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Abstract: The ongoing COVID-19 pandemic currently involves millions of people worldwide. Radi-
ology plays an important role in the diagnosis and management of patients, and chest computed
tomography (CT) is the most widely used imaging modality. An automatic method to characterize the
lungs of COVID-19 patients based on individually optimized Hounsfield unit (HU) thresholds was
developed and implemented. Lungs were considered as composed of three components—aerated,
intermediate, and consolidated. Three methods based on analytic fit (Gaussian) and maximum
gradient search (using polynomial and original data fits) were implemented. The methods were
applied to a population of 166 patients scanned during the first wave of the pandemic. Preliminarily,
the impact of the inter-scanner variability of the HU-density calibration curve was investigated.
Results showed that inter-scanner variability was negligible. The median values of individual thresh-
olds th1 (between aerated and intermediate components) were −768, −780, and −798 HU for the
three methods, respectively. A significantly lower median value for th2 (between intermediate and
consolidated components) was found for the maximum gradient on the data (−34 HU) compared to
the other two methods (−114 and −87 HU). The maximum gradient on the data method was applied
to quantify the three components in our population—the aerated, intermediate, and consolidation
components showed median values of 793 ± 499 cc, 914 ± 291 cc, and 126 ± 111 cc, respectively,
while the median value of the first peak was −853 ± 56 HU.

Keywords: Covid-19; chest CT; lungs; HU density

1. Introduction

Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel RNA coron-
avirus from the same family as SARS-CoV and Middle East respiratory syndrome coro-
navirus (MERS-CoV), was identified in early January 2020 as the cause of a pneumonia
epidemic initially striking China, from where it spread very rapidly around the world. The
World Health Organization named the syndrome coronavirus disease 2019 (COVID-19)
and subsequently declared it a pandemic, given its widespread infectivity and high rate of
contagion. To date, many millions of cases have been confirmed worldwide [1]. Human
coronaviruses typically cause respiratory and enteric infections. SARS-CoV-2 infection
mainly presents flu-like symptoms such as fever, cough, and fatigue, similar to other
coronaviruses. In severe cases, the virus can cause severe interstitial pneumonia, acute
respiratory distress syndrome (ARDS), and subsequent multi-organ failure, responsible for
severe acute respiratory failure and high mortality rates.
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Chest CT plays an important role in diagnosing COVID-19 [2]. Recent studies have
reported the sensitivity and specificity of CT in COVID-19 pneumonia to be 60–98% and
25–53%, respectively [3,4]. A recent study reported positive and negative predictive values
of chest CT in COVID-19 pneumonia of 92% and 42%, respectively [3]. The low negative
predictive value suggests that CT may not be suitable as a screening method in COVID-19
pneumonia, at least in the early stages of the disease. CT sensitivity depends on the time
elapsed after the onset of symptoms [5], and CT findings vary widely for this disease,
depending on clinical severity and the time from symptom onset [6,7]. The disease most
commonly affects the lower and peripheral areas of both lungs, with a prevalent multifocal
pattern [8]. The posterior areas are affected in about 80% of cases, and the disease is
generally quite extensive, with all five lobes affected in a large proportion of patients [9].
Although irregular multifocal distribution is more common than diffuse disease [8], both
unilateral and unifocal involvement may occur.

Ground glass opacity (GGO) is defined as a hyper-attenuated area of the lung without
darkening of the underlying vessels, and is typically caused by partial filling of the air
spaces or interstitial thickening [10]. GGO appears to be the most common CT finding, ob-
served in up to 98% of patients, and is usually the first manifestation [11,12]. It may or may
not be accompanied by other findings, in particular consolidation and reticulation [9]. Con-
solidation is defined as a hyper-attenuated area with darkening of the underlying vessels,
caused by the complete filling of the alveolar air spaces [10]. Consolidations are generally
irregular, while round-shaped lesions have been reported in 11–54% of patients [13], and
are considered to be relatively more specific for this disease [14]. Consolidation usually
appears later than GGO and peaks in days 10 to 12 after the onset of the disease [6]. Retic-
ulation is defined as thickened interlobular septa and intralobular lines that appear as
linear opacities on CT [10], and was the third most common CT feature, after GGO and
consolidation, with a rate of 48.5–59% [8]. Crazy paving pattern (CPP) is defined as thick-
ened interlobular septa or intralobular lines superimposed on GGO, resembling paving
stones [12]. This finding may refer to alveolar edema and acute interstitial inflammation,
also present in severe acute respiratory syndrome (SARS). It has been reported in 5–36% of
patients with COVID-19 pneumonia [12].

