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Bone marrow vasculature
advanced in vitro models for
cancer and cardiovascular
research
Marzia Campanile1 , Leonardo Bettinelli1,2, Camilla Cerutti2*

and Gaia Spinetti1*
1Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy, 2Department of Experimental
Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy.

Cardiometabolic diseases and cancer are among the most common diseases
worldwide and are a serious concern to the healthcare system. These
conditions, apparently distant, share common molecular and cellular
determinants, that can represent targets for preventive and therapeutic
approaches. The bone marrow plays an important role in this context as it is
the main source of cells involved in cardiovascular regeneration, and one of the
main sites of liquid and solid tumor metastasis, both characterized by the
cellular trafficking across the bone marrow vasculature. The bone marrow
vasculature has been widely studied in animal models, however, it is clear the
need for human-specific in vitro models, that resemble the bone vasculature
lined by endothelial cells to study the molecular mechanisms governing cell
trafficking. In this review, we summarized the current knowledge on in vitro
models of bone marrow vasculature developed for cardiovascular and cancer
research.
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GRAPHICAL ABSTRACT

1. Introduction

Cardiovascular diseases (CVDs) and cancer are among the

leading causes of death in Western countries (1, 2) and together

account for over 60% of all deaths in Europe (3). CVDs may arise

as a severe complication of diabetes (4) that, being largely diffuse

in the global population (5), constitute a serious concern in the

cardiovascular field. As for solid cancers such as breast cancer,

thanks to treatment improvements and early diagnosis, primary

tumors are largely treatable, however with longer life expectancy,

cancer recurrence and secondary tumor (metastasis) incidence

exponentially increase and are the cause of 90% of cancer-related

death (6). In this context, the bone marrow (BM) represents a

critical organ in both cardiovascular and cancer research.

The BM resides in the bone cavities and is deputed to new

blood cell generation and release in the bloodstream; therefore it

is characterized by high cellular trafficking both in health and

disease. Moreover, the BM releases stem cells directing tissue

regeneration in response to cardiovascular damage, as following

myocardial infarction (7). The term “mobilopathy” was coined to

indicate the limited CD34+ hematopoietic stem progenitor cell

(HSPC) inside-out migration (8) observed in diabetic patients

and associated with poor CVDs outcome (9–13). To facilitate cell

migration to the bloodstream the BM vasculature presents a

fenestrated endothelium at the capillary level, but it may also

provide easier access to cancer cells (14–16). The bone is also

the primary site where blood cancer begins, such as leukemia,

and a site for solid tumors metastasis formation, such as breast

cancer (17). Interestingly, numerous studies identified a cross-talk

between CVDs and abnormal hematopoiesis, and the central role

of BM endothelial cells (ECs) in this process was assessed. CVDs

induce phenotypic alteration of ECs, which modify their

inflammatory citokynes profile inducing changes in the HSPCs

proliferation rate (18). On the other hand, an enhanced

myelopoiesis has been linked to CVDs such as atherosclerosis (19).

The understanding of the mechanisms that control

hematopoiesis and cell’s trafficking from and to the BM, both in

health and diseases is increasing the attention from clinical and

basic researchers since they may pave the way to new preventive

and therapeutic strategies in the clinic. The structure of human

bone marrow vasculature is well known, but the majority of our

knowledge of the molecular mechanisms of cellular trafficking

derives from animals, which are known to not be able to fully

mirroring human physiology (20). Therefore, to move toward

more clinically relevant models, new in vitro cultures have been

developed. The combination of these advanced in vitro tools with
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human-derived cells will represent a step forward for mechanistic

studies and for personalized medicine applications to identify

prognostic and therapeutic targets.

2. Bone marrow structure and function

The BM is a vascularized tissue composed of a variety of cell

types contributing to its homeostasis and function, including

HSPCs, bone marrow mesenchymal stem/stromal cells (BM-

MSCs), osteoblasts, osteoclasts, adipocytes, lymphatic and

vascular endothelial cells (ECs), and immune cells (21)

(Figure 1). The BM’s main function is to generate mature blood

cells during hematopoiesis, a process that leads to the generation

of the different cellular components of the immune system that

can traffic in and out of the BM through its vasculature.

Common myeloid and lymphoid progenitors generate from the

partial differentiation of multipotent progenitors, which are

transient-amplifying cells, originating from the asymmetric

division of short-term hematopoietic stem cells (ST-HSCs) (22).

The myeloid progenitors differentiate in erythrocytes,

granulocytes (basophils, neutrophils, and eosinophils),

monocytes, and megakaryocytes (platelets-producing cells), while

lymphoid progenitors in lymphocytes (T-cells, B-cells, and

natural killer cells) (23). Adult BM-MSCs are a heterogeneous

population of multipotent cells (24) with the ability to

differentiate into cells of mesenchymal origin such as adipocytes,

chondrocytes, and osteoblasts when exposed to specific growth

signals (25, 26) that are forming the BM. Osteoblasts and

osteoclasts are the main cell types involved in bone homeostasis

and its repair upon injury. Osteoblasts regulate bone formation,

and secrete the extracellular matrix (ECM) proteins such as type

I collagen, osteopontin, osteocalcin, and alkaline phosphatase,

important components of the BM structure, while osteoclast are

large multinucleate cells, originating from the hematopoietic

lineage, manly involved in bone resorption (27). BM adipocytes

are responsible for filling the medullary canal of long bones

(tibia, femur, humerus), and gradually increasing their presence

in the marrow during lifespan depending on marrow type (28).

2.1. Bone marrow vascular niche structure
and function

HSPCs are organized in specialized BM microenvironments,

called “BM niches”, that regulate HSPC self-renewal,

differentiation, and mobilization (29–32). Two types of BM

niches have been identified based on their localization: the

endosteal and the perivascular niche which could be further

classified as periarterial and perisinusoidal (33) (Figure 1).

FIGURE 1

Bone marrow cellular composition and main vascular related trafficking mechanisms in homeostasis and disease. Schematic of BM localization and the
cellular components (A) BM cell trafficking mechanisms in homeostasis. (B) Altered cell trafficking mechanisms in diabetes (C) Hypothesized steps of cell
trafficking in breast cancer bone metastasis formation. BM, bone marrow; HSPCs, hematopoietic stem progenitor cells; CAMs, cell adhesion molecules;
CXCL12, CXC chemokine ligand 12; PSCs, perivascular stromal cells; ECs, endothelial cells; NE, norepinephrine; AR, adrenoreceptor; NO, nitric oxide.
Figure realized with www.biorender.com.
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Each niche is characterized by specific oxygen levels, cellular

components, and soluble factors that determine a differential

modulation of HSPC activity (33, 34). The function of each

niche has yet to be fully clarified and the topic remains

controversial (33, 35, 36).

