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Abstract 
Neuroblastoma (NBL) is a pediatric malignancy characterized by a broad spectrum of 

clinical outcomes, where the 5-year survival probability can shrink from 95% to 50% 

between the low and high-risk tumors, respectively. This heterogeneity reflects profound 

genetic and phenotypical differences among NBL tumors. In the last decades, thanks to the 

introduction of GWAS and NGS, several step forwards have been made to unravel the 

complexity of the genome of this tumor, providing – in many cases – a direct link between 

genomic alterations and clinical features, such as the onset of metastases, the probability of 

relapse or the patients’ survival. Nonetheless, the current knowledge does not exhaustively 

explain the clinical heterogeneity, and a comprehensive analysis of NBL mutational 

landscape is still lacking. 

In this dissertation we used publicly available Whole Genome Sequencing (WGS) data from 

two NBL databases – TARGET (N = 136) and EGA (N = 180) – to provide a full 

compendium of NBL genomic alterations (including somatic point mutations and structural 

variants), with a main focus on genomic rearrangements (translocations and inversions) 

which remains to date poorly investigated. Furthermore, we assessed the contribution of 

germline Small Nucleotide Variants (SNVs) to the genomic instability of NBL, a well-

established marker of poor prognosis.  

We found unreported point mutations in 3 cancer-related genes, ESR1, MYH9 and SKI, the 

latter under-expressed in high-risk tumors. We report an increased survival probability in 

samples with specific numerical Copy Number Alterations (CNAs) (whole gain of 

chromosomes 1, 2, 7, 12 and 17 and whole loss of chromosomes 3, 4, 11 and 19).  Our 

analysis of genomic rearrangements revealed 5 novel and recurrent (≥ 3% of samples in both 

datasets) translocations (t(17q-19p), t(14q-17q), t(4p-17q), t(2p-3p), t(1p-2p)) enriched in 

high-risk patients, whose breakpoints affected genes related to synapse plasticity and 

neuronal differentiation. Finally, we observed that tumors carrying at least a genomic 

rearrangement also showed features of genetic instability, specific mutational signatures and 

a defined gene-expression pattern. In these patients we observed an enrichment of 

pathogenic or likely pathogenic (P/LP) germline SNVs in homologous-recombination 

pathway, whose deficiency in tumor is causally linked to genomic instability.  

In conclusion, the results of this dissertation may improve the clinical stratification of NBL, 

help the development of novel personalized therapies and finally increase the knowledge 

about the genetic predisposition of this tumor.   
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1. Introduction 
1.1. Neuroblastoma 

Neuroblastoma (NBL) is a pediatric malignancy and represents the most common solid 

extracranial tumor diagnosed in children under 5 years of age1. Its incidence depends both 

on geographical area and age, with a global estimated incidence of 4.1-15.8 and of 0.4-1.0 

per 1,000,000 people in children (0-14 years old) and adolescents (15–19 years old), 

respectively2 (Figure 1). 

 
Figure 1. Incidence of NBL in 15 countries of the 6 continents.  

Data for bar plot was retrieved by Okawa et al, 20222. 
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1.1.1. Biology of Neuroblastoma 

NBL is the most representative and clinically relevant of a group of pediatric which 

originates from the neural crest cells during the early stages of fetal development, 

collectively known as peripheral neuroblastic tumors3,4. Neural crest cells are a group of 

multipotent stem cells located posteriorly to the neural tube that give rise to specialized cell 

belonging to sympathetic nervous system, including peripheral neurons, enteric neurons, 

glia, melanocytes, Schwann cells, cells of the craniofacial skeleton and adrenal medulla5. 

Although NBL can develop from all the precursor cells of sympathetic nervous system, it 

usually arises in chromaffin cells of adrenal gland6. 

A mechanism of onset of NBL has been proposed by Marshal and colleagues: under the 

effect of bone morphogenetic proteins and thanks to the transcription activity of MYCN, 

neural crest cells migrate forward in primary sympathetic ganglia, whereby differentiate in 

cells of the sympathetic ganglia or chromaffin cells. Genetic alteration of key NBL-

associated genes – such as MYCN, whose role as driver gene will be discussed in this 

dissertation – initiate the tumor development, which usually is finally accomplished by 

further acquired genetic lesions and eventually with tumor progression, invasion and 

metastasis7 (Figure 2).  

Beyond the schematic depiction provided above, is becoming clearer and clearer that NBL 

is a malignancy characterized by an elevated extent of intra- and inter-tumor heterogeneity, 

and that the mechanism of onset, development, metastasizing and relapse differ from tumor 

to tumor8. It is well known that NBL of different patients can show profound differences in 

mutational landscape, gene expression and mutational patterns9–11, which – as we will see in 

the course of this dissertation – are closely linked to the clinical outcome, the survival rate 

and the relapse probability. At the same time, within the same tumor it is possible to detect 

a wide spectrum of cell populations, which have been proven to be able to switch their 

phenotype thus affecting the efficacy of therapies12. 
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Figure 2. Pathogenicity mechanism of NBL development. 

NBL derives from neural crest cells, a group of embryonal stem cells which give rise to several cell of 

peripheral nervous system lineage. These cells are located posteriorly to the neural tube and migrate 

forwards under the influence of bone morphogenetic proteins (BMPs), which promote the transcriptional 

activity of several transcription factors for a first differentiation in precursor cells resident in precursor 

sympathetic ganglia (PSG). Upon stimulus by nerve growth factor (NGF), they can maturate in mature 

sympathetic ganglion cells or in chromaffin cells of adrenal gland. Genomic lesion in NBL-associated 

genes, such as MYCN, PHOX2B or ALK lead to tumor initiation, which progresses thanks to the 

occurrence other driving mutations. Image adapted by Marshal et al., 20147. 
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1.1.2. Clinical classification of Neuroblastoma 

As mentioned in the previous paragraph, the biological intermixture of NBL manifests itself 

in a high degree of clinical heterogeneity. Indeed, the 5-years Overall Survival (OS) 

probability overcomes the 95% in low-risk patients, but it shrinks to less than 50% for high-

risk subtypes13. Several factors can influence the clinical outcome of NBL, such as the age 

at diagnosis (with children older than 18 moths having a poorer prognosis14) and the MYCN 

oncogene status (amplification of MYCN is associated to high-risk subtypes15). In the past 

decades several efforts have been made to provide a clinical classification of NBL, with a 

view to differentially manage and treat patients based on their clinical profiles. One of the 

first classification criteria of NBL was the International Neuroblastoma Staging System 

(INSS), which is based on the localization, resectability and dissemination of the tumor16 

(Table 1). More than a decade later was introduced the International Neuroblastoma Risk 

Group (INRG) classification system. This system provides a pre-treatment risk group 

stratification by the integration of clinical features of NBL, such as stage, age at diagnosis, 

MYCN status and grade of differentiation14 (Table 2).  