Several recent works have evaluated the correlation between quantitative features
extracted from CT and the clinical outcome of patients with COVID-19 pneumonia. Few
articles have dealt with the prediction of disease severity and short-term disease progres-
sion [15–17]. Other authors have developed predictive models of diagnosis and prog-
nosis [18–22]. Artificial-intelligence-based approaches have been shown to significantly
improve sensitivity and specificity in diagnosing COVID-19 pneumonia; machine learning
approaches using convolutional network models have found promising results in distin-
guishing COVID-19 from other types of pneumonia [23–25]. This volumetric calculation
reflects disease extension, and can be used in predicting disease severity, progression, and
response to treatment [26–28].

Within this context, the reliability and repeatability of lung sub-volumes according to
their density is a significant issue. The need for operator-independent approaches, possibly
defining sub-regions with a clear link to functional meaning, is urgent. Thus, the principles
aims of our study were:

1. To develop an automated, operator-independent quantitative method to identify
the different lung regions for COVID-19 patients, based on individually optimized
Hounsfield unit (HU) thresholds; the proposed method is based on an intuitive, inter-
pretable phenomenological characterization of lungs, with clear functional meaning;

2. To achieve a feasible implementation of the proposed method in such a way as to be
potentially usable by other institutions;

3. To demonstrate the robustness of the method with respect to inter-scanner variability
within a single institute;
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4. To report inter-patient distribution of the HU-based parameters extracted by our
approach over a large single-center population of 166 patients during the first wave
of the pandemic.

2. Materials and Methods
2.1. Patient Database

The data used in this work are part of an internal database of the San Raffaele Scien-
tific Institute (Milan, Italy). The database consists of more than 250 COVID-19 patients
who underwent chest CT scan between 28 February 2020 and 21 May 2020. CTs were
performed at maximum inspiration. Demographic data (age, sex) and clinical data (e.g.,
comorbidities) are available for each patient. Patients who presented an acquisition made
with parenchyma reconstruction in non-contrast mode were selected from the database.
The database thus obtained consisted of 166 COVID-19 patients. The number was in fact
limited by the availability of observers in contouring lungs, which is a quite cumbersome
procedure. The significant, temporary reduction of radiotherapy clinical activities during
the first phase of the lockdown afforded more time to planners for this activity. Patients
were randomly chosen from the largest available set. After a return to full activity, the
time available was greatly reduced, and it was thus decided to stop the contouring phase,
resulting in a more than sufficient number of patients to test our approach and from whom
to derive reliable population data. The equipment used for chest CT scans was as follows:

• Lightspeed VCT (64sl), General Electric Medical System(Boston, MA, USA);
• Brilliance (64sl), Philips (Amsterdam, Netherlands);
• Incisive (64sl), Philips (Amsterdam, Netherlands).

88% percent of the exams were performed with Lightspeed, 7% with Brilliance and
5% with Incisive. All scans were performed with an X-ray tube voltage of 120 kV and
automatic current modulation of 149 to 549 mA, slice thickness 1 to 1.25 mm, and matrix
512 × 512. CT images were retrieved from the hospital picture archiving and communica-
tion system (PACS).

2.2. Assessing Inter-Scanner Variations of HU-Density Calibration Curves

Accurate and reproducible assessment of Hounsfield unit (HU) [29] distribution within
the lungs is of paramount importance. The values of the HU of the CT images depends
on the calibration curve internal to each equipment (HU as a function of the attenuation
coefficient of the materials). For verification, we investigated the impact of the HU-density
calibration curves obtained with the parameters used in the image acquisition phase of
the CT equipment utilized. To assess the impact of the calibration curves, the acquisition
parameters of COVID-19 patients we analyzed, and the specific protocol calibration curves
reconstructed for all CT scanners used. For the study description, tube voltage and X-ray
current were collected from the header DICOM (Digital Imaging and COmmunications in
Medicine) of the CT image in the available database. Tube voltage was set at 120 kV for
all CT scans, while the X-ray current was modulated according to patient size. The data
were divided for each piece of equipment—the median values of the X-ray current for each
device were calculated; regarding GE LightSpeed (used for 88% of patients), the values of
the minimum, the maximum, and the first and the third quartile were also calculated, as
shown in Table 1.

