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Stomach and duodenum
dose–volume constraints for
locally advanced pancreatic
cancer patients treated in 15
fractions in combination
with chemotherapy
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and Claudio Fiorino1*

1Medical Physics, San Raffaele Scientific Institute, Milano, Italy, 2Radiotherapy, San Raffaele Scientific
Institute, Milano, Italy, 3Unit of Data Science, Department of Epidemiology and Data Science,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy, 4Oncology, San Raffaele Scientific
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Purpose: To assess dosimetry predictors of gastric and duodenal toxicities for

locally advanced pancreatic cancer (LAPC) patients treated with chemo-

radiotherapy in 15 fractions.

Methods: Data from 204 LAPC patients treated with induction+concurrent

chemotherapy and radiotherapy (44.25 Gy in 15 fractions) were available.

Forty-three patients received a simultaneous integrated boost of 48–58 Gy.

Gastric/duodenal Common Terminology Criteria for Adverse Events v. 5

(CTCAEv5) Grade ≥2 toxicities were analyzed. Absolute/% duodenal and

stomach dose–volume histograms (DVHs) of patients with/without toxicities

were compared: the most predictive DVH points were identified, and their

association with toxicity was tested in univariate and multivariate logistic

regressions together with near-maximum dose (D0.03) and selected clinical

variables.

Results: Toxicity occurred in 18 patients: 3 duodenal (ulcer and duodenitis) and

10 gastric (ulcer and stomatitis); 5/18 experienced both. At univariate analysis,

V44cc (duodenum: p = 0.02, OR = 1.07; stomach: p = 0.01, OR = 1.12) and

D0.03 (p = 0.07, OR = 1.19; p = 0.008, OR = 1.12) were found to be the most

predictive parameters. Stomach/duodenum V44Gy and stomach D0.03 were

confirmed at multivariate analysis and found to be sufficiently robust at internal,

bootstrap-based validation; the results regarding duodenum D0.03 were less
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robust. No clinical variables or %DVH was significantly associated with toxicity.

The best duodenum cutoff values were V44Gy < 9.1 cc (and D0.03 < 47.6 Gy);

concerning the stomach, they were V44Gy < 2 cc and D0.03 < 45 Gy. The

identified predictors showed a high negative predictive value (>94%).

Conclusion: In a large cohort treated with hypofractionated radiotherapy for

LAPC, the risk of duodenal/gastric toxicities was associated with duodenum/

stomach DVH. Constraining duodenum V44Gy < 9.1 cc, stomach V44Gy < 2 cc,

and stomach D0.03 < 45 Gy should keep the toxicity rate at approximately or

below 5%. The association with duodenum D0.03 was not sufficiently robust

due to the limited number of events, although results suggest that a limit of 45–

46 Gy should be safe.
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1 Introduction

Pancreatic cancer is one of the leading causes of cancer-related

death in Europe and North America (1). Most patients are still

unresectable at diagnosis, with the large majority presenting at

locally advanced stage or metastatic (2, 3). Despite some

advancements, the prognosis of locally advanced pancreatic

cancer (LAPC) remains poor, with median overall survival

around approximately 12–15 months (2–7). A major cause for

this unsatisfactory result lies in the prevalent metastatic progression;

however, the role of improving local control through local therapy

intensification has been underlined suggesting the exploration of

“safe”ways to escalate the dose to the tumor (8–11). There is, in fact,

some mounting evidence that a fraction not negligible of patients

could benefit in terms of overall survival from improved local

control, although this is not yet precisely quantified (9–14).

The technological developments in radiotherapy imaging

and precision delivery (15) pushed researchers in investigating

dose-escalated protocols, mostly using image-guided radiation

therapy (IGRT) aiming to reduce planning target volumes

(PTVs) around more precisely defined target volumes (clinical

target volume (CTV) and internal target volume (ITV)). A

relevant issue concerns the proximity of organs at risk

(OARs), primarily the stomach and duodenum, whose sparing

is crucial to avoid severe toxicities. The way these OARs are

spared heavily influences the ability to deliver sufficiently high

doses to the tumor. The small and uncertain benefit of

stereotactic body radiotherapy (SBRT) delivered in 1–5

fractions (14, 16–21) is likely to depend on this issue, despite

the use of advanced technology to reduce the impact of inter-
02
and intra-fraction motion (15, 22–25); new developments in

MRI-Linacs (23) promise to improve the picture, but the

experience is still too early, and the spread of these machines

is not expected to move rapidly.