 
 

INSS Stage Description 

1 Localized tumor, grossly resected, no lymph node involvement 

2A Unilateral tumor, incomplete gross excision, negative lymph nodes 

2B Unilateral tumor with positive ipsilateral lymph nodes 

3 Tumor infiltrating across midline or unilateral tumor with contralateral lymph nodes or 
midline tumor with bilateral lymph nodes 

4 Distant metastatic disease 

4S Localized primary tumor as defined by stage 1 or 2 in patient under 12 months with 
dissemination limited to the liver, skin, and/or bone marrow (<10% involvement) 

 
Table1. International Neuroblastoma Staging System.  
Adapted from Sokol et al., 201917. 
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INRG Stage Age (months) Grade of tumor 
differentiation MYCN status 11q gain Ploidy Pretreatment 

Risk group 

L1     
non-amplified 

    
very low 

amplified high 

L2 < 18   non-amplified 
No 

  
low 

Yes Intermediate 

  ≥ 18 Differentiating non-amplified 
No   Low 

Yes  

Intermediate 

 
 Poorly 

differentiated or 
undifferentiated 

non-amplified   

    amplified     high 

M 

<18   non-amplified   Hyperdiploid low 

<12  non-amplified  Diploid intermediate 

12-18  non-amplified  Diploid intermediate 

<18  amplified   high 

≥ 18         high 

MS <18 

  
non-amplified 

No   very low 

 Yes  high 

  amplified     high 

  
Table 2. INRG criteria of risk stratification. This table shows the clinical, biological and genetic feature 
used to classify NBL patients according to the INRG. Adapted from Luksch et al, 20163.  
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1.1.3. Sporadic and Familiar forms of NBL 

NBL can be divided in sporadic or familiar NBL. The latter accounts only for 1-2% of total 

cases, is transmitted in an autosomal dominant fashion and is caused by inherited DNA 

variants in tumor-associated genes like PHOX2B, which is found mutated in about 10% of 

familiar NBL3,18. Regarding the sporadic form, although in most cases no specific etiology 

seems to be linked to the development of NBL, several risk (and protective) factors have 

been discovered throughout the last decades, which can be divided in genetic and non-

genetic risk factors. While the first ones will be considered later, in this paragraph we will 

list briefly the non-genetic risk factors. A well-established one is represented by fetal 

exposure to alcohol19: indeed, alcohol exposure is associated to the risk of developing NBL 

with odds ratios (OR) up to 12.020. Parental occupation represents another risk factor. It has 

been shown that the mother’s exposure to electromagnetic fields or volatile hydrocarbons 

increases the risk of NBL in offspring with an OR of 1.521. The assumption of drugs like 

anti-hypertensives, codeine or oral contraceptives during the pregnancy is also associated to 

the risk of developing NBL20,22,23. Protective factors have also been described to reduce the 

risk of NBL. The most protective factor is represented by the intake of vitamins like folate 

– whose role in neuronal development is well established - during pregnancy, which can 

reduce the risk on NBL up to 60%24.

1.1.4. Genetics of Neuroblastoma 
NBL is one of the genetically most heterogeneous and characterized tumors3. The following 

paragraphs list and describe the main genetic and genomic alterations that have been found 

throughout the years, including predisposition genes, somatic mutations and recurrent 

Structural Variants (SVs). The paragraph 2 will explain how these alterations have been shed 

to light, focusing on the importance that had in this sense the Genome-Wide Association 

Studies (GWAS) and the Next Generation Sequencing (NGS). 

1.1.4.1.Genetic predisposition to Neuroblastoma 

As stated in the paragraph 1.3, NBL can be sporadic or familiar. The first identified gene 

causative of familiar NBL is PHOX2B, which account for almost 10% of cases18. It encodes 

for a pivotal transcription factor (TF) involved in chromaffin cells differentiation from neural 

crest cells25 (see Figure 1), and is also a disease-causing gene of other congenital 

malformations of neural crest origin closely related to NBL26. The second identified gene 

was ALK, an oncogene firstly identified as a partner of a translocation in anaplastic large cell 

lymphoma. This gene encodes a receptor tyrosine-kinase (RTK) involved in sympathetic 

nervous system development27.  
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Since its discovery as a NBL predisposition gene, germline DNA variants in ALK have been 

found in almost all cases of familiar NBL27,28. Germline variants causative of NBL mostly 

comprise point mutation in the tyrosine-kinase domain, such as the R1275Q, G1128A, 

F1174* and F1245*29,30. However, apart from PHOX2B and ALK, no other gene has been 

associated to familiar NBL.  

The sporadic NBL can also be predisposed by predisposition genes whose both low-

penetrance common and high-penetrance rare germline variants are associated with the risk 

of developing NBL (Figure 3). For instance, about 2% and 8% of sporadic NBL patients are 

estimated to carry rare high penetrant germline Pathogenic Variants (PVs) in PHOX2B and 

ALK genes, respectively30–32. Another gene associated with susceptibility to NBL is BARD1 

– which encodes the binding partner of BRCA1 – that may serve both as an oncogene or a 

Tumor Suppressor Gene (TSG)33. As detailly described in paragraph 1.2.1, the link between 

this gene and NBL was first seen in GWAS34 which first revealed the association between 

BARD1 common SNPs and the risk of NBL. Some years later, thanks to introduction of 

NGS, it has been possible to detect also the association between rare germline BARD1 

variants with NBL9. Very recently, a study demonstrated how both common and rare 

germline PVs variants in BARD1 are causally linked to chromosomal instability in NBL35. 

The importance of this breakthrough relies in the strong positive association between 

chromosomal instability phenotype and poor outcome19. As will be discussed in paragraph 

1.2.2, during the last decade high-throughput screening methods allowed to reveal other 

genes associated with NBL, generally carrying high-penetrance rare variants. The majority 

of these genes are involved in DNA replication, DNA repair and in maintenance of genome 

stability.  

Nonetheless, despite the enormous advances, to date the full spectrum or rare NBL 

predisposing variants has yet to be defined. 
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Figure 3. Frequency and penetrance of NBL-predisposing genes. 

GWAS and NGS analyses allowed to detect several common and rare variants in NBL-predisposing 

genes, respectively. Allele frequency and penetrance (Effect size) are roughly inversely proportional to 

each other. Adapted by Matthay et al., 20166. 
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1.1.4.2. Genetics and Genomics of Neuroblastoma 

In line with the majority of pediatric malignancies, NBL is characterized by a low degree of 

Tumor Mutational Burden (TMB) – generally defined as the number of non-synonymous 

mutation for megabase36. It is also characterized by a low recurrence of point mutations in 

driver genes, but on the other hand shows recurrent and typical large-scale genomic 

aberrations, many of which useful for risk stratification and application of personalized 

therapies37. Among the genetic alterations, the amplification of MYCN is one of the most 

frequent, with an estimated frequency of 20-30% in high-risk subtypes38. As discussed in 

the previous paragraph, MYCN amplification is one of the markers for clinical stratification, 

being per se sufficient to classify a tumor as high-risk according to INRG pre-treatment 

criteria (see Table 2). This gene maps in a region at 2p24.3 cytoband, and its amplification 

generally occurs through the formation of extrachromosomal and autonomous replicating 

regions called Double Minutes (DMs)39. MYCN is a TF which belongs to the MYC family of 

oncogenes. MYCN is defined as a master TF in NBL, as it regulates the transcriptional 

activity of hundreds of genes involved in different cell functions. For instance, MYCN 

indirectly guide the cell-cycle progression by the transcriptional activation of at least 10 

kinases and TFs involved in cell division40. It also promotes the transcription activity of 

other TFs to establish regulatory circuitries and cell identity41,42. One of the main target of 

MYCN is represented by the TERT gene43, whose MYCN increases the transcriptional 

activity. TERT encodes for the reverse transcriptase of the telomerase complex, and its 

hyper-activation maintains the telomere elongation mechanism in an active state44. TERT 

oncogene can also be affected by Gain of Function (GoF) mechanisms in NBL, generally 

with a mutual exclusivity with MYCN amplification45. Mutations of TERT usually involve 

genomic rearrangements (such as chromosome translocations or inversions) or amplification 

events involving the TERT locus (a ~600kb region at 5p15.33 cytoband), although it can also 

be activated by point mutations46. 