These parameters were used to perform acquisitions with the calibrated CT image
quality phantom, Catphan 600—The Phantom Laboratory, Battenville, NY, USA, in the
entire HU range (−1000 to +1000). A tube voltage of 120 kV and the median value of X-ray
current for each piece of equipment was used for the exposition of the Catphan phantom.
Moreover, for the General Electric equipment, the first and third quartiles were also used
as exposure parameters. The Catphan consists of an inner layer containing several inserts
of different materials corresponding to different attenuation coefficients. Knowing the
attenuation coefficients of these materials, and measuring the average HU values inside
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each insert, it was possible to obtain the characteristic linearity curve of the equipment at
the exposure parameters selected in the acquisition phase.

Table 1. Schematic of the CT chest present in the database based on the equipment used, the number of patients, and the
voltage and current range.

Equipment Number of Patients Voltage (kV)
Current (mA)

Range Median 1st Quartile 3rd Quartile

Lightspeed 146 120 149–549 352.5 219.5 451.5
Brilliance 12 120 240–500 458.5 - -

Incisive 8 120 189–368 334 - -

Five repeated measurements were carried out for each scanner, and each X-ray current
value considered. The average HU value was used to calculate the linearity curve for
each insert.

Consequently, for Philips Brilliance and Philips Incisive, a single calibration curve was
obtained, relative to the median value of the current used for the patient scans carried out
on each. For the GE LightSpeed, five calibration curves were obtained, corresponding to
the minimum, maximum, 25th quartile, 50th quartile (median), and 75th quartile values. A
region of interest (ROI) was selected within each Catphan insert. Using the ImageJ image
processing software, the mean value and standard deviation of the HU values within the
ROI were evaluated. The variation in the average HU values within each ROI was then
calculated between the various acquisitions taken.

2.3. HU-Density Histograms

The first step in the implementation of a method for lung characterization in COVID
patients is the accurate identification of the entire lung area. CT acquisitions of the 166
COVID-19 patients considered were initially analyzed, and the 332 lungs were manually
segmented by a team of planners from the San Raffaele Scientific Institute (Milan, Italy)
skilled in the manual segmentation of CT images for radiotherapy planning purposes.
The contouring tool of the Eclipse software (Varian Medical System, Inc. Palo Alto, CA,
USA) was used for the manual segmentation of the lungs. Both the aerated component
and the component affected by COVID pneumonia were included within the contours
thus identified. Right and left lungs were delineated separately for each patient. Since
the original dimensions of CT voxels vary depending on the equipment used, CT images
were resampled with an isotropic 1.5 × 1.5 × 1.5 mm3 voxel size, in order to reduce the
impact of the different CT voxel dimension used during the acquisition. The original lung
contours were overlaid on the resampled images, without any significative differences. The
consistency of the contours was checked on a sample of patients by two skilled radiologists.
On the other hand, “little” inter-observer variations in lung contouring are not expected
to significantly influence our approach, as the threshold values were well away from the
inferior and superior HU limits and identifying internal volumes. All procedures regarding
the resampling at cubic voxel and the analysis of the resampled images to extract lung
HU-density histograms were performed with a specific workflow designed with the MIM
software [30]. Each HU-density unit was associated with the number of voxels having that
HU-density value; this was performed for each individual lung.

