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3% (see Figure 16). One of these SVs was an inversion of 2p arm which co-occurred with 

MYCN amplification, and was thus not considered as novel but a result of the formation of 

DMs involving this locus39. Of note, these variants were almost absent in the intermediate 

to low-risk tumors (only 3 low risk tumors from EGA dataset had t(4p-17q). PTARGET  = 8×10-

11; PEGA = 4.40×10-7), and occurred alone or in combination with other recurrent SVs (Figure 

38).   

 

 

 

 
Figure 34. Distribution of SVs across NBL datasets and risk groups. 

Box plots on the left show the distribution of translocations (TRA), inversions (INV) and all the SVs (TOT) 

across EGA and TARGET samples, while those on the left the distribution of SVs between risk groups. P-

value derived from a Mann Whitney U test. 
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Figure 35. The presence of at least an SV predicted less overall survival in a multivariate Cox 

proportioned hazard regression model in TARGET dataset. 

Kaplan-Meier curves (top) the OS (top-left) and the EFS (top-right) probability of TARGET samples 

divided in two groups according the presence (red line) or the absence (blue line) of at least an SV in a 

univariate model, while the tables below show the results of a multivariate Cox proportioned-hazard 

regression model adjusting for MYCN status, INSS stage and the age at diagnosis. Squared dots and 

dashed lines represent the estimates and the standard errors, respectively. Red box highlights the 

contribution of the presence at least an SV (SV>=1) to the OS (bottom-left) and EFS (bottom-right) 

probability in this model.  
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Figure 36.The presence of at least an SV predicted less overall survival in a univariate model in 

EGA dataset. 

Kaplan-Meier curves (top) the OS (top-left) and the EFS (top-right) probability of EGA samples divided 

in two groups according the presence (red line) or the absence (blue line) of at least an SV in a univariate 

model, while the tables below show the results of a multivariate Cox proportioned-hazard regression 

model adjusting for MYCN status, INSS stage and the age at diagnosis. Squared dots and dashed lines 

represent the estimates and the standard errors, respectively. Red box highlights the contribution of the 

presence at least an SV (SV>=1) to the OS (bottom-left) and EFS (bottom-right) probability in this model. 

  

0 2000 4000 6000

0.0

0.2

0.4

0.6

0.8

1.0

Follow up (days)

O
S 

Pr
ob

ab
ilit

y

P = 1.91e−03
OR = 3.92

SV >= 1 (n=106)
SV = 0 (n=38)

Overal Survival

−1.5 0 2

SV group

Age at
diagnosis

INSS Stage

MYCN Status

SV=0
(n=38)

SV>=1
(n=106)

< 18 months
(n=35)

>= 18 months
(n=109)

1,2,3,4S
(n=61)

4
(n=83)

Non−amplified
(n=110)

Amplified
(n=34)

Reference

HR = 1.19;
P = 0.7

Reference

HR = 3.88;
P = 3.1e−03

Reference

HR = 3.73;
P = 5.3e−06

Reference

HR = 1.28;
P = 0.42

ln(Hazard Ratio)

0 2000 4000 6000

0.0

0.2

0.4

0.6

0.8

1.0

Follow up (days)

EF
S 

Pr
ob

ab
ilit

y

P = 0.018
OR = 2.55

SV >= 1 (n=106)
SV = 0 (n=38)

Event Free Survival

−1.5 0 2

SV group

Age at
diagnosis

INSS Stage

MYCN Status

SV=0
(n=38)

SV>=1
(n=106)

< 18 months
(n=35)

>= 18 months
(n=109)

1,2,3,4S
(n=61)

4
(n=83)

Non−amplified
(n=110)

Amplified
(n=34)

Reference

HR = 1.21;
P = 0.55

Reference

HR = 3.1;
P = 4.9e−04

Reference

HR = 1.55;
P = 0.08

Reference

HR = 0.8;
P = 0.36

ln(Hazard Ratio)



 73 

 
Figure 37. TERT rearrangements in NBL samples. 

Circos plot showing the rearrangements (inversions and translocations) in TERT region – defined as 

300Kb upstream and downstream the gene locus – in TARGET (top) and EGA (bottom) samples. The 

inner bar plot shows the frequency of rearrangements in high-risk group. 
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Figure 38. Recurrent SVs in NBL. 

Heatmaps showing the occurrence of the most common (≥ 4 and ≥ 6 samples affected in TARGET and 

EGA dataset, respectively) SVs (rows) in TARGET (bottom) and EGA (bottom) samples (columns), 

alongside with samples annotations – regarding clinical parameters (bottom annotation) and number of 

SVs (top annotation) – and frequency of each SV (right annotation).  
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Collectively, breakpoints of these 6 SVs overlapped with the gene-body of 80 and 91 

protein-coding genes of TARGET and EGA samples, respectively, putatively leading to the 

LoF of these genes. Of these, a total of 12 genes was shared between the two datasets (Figure 

39).  