In the last years, the interest towardmoderatehypofractionation,

also combinedwith concomitant dose escalationonportions of PTV

(8, 9, 11, 12, 22), is increasing, suggesting that schedules with a

numberoffractionsequal to15oraroundthisvaluemayrepresent an

optimal window to deliver sufficiently high dose by keeping low the

rate of gastric/duodenal toxicities (9, 12, 26).Moreover, the relatively

large number of fractions intrinsically reduces the impact of unusual

anatomy deformation in single fractions, compared to SBRT (25).

However, there is still an evident lack of knowledge of dose–volume

effects for theseorgansunder these fractionations,with fewpublished

studies regarding relatively small populations (22, 26–29). This lack

may reflect a limitation in exploiting the potential of dose escalation,

due to a likely “over-safe” approach in sparing OARs. Our institute

was among the first ones to adopt a moderate hypofractionation

approach using 15 fractions since 2004, including concomitant dose

escalation in sub-volumes within a Phase I trial (8).

In a pilot investigation on the first 61 patients, Cattaneo et al.

(27) found a significant association between stomach/duodenum

dose–volume histograms (DVHs) and gastric/duodenal toxicities.

The aim of the current study was to update the previous

results on a much larger population of 204 LAPC patients

treated in a quite homogeneous way, delivering 44.25 Gy in 15

fractions using helical tomotherapy (HT); based on these results,

rational constraints were derived even in the light of a renewed

interest toward the promising field of dose-escalated

radiotherapy delivered in 15 fractions (30).
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2 Materials and methods

2.1 Eligibility criteria

The current analysis refers to patients with histologically

confirmed LAPC treated according to an institutional protocol

(see below), from 2004 to 2019 at San Raffaele Institute in Milan.

Patients excluded from surgery because judged unresectable

were submitted to induction chemotherapy; schedules changed

over time, consisting in most patients of four to six cycles of four-

drug combinations: cisplatin, epirubicin, 5-fluorouracil or

capecitabine, and gemcitabine (acronyms PEFG and PEXG).

After completing induction chemotherapy, patients were

restaged and discussed at multidisciplinary team meetings.

Considered for radio-chemotherapy (RCT) were 1) patients in

stage III still deemed not resectable due to vascular encasement,

including patients with local progression after chemotherapy or

with increased CA 19.9 compared to the nadir value reached

during chemotherapy, and 2) patients in stage IV with complete

response of metastases stable over a period of at least 4 months

after the end of induction chemotherapy. Among those treated

with RCT, the criteria for inclusion in the current analysis were

as fol lows: a) histological diagnosis of pancreat ic

adenocarcinoma, b) radiotherapy delivered with HT, c)

Karnofsky performance status scale >70, d) age > 18 years,

and e) availability of complete treatment planning data. In total,

the resulting cohort included 204 patients.
2.2 Treatment characteristics

RCT was generally planned 2–4 weeks after the completion

of induction chemotherapy. It consisted of the delivery of 44.25

Gy in 15 fractions, concomitant to capecitabine, 1,250 mg/day

weekend included, for 3 weeks. Details of radiotherapy

procedures are reported elsewhere (8, 27, 31). In short,

patients were immobilized and underwent simulation contrast-

enhanced CT and FDG-PET/CT. Primary tumors and enlarged

lymph nodes visible on the contrast-enhanced CT images or 4D-

CT images were defined as gross tumor volume (GTV). When a

standard CT was performed, ITV was defined as GTV with a

margin of 0.5 cm in anterior–posterior and left directions, and of

1.0 cm in cranial–caudal direction. In the case of 4D-CT, GTV

was contoured on at least four phases, and an ITV was obtained

by the union of four GTVs. The PET-positive volume and the

biological target volume (BTV), when available, were merged

with ITV to create the ITV/BTV. A further margin of 0.5 cm in

all directions was added to ITV/BTV to create PTV. The

stomach, duodenum, liver, kidneys, and spinal cord were

contoured as OARs. Constraints for the stomach were V40 <

18 cc and V30 < 23 cc; constraints for duodenum were V45 < 1

cc, V40 < 15 cc, and V30 < 35 cc. The dose prescription to the
Frontiers in Oncology 03
overlap between PTV and the stomach/duodenum was 44.25,