2.4. Threshold Definition Methods

Considering the typical HU-distribution, lungs may be divided into three regions: the
aerated component, the consolidated component and an intermediate component. The HU
density of the lungs of COVID-19 patients is generally characterized by the presence of
two peaks with a shape similar to that of a Gaussian curve, as shown in Figure 1, one next
to the air HU (−1000 HU) which defines the aerated, and therefore “properly” functioning,
lung; and one next to the water HU (0 HU) [29] corresponding to the lung component with



Appl. Sci. 2021, 11, 1238 5 of 15

consolidated disease. Between these two peaks there is a quite evident and pronounced
region with highly variable patterns from patient to patient. This region corresponds to the
component of the lung affected by the disease, but not yet scarred, and mostly includes
ground glass opacities (GGO) and crazy-paving regions. The corresponding region in the
HU distribution plot often has a plateau-like trend, while in most cases it is characterized
by a bell shape. Taking into account the shape of the HU-density distributions, different
strategies were followed to individually define the best threshold values for distinguishing
the different lung components.

Figure 1. Examples of Hounsfield unit (HU)-density histograms. The histograms shown correspond to the lungs of the
same patient; in particular, (a) is the histogram relating to the right lung and (b) is the histogram relating to the left lung.

The first method consisted of parameterizing the distribution of the HU densities of
the individual lungs with a curve given by the linear combination of three Gaussian curves,
and considering the half-width half-maximum of the curves to assess the thresholds.
This method was named the “Gaussian method”. The three Gaussians used in the fit
corresponded to the three lung components (see Figure 2). The resulting function used for
the fit was as follows:

f it(x) = a1× exp

(
−
(

x − b1
c1

)2
)
+ a2× exp

(
−
(

x − b2
c2

)2
)
+ a3× exp

(
−
(

x − b3
c3

)2
)

where:

• x are the values of the densities HU;
• a1, a2, and a3 are the multiplicative coefficients of the Gaussians;
• b1, b2, and b3 represent the mean values of the Gaussians;
• c1, c2, and c3 are related to the standard deviation from the relation c2 = 2σ2;

• Subscript 1 refers to the Gaussian related to the aerated component;
• Subscript 2 refers to the Gaussian related to the intermediate component;
• Subscript 3 to the Gaussian related to the consolidated component.
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Figure 2. (a–d) Examples of HU-density histogram fit. Each plot shows the overall fit and the three Gaussians that
compose it.

Concerning the fit, it was imposed that the search for peaks corresponding to the
aerated and consolidated components would start from the HU-density values typical of
air (−1000 HU) and water (0 HU), respectively. The standard deviation σ of the individual
Gaussians was obtained from the fit and used to determine the thresholds. The thresholds
were given by the following relations:

th1 = b1 + σ1

th2 = b3 − σ3

where:

• th1 is the value of HU that separates the aerated component from the intermediate one;
• th2 is the value of HU that separates the intermediate component from the consoli-

dated one;
• b1 and b3 are the mean values of the Gaussians and σ1 and σ3 are the relative

standard deviations.

All fits were realized with a Matlab script using the cftool for the curve fitting. The fit-
ting method used was the non-linear least squares with the least absolute residual method.

The second method was the maximum gradient “on the fit”. With this approach the
proper inflection points of the curve were found by looking at the points where the second
derivative of the curves was 0.

The third method used was similar to the previous one, without considering the
Gaussian fit but directly using the original data. This method was identified as maximum
gradient “on the data”. The frequency values of the individual HU densities were jagged,
and thus had many inflection points. Therefore, in order to apply the maximum gradient
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method, it was necessary to post-process the distributions of the HU densities. First, a
rebinning of the data to 25 HU was performed; the values obtained were then interpolated,
and a smooth function applied (see Figure 3). At this point it was possible to apply the
maximum gradient method, as in the case of the fit function, and find the threshold values.

Figure 3. (a–d) Examples of post-processed HU-density histograms.

For each of the three methods, the individual thresholds for each lung and the median
values over the whole population were extracted.

The threshold values individually obtained with the three methods were then com-
pared by means of Kuskall–Wallis tests. Summary statistics of the different lung compo-
nents and their relative ratios were also reported focusing on the third method, which
was found to be the most stable in defining th2 (including visual inspection by two expert
radiologists of 30 sample patients).