Point mutations occur at low recurrence in NBL, with the exception of ALK, which is the 

most affected gene at somatic level, being mutated in 6-17% of patients47. To date, this gene 

is considered an important therapeutic target, as patients with ALK mutations can benefit 

from therapies based on small molecules that specifically inhibit the tyrosine-kinase activity 

of the protein48,49. Another frequently mutated gene is represented by the TSG ATRX, a 

helicase required for the deposition of H3.3 histone at telomers, maintaining these sites in a 

quiescent status50. Loss of Function (LoF) mutations in ATRX – which ranges from point 

mutations to focal deletions51 – trigger a mechanism of telomere maintenance called 

Alternative Lengthening of Telomeres (ALT), so that such mutations are thus mutually 

exclusive with MYCN amplification and TERT rearrangements45. Finally, in NBL are 
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recurrent mutations in the RAS-MAPK pathway – which acts downstream the RTK Alk – 

especially in relapsed forms of NLB52.  

Among other recurrent genomic aberrations in NBL, beside MYCN amplification and TERT 

rearrangements, we can find numerical or segmental CNAs, such as 17q gain, 1p loss, 11q 

deletion, 3p loss and chromosome 7 gain53–56. Of, note, some of these alterations can predict 

survival or are associated to the clinical outcome of patients (Figure 4). Generally, 

segmental CNAs – reflective of chromosomal instability – are associated to bad prognosis, 

while the presence of numerical CNAs correlates to low-risk tumors.  

 

 
 
Figure 4. Segmental and numerical CNAs are associated to a decreased and an increased OS 

probability. 

The figure, adapted from a study led on more than 500 NBL samples, shows how patients with 

segmental CNAs are less likely to survive compared to samples with numerical CNAs, with a 20-years 

OS probability less than 25%. To the right are shown recurrent segmental CNAs typical of NBL. 

Adapted from Depuydt et al, 201857. 
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1.2.NBL in the post-genomic era 

As stated in the previous paragraph, the genomics of NBL is one of the most studied among 

both children and adult tumors3. The great majority of knowledge about genomic culprits of 

NBL, as well as its genetic predisposition, has been achieved thanks i) to introduction of 

high-throughput technologies that allowed the production of large amount of genomic data 

and ii) to the possibility to analyze these data by mean of specific informatic and 

bioinformatic tools. Of note, since the introduction of these techniques, a huge volume of 

data has been stored in genomic databases, allowing for the availability of genomic 

information that can be used by the worldwide scientific community58.  

Two techniques, above all, have revolutionized the field of Genetics, and have – and are 

being – extensively applied for the study of the genetics, the genomics and – in a broader 

sense – the biology of NBL: the GWAS and the NGS. 

1.2.1. The GWAS and the genetic predisposition to Neuroblastoma 

The GWAS are genetic case-controls studies that test for the statistical association between 

common Single Nucleotide Polymorphisms (SNPs) and complex diseases – such as 

hypertension, diabetes and cancer59–61 – in an unbiased and genome-wide fashion. 

Schematically, GWAS is based on the SNP-array technique, which uses oligonucleotides 

(also known as probes) to interrogate up to almost one million common SNPs in the 

genome62  allowing to genotype each common SNPs of a single individual; after a step of 

genotyping, the number of minor alleles or of specific genotypes at each SNP locus in of 

subjects affected by a specific condition (cases) is compared to the ones of healthy 

individuals (controls) in a large-cohort case-control study; the final step is the association 

analysis, that is the individuation of SNPs whose number is significantly higher – or enriched 

–  in cases compared to controls (and vice versa) to identify predisposition loci63. Since the 

last 15 years, GWAS led to the identification of many predisposition loci in NBL. The first 

GWAS for NBL was performed in 2008 on a cohort of more than 1000 European-descendent 

American patients and 2000 controls, and the results replicated on a cohort of similar sample 

size. The authors identified a predisposition locus on chromosome 6 (6p22). In particular, 3 

SNPs in linkage disequilibrium mapping in this region were associated to the risk of 

developing NBL, and were also enriched in patients with poor outcome64. A study led on 

high-risk NBL group of the same cohort, highlighted common SNPs in BARD1 locus (whose 

role has been discussed in paragraph 1.1.4.1) was enriched in this subgroup34. In the 

following years, other world-wide GWAS led on different populations identified other 

predisposition loci involving genes – such as LMO1, LIN28B, DDX4 and IL31RA among the 
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others (see Figure 3) – whose role in NBL biology and pathogenesis have been subsequently 

elucidated65–69.  

Nevertheless, despite their relevance in the field of Human Genetics, GWAS present some 

limitations. One above all is the impossibility to study the contribution of rare variants to 

specific phenotypes70. 

 

 
 
 

Figure 5. Manhattan plot showing the results of the first GWAS of NBL. 

 The graph, known as Manhattan plot, shows the significance level of each SNP expressed as -log10(P-

value) resulting from a GWAS performed between comparison of more than 1000 NBL patients and 2000 

healthy controls. Each dot represents a SNP differentially colored based on its chromosome. The 

horizontal red line indicates the genome-wide significance threshold, estimated based on the number of 

SNPs interrogated in the analysis (~500.000). Three LD SNP (rs6939340, rs4712653, rs9295536) on 6p22 

locus (red) and two independent SNPs (rs3790171 and rs7272481) on 20p11 (gray) locus showed 

significance levels above the threshold, although only the first three retained statistical significance when 

accounting for population stratification. Adapted from Maris et al, 200864.  
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1.2.2. The NGS and Neuroblastoma 

The NGS, also known as second-generation sequencing, is a sequencing technique 

introduced in the first half of 2000’. Compared to the classic Sanger sequencing technique, 

it allows the sequencing of a large amount of nucleic acid (DNA and RNA) from a biological 

sample thanks to the massive parallelization of the sequencing reactions71. The data obtained 

from these reactions can be stored, analyzed and processed by specific bioinformatic 

programs72–74. Since its introduction, several NGS-based techniques have been developed, 

such as the Whole-Exome Sequencing75 (WES), used to identify mutations and rare SNVs 

in coding regions of the genome76,77, the Whole-Genome Sequencing (WGS)78, used to 

detect SNVs in non-coding regulatory DNA elements79 or to assess the presence of SVs80 

and the RNA-sequencing (RNA-seq)81, useful for the assessment of gene-expression pattern 

of biological samples82. 

Several NGS-based studies have provided important insights in the Genomic and Genetics 

of NBL. One of the first of these studies was carried out in 2013 on a cohort of 240 high risk 

NBL. By the integration of WGS an WES data obtained from different sequencing platforms 

the authors provided a first compendium of the genetic landscape of high-risk NBL. They 

also detected driver mutations in key NBL oncogenes and TSGs, some of which have been 

disclosed previously such as ALK, MYCN, ATRX and NRAS. Furthermore, comparing the 

study cohort with almost 2000 healthy individuals of the same ancestry, the authors observed 

an enrichment of germline rare PVs in genes like ALK, CHEK2, PINK1, TP53, PALB2 and 

BARD1 in which germline PVs – with the solely exception of the first one28,83 – had not yet 

been reported in NBL9. 
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Figure 6.  A first glance to the genomic landscape of NBL.  