 

 

 

 
Figure 39. Genes hit by recurrent SVs. 

Bar plot showing the number of samples with recurrent SVs (shown in figure legend) affecting 12 genes 

listed in x-axis in TARGET (top) and EGA datasets (bottom). Bars are colored based on SVs. 
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In line with literature, the most of these genes have a role in synapse plasticity during the 

neurodevelopment, and are involved in different neurological and psychiatric diseases88. As 

expected, SHANK2 was the most frequent gene (10 and 6 samples in TARGET and EGA 

samples, respectively) disrupted by an SV – the t(11q-17q). It is a known NBL TSG whose 

expression is decreased in high-risk tumors88. Its gene product is a scaffolding protein 

important for the synapse formation of glutamatergic neurons187,188. The same study that 

identified SHANK2 as a TSG in NBL also described DLG2 as frequently hit by 

breakpoints88. We found 5 samples (1 for TARGET and 4 for EGA) in which the t(11q-17q) 

affected this gene. Similarly to SHANK2, DLG2 encodes a postsynaptic scaffolding protein 

that interacts with cytoskeleton and glutamatergic NMDA receptors189. As SHANK2, it is 

associated to a series of psychiatric and neurological disorders, including schizophrenia, 

autism spectrum and Parkinson’s disease, among the others190. However, unlike SHANK2, 

SVs involving DLG2 alterations are not exclusive of NBL, but are shared in other pediatric 

malignancies88,191. Another interesting gene recurrently disrupted by SVs was ASIC2, which 

was detected in 6 samples (3 EGA and 3 TARGET). ASIC2 gene product is an acid-sensitive 

ion channel which is ubiquitously expressed in neurons192, where it has been proposed to 

withstand synaptic plasticity193. Given its ubiquitous presence in nervous system, it is 

associated to a large plethora of diseases, ranging from migraine to multiple sclerosis194. 

Although its role in cancer is yet to be defined, it has been shown to promote invasion in an 

in vitro model of colorectal cancer, suggesting a putative role of oncogene195. 4 samples (2 

EGA and 2 TARGET) carried SVs affecting IKZF3. In central nervous system, this gene is 

expressed by microglia, serving as a modulator of neuroinflammation upon cerebral 

ischemia196. Interestingly, its expression is correlated to positive outcome in melanoma197 – 

a tumor that shares embryonal origin with NBL198 – suggesting a potential role of TSG. 

4.3. NBL patients showed different phenotypes based on the presence of an SV 

As reported in the previous paragraph, the presence of at least an SV predicted OS and EFS 

probability in NBL samples, and was characteristic of high-risk subtypes (see Figures 34, 35 

and 36). To better dissect the implications of the occurrence of SVs in NBL, we divided 

samples according to the presence or the of at least an SV. For simplicity, we labelled as SV 

group and as no-SV group samples with at least o no SVs, respectively. We then assessed 

biological and phenotypical differences between these two groups. In detail, we compared 

the degree of genetic and genomic instability of these two groups, assessed the SNVs 

mutational patterns through a mutational signature analysis and evaluated differences in 

gene-expression profile via DGE analysis using RNA-seq data. Finally, in order to detect a 
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putative contribution of constitutional genetic variation, we tested germline SNVs for 

differences between these two groups of samples. 

4.3.1. SV group showed an overall increased degree of genetic instability compared 

to no-SV group 

As extensively discussed in Introduction, genetic instability – defined as the tendency of a 

tumor to acquire mutations199 – is generally considered a marker of poor prognosis in 

NBL19,88,166,178. We thus wanted to assess differences in the extent of genome instability in 

SV versus no-SV group. To this end, we compared the distribution of 5 parameters as a 

proxy of genome instability (TMB, number of focal CNAs, number of numerical CNAs, 

large state transitions and SV burden)88,147,200 in the two group of samples (Figure 40). 3 out 

of 5 parameters (TMB, number of focal CNAs and SV burden) were significantly increased 

in SV group in both datasets (two-sided Mann Whitney’s U-test p-value < 5×10-7). LST – 

defined as the number of CN status variations between segments of at least 5MB147 (see 

Methods) – were significantly increased in SV group in TARGET (Mann-Whitney U test P 

= 2.67×10-3) but not in EGA samples (P = 0.179). Interestingly, the number of numerical 

CNAs was significantly increased in no-SV group in EGA samples (P = 4.32×10-4), although 

it resulted unvaried in TARGET cohort (P = 0.387). In conclusion, these results suggest that 

tumors carrying at least an SV are characterized by an increased degree of genetic instability. 
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Figure 40. Genome instability is increased in SV group. 