3. Results
3.1. Impact of the HU-Density Calibration Curve

The variation of the HU values among the different acquisitions (range 0 to 4 HU)
was much smaller than the standard deviation of the HU values within each ROI for the
single acquisition (range 38 to 69 HU). For this reason, a single HU calibration curve can be
considered given by the average of all the measurements made at the different currents also
for GE LightSpeed. The values of the calibration curves for the different types of equipment
were then compared. It was found that the standard deviation of the HU values of the
inserts was considerably smaller than the average of the standard deviations (SD) relating
to the measurement on the inserts. Results are shown in detail in Table 2 and Figure 4.
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Table 2. Average CT values for the three types of equipment.

Insert
Attenuation Coefficient

@70 keV (1/cm)
Light Speed Brilliance Incisive

N. CT ROI SD N. CT ROI SD N. CT ROI SD

Air 0 −981.23 38.35 −972.12 42.43 −972.57 49.64
PMP 0.157 −181.55 48.03 −175.48 54.13 −181.07 66.68

LDPE 0.174 −90.60 46.14 −85.43 53.53 −90.17 67.73
Polystyrene 0.188 −35.30 46.56 −30.19 52.44 −34.59 69.33

Acrylic 0.215 126.99 47.75 125.71 57.40 121.08 66.92
Delrin 0.245 350.22 52.85 347.33 56.96 341.85 70.77
Teflon 0.363 960.24 68.70 940.18 59.92 940.09 74.29

Figure 4. Plot of the number of CT inserts as a function of the attenuation coefficient for the equipment
used. The trend line for each of the data sets is also represented.

In summary, we can assume that inter-scanner variability did not significantly affect
the HU values of the CT images, regardless of the current used during scanning. The
resulting HU-density histograms can therefore be considered reasonably consistent.

3.2. HU-Density Histogram Parameters—Extraction and Analysis of 166 COVID-19 Patients

Through the script created in the Matlab environment, all the histograms were suc-
cesfully fitted; for each of them, the values of the HU thresholds between the aerated and
intermediate components (th1) and between the intermediate and consolidated (th2) were
calculated for each of the individual lungs using the methods described:

1. Gaussian;
2. Maximum gradient on the fit;
3. Maximum gradient on the data.

Examples of several histograms of representative lungs are shown in Figure 5 as
results of the application of the three methods. Overall (see Table 3), the th1 threshold
values using the Gaussian method were in the range of −870 to −386 HU, with a median
and standard deviation of −768 and 73 HU, respectively; values obtained with the th2
threshold were between−232 and 32 HU with median and standard deviation of −114
and 41 HU, respectively. Using the method of the maximum gradient on the fit, the HU
range was −927 to −322 HU with median and standard deviation of −780 and 77 HU for
the threshold th1, and −706 to 10 HU with median and standard deviation of −87 and
61 HU, respectively, for the th2 threshold. Lastly, the values obtained with the maximum
gradient method on the data were, for the threshold th1, a range of −900 to −430 HU and
median and standard deviation of −798 and 71 HU, and a range of −271 to 64 HU with
−34 ± 41 HU for the median and standard deviation of the th2 threshold.
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Figure 5. (a–f) Examples of graphical representation of the threshold values found by analyzing the HU-density histograms
with the methods described.
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Table 3. Summary table of the threshold values found with the methods used.

Method Threshold Minimun Maximum Median Standard Deviation

Gaussian
Th1 −870 −386 −768 73
Th2 −232 32 −114 41

Maximum
gradient fit

Th1 −927 −322 −780 77
Th2 −706 10 −87 61

Maximum
gradient data

Th1 −900 −430 −798 71
Th2 −271 64 −34 41

The Kruskal–Wallis non-parametric statistical significance test demonstrates that
the distributions of the values of the thresholds th1 and th2 calculated with the three
methods described were statistically different, with a significance level p-value <0.001
for both thresholds. While inter-patient variability was low for the th2 threshold, th1
threshold values were far more variable, as they concerned the fibrotic component of the
consolidated lung.

This is likely because the aerated component of the lung obtained from CT images,
taken in conditions of maximum inspirium, is an extremely patient-dependent measure of
lung function.

As can be seen from the boxplots in Figure 6, the method with the least dispersion was
the maximum gradient on the data. Also from the qualitative point of view, it was clear
that the method that visually best identified the separation of the components of the lungs
of COVID-19 patients was that of maximum gradient on the data. Of note, the approach of
using a plot that follows the trend of real data, rather than a fit made on these data, removes
the intrinsic uncertainty linked to the fit, obtaining values that better represent the true
condition of the lungs. Consequently, in the remaining part of this work, sub-segmentation
will always refer to this method.