The heatmap shows the first genomic profile of NBL samples (columns) obtained by the mean of WGS 

and WES. The upper bar plot shows the TMB expressed as somatic mutations per Mb; The rows, from 

top to bottom, show the data source, the clinical parameters, the sex, the CNAs, the significantly mutated 

genes at somatic level and the genes affected by germline PVs, respectively. Adapted from Pugh et al, 

20139. 
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Other subsequent studies based on DNA sequencing have increased the knowledge about 

genetic features of NBL. A study that integrated 56 WGS and RNA-seq data identified 

recurrent genomic rearrangements at the locus 5p15.33, in the close proximity of the TERT 

oncogene. the occurrence of TERT rearrangement was mutually exclusive with MYCN 

amplification, and samples with both TERT rearrangement or MYCN amplification showed 

increased TERT expression. The mutual exclusivity underlies the biological role of MYC 

oncogenes family and TERT43,44, converging to a common Telomere Maintenance 

Mechanism (TMM)45. In line with these findings and given its biological function as a 

repressor of TERT50, ATRX LoF mutations were subsequently found to be mutually exclusive 

with both MYCN amplification and TERT rearrangements84, although giving rise to 

mechanisms of ALT85. Another study led on WGS data performed on 23 NBL samples 

showed that the RAS-MAPK pathway is frequently altered at various levels in relapsed 

tumors, with GoF mutations that can affect RTKs like FGFR1 and ALK, the GTPase family 

of RAS (such as KRAS and NRAS), Mitotic Activating Protein Kinases (MAPK) like BRAF 

and also LoF mutations in TSGs which regulate the pathway such as the Guanosine 

Exchange Factor NF152. A recent WES-based study led by our group provided further 

insights into genetic predisposition of NBL. In particular, by comparing coding germline 

SNVs of almost 700 cases and more than 800 healthy controls, we observed an enrichment 

of germline PVs in genes of Homologous Recombination (HR) pathway such as BRCA1 and 

RAD51C (the latter never since reported as NBL predisposition gene) and also an enrichment 

of germline predicted PVs in genes involved in neural tube differentiation and in genes 

associated to neurodevelopmental disorders86. The NGS and in particular WGS can be also 

used to detect the presence and the role of genomic rearrangements in cancer87. In NBL, an 

analysis performed on WGS an SNP-array data suggested that SVs affect genes involved in 

neuronal differentiation. In detail, this study reported the gene SHANK2 as the more 

frequently disrupted by SVs88. Indeed, this gene is located in a locus (11q13) involved in a 

known NBL translocation t(11q-17q) whose frequency on a medium-to-large cohort had not 

been yet estimated before89. Nonetheless, the role and the full spectrum of genomic 

rearrangements in NBL remains so far unraveled, mainly due to the difficulty to study these 

events with the NGS short-reads techniques87.  

WES and especially WGS are also used for the identification of specific tumor mutational 

patterns known as mutational signatures. Based on the kind of mutations (CNAs, SVs, 

SNVs) a plethora mutational signatures can be extracted from tumors. The most 

characterized of these patterns are the single base substitutions (SBSs) signatures. In brief, 

SBSs signatures are computed by comparing the percentage of SNVs of a tumor in of all the 

96 possible tri-nucleotide contests (5’-NpC>ApN-3’; 5’-NpC>GpN-3’; 5’-NpC>TpN-3’; 
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5’-NpT>ApN-3’; 5’-NpT>CpN-3’; 5’-NpT>GpN-3’, where N is any of A, C, G or T) with 

cancer tri-nucleotide profiles deposited in public databases. Currently, the most interrogated 

database is the Catalogue of Somatic Mutations in Cancer (COSMIC), which stores 86 SBSs 

signatures (to November 2023), many of which with specific etiological explanation90. The 

importance of the identification of SBSs signatures relies in their causal link to distinct 

mutational processes that are promoted by etiological agents – i.e., tobacco smoking or 

reactive oxygen species (ROS) – or underlie distinct tumor features – such as HR or 

Mismatch Repair deficiencies91.  in recent years the presence of Cosmic SBSs signatures has 

been investigated in NBL. Although with slight differences, literature data report recurrent 

and typical signatures that are overall shared among NBL samples, such as SBS1, SBS5, 

SBS18 and SBS4011,92,93. The SBS1 is characterized by C>T substitution in the 5’-NpCpG-

3’ context (where N is any of A, C, T, G) due to the deamination of a 5-metylcytosine to 

thymine, and has been proved to correlate with the advanced age at diagnosis94. The SBS5 

also seems to be correlated with age at diagnosis, although to date its etiology remains 

unclear91. The SBS40 has not been yet linked to any phenomenon. Finally, the SBS18, which 

is probably the more distinctive of NBL, is characterized by C>A substitution91. The 

occurrence of this substitution is ascribed to the production of ROS which promote the 

formation of the 8-oxoguanine (8-oxoG), a modified base that preferentially matches an 

adenine instead of a cytosine95. Notably, some of the SBSs signatures have been associated 

to specific NBL characteristics. For instance, Brady et al. demonstrated that SBS18 is more 

active in tumors with MYCN amplification, 17q gain and high mitochondrial genes 

expression. The same group demonstrated how the majority of driver mutations in genes 

such as ALK, ATRX, PTPN11, NF1 and NRAS belong to signature SBS18 (Figure 7)11. 
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Figure 7. SBS18 causes driver mutations in NBL. 

 On a cohort of 205 WGS of NBL samples, Brady et al, demonstrated that many recurrent driver NBL 

mutations are caused by the signature SBS18, whose profile is depicted in the figure. Adapted by Brady 

et al, 202011. 
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If on the one hand DNA sequencing techniques like WES and WGS helped researchers to 

improve the knowledge about genetic predisposition and genomic features of NBL, on the 

other one RNA-seq provided important insights on the biology of NBL, highlighting and 

unravelling its complex heterogeneity. For instance, by integrating experiments of 

Chromatin Immuno-precipitation sequencing and RNA-seq on NBL and human neural crest 

cell lines it has been proven that the majority of NBLs belong to two different types of cell 

identities with different gene-expression profiles (Figure 8). One, more differentiated 

referred to as sympathetic noradrenergic (or simply noradrenergic), is defined by core 

regulatory circuitries promoted by key TFs of sympathetic development (see Figure 2), 

including GATA2/3, HAND1/2 and PHOX2A/B. The other one, more similar to Neural crest 

cells and thus named NCC-like or mesenchymal, is defined by core regulatory circuitries 

composed by members of the AP-1 complex such as FOSL1/2, RUNX1/2 and IRF1/2/341,96. 

Beside from showing different gene-expression profiles and core regulatory circuitries, these 

two cell identities are characterized by different response to treatments96,97.  
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Figure 8. NBL shows 2 defined cell identities plus a third mixed phenotype.  