It is now well established that the majority of HSPCs localize

near the vasculature (37–42), lined by BM endothelial cells

(BMECs), but it is still debated whether HSPCs are mostly

associated with sinusoids or arterioles (37, 41, 43). Blood vessels

are distributed throughout the bone tissue except in cartilaginous

areas such as the growth plate. The bone marrow vasculature,

mostly consisting of dense and highly branched sinusoidal

vessels, provides the barrier between the hematopoietic

compartment and the peripheral circulation (15, 44). Sinusoids

are also called type L vessels and are mainly located in the

diaphysis of long bones, whereas arteriolar type H vessels are

characteristic of metaphysis (37, 45, 46). Type H vessels, which

are fed directly by arterioles and, therefore, exhibit higher partial

pressure of oxygen (pO2) and blood velocity than type L vessels,

are interconnected at their distal ends, near the growth plate, by

structures termed loops or arches (44). Sinusoids are larger and

fenestrated, resulting in much more permeable vessels compared

to arterioles (15). The higher permeability is associated with a

higher reactive oxygen species (ROS) state of HSPCs (34)

(Figure 1), which mediates HSPC mobilization (47, 48). The

work of Itkin et al. demonstrated that HSPC migration toward

the bloodstream occurs exclusively at sinusoids (34). Importantly,

sinusoidal and columnar vessels are interconnected and form a

single vascular network (44).

Type H ECs express higher levels of endothelial markers

CD31 (PECAM1) and endomucin compared to type L ECs

(45, 46). Type H vessels couple angiogenesis and osteogenesis

and regulate bone development in growing bones. Type H

vessels are surrounded by a large number of osteoprogenitors

and secrete osteogenic factors, such as platelet-derived growth

factors (PDGFs), fibroblast growth factor1 (FGF1), and

transforming growth factors (TGFs), to support

osteoprogenitor cell survival and proliferation, providing a

resource of osteoblasts for bone formation. Type H vessels also

support vessel-associated osteoclasts through a RANKL–RANK

signaling pathway, promoting cartilage resorption and

directional bone formation (49).

Beyond the type of vessel and ECs, different perivascular BM-

MSCs discriminate the periarterial from perisinusoidal niche.

Around arterioles, BM-MSCs are positive to Neuron Glial 2

(NG2) and Nestin whereas perisinusoidal BM-MSCs are leptin

receptor (LepR)-expressing CXC chemokine ligand 12 (CXCL12)-

abundant reticular (CAR) cells (41, 42). Pericytes are defined as

perivascular cells distributed along the microvessel walls and

behave as mesenchymal stem cells (MSCs) in vitro displaying

adipogenic, osteogenic, and chondrogenic potential (50). Given

this definition, both LepR/CAR cells and NG2+/Nestin+ cells could

be considered pericyte subtypes (50, 51), even if in some studies

pericytes have been confined to smooth muscle α-actin (α-SMA)

positive cells (52). Other mature hematopoietic cells, such as

megakaryocytes (MKs), macrophages, and neutrophils are also

present near the vasculature and could be considered part of the

perivascular niche (Figure 1) (53).

In this review, we will describe the in vitro models of bone

marrow vasculature developed so far for cardiovascular and

cancer research with a particular focus on cell trafficking of

angiogenic BM stem cells and cancer cells across the BM

vasculature describing the mechanisms involved. Providing

details of the in vitro approaches used we aim at highlighting

the current limits and the comparative benefits.

3. Bone marrow cellular trafficking in
cardiovascular and cancer research

3.1. Bone marrow HSPCs mobilization
mechanisms

BM CD34+ stem cells can support neoangiogenesis restoring

blood flow and facilitating inflammatory response. They are

physiologically mobilized in response to infections and tissue

damage (54, 55) and their release can be pharmacologically

stimulated too (56). Granulocyte colony-stimulating factor (G-

CSF) is the most used substance for BM stem cell mobilization

and has been widely used to study the HSPC mobilization

process in animal models (56).

G-CSF mobilizes HSPCs through two principal mechanisms (i)

reducing BM levels of the chemoattractant chemokine CXCL12

and (ii) disrupting the HSPCs cell adhesion molecules (CAMs)-

dependent attachment to the BM microenvironment.

In the BM, CXCL12 is principally released by perivascular BM-

MSCs, in a circadian fashion through the norepinephrine/β3-

adrenoreceptor signalling pathway (57–59), and ECs (35)

(Figure 1). The ECs CXCL12 secretions are required for HSPCs

maintenance in the BM niche (35), and hypoxia-inducible factor-

1α (HIF-1α) may play a role in this mechanism (60, 61)

(Figure 1). Also, macrophages have been linked to HSPC

retention in the BM through the CXCL12 signalling (62–64)

(Figure 1).

HSPCs are anchored to the BM niche through the

expression of CAMs (65) (Figure 1). Macrophage depletion

induces HSPC mobilization also reducing the expression of

CAMs and CAMs ligands (62). Neutrophil-derived matrix

metalloproteinase-9 (MMP-9), neutrophil elastase, and

cathepsin-G directly cleave some CAMs in vitro (65, 66)

highlighting the mechanism by which neutrophils induce

HSPCs mobilization in response to G-CSF in treated mice

(66–68) MMP-9 activity is modulated by levels of nitric oxide,

which is produced by endothelial nitric oxide synthase (eNOS)

(69). Suppression of eNOS in BM significantly decreased

endothelial progenitor cells’ release into the bloodstream

(70, 71). In BM eNOS is predominantly expressed in

panendothelial cell antigen antibody (MECA32) positive cells,

suggesting that MECA32+ cells’ expression of eNOS influences

HSPCs mobilization through activation of MMP-9 (71). It is

still debated the role of the osteogenic niche in cellular

mobilization (35, 57, 59, 61, 62, 64, 65).
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3.2. Altered bone marrow HSPCs
mobilization in diabetes

Type 2 diabetes mellitus (T2DM) not only results in altered

BM structure and stem cell count (72–74) but also, in most

investigations reduced CD34+ circulating cells were observed in

T2DM (11, 72, 75, 76) and type 1 diabetes (77). A meta-

regression analysis shows that G-CSF-induced HSPCs

mobilization is inhibited in diabetic patients (78). Indeed,

diabetes impairs the stem cell mobilization mechanism at

different levels. In diabetic mice, G-CSF administration fails to

reduce CXCL12 levels (Figure 1). This abnormality in G-CSF

regulation of CXCL12 levels is rescued by direct pharmacologic

inhibition of CXCL12-CXCR4 signalling, suggesting that diabetic

mobilopathy is caused by impairment in CXCL12 levels

regulation and not in HSPCs intrinsically (79). Two studies

demonstrated that diabetes deregulates stem cell motility through

autonomous nervous system impairment (79, 80) (Figure 1). The

laboratory of Paolo Madeddu, MD, demonstrated that substance

P/neurokinin 1 receptor (NK1R) nociceptive signalling is implied

in HSPCs mobilization and that nociceptive neuropathy reflects

the decrease in NK1R-HSPCs circulating cells and reduced

recruitment of NK1R-HSPCs to the ischemic site in diabetic

model (81, 82).

Vessel degeneration observed in diabetes is thought to be

largely caused by ECs dysfunction triggered by hyperglycaemic

conditions (83). In the context of the BM niche, ECs express less

CXCL12 in diabetic animal models (84) (Figure 1). On the other

hand, there is an increase in the number of pro-inflammatory

CD169+ macrophages, that correlated with HSPCs mobilopathy,

in the diabetic mice model compared to wild-type (85).