Violin plots showing the distribution of 5 genome instability parameters (clockwise: TMB, focal CNAs 

numerical CNAs, SV burden and LST) across SV and no-SV group in TARGET (top) and EGA (bottom) 

NBL samples. ***: P ≤ 0.001; **: P ≤ 0.0. Statistical significance was assessed through a two-sided Mann 

Whitney’s U-test.  
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4.3.2. SV group was enriched in mutations of SBS18 

WGS-based studies revealed that NBL shows specific mutational patterns92,93. Regarding 

SNVs profiles, it has been described that NBL is characterized by mutational activities 

ascribable by defined SBSs, which include SBS1, SBS5 and SBS1892,93,152. SBS mutational 

signature analysis performed on somatic SNVs detected activities from 10 Cosmic SBS 

(Table 5). 4 of these (SBS1, 5, 18 and 40) was shared between the cohorts and found to be 

active in NBL across more studies92,93,152.  

 

 

 

Signature EGA samples 
with signature† 

TARGET samples 
with signature† Proposed etiology Reference 

SBS1* 40.00% 46% Clock-like (cell division rate) 
Nik-Zainal et al., 

201294  

SBS4 N/A 13.24% Tobacco smoking 
Alexandrov et al., 

201391  

SBS5* 89.44% 98.53% 
Unknown (probably clock -

like) 
Alexandrov et al., 

201391 

SBS18* 77.22% 60.29% Damage by ROS 
Alexandrov et al., 

201391 

SBS38 11.11% N/A Indirect effect of UV-light 
Alexandrov et al., 

2020149 
SBS40* 52.78% 17.64% Unknown   

SBS51 5.56% N/A Possible sequencing artifacts 
Alexandrov et al., 

2020149 

SBS58 13.33% N/A Possible sequencing artifacts 
Alexandrov et al., 

2020149 

SBS60 10.56% N/A Possible sequencing artifacts 
Alexandrov et al., 

2020149 

SBS96d N/A 36.02% Unknown 
Degasperi et al., 

2022201 
Table 5. SBS signatures active in TARGET and EGA tumors. 

*SBSs shared between dataset are shown in bold. 
†We considered as active only SBSs with ≥ 5% mutations per sample (see Methods). 

 

In both the cohorts, the relative activity – expressed as mutations of a signature in a group 

divided the total of mutations (see Methods) – of SBS1 and SBS5 was increased in the no-

SV group, conversely to the relative activity of SBS18 that was higher in the SV group 

(Figure 41). However, when we considered the absolute number of mutations of each 

signature, the SBS18 was the only signature that was significantly enriched in the SV group 

in both datasets (P < 10-4) (Figure 42), indicating that the increase of the mutational burden 

in this group with respect to the no-SV group (see Figure 40) was mainly due to mutations 

ascribable to this signature. Is known that in NBL the SBS18 correlates with MYCN 

amplification, 17q gain and the expression of mitochondrial genes152. To rule out that the 

difference of SBS18 activity between SV and no-SV group was influenced by these factors, 

we performed a multivariate logistic regression evaluating the differential distribution of 

SBS18 activity in SV and no-SV group including the 17q gain, the MYCN amplification and 
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the mitochondrial gene expression as covariates (Figure 43). We observed that SV group 

was enriched in SBS18 mutation even in presence of covariates (multivariate logistic 

regression P < 0.01), suggesting that the presence of SVs can per se induce the activity of 

this signature.  

 

 

 
Figure 41. Relative activity of SBS signature in SV and no-SV group. 

Stacked bar plot showing the relative activity – expressed as mutations of a signature in a group divided 

the total of mutations (see Methods) – of each of the 4 shared signatures (SBS1, SBS5, SBS18, SBS40) 

in SV and no-SV group in the two cohorts of NBL. 

  

EGA TARGET

SV gr
ou

p

no
−S

V gr
ou

p

SV gr
ou

p

no
−S

V gr
ou

p

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
ac

tiv
ity Signature

SBS1
SBS5
SBS18
SBS40
other



 81 

 

 
Figure 42. Absolute activity of SBS1, 5, 18 and 40 in SV and no-SV groups. 

Bar plot showing the number of mutations per sample in SV and no-SV group in EGA and TARGET 

datasets. The error bars represent the standard errors. Significance was assessed through a univariate 

logistic regression. ****: P < 10-4. 
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Figure 43. The enrichment of samples with SBS18 activity remained significative in a multivariate 

analysis using mitochondrial gene expression, MYCN status and 17q gain. 

dot plot showing the results of a multivariate logistic regression comparing the presence of SBS18 activity 

and (from top to bottom) the SV group, mitochondrial gene expression, MYCN status and 17q gain. The 

squared dots and the dashed bars represent the estimate and the standard errors of the multivariate logistic 

regression, respectively. 
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4.3.3. SV group over-expressed DNA-repair related genes and under-expressed 

neuronal function and differentiation and synapse plasticity genes 

Finally, we investigated gene-expression profile of the two groups of NBL samples (SV vs 

No-SV group). To this end, we leveraged paired-end RNA-seq data from a subset of 

TARGET (N=89) and EGA (N=140) samples. RNA-seq data from TARGET cohort were 

available as a publicly available matrix where the expression of each gene (rows) for each 

sample (columns) was expressed as FPKM. For samples in the EGA dataset, we processed 

BAM files as described by Hartlieb et al.85 to obtain the raw read counts of each gene (rows) 

for each sample (columns), which were subsequently normalized to FPKM (see Methods). 