Principal Component Analysis based on super-enhancer of 25 NBL cell line and 2 human neural crest 

cell lines showed two well defined clusters reflective of two cell identities, one defined adrenergic (blue) 

and the other mesenchymal (Orange). These two phenotypes are sustained by different core regulatory 

circuitries and show significant biological differences, as discussed in the main text. 4 cell lines showed 

a mixed phenotype between the mesenchymal and adrenergic one (green). Adapted from Boeva et al., 

201741.  

Adrenergic

Mixed
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To summarize, the introduction of NGS allowed the discovery of genetic, genomic and 

biological characteristic of NBL, often providing important implications concerning 

patients’ outcome and response to therapy. DNA sequencing techniques – including WGS 

and WES – provided, throughout the years – a comprehensive vision of genetic and genomic 

alterations of NBL, helped to identify key oncogenes and TSGs and to discover biological 

processes that withstand the occurrence of driver mutations in such genes. Other techniques 

– such as RNA-seq and ChIP-seq – have been used to unravel the biological heterogeneity 

of NBL, helping to identify distinct NBL identities with different phenotypical features.  

However, in spite of all the advances that have been made, the current knowledge of NBL 

only partially explain the clinical and biological heterogeneity of NBL, and a comprehensive 

characterization for a proper risk stratification is still lacking. 
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1.3. Germline predisposition to tumor phenotypes 

As discussed in the previous section, NGS analyses have been extensively used to detect and 

study somatic genetic and genomic alterations. Approaches to identify somatic mutations 

are generally based on a comparison of the germline background of an individual and his/her 

tumor counterpart, with the first only serving as a mere reference for the detection of putative 

cancer-driver mutations98. In this scheme, the role of germline inherited variants in the onset, 

development and biology of tumor remains uninvestigated. 

It is known for decades, however, the role that germline variants can have in the development 

of cancer. The first link between germline variants and tumor predisposition was described 

in 1971 by Alfred Knudson on patients affected by retinoblastoma. He observed that patients 

with hereditary retinoblastoma, a form of the tumor which is caused by heterozygous 

germline PVs in RB gene, developed a bilateral form of tumor, conversely to patients 

affected by the sporadic type, and that tumor cells from hereditary forms lost the wild type 

(wt) allele of RB gene, in a mechanism went down to history as Loss of Heterozygosity 

(LOH)99. LOH promote tumorigenesis by removing the proliferation brake provided by the 

wt allele, creating a CN mismatch at TSG loci known as Allele Specific Imbalance (ASI) 

(Figure 9).   
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Figure 9. Schematic depiction of somatic LOH for ASI.  

The inheritance of a PV in TSG (a allele, red) strongly predispose to ASI at somatic level, leading to LOH 

of that allele and in turn cancer development. ASI can occur through a copy number gain of the recessive 

allele (copy gain), a copy number gain of the recessive allele accompanied by a copy loss of the wt allele 

(copy neutral) or by the loss of the wt allele (A allele, copy loss). This mechanism explains the reason 

why cancer-predisposing syndromes caused by PVs in TSG are inherited in a dominant fashion. 

 

Germline

Somatic
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This mechanism had subsequently been proposed as the cancer-driver force cancers arising 

from tumor predisposition syndromes, including NBL100,101. Thanks to the introduction of 

GWAS it was clear that not only rare PVs, but also common SNPs could be linked to ASI. 

Analyses of polymorphic risk loci detected by GWAS from different tumors, including 

colorectal cancer, glioblastoma, cutaneous squamous cell carcinoma, glioblastoma and 

myeloproliferative neoplasms, showed that risk allele was preferentially gained at somatic 

level to the detriment of the non-risk allele102–108.  

The mechanism of ASI described above is defined in cis, as it involves the somatic CN 

imbalance of the same gene, or the same locus, of the germline variant. However, some 

studies indicate that germline variation can act in trans to predispose mutations of different 

and apparently unlinked genes, in a model known as Germline Variant by Somatic Mutation 

(GxM) Association108,109. A pan-cancer GWAS conducted on almost 6000 individuals from 

The Cancer Genome Atlas database showed that germline SNPs can be associated to somatic 

mutations of genes at distant loci110. In this study, the authors identified 28 predisposition 

loci whose polymorphisms were associated to an increased probability of somatic mutation 

of 20 distally located cancer-related genes. The results of this study implemented the 

knowledge about gene networks in cancer. For instance, a SNP 19p13.13 locus were 

associated to a 4-fold increased probability of somatic PTEN phosphatase. PTEN is a TSG 

that encodes a phospholipid phosphatase that dephosphorylates the phosphatydylinositol-3-

phosphate to shut down the oncogenic pathway of PI3K/AKT/mTOR111. The 19p13.13 locus 

contains an activator of the mTOR pathway (GNA11112) whose expression is increased in 

presence of the risk allele. The authors concluded that the risk SNP increased the expression 

of GNA11, which in turn facilitated the LoF of PTEN, a TSG that serves as a brake in the 

PI3K/AKT/mTOR pathway. Alongside other similar findings, the results of this study 

suggest that genetic background of oncologic patients can provide a fertile ground for the 

development of defined somatic events, including mutations of specific genes or the onset 

of a particular tumor phenotype. 

Other studies, on the other hand, have also described how germline DNA variation can 

influence a broad spectrum of somatic characteristics that range outside the genetics. For 

instance, it is well known that breast cancer patients with germline PVs of BRCA1 and 

BRCA2 develop an aggressive basal-like triple negative subtype113. Different GWAS studies 

demonstrated he onset of different histological subtypes of breast cancer can be predisposed 

by inherited germline polymorphisms114–116. Other somatic features, such as mutational 

signatures, can be associated to germline SNVs. A study led on more than 1000 individuals 

affected by medulloblastoma reported that patients who carry rare germline variants of 

BRCA2 and PALB2, two genes involved in HR117, showed increased activities of COSMIC 
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signatures SBS3 and SBS8118, two signatures associated with HR deficiency94,119. In the 

same study authors detected a higher frequency of chromothripsis in patients with PVs in 

TP53, confirming what had been previously reported120. Another WES/WGS-based analysis 

on more than 300 colorectal cancer individuals from almost 200 families showed that 

individuals with rare and predicted LoF mutations in MDB4, a glycosylase involved in Base 

Excision Repair, showed a somatic enrichment of C>T transitions typical of the signature 

SBS194, resulting from a lack of repair of G-T mismatches by MDB4121.  

Finally, inherited germline variation in genes involved in the adaptive immune response can 

determine the occurrence of defined tumor driver mutations. This is the case, for instance, 

of the HLA haplotype, where a study conducted on 9000 TCGA tumors that analyzed a 

subset of 1000 cancer driver mutations showed that class I Mayor Histocompatibility 

Complex (MHC-I) – encoded by the HLA – variation predisposes to the onset of specific 

and well-known somatic driver mutations. For instance, they demonstrated that a weak 

MHC-I-antigen interaction is associated with the BRAFV600E mutation, while a strong 

interaction predisposes to the IDH1R132C mutation122 (Figure 10). 

 

 
Figure 10. Examples of germline-to-somatic correlations. 

 The figure provides some examples of the germline-to-somatic correlation discussed in the main text. 