Moreover, diabetes could potentially increase CAMs levels

suppressing eNOS activity (86) (Figure 1), indeed a higher

number of VCAM1 positive HSPCs have been observed in

diabetic mice (87).

In vitro models mimicking BM vasculature-CD34+ cell

interaction could allow a deeper understanding of the

aforementioned mechanisms of cellular mobilization depicting

the target mechanisms to enhance it in conditions in which it is

impaired.

3.3. Bone marrow cancer metastasis

The BM vascular niche plays a crucial role in the development

and progression of hematologic (88, 89), and solid cancer (90).

Despite the medical progress in primary tumor treatments,

cancer metastasis is the leading cause of cancer-related death.

Metastasis is a complex process that involves several stages,

including the invasion of surrounding tissue by cancer cells,

entry into the bloodstream or lymphatic system, and eventual

attachment to the target organ endothelium, where circulating

tumor cells (CTCs) may arrest. CTCs that firmly adhere to ECs

can form metastases by squeezing through small gaps between

ECs and entering the secondary tissue via cell extravasation.

Once in the tissue, disseminated tumor cells (DTCs) may

establish a new colony by multiplying and growing, combined

with new blood vessel formation to support their growth. Breast

cancer is the most common cancer in women worldwide and has

a high propensity to form metastasis in the bone. After years of

latency, 70%–90% of the patients presented bone lesions (91).

Breast CTCs are released from the primary tumor and subtypes

of resistant cells reach the BM long before the metastasis

formation. Oestrogen receptor (ER), progesterone receptor, and

human epidermal growth factor receptor 2 (HER2) triple-positive

breast cancer subtypes have a high risk of bone metastasis (92).

Recent evidence suggests that the interaction between epithelial

to mesenchymal transition (EMT) transcription factors like Zinc

Finger E-Box Binding Homeobox 1 (ZEB1) and ERα promote

breast cancer bone metastasis (93). The precise mechanisms by

which CTCs migrate within the bone marrow are not yet fully

understood. It has been hypothesized that breast CTCs migrate

across the BM sinusoidal walls, invade and survive in the BM

stroma, and then reach the endosteal niche, rich in arterioles

type H-vessels, the site for breast cancer bone metastasis (90, 94)

(Figure 1). Type H-vessel ECs express chemokines like CXCL12

and adhesion molecule E-selectin that induce DTCs migration,

retention, and activation across the type H vessels (95–97)

(Figure 1). Breast DTCs remodel the BM niche and type H

vessels to support metastasis by releasing factors like G-CSF (98).

These events lead to breast bone metastasis, that are mainly

osteolytic (bone resorption-lytic), but also osteoblastic (increased

bone formation) affecting normal BM function and patient poor

outcome. Current therapies are still palliative, and few approved

therapies are available to patients. Preclinical studies show that

E-selectin inhibitor suppresses tumor cell homing to the bone

and outgrowth of micrometastasis (91). Despite these recent

findings to unravel breast cancer metastasis formation in the BM,

further understanding of all metastatic steps is essential for

developing effective therapies to prevent or treat breast cancer

bone metastasis. As pointed out earlier for BM stem cell

mobilization in diabetes, recent advances in ex-vivo microfluidic

vascular models in combination with emerging BM vascular

models might provide insight into the underlying mechanisms of

bone metastasis formation and therapeutic targets for effective

clinical treatments.

4. Bone marrow vascular in vitro
models

4.1. 2D bone marrow in vitro models

Traditional 2D cultures and cocultures have been the main

systems used in biology, including vascular research. In vitro

vascular models of BM included both murine and human-

derived vascular and BM niche cells cultured under static or

dynamic conditions. Many 2D static models of BM vasculature

employed non-BM ECs, both in murine and human culture. For

example, a rat 2D model of BM was obtained seeding primary
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BM-MSCs and primary aortic ECs, on the opposite side of a

semipermeable membrane (99).

Murine and human-derived cells were used in combination in

hybrid models by coculturing the widely used and characterized

primary human vein ECs derived from the umbilical cord

(HUVECs), representing the vascular endothelium, with primary

mouse BM-derived HSPCs (100), or mouse leukemic initiating

cells (LICs) (120). Kobayashi et al. also employed human

primary ECs isolated from the skin and aorta as vascular

components of the bone marrow model (100).

In another hybrid 2D model, murine primary BM cells were

grown on collagen, then a porous membrane was laid on top,

and sealed with a microfluidic channel layer. Here, HUVECs

were seeded on a basement membrane extracts coating and

grown to form a vessel wall-mimicking monolayer (121)

(Figure 2C).

FIGURE 2

Representative 2D and 3D bone marrow vascular in vitro models. (A) 2D static, (C) 2D microfluidic, and (B,D–G) 3D BM vascular in vitro models.
Figure adapted from: (A) Di Buduo et al.; Blood (105). (B) Glaser et al.; Biomaterials (130). (C) Kong et al.; Oncotarget (121). (D) Ma et al.; Science
Advances (123). (E) Kotha et al.; Stem Cell Research & Therapy (134). (F) Bersini et al.; Biomaterials (131). (G) Di Buduo et al.; Blood (105). (H) Chou
et al.; Nature Biomedical Engineering (119).
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In Rafii’s lab, a method to maintain long-term survival and

facilitates organ-specific purification of primary ECs was

generated, based on the expression of E4ORF1 in serum/

cytokine-free conditions (122). E4ORF1-HUVECs were employed

to develop the vascular niche of an engineered platform hosting

other cells types: human leukemic and embryonal carcinomas

cells (122), BM-derived LT-HSCs (101) or hCD34+ cord blood

(CB) stem and progenitor cells (102).

A coculture of HUVECs with human primary HSPCs was

performed in a 50 µm wide microwell allowing one EC and one

HSPC to be dispensed per well (103).

HUVECs or primary endothelial colony-forming cells have been

used for tri-cultures with primary human BM-MSCs and primary

hematopoietic CB-derived CD133+ CD34+ cells (104).

An improved transwell system has been developed mounting

common transwell with silk films, functionalized by surface

coating or entrapment of ECM components (collagen, fibrinogen,

fibronectin, or laminin). In this model, CB-derived primary ECs

and MKs were seeded on opposite sides of the functionalized

membrane (105) (Figure 2A).

A higher level of the biological complexity of the 2D BM

vascular in vitro model was achieved by introducing the primary

BMECs isolated from human BM aspirates. These cells were

cultured as monolayers with primary HSPCs, both as direct

coculture and in transwell (106).

4.2. 3D bone marrow in vitro models

The 2D systems are reproducible and easy to use, however, they

have limitations in mimicking fundamental in vivo BM vascular

features and complexities such as cell-cell or cell-matrix

interactions, hampering the biological accuracy to model the BM

vasculature and its surrounding niche. Recently, the development

of 3D models and organ-on-a-chip fabrication allowed the

recapitulation of the in vivo features of the vasculature more

closely.

