

innovation. Mol. Oncol. 2020, 14, 1500–1513. [CrossRef]
3. Siddique, S.; Chow, J.C. Artificial intelligence in radiotherapy. Rep. Pract. Oncol. Radiother. 2020, 25, 656–666. [CrossRef]
4. Ho, D. Artificial intelligence in cancer therapy. Science 2020, 367, 982–983. [CrossRef] [PubMed]
5. Chow, J.C.L. Artificial Intelligence in Radiotherapy and Patient Care. In Artificial Intelligence in Medicine; Springer International

Publishing: Cham, Switzerland, 2021; pp. 1–13. [CrossRef]
6. Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; Godwin, J.; et al. Effect of

radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual
patient data for 10801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [CrossRef] [PubMed]

7. Shah, C.; Al-Hilli, Z.; Vicini, F. Advances in Breast Cancer Radiotherapy: Implications for Current and Future Practice. JCO Oncol.
Pract. 2021, 17, 697–706. [CrossRef]

http://doi.org/10.1016/j.radonc.2020.10.001
http://dx.doi.org/10.1002/1878-0261.12659
http://dx.doi.org/10.1016/j.rpor.2020.03.015
http://dx.doi.org/10.1126/science.aaz3023
http://www.ncbi.nlm.nih.gov/pubmed/32108102
http://dx.doi.org/10.1007/978-3-030-58080-3_143-1
http://dx.doi.org/10.1016/S0140-6736(11)61629-2
http://www.ncbi.nlm.nih.gov/pubmed/22019144
http://dx.doi.org/10.1200/OP.21.00635


Cancers 2024, 16, 934 23 of 24

8. Seibold, P.; Webb, A.; Aguado-Barrera, M.E.; Azria, D.; Bourgier, C.; Brengues, M.; Briers, E.; Bultijnck, R.; Calvo-Crespo, P.;
Carballo, A.; et al. REQUITE: A prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or
prostate cancer. Radiother. Oncol. 2019, 138, 59–67. [CrossRef]

9. McGale, P.; Taylor, C.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Gray, R.; Mannu, G.; Peto, R.; Whelan, T.; et al. Effect of
radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of
individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [CrossRef]

10. Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European organization
for research and treatment of cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [CrossRef] [PubMed]

11. Chan, R.J.; Larsen, E.; Chan, P. Re-examining the Evidence in Radiation Dermatitis Management Literature: An Overview and a
Critical Appraisal of Systematic Reviews. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e357–e362. [CrossRef]

12. Tesselaar, E.; Flejmer, A.M.; Farnebo, S.; Dasu, A. Changes in skin microcirculation during radiation therapy for breast cancer.
Acta Oncol. 2017, 56, 1072–1080. [CrossRef]

13. Avanzo, M.; Pirrone, G.; Vinante, L.; Caroli, A.; Stancanello, J.; Drigo, A.; Massarut, S.; Mileto, M.; Urbani, M.; Trovo, M.;
et al. Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late
Radiation-Induced Subcutaneous Fibrosis. Front. Oncol. 2020, 10, 490. [CrossRef] [PubMed]

14. Rancati, T.; Fiorino, C. Modelling Radiotherapy Side Effects: Practical Applications for Planning Optimisation; CRC Press: Boca Raton,
FL, USA, 2019. [CrossRef]

15. Harbeck, N. Breast cancer is a systemic disease optimally treated by a multidisciplinary team. Nat. Rev. Dis. Prim. 2020, 6, 30.
[CrossRef] [PubMed]

16. The radiotherapeutic injury—A complex ‘wound’. Radiother. Oncol. 2002, 63, 129–145. [CrossRef]
17. Isaksson, L.J.; Pepa, M.; Zaffaroni, M.; Marvaso, G.; Alterio, D.; Volpe, S.; Corrao, G.; Augugliaro, M.; Starzyńska, A.;
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