Figure 6. Boxplot of the distributions of threshold values Th1 and Th2 according to method used:
Gaussian, maximum gradient on the fit (Max grad fit) and maximum gradient on the data (Max
grad data).

After identifying the threshold values that separate the components of the lungs
in COVID-19 patients, information characterizing each of the regions of the lungs was
extracted from the histograms. The first relevant parameter extracted was the volume (in
cc) of the aerated, intermediate, and consolidation regions. To calculate the volume in cc
starting from the CT images, the area under the curve of the HU-density histograms was
considered. Each voxel had a known size of 1.5 × 1.5 × 1.5 mm3; thus the area under the
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curve was linked to the volume of the lung considered with a normalization factor taking
voxel size into account.

Figure 7 shows the histogram of the volume distributions of the lung components
within the entire patient population. The bin size used was 150 cc. It can be seen that the
consolidated component had the smallest volume, with a median value of 126 cc ± 111 cc.
The intermediate component had a median volume of 914 cc with a standard deviation of
291 cc, while the aerated component had a median volume of 793 ± 499 cc. In addition to
the volumes of the lung regions, their ratio was also calculated. The absolute measurement
of volumes, in fact, may not provide full information on the residual functionality of the
lung. The values found for the consolidated over aerated component ratio and the ratio
between intermediate and aerated components are shown in Figure 8 and were 0.16 ± 0.89
and 1.09 ± 2.56, respectively. Other extracted features that characterized the HU-density
histogram were:

1. HU value corresponding to the peak of the curve for the aerated regions;
2. Shift with respect to −1000 HU, a characteristic value of the aerated component under

normal conditions;
3. Width in HU of the intermediate region.

Figure 7. Histogram of the volume distributions of the aerated, intermediate, and consolidated
components. The bin size used was 150 cc. The number on the y-axis represents the number of
patients per bin.

Figure 8. Boxplot of the volume ratios of the consolidated component compared to the aerated
component and of the intermediate component compared to the aerated one.

The median of the values of the peak position of the aerated region curve was
−853 ± 56 HU in a range of −1000 to −583 HU. Consequently, the median value of the



Appl. Sci. 2021, 11, 1238 12 of 15

peak shift of the aerated region with respect to −1000 HU was 147 HU. The width of
the intermediate region was calculated as the difference between the th2-th1 threshold
values. The width values found were in the range of 282 to 878 HU, with a median and
standard deviation of 754 and 88 HU, respectively. As shown in Figure 9, the inter-patient
distribution of these values was very large and did not follow a Gaussian shape.

Figure 9. Histograms of the distributions of (a) position of the peak of the aerated component and (b) width of the
intermediate component.

4. Discussion

The proposed method was based on the robust, operator-independent identification of
threshold HU values that identified three regions here referred to as aerated, intermediate
and consolidated, with intuitively clear functional meaning. It follows a phenomenological
approach starting from the manual segmentation of the lung and then analyzing the
shape of the HU histogram. Contrary to other approaches, the thresholds that define and
differentiate the lung components were identified on the basis of the shape of the HU
histograms, rather than second-order features and classifiers or radiologist preferences,
thus maintaining a solid link with the residual lung functionality and eliminating, a priori,
any operator dependence.

Prior to the quantitative analysis of the images, it was verified that the image database
was consistent against inter-scanner variability, although 88% of patients were scanned
on one (of the three) scanner. For this purpose, calibrated CT image quality phantom
acquisitions at different X-ray currents were performed on each scanner. Importantly, inter-
scanner variability was not found to significantly influence the HU value of CT images,
and the database can thus be considered consistent.

The lung contours were initially segmented manually. Subsequently, through the
implementation of an automatic procedure implemented in a workflow on the MIM
software, histograms of the HU values inside the contours were extracted. The histograms
obtained were analyzed by means of three different analytical methods.