4.2.1. Murine 3D bone marrow in vitro models
BM vascular 3D murine in vitro models include both hybrid

(murine and human cells) and murine-derived cells

(Tables 1, 2). Rat primary BM-MSCs in collagen gel were

cocultured with primary rat aortic ECs. The ECs were either

bound to dextran-coated Cytodex 3 microcarrier beads

embedded in a 3D fibrin gel underneath to allow vascular

sprouting (99), or cultured on the surface of collagen gel-BM-

MSCs modules grown under shear stress (107). In this model,

the empty spaces created by the collagen modules randomly

packed were considered perfusable EC-lined channels (107).

Murine tri-culture has been realized by coculturing mouse ECs

from the yolk sack (C166 cells) with BM-MSCs and leukemic B-

ALL cells in a 3D fibrin hydrogel, in the two inner regions of a 3

concentric rings microfluidic chip. The niche cells, BM-MSCs,

and ECs were placed in the middle ring area, while the B-ALL

cells were in the central region (123).

A murine tetra-culture was generated in a microfluidic chip

with two channels divided by a semi-porous membrane to

physically separate the vascular and the BM niche components.

The ECs C166 were grown as a monolayer on the lower side of

the membrane under fluidic conditions (30 µl/h). On the apical

side, the BM niche composed of primary BM HSPCs or whole

BM cells and primary BM-MSCs in a fibrin-collagen gel was

topped with a layer of BM-MSCs-derived osteoblasts (108).

An engineered murine BM vascular in vitro model was

generated directly in vivo, implanting subcutaneously a

polydimethylsiloxane (PDMS) device with a central cylindrical

cavity functioning as a scaffold, resulting in a bone-like

cylindrical disk tissue with a central region of blood-filled

marrow. This engineered BM was surgically removed 8 weeks

after implantation, punctured in multiple places to allow access

to the culture medium, and then cultured in a 5 layers PDMS

microfluidic device. Here, a compatible central cylindrical

chamber to accommodate the engineered BM was encapsulated

in a sandwich-like structure with two porous membranes and

microfluidic channels (109).

One of the most important vascular features consists in the

hemodynamic forces applied to the vascular walls formed by

ECs, therefore advanced vascular models require shear stress to

mimic in vivo blood flow. Two hybrid human-murine 3D

microfluidic BM in vitro models that include shear stress on the

endothelium were generated. The first is a bioreactor-on-a-chip

composed of an upper and a lower microfluidic channel

separated by a series of pillars (2 µm apart). The upper channel

was injected with a 3D Matrigel or alginate gel embedding

murine primary MKs, and a monolayer of primary HUVECs

was cultured on fibronectin in the lower channel to mimic the

BM vessel wall. In this model, the endothelial monolayer was

directly exposed to a controlled flow (12.5 µl/h) by syringe

pumps (110). In the second one, a 3-channel microfluidic

model developed by Jeon and colleagues a flow of 2 μl/min was

introduced via the lateral channel to condition the central

channel vasculature network flow resulting in wall shear stress

of 0.25 dynes/cm2 (124).

4.2.2. Human 3D bone marrow in vitro models
To increase the complexity of the 3D BM vascular models, a

great effort was put into isolating and/or employing human-

derived cells both in static and microfluidic conditions

(Tables 1, 2). These models mainly combined non-BM-derived

primary ECs with BM stromal cells by culturing HUVECs or a few

different primary ECs such as ECs from CB or derma as an

endothelial component. Therefore, the human BM niche-stromal

components were the real BM tissue-specific cells in these models.

A tri-culture of HUVECs mixed with primary CD138− BM-

MSCs and patient-derived cancer cells was performed in a

fibrinogen scaffold generated from patient BM-derived

fibrinogen, naturally found in the plasma of BM supernatant (125).

HUVECs-MSCs coculture has been also used to generate a 3D

static and dynamic tetra-culture with osteoblasts differentiated

from primary umbilical cord-derived MSCs, and primary CB-

derived CD34+ HSPCs. Oliveira et al. generated a BM in
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liquefied capsules, to facilitate cell movement and self-organization,

following three main sequential steps: (i) engineering the endosteal

niche by seeding human MSCs with surface-functionalized

microparticles, (ii) bioencapsulation of the endosteal niche with

HUVECs and HSPCs in alginate, and (iii) production of a

multilayered membrane layer-by-layer followed by core

liquefaction (111). Another 3D BM static model employed

spheres was, generated by the magnetic levitation method, to

avoid the use of scaffolds or exogenous matrices and to allow the

cells to form the extracellular matrix (108).

Primary ECs from derma, primary BM-MSCs, and primary

CD34+ HSPCs from CB were combined in a tri-culture,

assembled in the 3D Bio AssemblerTM System that mixed all

cells (112).

A static penta-culture 3D BM model was realized by

embedding in Matrigel or alginate hydrogel primary cells:

CB-derived HSPCs and EPCs, BM-MSCs, osteoblasts, and BM-

MSCs-derived adipocytes (113).

The outstanding research of Palikuqi et al. identified a new

method to obtain a durable hemodynamic, self-organizing, large-

volume 3D vascular system in a Matrigel-free matrix, composed

of a mixture of laminin, entactin, and type-IV collagen (LEC

matrix). It is based on the “reset” of vascular endothelial cells

(R-VECs) through the transient reactivation of the embryonic-

restricted ETS variant transcription factor 2 (ETV2). These

findings could lead to a revolution in the organoid field thanks

to the ability to vascularize organoids and tumoroids (136). In

the context of in vitro BM modeling, it would open the

possibility of recreating the vascular niche in a complex 3D

environment for pharmaceutical studies but also offer the

opportunity to develop functional and perfused implantable

tissues ex vivo.

A vascularized BM organoid based on human induced

pluripotent stem cells (iPSCs) was developed in a hydrogel

composed of collagen I and IV, and Matrigel. The used medium

was supplemented with vascular endothelial growth factor C and

the characterization reveals the presence of iPSC-derived ECs,

MSC, HSPCs, myelomonocytic, megakaryocytes and immature

erythrocytes with human BM cells characteristics. Moreover, this

human BM organoid were engrafted with different types of cells

to mimic human diseases; specifically: iPSC-derived HSPCs

derived from patients with myelofibrosis or healthy individuals,

primary cancer cells from patients affected by multiple myeloma,

acute lymphoblastic leukemia (ALL), and myeloid leukemias (126).

The aforementioned ring shape microfluidic chip (123), used to

culture murine cells, was also employed in an all-human fibrin

hydrogel-based 3D model. In this case, HUVECs were seeded in

the central sinus region, a mixture of HUVECs, primary BM-

MSCs, and leukemia cancer cells in the inner ring, and a mixture

of osteoblasts (hFOB cells) and leukemic cancer cells leukemia in

the outer ring channel (123) (Figure 2D).

A 3D hydroxyapatite porous scaffold placed in, and, connected

to a perfusion bioreactor was used to coculture adipose tissue-

derived stromal vascular fraction, which includes primary mature

ECs, endothelial progenitor cells, pericytes, and MSCs, with

osteo-differentiated primary BM-MSCs. This engineered

vascularized BM niche was perfused at the rate of 300 μl/min

with a suspension of CD34+ CB-HSPCs (114).