43.25, and 42.25 Gy, when the overlap volume was <14, 30, and

50 cc, respectively. In case of overlap >50 cc or dose constraints

were not recognized, the dose to the whole PTV was reduced to

40 Gy. All treatment plans were generated using the HT

planning system. With regard to PTVs, the goal was to deliver

≥95% of the prescribed dose to ≥95% of the volume while

keeping the dose as homogenous as possible. During the

optimization process, the planner had to reduce the volume of

irradiated stomach+duodenum as much as possible while

maintaining tumor coverage as the highest priority.

All treatment plans were generated using tomotherapy

inverse planning software, using the same convolution/

superposition dose calculation algorithm.

Fifteen patients received an additional boost to a sub-volume

PTV2 obtained from the infiltrating vessels with doses ranging

from 48 to 58 Gy. Details are described elsewhere (8). In

addition, 28 patients with favorable tumor dimensions or

tumor anatomic sites with respect to dose constraints received

a simultaneous integrated boost of 48 Gy to BTV. Patients with

simultaneous integrated boost (SIB) to infiltrating vessels were

included in a Phase I trial. The protocol was approved by our

Institutional Ethical Committee. Once it was confirmed that the

delivery of 44.25 Gy in 15 fractions was feasible, the Phase I

protocol was amended, and a subsequent observational

perspective trial was approved for the remaining patients; all

patients provided written informed consent. For all patients, a

megavoltage CT was performed before each fraction and co-

registered with the planning CT by means of automatic

matching on bony anatomy, followed by manual refinement

based on daily patient anatomy. The physician further checked

and corrected the patient setup by means of direct visualization

of other anatomical details. Of note, patients were carefully

instructed to have empty stomach both at planning CT and

during treatment delivery.
2.3 Toxicity scoring, end-point definition,
and DVH recovery

Patients were examined once a week during treatment by

radiation and medical oncologists. Adverse events were classified

as acute or late toxicity when taking place during the treatment

and within 3 months after RCT completion or 3 months after,

respectively. Toxicity was scored by the National Cancer

Institute Common Terminology Criteria for Adverse Events

(CTCAE). For the current study, gastric and duodenal

CTCAEv5 Grade ≥2 toxicities were considered. Due to the

limited number of events, acute and late events were

considered together. DVHs (absolute and %) of the stomach

and duodenum as previously contoured by the treating

physician were recovered. Percentage and absolute stomach
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https://doi.org/10.3389/fonc.2022.983984
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Broggi et al. 10.3389/fonc.2022.983984
and duodenum volumes receiving more than XGy, with X

ranging at 1–60 Gy, were extracted with a 1-Gy step.
2.4 Quantifying the relationship between
DVH and toxicity

Average absolute/% DVHs of the stomach/duodenum for

patients with/without toxicity were compared through a two-

sided t-test, according to a previously applied approach (32–34):