We performed a differential gene-expression analysis comparing the FPKM distribution of 

each gene of the SV and no-SV groups through a logistic regression, defining as 

differentially expressed (DE) genes that in both dataset that showed a p-value less than 0.01 

and an absolute fold change of 1.5. Based on these criteria, a total of 170 and 145 protein-

coding genes resulted over and under-expressed in the SV group, respectively. From an over 

ORA of biological processes resulted that pathways related to DNA-repair and control of 

cell cycle progression were over represented in the 170 SV group over-expressed genes 

(Figure 36). It is hypothesized that the over-expression of pathways related to DNA-repair 

and, more generally, to genome stability is a response to DNA damage in cancer202. 

Furthermore, in several tumors including melanoma203, acute myeloid leukemia204 and some 

breast cancer subtypes205 the increased expression of DNA-repair is associated with poor 

outcome, suggesting the prognostic relevance of DNA-repair genes expression205. The 145 

under-expressed genes in SV group mostly belonged to BPs of neurodevelopment, synapse 

plasticity and neuronal function (Figure 44). This result suggests that tumors from this 

subgroup are characterized by a lesser extent of differentiation compared to no-SV group 

tumors206. Importantly, the over and under-expression of the 170 and 145 genes in the SV 

group, respectively, was observed also when we considered only low to intermediate risk 

tumors (N=83, 29%), indicating the independence from the clinical status (Figure 45). 
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Figure 44. ORA results on SV group over and under-expressed genes. 

Dot plot showing the enrichment ratio and the significance expressed as -log10(FDR) of an ORA 

performed on over (left) and under-expressed (right) genes in the SV group compared to the no-SV group. 

The BP enrichment was performed using the whole set of protein-coding genes as reference (see 

Methods). All the listed BPs were enriched with an FDR < 0.05, except the starred ones (FDR < 0.1). 

FDR: False Discovery Rate. 
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Figure 45. DEGs remained under and over represented in SV group when considering only the 

low to intermediate risk tumors. 

Box plot showing the global expression of DEGs in the low-to-intermediate risk group expressed as z-

score. The expression of the 170 SV group over-expressed genes resulted significantly increased in SV 

group when considering only low-to-intermediate risk samples (left bar plots). Similarly, the expression 

of the 145 SV group under-expressed genes resulted significantly decreased in SV group when 

considering only low-to-intermediate risk samples (right bar plots). P-values was computed through a 

two-sided Mann Whitney U-test.   
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4.4. Double-strand break repair genes were enriched in germline PVs in SV group 

As discussed in the Introduction, the role of germline variation in cancer can go far beyond 

a simple predisposition, and often predisposes to the development of defined somatic 

events108.  In order to determine a putative contribution of germline SNVs in NBL, in 

particular to the development of SVs, we investigated differences in terms of germline PVs 

between the SV and no-SV group. to this end, germline SNVs of TARGET samples were 

retrieved from publicly available VCF files, while those of EGA cohort were singularly 

called for each sample (see Methods). SNVs predicted to lead a functional consequence in 

exonic regions (also named coding SNVs) were classified as benign, likely benign, variant 

of unknown significance (VUS), likely pathogenic (LP) and pathogenic (P) based on the 

ACMG classification207. For our analysis, we selected only SNVs annotated as P or LP 

according to ACMG criteria. We obtained a total of 570 and 755 germline PVs in TARGET 

(µ = 4.194) and EGA (µ = 4.191) cohorts, respectively. In both datasets, the number of SNVs 

was comparable between SV and no-SV group (two-tailed Mann Whitney U-test P > 0.1) 

(Figure 46). To unbiasedly investigate differences in the germline background of the two 

groups, we first joined P/LP SNV of the two datasets and then performed two independent 

ORAs querying the WikiPathway cancer database156 with the genes with at least a P/LP SNV 

in the i) SV group (N=557) and ii) in the no-SV group (N=108) using the whole set of 

protein-coding genes as reference. We observed an enrichment of the pathway WP4016 

(DNA IR-damage and cellular response via ATR) in genes of the SV group at an FDR 

significance (Enrichment ratio = 3.46, FDR = 1.96×10-3), but none in the no-SV group 