4.2.3. Human 3D bone marrow self-assembled
vascular networks in vitro models

To mimic the in vivo vascular structure, 3D human BM in vitro

models were developed based on self-assembled vascular networks

(Tables 1, 2). HUVECs have been cocultured in tri-cultures with

primary BM-MSCs and cancer cells in a hydrogel drop of

approximately 200–300 Pa stiffness, optimal for the development

of a robust endothelial network (127).

Microfluidic human BM 3D in vitro models are characterized by

controlled and/or induced flow for nutrient exchange in all-human

cell cultures. 3D vascular models made of capillary-like structure

networks were formed by HUVECs cocultured with primary BM-

MSCs. The mesenchymal cells adopted pericyte-like localizations

among the network system, both in a 3D decellularized bone

matrix (128) and in fibrin matrixes within 3D microfluidic chips

with different designs and geometries (115–117).

Maturano-Kruik et al. developed a capillary-like structures

network model seeding the ECs and MSCs within a 3D

decellularized bone tissue’s trabecular scaffold that after a

maintenance phase, was placed in the microfluidic chip and

exposed to a controlled flow (128).

The microfluidic chips of Jeon et al. (115) and Mykuliak et al.

(117) were designed with a central gel channel, for HUVEC-MSC

coculture, between two lateral channels for culture medium,

separated by pillars. In this last HUVEC-MSC coculture model,

the shear stress on ECs was exerted by interstitial flow and it was

estimated to be 0.0065 Pa (117).

Carrion et al. used a 3D penta-channel microfluidic chip with

three central parallel gel channels and two lateral channels for

medium supply. The central gel chamber was filled with fibrin

gel only, and the two adjacent channels with fibrin-embedded

ECs and MSCs respectively (116).

Capillary-like structures were also obtained by culturing

HUVECs in a 3D gel in the absence of perivascular MSCs (103,

129). In one case, cells were cultured in a microfluidic chip with

three parallel microchannels, partitioned by trapezoid-shaped

pillars. The central channel was filled with collagen gel, and one

lateral channel with ECs monolayer, grown on the pillar-collagen

interface of the central channel to provide the space for

angiogenic sprouting and neo-vessel formation. The other lateral

channel was seeded with leukemia cancer cells followed by

injection in the channel reservoirs of BM-MSCs (HS5 cells) in

collagen gel (129).

In a second work, the microfluidic chip was composed of two

lateral media channels and three main parallel gel channels (103).

The two lateral channels mimic the BM vascular niche and the

endosteal niche, hosting the vascular network generated by

HUVECs and hFOB osteoblasts in collagen fibrin gel,

respectively. The central channel was loaded with primary

HSPCs in collagen fibrin gel. Another lateral channel, separated

by the medium channel from the vascular compartment, holds

mitomycin C-treated fibroblasts (NHLF cells) and was used as a

cytokine-secreting compartment (103).
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The BM perivascular and endosteal niches were also

simultaneously reproduced in a microfluidic device with two

hexagonal chambers connected by three symmetric two-way

ports that allow nutrient diffusion and cell migration. Primary

CB-derived ECs were cultured in both chambers in fibrin

hydrogel to form a vascular network, mixed either with hFOB

1.19 osteoblasts to form the endosteal niche or primary BM-

MSCs to form the perivascular niche on-a-chip (130)

(Figure 2B).

The biological complexity of a 3D BM in vitro model can be

enhanced by adding other cell types in culture, to better mimic

the tissue microenvironment. Other models characterized by the

formation of a BM vascular network and its niche were realized

in 3D microfluidic devices with parallel 3- or 5-channels. In the

central channel, HUVECs were cultured with primary BM-MSCs,

osteo-differentiated primary BM-MSCs, and primary HSPCs

(118) or with primary BM-MSCs and macrophages (115) in

ECM gel. Hence, this type of model allows the mixing of the

vascular and the endosteal niches’ cellular components. In the

central channel of the 3-channel microfluidics device, a

microvascular network with highly branched structures was

grown in 3D fibrin, supported by medium from the two lateral

channels (115). In the central channel of the 5-channel

microfluidic system BM-M-SCs were cultured on a mix of

collagen and dopamine-HCl to differentiate in osteoblasts as a

monolayer, then a fibrin-collagen hydrogel with a mixture of

endothelial, mesenchymal and hematopoietic cells was injected

on top of the osteoblasts to obtain a 3D human BM-on-a-chip.

The two side channels serve for medium supply, and the two

external channels were filled with BM-MSCs in fibrin-collagen

hydrogel to provide further support to the BM niche (118).

4.2.4. Human 3D bone marrow endothelial
cell-lined in vitro models

To mimic the vascular geometry and endothelial distribution in

vivo, 3D vascular microfluidic models were designed to grow ECs

on the channel walls to generate an endothelial monolayer

creating a lumen.

A microfluidic device with three parallel central channels and

two lateral channels for medium supply was designed to create a

lumen (137). In this device, a HUVEC monolayer was cultured

on Matrigel in the central channel to form a vascular wall-like

geometry lumen with a squared section where medium and

circulating cells were flown trought (131). In the side channel, in

contact with the endothelial central channel, osteo-differentiated

primary BM-MSCs were cultured in 3D collagen to generate an

osteo-conditioned microenvironment (131) (Figure 2F).

A 3D 1-channel BM microfluidic model, part of a body-on-a-

chip, consists of primary HSPCs embedded in a 3D fibrin gel and a

HUVECs monolayer placed on opposite site of a porous

membrane. Here the endothelial monolayer was directly exposed

to controlled shear stress (0.2 dynes/cm2) (132).

A similar microfluidic model included also the primary BM-

MSCs with primary HSPCs embedded in fibrin in the top

compartment, and a HUVEC monolayer grown under shear

stress (1.2–1.6 μl/min) as a vascular compartment in the bottom

(119) (Figure 2H).

The BM endosteal niche was partially recapitulated in a 3D

microfluidic chip, as part of a vascularized multi-organ tissue

system (133). Here, the bone tissue was obtained by coculturing

both BM-MSCs differentiated osteoblasts and primary CD14+

monocytes-derived osteoclasts within a decellularized bone scaffold

on top. To mimic blood vessel walls, the porous membrane was

seeded with pericytes-mimicking BM-MSCs on the upper surface

and with HUVECs mixed to a small fraction of BM-MSCs on the

lower side grown under shear stress (1.88 dynes/cm2 max) (133).

A 3D microfluidic vascular network that mimics the

vasculature geometry was created by growing HUVECs on a

collagen gel grid characterized by a series of squared blocks

design, to allow the formation of a rounded-shaped monolayer

under gravity-mediated flow. In the collagen gel, the BM

components were embedded as primary BM-MSC or BM

fibroblasts cell lines (134) (Figure 2E).

A tubular-shaped vascular microfluidic device made with a silk

microtube surrounded by a porous silk sponge was seeded with

primary CB- or derma-derived ECs in the silk microtube lumen

and exposed to shear stress. Then, primary HSPCs-derived

human MKs were seeded into the silk sponge (105) (Figure 2G).