the DVH regions corresponding to the lowest p-values were

considered as candidate values to be tested in a logistic

regression analysis as potential dosimetry predictors. The best

cutoff values discriminating patients with/without toxicity were

also assessed by receiver operating characteristic (ROC) curves,

according to the DeLong method, using Youden’s index (35),

aiming to define optimal constraints. Univariable logistic

regression (UVA) was performed to assess the correlation

between the considered end-points and the selected dosimetric

parameters; selected clinical variables were also tested (gender,

age, stage (III vs. IV), drugs used as induction chemotherapy

(one vs. multiple drugs), number of induction chemotherapy

cycles (≥6 vs. <6), Karnofsky performance status, and patient’s

weight). Variables with p-value <0.1 at UVA and without cross-

correlations (Pearson’s or Spearman’s coefficient, in the range of

−0.25 to 0.25) were entered into a backward stepwise

multivariable logistic regression (MVA). The goodness of fit

was assessed by the Hosmer–Lemeshow test (H&L). Analyses

were performed with the MedCalc software (v.19.0.4, MedCalc

Software bvba, Ostend, Belgium) and the R software version

3.2.4 (©The R Foundation for Statistical Computing, Vienna,

Austria). Due to the limited number of events, an internal

validation procedure was performed using a dedicated script

in Matlab by repeating the regression fit for the major dosimetry

predictors on 500 data sets obtained by bootstrapping the

original cohort. Median and inter-quartile ranges of p-values,

odd ratios (ORs), and AUC values obtained by the procedure

were reported and compared with the results obtained on the

original cohort, as a measure of the results’ robustness.
3 Results

3.1 Patient characteristics

The main characteristics of patients were summarized in

Table 1: 184 patients were in stage III, and 20 were in stage IV.

Most patients (n = 177) received a combination of at least two

drugs as induction chemotherapy. The median number of cycles

was 6 (range, 2–13), and 108 patients received ≥6 cycles. Most

patients (n = 135) were treated with a dose of 44.25 Gy; 26

patients with 40 Gy and 43 patients received a SIB of up to 48–58
Frontiers in Oncology 04
Gy. The median follow-up was 18 months, and the median

overall survival was 19.5 months (from the start of induction

chemotherapy). Eighteen patients (8.8%) had gastric and/or

duodenal mucosal damage CTCAEv5 Grade ≥2 toxicities (5

acute and 13 late): 3 patients only duodenal, 10 patients only

gastric, and 5 patients both duodenal and gastric damage. Of 18

patients, 10 were treated with SIB. The median time to toxicity

was 5 months (range, 1–10) from the end of RCT.
3.2 Assessing dosimetry predictors

In Figures 1 and 2, the average absolute/percentage DVHs

for the duodenum and stomach for patients with and without

toxicities were reported. In Figures S1 and S2 (Supplementary

Material), the t-test graphs for absolute and percentage DVHs

were shown. For both duodenum and stomach absolute DVHs,

the absolute volumes (in cc) that receive 15 Gy (V15cc) and 44

Gy (V44cc) were selected through a two-sided t-test as the most

promising discriminating DVH parameters. For percentage

DVHs, V20 (%) and V44 (%) were found to be the most

discriminating DVH parameters for duodenum; V15 (%), V20

(%), and V44 (%) were found to be the most discriminating

DVH parameters for the stomach.
TABLE 1 Main characteristics of considered patients.

All patients: 204

Age 65 (40–86)

Gender Male: 92
Female: 112

KPS 90 (70–100)

Stage III: 184
IV: 20

Weight 66.5 (41–104)

Location of primary tumor Head (+uncinato): 103
Head/isthmus: 13
Head/body: 10
Isthmus: 10
Body: 30

Body/isthmus: 16
Body/tail: 20

Tail: 2

Induction chemotherapy One drug: 27
Multiple drugs: 177

Number of chemotherapy cycles ≥6 cycles: 108
<6 cycles: 83

Doses 40 Gy: 26
44.25 Gy: 135

48–58 Gy (infiltrating vessels):15
48–50 Gy (BTV SIB): 28
KPS, Karnofsky Performance Status; BTV, biological target volume; SIB, simultaneous
integrated boost.
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At univariate logistic regression analysis, the previously

selected DVH parameters and Dmax (D0.03) were tested as

potential dosimetry predictors of gastric and duodenal toxicity.

Duodenum V44Gy(cc) (p = 0.02; OR = 1.07) was found as the

only significative predictive parameter for duodenal toxicity;

stomach D0.03 (p = 0.008; OR = 1.23) and V44Gy(cc) (p =

0.01; OR = 1.12) were found as the most predictive parameters

for gastric toxicity. A borderline significance was found for

duodenum D0.03 (p = 0.07; OR = 1.19) for duodenal toxicity.