(Figure 47). WP4016 is a cancer-related pathway whose alterations have been previously 

associated to alteration in Double Strand Breaks (DSB) repair mechanisms208–210. 14 out of 

80 genes of WP4016 pathway were affected by one or more PVs, involving a total of 36 

samples (Table 6), and included notable pivotal TSGs for HR pathway (such as CHEK2, 

BRCA1/2, ATM and BARD1 among the others) whose role in cancer predisposition is well 

established211 (Figure 47). These results may indicate that germline P/LP SNVs affecting 

genes involved in DSB repair mechanisms, especially in the HR pathway, can predispose 

for the onset of NBL tumors with a defined SVs phenotype, characterized by a higher degree 

of genome instability, an abundance of SBS18 activity and a specific gene-expression 

pattern.  
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Figure 46. Mean number of germline PVs per SV group 

Stacked bar plot showing the mean of germline PVs (according to ACMG criteria) in SV and no-SV group in 

EGA (left) and TARGET (right) datasets. Bars are colored based on exonic functional consequence of the 

SNV.  

 

 

 

 

 
Figure 47. SV group was enriched in PVs in genes of DNA IR-damage and cellular response via ATR. 

Bar plot showing the ORA in WikiPathway cancer database performed with genes with a germline PV in SV 

(top) and no-SV (bottom) groups. The numbers within the bars represent the fraction of genes with PVs on the 

total of genes of that pathway. The enrichment ratio on the x-axis is relative to the observed vs the expected 

gene overlap. In red is represented the WP4016 (DNA IR-damage and cellular response via ATR), which were 

the only enriched pathway. 
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variant ID Gene Functional 
consequence 

ACMG Patogenicity 
criteria samples 

NM_000051.4:c.6067G>A ATM nonsynonymous SNV PM1, PM2, PP3, PP5 4 

NM_001271933.2:c.4213C>T CEP164 stopgain PVS1, PM2 2 

NM_001024688.3:c.397C>T NBN nonsynonymous SNV PM1, PM2, PP3, PP5 2 

NM_000051.4:c.1229T>C ATM nonsynonymous SNV PM1, PM2, PP3, PP5 2 

NM_001113378.2:c.1573A>G FANCI nonsynonymous SNV PM1, PM2, PP3, PP5 2 

NM_007294.4:c.5177_5180del BRCA1 frameshift deletion PVS1, PS3, PM2, 
PP5 2 

NM_000553.6:c.3785C>G WRN nonsynonymous SNV PM1, PM2, PP3, PP5 2 

NM_000059.4:c.2661_2662del BRCA2 frameshift deletion PVS1, PS3, PM2, 
PP5 1 

NM_000059.4:c.3922G>T BRCA2 stopgain PVS1, PS3, PM2, 
PP5 1 

NM_000059.4:c.8036A>G BRCA2 nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_000135.4:c.3391A>G FANCA nonsynonymous SNV PS1, PM2, PP3, PP5 1 

NM_203292.2:c.2377C>T RBBP8 stopgain PVS1, PM2 1 

NM_000465.4:c.1921C>T BARD1 stopgain PVS1, PM2, PP5 1 

NM_000465.4:c.448C>T BARD1 stopgain PVS1, PM2, PP3, 
PP5 1 

NM_001127207.2:c.1271A>T SMARCAL1 nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_001005735.2:c.667C>T CHEK2 nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_001005735.2:c.562C>T CHEK2 nonsynonymous SNV PS1, PM1, PM2, PP3, 
PP5 1 

NM_001172574.2:c.571del MCPH1 frameshift deletion PVS1, PM2 1 

NM_000051.4:c.1010G>A ATM nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_000051.4:c.7390T>C ATM nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_000059.4:c.9155G>A BRCA2 nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_000059.4:c.10094_10095insGAATTATATC BRCA2 frameshift insertion PVS1, PM2 1 

NM_024675.4:c.178C>T PALB2 stopgain PVS1, PM2, PP5 1 

NM_007294.4:c.5266_5267insC BRCA1 frameshift insertion PVS1, PS3, PM2, 
PP5 1 

NM_001005735.2:c.1031del CHEK2 frameshift deletion PVS1, PM2, PP5 1 

NM_001005735.2:c.478A>G CHEK2 nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_001172574.2:c.182A>G MCPH1 nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_001322042.2:c.2166G>A MCPH1 stopgain PVS1, PM2, PP3 1 

NM_000553.6:c.1436del WRN stopgain PVS1, PM2 1 

NM_000553.6:c.1717A>G WRN nonsynonymous SNV PM1, PM2, PP3, PP5 1 

NM_001024688.3:c.411_415del NBN frameshift deletion PVS1, PM2, PP5 1 

NM_001024688.3:c.37G>A NBN nonsynonymous SNV PM1, PM2, PP3, PP5 1 

Table 6. Germline PVs in genes of WP4016 pathway. 