Germline variants in the genes listed in the outer layer of the circle are causative – in some tumors – to 
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the somatic feature depicted in corresponding inner wedge. All the correlations depicted have been 

disclosed in the main text. Adapted from Ramroop et al, 2019108. 
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2. Aim 

NBL is a pediatric neoplasm characterized by an elevated degree of genetical and biological 

heterogeneity, which reflects its difference in the outcome of affected patients. Indeed, the 

5-years survival probability shrinks up to the 50% between low and high-risk tumors. Thanks 

to the introduction of GWAS and especially the NGS, In the last decades several aspects of 

the biology and of the genetics of NBL have been shed to light, often being linked to the 

clinical outcome, improving the clinical stratification of patients. For instance, it is now well 

established that genetic instability and SVs are strongly predictive of a poor survival 

probability. However, concerning the genetics of NBL, a comprehensive vision of NBL 

landscape, including a compendium of all the somatic alterations of this tumor, is still 

lacking, leaving holes for a correct patient stratification. Furthermore, although genetic 

predisposition to NBL has been long studied and several germline DNA variants – both 

common and rare – have been identified to predispose for this tumor, still few is known 

about the role of germline variation in the predisposition of defined somatic phenotypes. 

Given these assumptions, the aims of this dissertation are to i) provide a complete 

characterization of somatic genetic landscape of NBL, with a main focus on SVs which 

remain so far poorly investigated, with a view to find unreported links between genomic 

alterations and clinics; ii) investigate genetic predisposition to the development of SVs and, 

in a broader sense, to genomic instability.  

To address our goals, we leveraged publicly available WGS and RNA-seq data from two 

independent cohorts of NBL. Using both available programs and in-house scripts, we set up 

pipelines for detecting, filtering, processing and analyzing somatic SNVs, CNAs, SVs and 

germline SNVs.   
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3. Methods  
3.1. NLB Samples and Pipelines 

As introduced in the Results section, in this dissertation we used WGS data from two 

publicly available NBL databases – the Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) and the European Genome-phenome Archive (EGA). In 

detail, from TARGET database (https://www.cancer.gov/ccg/research/genome-

sequencing/target) we used data from a group of 136 matched normal-tumor samples 

belonging to the dbGaP study phs000467.v23.p89, which included NBL patients of the 

Children Hospital of Philadelphia. Patients, tumors and files belonging to this dataset will 

be referred to as the TARGET dataset, for simplicity. From the second database 

(https://ega.crg.eu), which included NBL patients from Germany involved in clinical trials 

from 1991 and 2018 of the Society for Pediatric Oncology and Hematology, we used WGS 

data of 180 NBL paired normal and tumor samples from 2 studies: EGAS0000100130845 

(N=55) and EGAS0000100434985 (N=125). For simplicity, patients, tumors and files 

belonging to this dataset are referred to as the EGA dataset.  

3.1.1.  Data description and publicly available files 

In this study we leveraged WGS data for analysis of germline and somatic SNVs, somatic 

CNAs and somatic genomic rearrangement, hereby referred as SVs for simplicity. For a 

subset of patients, we also processed and analyzed RNA-seq data for gene-expression 

analysis. Data availability and file formats of WGS and RNA-seq data differed between the 

two datasets: i) for what concerns WGS data, from TARGET database we downloaded 

individual (i.e. per sample) Variant Calling Format (VCF) files of somatic and germline 

SNVs, Tab Separated Values (TSV) files of 2kb-windows normalized relative coverage for 

detecting somatic CNAs and TSV files of “high-confidence SV calls” for somatic SVs, 

which included SVs with at least 10 supporting discordant reads (DR) (i.e. split-reads or 

reads whose one of the pair maps to a distant genomic location) with a frequency less than 

1% in dbVar database123 and not annotated as “germline” in 1000 Genomes SV Project124. 

All the files described above have been produced through the Cancer Pipeline v2.0 by the 

Complete Genomics (https://www.completegenomics.com) using GRCh37 as reference 

genome; ii) from EGA dataset, we downloaded two Binary Alignment Mapping (BAM) files 

per patient (one relative to the normal and the other to the tumor sample) which were 

previously obtained45,85 with BWA-MEM versions 0.6.1 or 0.7.8 

(https://github.com/lh3/bwa) using GRCh37 as reference genome,  whose duplicates were 

marked Sambamba v 0.6.5125 and filtered using SAMtools v0.1.19126. RNA-seq of TARGET 

samples were available as matrix of Fragment Per Kilobase per Million (FPKM) where each 

https://www.cancer.gov/ccg/research/genome-sequencing/target
https://www.cancer.gov/ccg/research/genome-sequencing/target
https://ega.crg.eu/
https://www.completegenomics.com/
https://github.com/lh3/bwa
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cell indicated the FPKM value of each gene (rows) in each sample (columns) (https://target-

data.nci.nih.gov/Controlled/NBL/WGS/CGI/). Raw-sequence (FASTQ) files of RNA-seq of 

EGA samples were downloaded from EGA database under the accession numbers 

EGAS00001001308 (N=54) and EGAS00001004349 (N=86). 

Files from TARGET are publicly available under controlled access in the dbGaP database127 

and has been queried using the graphic-user interface of the Globus Connect Personal client 

(https://www.globus.org/globus-connect-personal). Files from EGAS00001001308 and 

EGAS00001004349 are publicly available under the controlled access in the EGA database 

and have been downloaded using the command-line interface of PyEGA client 

(https://github.com/EGA-archive/ega-download-client). Table 3 summarizes the main 

features of the two cohorts of samples. 

 

    TARGET EGA 

G
en

er
al

 in
fo

rm
at

io
n # Patients 136 180 

Study ID phs000467.v23.p8  EGAS00001001308, 
EGAS00001004349  

Client Globus Connect Personal PyEGA 

Reference Genome GRCh37 GRCh37 

Se
qu

en
ci

ng
  Type of sequencing Paired end Paired end 

Platform Illumina HiSeq 2500 
Illumina HiSeq 2000; 

Illumina patterned 
flowcell  

average read length ~71bp ~101bp 

D
at

a 
av

ai
la

bi
lit

y 

mapping file (BAM) No Yes 

germline SNVs file Yes No 

somatic SNVs file Yes No 

somatic coverage Yes No 

somatic SVs Yes No 

RNA-seq Yes (89 of samples) Yes (140 samples) 

Cl
in

ic
al

 fe
at

ur
es

 a
va

ila
bi

lit
y 

(%
)  

Risk classification 100% 84.4% 

INSS stage 100% 84.4% 

Age at diagnosis 100% 84.4% 

MYCN amplification 100% 84.4% 

OS information 100% 75.5% 

EFS information 100% 75.5% 
Table 3. Summary characteristics of samples in TARGET and EGA datasets 

  

https://target-data.nci.nih.gov/Controlled/NBL/WGS/CGI/
https://target-data.nci.nih.gov/Controlled/NBL/WGS/CGI/
https://www.globus.org/globus-connect-personal
https://github.com/EGA-archive/ega-download-client
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3.2.Variant calling and processing pipelines 

Downloaded files were subsequently processed to obtain good quality and easy-to-

manipulate files containing information about germline and somatic SNVs, somatic CNAs 

and somatic SVs. In order to reduce batch effects, where possible, downstream processing 

was equally performed in the two cohorts. 