None of the percentage dosimetric parameters selected through

a two-sided t-test were found predictive, neither for duodenal

nor gastric toxicity (Table S1, Supplementary Material). Based
Frontiers in Oncology 05
on a ROC analysis, duodenum V44Gy > 9.1 cc was found to be

the best cutoff value for duodenal toxicity with a negative

predictive value (NPV) of 97.6%; although near to the

significance, D0.03 > 47.6 Gy was found as the best cutoff value

for duodenal toxicity. For the stomach, D0.03 > 45 Gy and V44Gy

> 2 cc were found as the best cutoff values for gastric toxicity,

with NPVs equal to 95.8% and 95.4%, respectively (Figure S3,

Supplementary Material).

The crude rate of duodenal toxicity was 4/176 (2.3%) vs. 4/28

(14.3%) (p = 0.012) if duodenum V44Gy <9.1 or ≥9.1 cc,

respectively. The crude rate of gastric toxicity was 6/145

(4.1%) vs. 9/58 (15.5%) (p = 0.012) if stomach D0.03 <45 or
A

B

FIGURE 1

Average absolute DVH for duodenum (A) and stomach (B) for patients with and without toxicities. DVH, dose–volume histogram.
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≥45 Gy, and 7/158 (4.4%) vs. 8/45 (17.8%) (p = 0.007) if V44Gy

<2 or ≥2 cc. Of note, the incidence of Grade ≥2 mucosal damage

was 10/43 (23.3%) for patients treated with doses 48–58 Gy vs. 8/

161 (5.0%) for patients treated with 44.25 Gy or less (p = 0.0002).

The internal validation procedure was applied to V44Gy and

D0.03 of both the duodenum and stomach, respectively, for

duodenal and gastric toxicity end-points. Results, reported in

the Supplementary Material Results, confirmed sufficiently high

robustness of the found associations, confirming duodenum

V44Gy and stomach D0.03 as the most robust predictors for

duodenal and gastric toxicities, respectively.
Frontiers in Oncology 06
3.3 Multivariable analysis

For both duodenal and gastric toxicities, no significant

correlations were found with clinical variables at univariable

analysis (Table S2, Supplementary Material). In a backward

stepwise logistic multivariate analysis, considering the

previously selected dosimetry predictors and the clinical

variables, only stomach D0.03 (Gy) and duodenum V44Gy

were confirmed at multivariate analysis for gastric and

duodenal toxicities, respectively (H&L > 0.05). In Figures 3

and 4, the risk of duodenal and gastric toxicities against
A

B

FIGURE 2

Average percentage DVH for duodenum (A) and stomach (B) for patients with and without toxicities. DVH, dose–volume histogram.
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duodenum/stomach V44Gy/D0.03 is plotted together with the

true rates.
4 Discussion

Knowledge concerning quantitative relationships between dose

or dose–volume metrics and the risk of toxicity for the stomach and

duodenum after radiotherapy is still lacking. However, a recently

accomplished review (36) showed substantial improvement in the

last few years. More quantitative information was reported in the

contexts of conventionally fractionated radiotherapy (i.e., 1.8–2.0

Gy/fr) and SBRT (delivered in 1–5 fractions). Concerning
Frontiers in Oncology 07
conventional fractionation, most studies were consistent in

suggesting a prevalent dose effect when considering moderate/

severe duodenal and gastric toxicities, with the risk rapidly

increasing for prescribed doses above 55–60 Gy and fractions of

duodenum/stomach receiving more than 35–55 Gy above few

%/few to tens of cubic centimeters (28, 36–40): similar findings

were suggested for mild hypofractionation (2.15–2.25 Gy/fr) in a

cohort of 105 patients treated with intensity-modulated

radiotherapy (IMRT) for esophageal cancer at 60.2 Gy (29).