PVS1: LoF (stopgain or frameshift) causing a stop codon before 50bp the last exon, a splicing variant with a 

dbscSNV212 score greater than 0.6; 

PS1: nonsynonymous SNV causing the same aminoacidic change of a pathogenic variant in ClinVar 

database143; 

PS3: ClinVar pathogenic SNV whose level of evidence is either “practice guideline” or “reviewed by expert 

panel”; 

PP5: ClinVar pathogenic SNV with limited evidence; 

PP3: SNV predicted as probably pathogenic by various in silico prediction tools; 



 89 

PM1: nonsynonymous SNV occurring in a domain with no known benign variants; 

PM2: SNV in a recessive gene with a MAF < 0.5% or in a dominant gene with no public MAF available. 
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Finally, we observed that the observed distribution of PVs in WP4016 pathway across the 

various ethnicity of samples in the datasets (see Figure 12), and across the two dataset was 

comparable to the expected one (two-tailed Chi-squared P = 0.67 and P = 1, respectively), 

ruling out any bias due to population stratification or to a batch effect (Figure 48). 

 

 
Figure 48. The expected and observed distribution of germline PVs in WP4016 genes was comparable 

across datasets and ethnicity. 

Bar plot showing, on the y-axis, the number of observed (green) and expected (brown) PVs per dataset and per 

ancestry, which are specified on x-axis. AFR: African; AMR: Latino-American; EAS: East-Asian; EUR: Non-

Finnish European; SAS: South-East-Asians   
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5. Discussion 
One of the aims of this dissertation was to provide a comprehensive genomic profile of NBL. 

In detail, we downloaded, processed and analyzed WGS data of two independent NBL 

cohorts from two publicly queryable databases, TARGET (N=136) and EGA (N=180). 

Through the application and the integration of different bioinformatic tools and in-house 

pipelines, out of these samples we obtained germline and somatic SNVs, CNAs and genomic 

rearrangements, which were further processed for profiling purposes. 

Concerning the somatic SNVs, we computed TMB and prioritized SNVs for the 

identification of putative cancer-driver genes. The TMB values were comparable between 

the two datasets and consistent with data from literature36. As expected, we found a solid 

association between TMB and markers of poor prognosis166, with the solely exception of 

MYCN amplification, which is in line with recent evidence that suggests this driver alteration 

as occurring early during NBL development213. Nonetheless, only a trend – although 

negative – was observed between the TMB and the OS and EFS probability, both in 

univariate and in multivariate models. 

Upon point mutations prioritization, ALK resulted the most frequently mutated gene, whose 

recurrent variants (F1174L, F1245V, R1275L and R1275Q among the others) were detected 

in both cohorts. We also detected key oncogenic NBL variants in genes like KRAS, NRAS 

and FGFR1. Furthermore, we identified 3 genes (ESR1, MYH9 and SKI) whose mutations 

had not been previously reported. Two tumors carried missense variants in ESR1 gene, one 

predicted as pathogenic by CADD, M-CAP and REVEL prediction tools and the other 

annotated as LP in ClinVar database. It is suggested that this gene is involved in the 

development of sympathetic nervous system and that its under-expression in NBL is 

associated to a worst prognosis176. ESR1 has been shown to be an indirect target of MYCN. 

The latter promotes the transcription of some types of micro RNAs, in particular miR-18a 

and miR-19a, that repress the translation of ESR1, suggesting this gene as a probable TSG 

in NBL. Three samples had somatic predicted pathogenic missense SNVs in MYH9, which 

encodes a non-muscle protein that belongs to the myosin superfamily. Given its role in 

initiating tumor invasion and metastasis214, MYH9 was initially classified as an oncogene. 

However, while this applies for some solid cancers including gastric and esophageal cancer, 

in some others, such as skin and head and neck squamous carcinoma it acts as a TSG215, a 

function that may be exercised through the stabilization of p53, although the precise 

mechanism is yet to be clarified216. in NBL, the exact identity of MYH9 in NBL has not been 

established yet. Finally, SKI gene was affected by 3 SNVs, whose two non-sense and one 

missense predicted as pathogenic by all the three pathogenicity tools we used. As the 

previous two genes, also SKI can act as oncogene or as TGS. This duality reflects its 
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biological role in inhibiting the TGF-b pathway174, which has been described to be both a 

tumor suppressor and an oncogenic pathway217. Although SKI function in NBL has not been 

yet elucidated, given the role of TGF-b signaling in promoting EMT in NBL175 we suppose 

it to act as a TGS. Furthermore, SKI was the only one of these genes whose expression was 

lower in high-risk samples in both datasets, indicating a putative prognostic role of this gene, 

although additional studies are needed to confirm these findings. Finally, SKI maps at 1p36 

locus which is frequently deleted in NB. This observation further suggests its tumor-

suppressor role.  