3.2.1. Germline SNVs calling 

Individual germline SNVs of TARGET samples were selected from VCF files of joint 

normal-tumor calling using BCFtools v1.10.2128, whilst for EGA samples individual 

germline SNVs were singularly called with Strelka v2.9.10129 and filtered with BCFtools 

v1.10.2 to include “PASS” variants. In detail, upon germline variant calling, Strelka labels 

as “PASS” SNVs i) that have a locus depth ≥ 3, ii) which can be properly genotyped or iii) 

whose genotype is consistent with chromosome ploidy. Subsequently, resulting VCF files 

from both datasets were annotated using Annovar130 and SNVs classified according the 

American College of Medical Genetics (ACMG) classification with Tapes131. Finally, we 

applied Quality Control (QC) filters including variants with at least 8 read covering the 

alternate allele, a Quality by Depth (QD) equal or greater than 3 and a Mapping Quality 

(MQ) of at least 30 (the last 2 QC criteria only applied to EGA samples whose such 

information was available). We then selected only coding variants (exonic or splicing 

according to RefSeq database132) which served as input for downstream variant prioritization 

steps (see paragraph 3.5) (Figure 11). 
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Figure 11. Germline SNVs calling and processing.  

The workflow depicts the main steps through which we obtained QC-filtered exonic germline SNV in 

TARGET (top) and EGA (bottom) dataset. Details of each step are provided in the main text. Alt depth: 

depth of the alternate allele; QD: Quality by Depth; MQ: Mapping Quality. 
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3.2.2.  Somatic SNVs calling 

Somatic SNVs for each sample in the TARGET dataset were obtaining filtering in “somatic” 

SNVs from VCF file of joint normal-tumor calling using Bcftools v1.10.2. EGA somatic 

SNVs were called using Strelka v2.9.10 in a matched normal-tumor fashion and selected 

those labeled as “PASS” with Bcftools v1.10.2. In detail, Strelka considers as “PASS” 

somatic SNVs mapping in a locus whose tumor depth is not greater than threefold the depth 

of the same locus in its normal counterpart. Somatic variants from the two datasets were 

uniformly annotated using Annovar for information about rarity and pathogenicity. Finally, 

we applied QC filters including variants with at least 5 read covering the alternate allele, a 

Variant Allele Frequency (VAF) of at least the 5% and a mapping quality of at least 30 (the 

last QC criterium only applied to EGA samples as such information was unavailable in 

TARGET cohort). Resulting somatic QC-filtered files were used to compute TMB and 

parallelly given as input for downstream variant prioritization steps (see paragraph 3.4.1) 

(Figure 12). 

 

 
 

Figure 12. somatic SNVs calling and processing. 

The scheme depicts the workflow for somatic SNVs calling and filtering in TARGET (top) and EGA 

(bottom) datasets. Details of each step are provided in the main text. 
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3.2.3. Somatic CNAs calling 

For inferring CNAs and, more in general, somatic CN profile of NBL samples, we first 

computed the per-window (2kb) mean coverage of normal and tumor sample for each patient 

of the EGA dataset using Mosdepth v0.3.3133 which were then normalized for CG content 

and mappability through CopyCat v1.6.12134. Subsequently, normalized tumor and normal 

coverage profiles were compared to each other to obtain a coverage file of relative (tumor 

vs normal) CN. The value of CN ratio was ln-transformed for downstream analyses (hereby 

referred to as logR). As specified in paragraph 1.1, somatic normalized logR per 2kb 

windows files were available in the TARGET dataset. We performed CN segmentation with 

the Bioconductor package Copynumber v1.29.0.9135. In detail, to achieve a smoother CN 

profile we applied a piecewise constant fitting algorithm setting as 2 the minimum number 

of contiguous bins (k) to form a segment and 1000 as discontinuity penalization (gamma). 

logR thresholds of deep loss, loss, gain and amplification were set to -0.69, -0.29, 0.22, and 

1.39, which corresponded to a CN value of 0.5, 1.5, 2.5 and 8 in diploid regions, respectively. 

Segmentation files of each dataset were merged and given as input to Gistic v2.0136 with 

default parameters to retrieve the significance and the boundaries of common 

amplification/deletion regions (Figure 13). 

 

 
Figure 13. Somatic CNA calling.  

The scheme depicts the workflow for somatic CNAs calling and filtering in TARGET (top) and EGA 

(bottom) datasets. Details of each step are provided in the main text. 

  

TARGET

EGA
Relative 

normalized 
coverage (2kb)

Relative 
normalized 

coverage (2kb)

BAM
(normal-tumor)

• Per-window coverage (2kb)
Mosdepth v0.3.3
• normalization

copyCat v1.6.12

Segmentation
Copynumber

v1.29.0.9

CNA peak calling

Gistic v2.0



 40 

3.2.4. Somatic SVs calling 

Somatic SVs of EGA samples were called in a matched normal-tumor fashion with Manta 

v1.6.0137 and SVs defined as “PASS” and with a number of DR of at least 15 were filtered 

in with Bcftools v1.10.2. Briefly, Manta labels as “PASS” somatic SVs with an adequate 

MQ which are not present in the normal counterpart. EGA and TARGET somatic SVs were 

then filtered according to their type to include only chromosome translocations (TRA) and 

inversions (INV). TARGET SVs were also labeled as complex if the SV-calling pipeline 

was not able to define a specific variant type. To better characterize these variants, we used 

in-house R scripts to retrieve the CN status of the two breakpoints of a complex variant. A 

complex variant was included if the two breakpoints mapped to different chromosomes 

(defined as TRA) or the CN status of both breakpoints were equal to 2 (defined as INV) 

resulting good-quality SV files served for downstream analyses (see section 3.4.3) (Figure 

14). 

 

 
Figure 14. Somatic SVs calling. 

Schematic depiction of the workflow for somatic SVs (including TRA and INV) calling and filtering in 

TARGET (top) and EGA (bottom) datasets. Each step is described detailly in the main text. DR: 

Discordant Reads; INV: Inversions, TRA: Translocations. 
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3.3. RNA-seq processing 

For the TARGET cohort a genes-to-sample (G×S) FPKM matrix was available, which was 

used as such for downstream analysis. Paired-end FASTQ files of RNA-seq of each EGA 

sample were mapped against GRCh37 reference genome with STAR v2.7.10a aligner138. 

Raw read counts per gene were obtained with FeatureCounts v2.0.1139 setting parameters as 

previously described85 using the ENSEMBL GRCh37 transcriptome as a reference140. 

Individual raw-counts files were joined to obtain a G×S raw-count matrix and row-counts 

were subsequently normalized to FPKM using the DGEobj.utils R package v1.0.6141 to 

produce a G×S FPKM matrix. TARGET and EGA G×S FPKM matrices served for 

downstream analyses of Differential Gene Expression (DGE) (see paragraph 3.4.6) (Figure 

15). 

 

 
Figure 15. RNA-seq pipeline. 

Scheme of the pipeline applied to process RNA-seq data of TARGET (top) and EGA (bottom) samples. 

Each step is detailly disclosed in the main text. G×S: gene-to-sample; DGE: Differential Gene Expression. 
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3.4. Genomic profiling and downstream analyses 

Germline, somatic and RNA-seq files produced as described in the previous paragraph have 

been used as input to perform genomic profiling and a series of statistical analyses whose 

results are summarized in the Results section. The following paragraphs provide a 

comprehensive description of the methods (criteria, statistical tests and programs) applied to 

achieve such results.  