Finally, the 3D BM vascular in vitro model, which better

mimics the in vivo BM vasculature was generated using organ-

specific primary BMECs, isolated via magnetic separation from

frozen human BM-MNCs. Arterial and sinusoidal ECs were

isolated via double selection for CD146+/NG2+ or CD146+/

NG2lo/−, respectively (135). These cells were grown to replicate

the major 3D BM niches in a deconstructed way in a

microfluidic chip designed with 4 non-communicating parallel

channels that can be exposed to control flow, where the four

different niche cell populations were encapsulated in ECM-

derived hydrogel: (I) arteriolar BMECs, (II) sinusoidal BMECs,

(III) primary BM-MSCs and (IV) osteoblasts derived from osteo-

differentiated primary BM-MSCs (135).

In the next sections, we describe how the reported models have

been employed for either cardiovascular or cancer research.

4.3. Bone marrow vascular models used for
cardiovascular research

Modeling the BM vasculature is essential to study inside-out

cell mobilization and for the comprehension of mechanisms

regulating this process important in both cancer and

cardiovascular research. Many laboratories have focused on

developing in vitro models of the BM vasculature that can be

used for cardiovascular studies. These, range from cultures that

allow HSPCs maintenance in vitro to study hematopoiesis (108,

109, 111–113, 118, 119), to devices to investigate cell-cell

interaction (103, 107, 114, 115) and vasculogenesis (99, 115–

117). Advanced systems recapitulate key features of BM damage

(109, 118, 119) or diseases (119). Other interesting research has

developed devices for platelet production in vitro that can be

employed for clinical purposes (105, 110).
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Two different approaches, involving mouse primary cell growth

in a BM-rich microenvironment, were able to maintain the

proportions and characteristics of HSPCs for up to 7 and 14

days, respectively (108, 109). However, to finely study human

hematopoiesis human cells are required (138, 139). Two

unconventional methods were adopted to generate spherical-

shaped human BM cocultures (111, 112). Organotypic

multicellular spheres developed through magnetic levitation in

the absence of scaffold and exogenous matrices stimulate cells to

produce their extracellular matrix. This work opens the door to

the realization of more complex organoids applicable in the field

of regenerative medicine (112). The cellular release of ECM

components and HSPCs supportive factors was observed also in

the other spherical-shaped culture, the “human bone marrow–

in–a–liquefied-capsule” when placed under dynamic fluid (111).

Braham et al., developed a fully primary human cell 3D

coculture useful to understand the interaction of HSPCs with

other BM cells and the ECM in normoxic, hypoxic, and

hyperoxic conditions. They show that Matrigel is a better

substrate for coculturing HSPCs with osteo-vascular components

compared to alginate (113). The interaction of HSPCs with the

BM microenvironment is crucial for in vitro long-term culture

maintenance and in deciding their fate (140). A human 3D

microfluidic device was able to recapitulate the in vivo observed

HSPCs polarization (141) proving to be a great model to study

HSPC polarization mechanisms, which are still unknown (103).

Butler et al., demonstrate the fundamental role of ECs in cells

expansion, in the E4ORF1-ECs based vascular niche engineered

platform ECs resulted to enhance proliferation and maintencance

of human leukemic and embryonal carcinomas cells (122), BM-

derived LT-HSCs (101) and cord blood-derived hCD34+ stem

and progenitor cells (102) in serum/cytokine-free conditions.

Born and colleagues demonstrate that a self-assembled vascular

structure not only maintains the HSPCs in their undifferentiated

state but also preserved the osteogenic potential of BM-MSCs

(114). The influence of ECs on BM-MSCs was evaluated also in

a rat-based 3D dynamic system demonstrating that the

combination of shear stress with the vascular component induces

BM-MSC differentiation in α-SMA+ pericytes and stimulates

their migration through ECs (107). This model is of great

interest as the presence of BM-perivascular cells is fundamental

to mimicking BM vasculature. A similar study conducted with

human primary ECs, and BM-MSCs, cultured in 3D microfluidic

condition (115) confirms the transition of MSCs toward α-SMA+

mural cells when cocultured with ECs and that this transition is

further enhanced by the presence of angiogenic factors such as

angiopoietin-1 and TGF-1β. Interestingly, the α-SMA+ mural

cells colocalize with ECs suggesting a contact-dependent

mechanism to induce BM-MSCs differentiation. These last

studies prove the important support of ECs on BM-MSCs fate.

Other research has instead focused on the influence of BM-

MSCs on ECs and the vasculogenesis process. Jeon et al.,

demonstrate that the vascular component developed a higher

number of network branches and display a reduced vessel

diameter in the presence of BM-MSCs (115). Rat BM-MSCs

embedded in a 3D microenvironment enhanced sprouting and

proliferation of ECs through paracrine signals (99). A human-

based microfluidic chip with cells embedded in fibrin gel

confirmed the capability of BM-MSCs to sustain ECs vascular

network formation. Moreover, they have shown that BM-MSCs

promote basement membrane deposition by ECs and that the

perivascular localization of BM-MSCs occurs through the

interaction of their integrin adhesion receptor α6β1 and

basement membrane laminin (116). Analyzing the fibroblast

effects on EC microvasculature they observed that fibroblasts

enhance vascular network formation even faster than BM-MSCs

(116). The interaction of ECs with MSCs derived from BM or

adipose tissue was compared in a human cell-based 3D

microfluidic model. Both types of MSCs support network

formation, but the BM-MSCs resulted in a more organized,

interconnected, and denser ECs network and in higher

expression of genes characteristic of pericyte and ECs compared

to the coculture of ECs with adipose-derived MSCs (117).

To develop effective drugs to recover BM damage or treat BM

diseases it is important to mimic the BM alteration characteristics

of the pathology. The mouse cell-based model of Torisawa et al.

faithfully recapitulates BM damage observed in live irradiated

mice and the BM recovery after administration of G-CSF, a

largely used drug to treat victims of radiation accidents (109,

142). In a 3D human osteovascular niche on-a-chip the

endosteal component demonstrates a protective activity on

HSPCs reducing their apoptosis following ionizing radiation

exposure (118).

Chou and colleagues developed an advanced human

microfluidic BM-on-a-chip suitable to study drug and irradiation

toxicity as well as BM recovery. In this chip, able to maintain

myeloerythroid proliferation and differentiation, under dynamic

condition was recapitulated the reduction in neutrophils and

total cell count induced by the chemotherapeutic agent 5-

fluorouracil; and also neutrophils and erythroid cytotoxicity

induced by AZD2811, a potential cancer drug currently in phase

II of clinical development (119). The hypothesis that AZD2811

selectively targets dividing neutrophil and erythroid precursors

was assessed inside this microfluidic chip. Moreover, the

observed differences in cytotoxicity between low and high levels

of γ-radiation resemble human radiation sensitivity. Interestingly,

the damaged cells can recover inside the model, an important

characteristic for pharmaceutical research (119).

Finally, HSPCs derived from Shwachman–Diamond syndrome

(SDS) patients were cocultured with normal BM-MSCs and ECs.