Point mutations in these genes occurred at a very low frequency (MYH9 = 0.95%, ESR1 = 

0.63%, SKI = 0.95%), in line with other reported mutations in NBL. However, the alteration 

of these genes may not be limited to point mutations, but may also be involved in epigenetic 

changes. It is known that in NBL a series of TSGs may be inactivated by silencing 

mechanisms including DNA methylation, H3K9 methylation and H3K4 de-methylation, 

among the others218. Furthermore, with respect to SKI gene, it is well established that the 

EMT – which follows the activation of TGF-b pathway – is guided by a wave of 

transcriptional activations and repressions regulated by a series of epigenetic changes219. In 

this context, the reduced expression of SKI gene in high-risk tumors may be due to epigenetic 

mechanisms that need to be further elucidated. 

Copy number analysis showed expected results in terms of types and frequency of typical 

and recurrent CNAs of NBL (MYCN amplification, 1p loss, 1q gain, 11q loss and 17q gain 

among the others), which were detected, in both cohorts, at similar frequency to that reported 

in previous studies9,57,220. As expected, we observed a positive correlation between 

segmental CNAs and poor-prognosis markers, and oppositely a positive correlation between 

numerical CNAs and good-prognosis markers.  During the years, the contribution of 

segmental CNAs to the clinical outcome of NBL has become so solid that their detection has 

been incorporated in recent risk classification guidelines – the Children’s Oncology Group 

(COG) risk classification system above all221. Our analysis detected 9  aneuploidies that were 

enriched in low to intermediate risk group (chr1 gain, chr2 gain, chr3 loss, chr4 loss,  chr7 

gain, chr11 loss, chr12 gain, chr17 gain and chr19 loss). We observed that the presence of 

at least one of these numerical CNA predicted survival in a multivariate model adjusting for 

known NBL poor-prognosis markers. Several studies highlight the positive effect on 

prognosis of numerical CNAs. Nevertheless, they take in consideration the co-presence of 

several chromosomal aneuploidies, or even to the whole chromosome asset152,222,223, and 

only few studies focus on specific whole-chromosome CNAs181,182,185. Our analysis indicate 

that the presence of specific numerical CNAs predicts good prognosis in independent NBL 

cohorts, and in future may be implemented in clinical stratification criteria. 
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We finally assessed the presence and the role of genomic rearrangements in NBL – here 

referred to as SVs for simplicity – which to date remains poorly investigated in NBL. As 

expected, the number of SVs strongly correlated with poor-prognosis and with a diminished 

OS and OFS probability19,88,224. SV profiling identified known recurrent SVs (TERT 

rearrangements, t(1p-17q) and t(11q-17q)) and also other 5 unreported translocations (t(17q-

19p), t(14q-17q), t(4p-17q), t(2p-3p) and t(1p-2p)) at a low frequency (< 5%). All these 

variants were associated to poor prognosis, and their breakpoints affected genes generally 

involved in synapse plasticity and neuronal development. The list of genes affected by these 

SVs, however, may be incomplete. In this dissertation, we did not investigate the alterations 

that such SVs may cause to the chromatin organization. It is indeed known that the presence 

of SVs in NBL may cause a re-arrangement in the transcriptional activity by disrupting the 

interaction between regulatory elements and close genes or by juxtaposing regulatory 

elements in proximity of otherwise distant genes, altering the global transcriptional network 

of the tumor225. To this end, further studies are needed to assess the impact that recurrent 

SVs may have on chromatin organization. 

We observed that not all samples carried SVs. Therefore, we wanted to investigate 

phenotypical differences between samples which carried or not at least an SV, referred to as 

the SV and the no-SV group, respectively. SV group showed reduced OS and EFS 

probability in TARGET cohort, but only a trend in a multivariate model in the EGA dataset, 

although this result may be influenced by a strong co-linearity among clinical markers used 

as covariates167. Overall, SV group showed a higher degree of genetic instability, with the 

exclusion of numerical CNAs with which was observed no or a negative correlation. From 

mutational signature analysis we report an increase of SBS18 activity in SV group, even 

when adjusting for other factors which have been shown to correlate with this SBS (17q 

gain, MYCN amplification and mitochondrial gene expression)152. 

The signature SBS18 is highly characteristic of neuroblastoma (NBL). Studies have shown 

that samples with this signature predominantly exhibit C>A transversions. This mutation 

pattern is largely attributed to the oxidation of guanine bases into 8-oxoG as a result of ROS 

production226,227. Furthermore, DNA damage, particularly DSB, is known to induce ROS in 

a consistent and generalized stress response throughout the cell228. 