The maximum gradient on the data method, likely to fit better with visual consistency
in lung component separation, was applied in order to quantify the three components
in our population. The consolidated component was found to have the smallest vol-
ume (126 ± 111 cc) and the intermediate and aerated components showed a volume of
914 ± 291 cc and 793 ± 499 cc, respectively. A number of parameters were also extracted:

1. Ratio between the consolidated component and the aerated component (0.16 ± 0.89);
2. Ratio between the intermediate component and the aerated component (1.09 ± 2.56);
3. HU value corresponding to the peak of the curve for the aerated regions (−853 ± 56 HU);
4. Width in HU of the intermediate region (754 ± 88 HU).
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Some considerations may be made when comparing the findings of the current work
with other reported results. Colombi et al. [18], for instance, reported a median value of
2900 cc for the aerated component of both lungs in a large population of patients hospi-
talized in a center in a neighboring city in the same period as our study; this value was
significantly higher than ours (considering paired lungs, by about 1600 cc). This difference
could be explained by the different segmentation methods used; in fact, Colombi et al. used
fixed threshold values of −950 to −700 HU, while we adopted individual thresholds opti-
mized for the distinction between the aerated component and the intermediate component,
with a far lower th1 value compared to those found by our individually assessed method.
Leonardi et al. [16] reported that the percentage of the lung involved in the disease varied
from 6%, for non-critically ill patients, to 38%, for critically ill patients. Their definition of
the lung component involved in the disease, manually segmented, seemed to include parts
of what we identified as an intermediate component, and this could explain the higher
mean values relative to our consolidation estimates (by about 6.4%). Matos et al. [17]
reported a median volume of disease of 295 cc on the two lungs, quite consistent with our
results. Their method of segmentation of the consolidated component was semi-automatic;
the radiologist identified areas of the disease and a region-growing algorithm was then
applied, likely resulting in the identification of individual thresholds based on maximum
contrast with the tissue surrounding the consolidated component. Liu et al. [15], by ap-
plying thresholds to CT values, extracted three quantitative features corresponding to the
percentage of GGO volume, semi-consolidation volume and consolidation volume. The
percentages of GGO and semi-consolidation volumes were part of what we defined as
intermediate component, and were therefore not directly comparable. The consolidation
volume percentage obtained in this study was 5.8%, comparable to our estimate (6.4%).
Lyu et al. [28] found a volume percentage for the aerated component, using fixed threshold
values of −950 to −800 HU, of 43% of the entire segmented lung. This value was in
line with that found with our segmentation method, as could be expected, as their fixed
threshold value was similar to the median value of our population.

More generally, concerning the choice of threshold to define the aerated component,
our findings suggest that for COVID-19 patients the quantity of air inflated during a deep
inspiration before the CT scan is highly variable among patients, reflecting the variable
residual functionality of the aerated lung. Thus, the individual choice of a “best threshold “
seems to be a more reasonable option, able to adapt the “aerated lung” definition to each
individual patient/lung. In addition, the relatively large variability of the peak position
of the aerated component is also a clear measurement of the change of lung perfusion
compared to healthy patients, typically presenting their peak at much lower values.

In conclusion, this work allowed the development of a semi-automatic, operator
independent segmentation method identifying the main lung components of COVID-19
patients with respiratory syndrome. Our approach intrinsically gives clear functional
meaning to the different sub-volumes identified and overcame the approximation due to
the choice of fixed thresholds, taking individual lung functionality carefully into account;
this is especially true for th1. Very importantly, due to its simplicity and to the clear,
reproducible and interpretable features that can be extracted, the suggested approach can
easily be transferred from our institute.

Work is currently underway to make the segmentation method fully automatic; as
a matter of fact, manual segmentation is cumbersome and this is a limit of our current
approach. An atlas, based on CT images of COVID-19 patients, has been developed to
automate the initial identification of the lungs, and is currently being validated. Combining
this atlas with the method suggested here should allow an automatic sub-segmentation
of the lung components to be obtained in no more than a few minutes. In addition,
the quantitative analysis carried out on the HU histograms is being applied to develop
predictive models of early clinical outcome. On the other hand, atlas-based approaches
for automatic segmentation of the whole lungs do not represent the only way to solve the
issue; further research regarding AI/deep learning approaches may be warranted.
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