Regarding SBRT, safe constraints for stomach and duodenum

were suggested for one/three/five fractions, with quite consistent

recent updates based on patient data, mostly for the duodenumwith

the 5-fraction scheme, as reviewed by Cattaneo and Marrazzo (36).
A

B

FIGURE 3

Risk of duodenal toxicity against duodenum V44 (A) and maximum dose (B) (D0.03), together with the true rates and their standard deviations.
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It is worth mentioning that a quite large variability in terms of

treated site and variable usage of chemotherapy may partly

jeopardize the generalizability of the reported results.

Approaches using moderate hypofractionation have been

suggested by us and other groups as a promising way to deliver

higher BED to LAPC patients to reduce the risks of delivering a too-

high dose to the adjacent stomach and/or duodenum. Different

from SBRT, the smaller dosimetry gap between the prescribed dose

and the constrained dose to these organs could limit severe

underdosing to fractions of GTV in a large part of patients. The

choice of a number of fractions of approximately 15 seems to be a

good compromise, and several groups recently reported promising
Frontiers in Oncology 08
results using this fractionation scheme (8–11, 22, 30). However, the

lack of knowledge concerning the dose–volume relationships, in

this case, is pushing researchers to apply strict dose limits to the

stomach/duodenum (11, 22), resulting in very mild toxicity profiles

(10, 22, 30). This point suggests that it is likely that a larger window

exists to be explored once dose and/or dose/volume limits are better

assessed, with the potential to further reinforce the impact of dose

escalation on local control. In this scenario, our experience with the

15-fraction scheme with limited dose escalation to sub-volumes of

PTV (in a fraction of patients) may help in better assessing refined

constraints. As a matter of fact, our results, representing the largest

series analyzed with this aim to our knowledge, confirm that the
A

B

FIGURE 4

Risk of gastric toxicity against stomach V44 (A) and maximum dose (B) (D0.03), together with the true rates and their standard deviations.
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shape of the DVH tail of the stomach and duodenum is associated

with the risk of moderate/severe toxicities. Regarding the stomach,

D0.03 < 45 Gy and V44Gy < 2 cc may be suggested as sufficiently

safe; however, V44Gy < 9 cc was found to be a robust constraint for

duodenum, while the association with D0.03 was found to be of

borderline significance: despite that the best cutoff value suggested a

threshold of 47.6 Gy, the lack of robustness seen at internal

validation suggests a safer limit in the range 45–46 Gy as

reasonable. These values are slightly higher than the ones applied

in recent dose escalation trials for duodenum and similar for the

stomach (22), suggesting a likely larger potential to be exploited by
Frontiers in Oncology 09
dose escalation. In Table 2 a summary of recent studies dealing with

dose–volume relationships of the stomach and duodenum with

moderate hypofractionation is shown. The different planning

techniques, toxicity definitions, and the number of fractions make

the comparison among these studies quite difficult. However, it is

important to underline that the current study is the largest in terms

of the number of treated patients. Compared to our previous

preliminary analysis on 61 patients, only the result regarding

Dmax of the duodenum was substantially confirmed, while only

%DVH was analyzed in those studies. Current analysis revealed

that, as expected, the absolute DVH (in cc) resulted in a better
TABLE 2 Summary of the literature for moderate hypofractionation.

Stomach

Study No. End-point No. fr Dose
Gy

Cht Dmax
Gy

DVH Notes

Cattaneo
(26)

61 ≥2 CTCAE
v.3

15 44.25 Ind
+conc

– V20<31% SIB to infiltrating vessels PTV in 23/61 pts
(48–55 Gy; overlap with stomach, 44.25 Gy)

Shinoto
(25)

58 1 year
≥2 ulcer

12 55.2 Ind
+conc

– V10 < 102 cc
V20 < 24 cc
V30 < 6 cc

RBE-weighted dose (carbon ions). D2cc of
GI tract constrained to 46 Gy

Liu (28) 68 ≥2 CTCAE
v.4

15 or 20 50/60
or 70/
80

Conc
29/68

– – High rate of tox (late, 26%); no separation
between 15 and 20 fractions in the analysis:
stomach constraints: Dmax < 60; D1 < 55; D3
< 50; D5 < 45; D10 < 40