Our findings suggest that SVs, which occur following DSBs, may contribute to the 

generation of ROS. This, in turn, leads to C>A mutations and the emergence of the SBS18 

signature. Interestingly, the TMB is notably higher in the SV group, which is primarily due 

to mutations linked to SBS18. This observation implies that the presence of SVs and the 

associated genetic instability could elevate the frequency of SBS18 mutations. These 

mutations encompass the majority of recurrent driver mutations in NBL152.  
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We also observed differences in gene expression between the two groups. Firstly, from DE 

analysis resulted that SV group over-expressed DNA-repair and cell cycle checkpoint genes. 

This unexpected result may reflect a compensatory increase and reliance in DNA-repair 

genes in tumors with an increased degree of genetic instability to guarantee a minimum 

control on DNA-damage and of cell cycle progression229. In this context, patients with this 

expression pattern may benefit for specific therapies targeting DNA-repair genes in a 

mechanism of synthetic lethality230. On the other hand, in line with evidence reported by 

Lopez and colleagues88, SV group downregulated genes involved in neurogenesis, neuronal 

development and synapse formation and organization, suggesting a lesser extent of 

differentiation in these tumors231. In our quest to understand the potential genetic 

predisposition contributing to the SV group phenotype in NBL patients, we explored the role 

of germline DNA. Our approach involved selecting coding and rare germline variants 

classified as P/LP based on ACMG criteria. We then identified genes harboring these 

variants. To assess the involvement of these genes in cancer-related pathways, we conducted 

two independent over-representation analyses in the SV and in no-SV group using the 

WikiPathway cancer database, which contains a comprehensive catalog of cancer-related 

pathways156. 

Our analysis revealed a significant enrichment of genes involved in the DNA damage 

response to ionizing radiation and cellular response via the ATR pathway (WP4016) within 

the SV group. Notably, 14 out of 80 genes in this pathway were mutated in at least one 

sample from the SV group. This includes several TSGs integral to DSB repair, with germline 

variants etiologically linked to various cancer predisposition syndromes. For example, 

pathogenic variants in BRCA1 and BRCA2 are associated with breast and ovarian cancer 

susceptibility, with BRCA1 recently identified by our team as a predisposition gene for 

NBL86. Similarly, germline pathogenic variants in CHEK2 and ATM, crucial for initiating 

DSB repair signaling, have been implicated in predisposition to a spectrum of cancers, 

including lymphomas, leukemias, thyroid carcinoma, melanoma, and colon cancer232,233. 

Moreover, germline variations in BARD1, identified in 2 patients with P/LP SNVs, are linked 

to DNA repair defects and consequently to genetic instability in NBL35. 

The underlying mechanism for tumorigenesis in these cases appears to be an innate 

deficiency in DNA repair processes, particularly HR, leading to a reduced capacity to repair 

DNA damage and maintain genomic integrity234. Our analysis of the correlation between 

germline and somatic genetic changes suggests that germline variations in DNA repair 

genes, which predispose to cancer, may promote increased somatic genetic instability, 

ultimately contributing to malignant transformation. While additional computational and 

experimental studies are necessary to further validate and elaborate on our findings, the data 
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we have gathered offers valuable insight into the mechanisms by which cancer-predisposing 

germline variants could initiate NBL. 
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6. Conclusions 
Our exhaustive whole-genome sequencing analysis has revealed a spectrum of novel 

genomic alterations that are distinctive to NBL tumors. We have identified rare point 

mutations in the SKI, ESR1 and MYH9 genes, which may act as oncogenic drivers, marking 

a significant step forward in our understanding of NBL pathogenesis. These mutations could 

serve as novel targets for therapeutic intervention, potentially leading to the development of 

precision medicine strategies tailored to individual genetic profiles. 

Furthermore, our research has uncovered novel SVs that occur at a low frequency but affect 

genes that are promising candidates for cancer research. These findings may pave the way 

for the discovery of new biomarkers for early detection and prognosis of NBL. 

The association we found between specific aneuploidies and the clinical outcomes of NBL 

patients is particularly noteworthy. This correlation could be instrumental in refining risk 

stratification models, leading to more personalized treatment plans and potentially 

improving survival rates. Our data suggest that incorporating genetic screening for these 

aneuploidies could significantly enhance the predictive accuracy of current risk assessment 

protocols. 

Finally, our report highlights the enrichment of P/LP germline variants in DNA repair genes 

among patients with genetically unstable tumors. This underscores the possible contribution 

of inherited genetic factors to tumor behavior and aggressiveness in pediatric NBL. 

In conclusion, these genetic insights provide a foundation for future clinical applications, 

including the development of targeted therapies and enhancement of diagnostic precision. 

The potential to significantly improve patient outcomes by integrating these genetic markers 

into clinical practice represents a transformative advance in the fight against this challenging 

pediatric malignancy. 
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