SDS is a rare genetic disorder resulting in bone marrow failure,

characterized by neutropenia and other BM-cell defects. The

SDS-on-a-chip faithfully reproduces the disease, opening new

frontiers for translational, drug development, and cytotoxicity

studies (119).

One of the problems of the clinical practice that is trying to be

solved by these new in vitro technologies is represented by platelet

transfusion. Nowadays, all transfusion platelets are obtained by

human donors and can cause immunogenic reactions in the

receiving patient. Two laboratories realized two different

bioreactors able to reproduce thrombopoiesis, in both cases the

presence of vascular shear stress enhanced platelet collection
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(105, 110). Thon et al., utilized human induced pluripotent stem

cells (iPSCs)-derived MKs that could potentially produce an

unlimited number of functional human platelets and overcome

the immunogenicity problem (110). The model of Buduo et al.,

is of great interest because they designed a functionalized silk-

based BM system that could replace the endothelial layer,

required to promote thrombopoiesis in vitro, facilitating the

scaling-up for future massive platelet production (105).

4.4. Bone marrow vascular models used for
cancer research

The BM is the semi-solid tissue where hematologic cancers

such as leukemia and myelomas originate (143, 144). The BM is

also one of the most common sites for solid tumor metastasis as

breast and prostate cancer (145) (Figure 1). 2D and 3D BM in

vitro vascular models have been employed to study both liquid

or hematologic cancers and solid cancer metastasis.

4.4.1. Hematologic cancers
Leukaemia and myeloma begin during hematopoiesis with cell

genetic alterations. Most leukaemia involves white blood cells, and

some affect other types of blood cells. When these cells over over-

proliferate, they crowd out normal BM cells with consequent

hematopoiesis alterations leading to the development of the

disease. Leukemic cells leave the bone marrow niche through the

BM vasculature to enter the bloodstream, where they can spread

to other organs. Leukaemia is classified based on the speed of

progression, that which could be acute or chronic, and on the

type of blood cell involved, myeloid or lymphoid (146).

Acute leukaemias (AL) are characterized by immature blood

cells with high intrinsic proliferative potential that leads to a fast

progression of the disease. Altered immature blood cells with a

myeloid commitment, cells able to differentiate into MKs, red or

non-lymphocyte white blood cells during hematopoiesis in

health, cause acute myeloid leukemia (AML), which is the most

common type of acute leukemia in adults (147).

In leukemic patients it has been observed that an increased BM

vascularization is a key feature, however, this event has not been

largely studied for solid tumor progression and metastasis (148).

Angiogenesis was studied with a 3D BM microfluidic chip

showing that ECs (HUVECs) sprouting and neo-vessel formation

were increased by the presence of AML cells (HL60 cells)

compared to control (EC medium). In the presence of HS5BM-

SCs, to mimic the BM niche, angiogenesis was more

pronounced, and, in coculture with AML cells, it was further

enhanced, but characterized by a larger number of isolated

endothelial tips without multicellular stalks, reflecting what was

found in AML patient biopsies. ECs migrated for longer

distances in the collagen matrix, with a higher number of

endothelial tips but lower vascularization were found using

chronic myeloid leukemia (CML) cells (K562 cells) in the

absence of stromal cells (129). CML originates from partially

mature myeloid white blood cells and is characterized by slower

progression compared to AML. In turn, ECs play an important

role in CML. Coculture of HUVECs with a murine AML cell

line in a 2D model showed that ECs support the expansion of

rare leukemic cells, known as LICs representing a subset of self-

renewing cells able to generate an aggressive AML (120). This

was also shown in the 3D BM vascular model developed by Bray

et al., where both AML cell lines (KG1a, MOLM13, MV4-11,

OCI-AML3) and primary patient-derived AML cells exerted

preference to adhere and proliferate along the endothelial

network (HUVECs-BM-SCs), further highlighting the importance

of the interaction between AML cells and the vascular niche. In

accordance with these findings, this model enabled further

research on drug resistance, one of the main challenges in

clinical treatment. It has been observed that the 3D tri-culture

model was more resistant to two antineoplastic drugs commonly

used to treat AML compared to simpler 2D and 3D mono-

cultures (AML cells only) (127). In a perfusable 3D microfluidic

vascular model with tubular HUVECs vessels cocultured with

stromal BM fibroblast cell lines (HS27a or HS5), patient-derived

primary AML cells adhesion and extravasation were tested under

shear stress in combination with primary monocytes.

Interestingly, AML cells did not exhibit preferential adhesion or

extravasation in the presence of either stromal cell type, in

contrast, leukemic cells without monocytes adhered and

extravasated more to and across vessels cocultured with HS27a

when compared to HS5 cells. These findings underline the

importance of complex 3D models that mimic in vivo

multicellular components (134) (Figure 2E).

To explore the AML cells-BM niche components specific

interaction, a deconstructed microfluidic BM niches on-a-chip

(NOC) with arterial (BMAECs), mesenchymal (BM-SCs),

sinusoidal (BMSECs) and osteoblastic niches was perfused with

AML cells (MOLM13). AML cells were preferentially lodged

within the osteoblastic and the arterial niches rather than into the

mesenchymal or sinusoidal niches (135). Acute lymphoblastic

leukaemia (ALL) is another form of acute leukaemia and the most

common cancer in childhood, characterized by the overproduction

of immature and dysfunctional lymphoblast in the BM (149). A

ring-shaped leukaemia-on-a-chip 3D BM model (Figure 2D) that

resembles the in vivo spatial architecture and cellular composition

of the leukaemia BM tissue was developed and adopted to study

the heterogeneity in B-ALL human BM microenvironments based

on their chemo resistance. It has been found that Ph+ SUP B-ALL

cells cocultured with BM niche cells in the biomimetic device were

more resistant to conventional chemotherapic than REH B-ALL,

consistent with the insensitivity of Ph+ B-ALL to these types of

drugs in the clinic. Furthermore, the leukemia-on-a-chip 3D BM

model was designed to rescue the niche cells for downstream assay

like single-cell RNAseq, a very powerful tool to characterize the

BM microenvironment with limited cell input number. Finally,

using a simpler ring-shaped murine 3D BM model with ECs and

BM-MSCs it was observed that B-ALL cells attracted ECs. Niche

cells promoted B-ALL cell cluster formation and reduced their

motility over time (123).

The second most common hematologic malignancy is the MM,

where clonal terminally differentiated B lymphocytes undergo

abnormal proliferation followed by accumulation in the BM
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crowding out healthy blood cells. In MM abnormal monoclonal

antibodies, paraproteins, are produced causing overly thick blood

and kidney issues (150). To investigate the pathophysiology of

MM, a 3D tissue-engineered BM (3DTEBM) derived from MM

patients-BM supernatant that incorporated the BM components

MM (MM1s, H929, RPMI8226 or primary), stromal, and ECs was

established. It was observed that the presence of both stromal and

ECs increased MM cell proliferation compared to single culture or

coculture using other commercially available 3D systems, thanks

to the 3DTEBM scaffold with fibrinogen cross-linking (125).