Koay (21) – n.a. 15 37.5 Ind
+conc

45 – Suggested, based on experience. SIB to PTV
derived from GTV and 4D CT to 67.5 Gy

Current
study

204 ≥2 CTCAE
v.5

15 44.25 Ind
+conc

45
D0.03cc

V44 < 9.1 cc SIB to infiltrating vessels PTV/GTV in 43/
204 pts (48–58 Gy); overlap with stomach
constrained to 40–44.25 Gy depending on
volume

Duodenum

Study No. End-point No. fr Dose
Gy

Cht Dmax DVH Notes

Cattaneo
(26)

61 ≥2 CTCAE
v.3

15 44.25 Ind
+conc

– V40 < 16%
V45 < 2.6%

SIB to infiltrating vessels PTV in 23/61 pts
(48–55 Gy; overlap with stomach, 44.25 Gy)

Huang
(40)

46 ≥2 CTCAE
v.3

≥3 CTCAE
v.3

15 36 Conc V25 < 45%
V35 < 20%

High rate (37% 1 year). 87% pts treated with
3D RCT
≥3 CTCAE v.3 analyzed only for 28 pts
without erlotinib

Liu (28) 68 ≥2 CTCAE
v.4

15 or 20 50/60
or 70/
80

Conc
29/68

– V45 < 0.5cc High rate of tox (late, 26%); no separation
between 15 and 20 fractions in the analysis:
stomach constraints: Dmax < 55; D1 < 50; D3
< 45; D5 < 40; D10 < 35

Koay
(21)

– n.a. 15 37.5 Ind
+conc

45 – Suggested, based on experience. SIB to PTV
derived from GTV and 4D CT to 67.5 Gy

Current
study

204 ≥2 CTCAE
v.5

15 44.25 Ind
+conc

45–46*
D0.03cc

V44 < 9.1 cc SIB to infiltrating vessels PTV/GTV in 43/
204 pts (48-58 Gy); overlap with stomach
constrained to 40–44.25 Gy depending on
volume
CTCAE, Common Terminology Criteria for Adverse Events; SIB, simultaneous integrated boost; BTV, biological target volume; RBE, relative biological effectiveness;
GI, gastrointestinal; PTV, planning target volume; GTV, gross tumor volume.
*Best cutoff value, 47.6 Gy; suggested 45–46 Gy as safer due to limited number of events.
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association with toxicity compared to %DVH. Huang et al. (41) also

used %DVH, finding an association for duodenal toxicity: however,

their study included almost only 3D conformal radiotherapy (CRT)

patients, resulting in large fractions of duodenum included in the

high dose regions, which is quite far from the actually delivered dose

distributions. The results reported by Liu et al. (29) regarding

duodenum are quite consistent with our results despite the

limited number of patients: no relationships were found for

the stomach.

A major limitation of the current analysis consists in the

consideration of both acute and late toxicities in a unique end-

point. This was necessary in order to consider a sufficient number

of events, being the late events only 11/204 (5.5%): of note, the

longer time between the end of treatment and toxicity was 10

months, suggesting that the occurrence of late toxicities is in

continuity with more acute events. The low number of toxicities

confirmed that the irradiation to a total dose of approximately 44–

45 Gy is safe, as demonstrated by the much higher rate of toxicities

in the sub-groups of patients treated with SIB. However, it is

important to underline that the current cohort represents the

largest group analyzed with this intent and that the suggested

constraints should be considered as a robust basis for future “safe”

dose-escalation trials to be prospectively confirmed.
5 Conclusions

Current analysis suggests that constraining Dmax (D0.03) and

V44Gy of the stomach and duodenumwithin 45 and 45–46 Gy and

a few cubic centimeters (2 cc for the stomach and 9 cc for the

duodenum, respectively) should be effective in maintaining

duodenal and gastric toxicities at approximately or below 5%

when delivering radiotherapy in 15 fractions to LAPC patients,

combined with chemotherapy. These values are consistent with the

possibility of substantially escalating the dose to the tumor without

relevant risks of toxicity in a likely large fraction of patients,

corroborating the promise of significantly increasing local control

without any relevant increase of toxicity in future trials.
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