The classical feature of BM myelofibrosis consist in the

deposition of reticulin and collagen fibers by marrow stroma

(151) and the iPSC-based organoid model was able to

recapitulate them when the donor cells derived from patients

with myelofibrosis but not when derived from healty donor:

increased soluble TGFβ levels, collagen 1 and α-SMA and

reduced vascularization was observed (126).

4.4.2. Solid cancer
Solid tumors such as breast cancer can spread from the primary

site intravasating in the bloodstream to form secondary tumors at

distant sites called metastasis. Metastasis is a multistep process

where circulating tumors cells (CTCs) interact with ECs, forming

the microvascular vessel wall, adhering and extravasate

extravasating into the target organ to form metastasis (Figure 1).

These key events of metastasis formation take place under

hemodynamic shear stress exerted on ECs by blood flow (152).

Triple-negative breast cancer (negative for oestrogen receptor,

progesterone receptor, and HER2) is a highly invasive type of

breast cancer, resistant to both hormonal therapy and treatments

against HER2 (Trastuzumab), that develops metastasis in the bone

with high frequency (153). Numerous BM vascular models in vitro

were developed to study metastasis formation by human triple

triple-negative breast cancer cells (MDA-MB-231) (121, 124, 128,

130, 131). It has been shown that CTCs firm adhesion to ECs

(HUVECs) under shear stress was higher when HUVECs were

cocultured with BM niche specialized cells compared to HUVECs

cocultured with muscle cells, resulting in cancer cells

organotropism for bone vasculature (121) (Figure 2C). In a model

of self-assembled capillary-like network (HUVECs), cancer cell

extravasation in the matrix increased in the presence of BM cells

(BM-MSCs and osteoblasts). In contrast, it was observed a

decreased extravasation in a shear stress-preconditioned vascular

network or in the presence of inflammatory macrophages

(inflammation model) within the BM niche (124). The

extravasation step was further investigated in a microfluidic model

with HUVECs forming a vascular lumen. MDA-MB-231 cells

transmigrated across the HUVECs monolayer into the osteo-

differentiated BM-MSC gel and travelled within the matrix more

compared to the control. Extravasated cancer cells were able to

proliferate and form micrometastasis of various sizes, ranging

from 4 cells to 60 cells or more (131). A 3D BM vascular model

was employed to investigate cancer cell migration to BM-specific

niches. An increased MDA-MB-231 cell migration to the BM

niches compared to the control was observed, without differences

between perivascular and endosteal niches. The migrated

MDA-MB-231 cells expressed more Ki-67, a proliferation marker,

than non-migrated cells, consistent with high Ki-67 expression in

bone lesions (130) (Figure 2B). All these 3D BM vascular models

showed how the BM niche is important for the breast cancer cell

metastatic process and enabled to highlight the cancer cell

organotropicity. Finally, a 3D model with a bone matrix scaffold,

to maintain the ECs viability and branching without the need of

for specialized growth-promoting conditions culture medium, was

developed to study metastatic colonization of MDA-MB-231 cells

under static and interstitial flow conditions. It was reported that

the interstitial flow promoted vascular branching and prevented

cancer cell growth rate within the niche (128). The BM

vasculature-on-a-chip models were also employed for drug toxicity

studies. Two models were realized as part of a body on a chip

(132, 133) to test the uptake and side effects of common

chemotherapeutic drugs given to treat several cancers such as

cisplatin and doxorubicin. The perfusable vasculatures were

challenged in the luminal side when in contact with the apical

bone marrow niche. Cisplatin was flowed through the vascular

channel causing myeloid toxicity in the HSPCs BM niche,

reducing the total number of cells in the HSPCs BM niche, in

particular neutrophils and erythrocytes, recapitulating the known

side effects of cisplatin in patients (neutropenia and anaemia) in

vitro (132). In a vascularized bone model which includes a lot of

components in common with the BM endosteal niche, osteoblasts

were found to be more sensitive than osteoclasts when exposed to

doxorubicin, as observed in pre-clinical studies, and, as expected,

the endothelium showed decreased resistance (133).

5. Conclusions and future directions

Despite animal models, such as the broadly used murine models,

are a powerful tool for genetic and physiological studies, they do not

always mirror human biology and human medical disease

conditions. About 8% is the rate of successfully translation of

drugs from animal testing to human treatments (20). Thus, there

is an unmet urgent need to develop physiologically relevant

humanized models for hematopoietic and cardiovascular disorders.

In vitro modeling has become a major focus of research in the

field of vascular and cancer research in recent years, as scientists

strive to understand the cellular and molecular mechanisms in

human cells essential for the development of effective preventive

and treatment strategies without the need for animal or human

testing. Moreover, the advent of new strategies that enable a

punctual characterization of the BM can not be ignored. Single-

cell RNA sequencing has been used to identify and describe the

characteristics of BM cells deriving from human and mouse (154–

156) providing an exceptional tool for the validation of in vitro

models exspecially in the context of disease modeling.

In vitro models can be used to simulate hemodynamic shear

stress, an important component in cellular trafficking, providing

insight into the disease mechanisms and how these might be

prevented or treated. Furthermore, in vitro models can be used

to investigate the effects of drugs or other treatments on the

pathophysiology of specific organs. In this review, we
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summarized both murine and human 2D and 3D bone marrow

vascular in vitro models with their cellular composition and

experimental function that may be suitable to study in vitro

cellular mobilization and homing in the BM via its vasculature, a

central process in cardiovascular diseases and cancer. From this

compilation emerged that these in vitro systems aimed to mimic

at best the complexity of the BM environment. However, behind

including ECs as vascular components, other BM cell types are

required to establish a more in vivo-like and reliable model as

different cell types release important factors orchestrating cellular

fate, as explained in the first paragraphs of this review. Moreover,

to study human disease and its mechanisms like cell trafficking,

it is essential to implement the in vitro models technologies with

organ-specific human-derived cells. Thus, to recapitulate the BM

environment in an in vitro model it is essential to include: (i) a

monolayer of ECs with a fluid flow applied on it to mimic the

blood flow; (ii) the presence of perivascular cells surrounding the

ECs such as pericytes, and the immune components

(macrophages and/or neutrophils); (iii) all components need to

be human and derived from the BM or that display BM-specific

characteristics. Among the thirty-three literature works

considered in this review, none include all these characteristics

together. In the work of Jeon et al. (124) the shear stress was

applied to the ECs layer and the model included almost all the

cellular components necessary to replicate the vascular niche,

however, the ECs were not BM-derived and the immune

component originates from mice. As Jeon et al., all the 2D and

3D human BM vasculature in vitro models described, except for

the works of Rafii et al. (106) and Aleman et al. (135), hold ECs

derived from other vascular districts. Therefore, there is a need

for a more standardized protocol for human bone marrow

endothelial and perivascular cell isolation, or iPS-derived cell

differentiated in BM cells to improve these advanced in vitro

models of BM vasculature. Success in the combination of these

advanced in vitro BM vasculature models with human/patients-

derived cells will allow the study of physiological and

pathological mechanisms that can be relevant to pre-clinical

studies. Furthermore, these new generation of in vitro models

can be used to investigate the effects of drugs or other treatments

on cellular trafficking at the BM vasculature, paving the way for

more effective treatments for cancer and cardiovascular diseases.
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