3.4.1. Tumor mutational burden and somatic SNVs prioritization 

From QC-filtered somatic SNVs (see Figure 12) we computed TMB for each sample 

counting the number of whole-genome non-synonymous SNVs for megabase, as previously 

described142. For prioritization, we selected somatic SNVs i) annotated as P/LP according to 

ClinVar143 (updated to July 2023), ii) annotated as LoF (frameshift insertions, frameshift 

deletions, splicing and stop-gain SNVs) according to RefSeq132 or iii) predicted as 

supporting pathogenic by at least 2 pathogenicity predictors among CADD v1.6 (CADD 

score ≥ 25.6), REVEL (REVEL score ≥ 0.685) and M-CAP v1.3 (M-CAP score ≥ 0.29), as 

suggested by published guidelines144. To detect putative cancer-causing SNVs we selected 

variants in 566 genes annotated as TSG, oncogene or both (dual role) according to COSMIC 

Cancer Gene Census (CGC) database v98145. The list of cancer-associated genes of CGC 

was downloaded at https://cancer.sanger.ac.uk/census. 

3.4.2. Focal and numerical CNAs 

CNAs are defined as genomic regions of loss or gain of genetic material compared to the 

ploidy of a karyotype of a cell. Generally, in NBL while numerical CNAs are referred to the 

loss or a gain of an entire chromosome, focal CNAs involve only a moiety of a chromosome, 

usually confined on a specific arm2/15/24 6:29:00 PM. For each chromosome with a CNA 

called with Gistic 2.0, CNAs were classified as numerical (or whole-chromosome) or focal 

(or segmental) if the number of altered bases in a specific direction (gain or loss) was greater 

or lower than the 85% the length of that chromosome, respectively (see Figure 28). The 

correlation of the number of focal and numerical CNAs with the risk group was 

independently assessed for each dataset through a Firth’s logistic regression to account for 

low numbers and zero values in a particular risk group146. Resulting standard errors and 

effect sizes were collected and used to perform an inverse variance based meta-analysis to 

compute the weighted correlation of each CNA with clinical risk. In detail, let bT and bE be 

the effect sizes of each arm relative to the analysis performed on TARGET and EGA dataset, 

respectively, and SET and SEE the corresponding standard errors. The weights of the two 

analyses were calculated as follows:  

https://cancer.sanger.ac.uk/census
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(1)    wT	=	1/SET2	  and   wE	=	1/SEE2 
where wT and wE are the weights of TARGET and EGA cohorts, respectively. The weighted 

effect size and standard error was calculated as follows: 

(2)	 	 	 b= (bTwT	+ bEwE)/(wT+	wE) 
and  

(3)	 	 	 SE	=	1/(wT+	wE) 
where b and SE	are the weighted effect size and standard error, respectively. Finally, the z-

score for each arm was computed as follows: 

 (4)	 	 	 Z	=	b/SE.	
Given the z-scores the P-values are calculated as follows: 

 (5)	 	 	 P	=	2F(|-Z|)	
where F is a factor that allows to fit z-score in a normal distribution. 

3.4.3. SV profiling 

Although in Genetics SVs include all the large-scale genomic aberrations including 

deletions, duplication, amplification, large insertions, inversions (INV) and translocations 

(TRA), in this dissertation we refer to as SVs only the last two. Gene annotation of SVs was 

performed with in-house R scripts by querying RefSeq database, and included SVs whose 

one of the two breakpoints mapped within the gene body (intron or exon). For detecting 

TERT rearrangements, we selected SVs in the TERT locus, involving 300kb upstream and 

downstream the gene body46. We empirically defined recurrent SVs those occurring in at 

least 4 and 6 samples in TARGET (2.94%) and EGA (3.33%) datasets (Figure 16).  

For downstream analyses, we divided the datasets in two group of samples based on the 

presence or the absence of at least an SV – referred to as SV group and no-SV group, 

respectively. 
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Figure 16.  SVs shared between EGA and TARGET tumors. 

Bar plot showing the frequency of shared SVs in EGA (blue bars) and TARGET (orange bars). The orange 

and blue dotted lines represent the TARGET (0.294) and EGA (0.333) thresholds for an SVs to be 

“recurrent”, respectively. Shaded bars indicate SVs below these thresholds.  
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3.4.4. Scores of genome instability 

We inferred the status of tumor genome instability by computing – for each sample – 5 

scores from somatic SNVs, CNAs and SVs. In detail we assigned to NBL samples a TMB, 

the number of segmental/numerical CNAs, the number of Large-State Transitions (LST) and 

the SV burden (Figure 17). Note that in this case the number of numerical and focal CNAs 

were calculated based on the fraction of bases involved in a CNA on each chromosome arm 

(≤ 90% for focal and >90% for numerical CNAs), rather than on each chromosome, as 

described in literature147. The computation of LST was performed similarly as described by 

Taylor et al.147: an LST was called where two contiguous segments were larger than 5Mb 

and their absolute logR difference was greater than 0.304 (corresponding to DCN = 0.4 in 

diploid regions). The SV burden was computed similarly as described by Lopez et al.88: for 

each sample, we counted the sum of all of SVs (deletions, duplications, translocations and 

inversions) and divided it per 10Mb.  
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Figure 17. Depiction of genetic instability scores computation. 

The figure provides schematic examples of calculation of (from top to bottom) TMB, number of focal 

and numerical CNAs, LST and SV burden, considering only a chromosome arm. More details are 

provided in the main text. DUP: duplications; DEL: deletions. 
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3.4.5. SBS Mutational signatures 

Tumor mutational signatures are characteristic patterns of mutations recurrently occurring 

in different cancers148. SBS signatures are a subgroup of tumor mutational signatures relative 

to the profile of all the nucleotide substitutions of a tumor in their tri-nucleotide context, 

which can reflect the type of tumor, the exposure to an etiological agent or a specific 

mutational process149. We inferred somatic SBS mutational signatures from high-quality 

somatic SNVs (see Figure 11) using SigProfilerExtractorR v1.1.13 R package150 setting a 

minimum average stability of 0.95. A total of 4 and 8 de novo signatures were extracted from 

TARGET and EGA dataset. Resulting de novo SBS (4 and 8 for TARGET and EGA datasets, 

respectively) were deconvoluted into Cosmic SBS signatures and filtered for cosine 

similarity (≥ 0.85, see Table 5). active SBSs were defined as SBSs whose mutations 

contributed to at least the 5% of the total mutations of a sample. Absolute Activity (AA) of 

each signature was computed for each group as follows 

(6)	 	 	 AAi	=(	∑ 	!
"#$ Mutk) 

where AAi is the AA of the ith signature, Mutk	the number of mutations of the ith signature 

of the kth sample and m the total number of samples in which the ith signature was active. 

 Relative Activity (RA) of each signature was computed for each group as follows: 

(7)	 	 	 RAi	=	(AAi/∑ 	%
&#$ AAj) 

where RAi	is the relative activity and of the ith SBS signature and n the total number of active 

signatures. A multivariate analysis was performed to assess the distribution of SBS18 in SV 

and no-SV groups using the MYCN amplification, the 17q gain and the expression of 1158 

mitochondrial genes (listed in the MitoCarta v2.0 database151) as covariates, which are 

known to correlate with SBS18 in NBL152. 

3.4.6. Differential gene-expression analysis 

Prior to perform differential gene-expression (DGE) analysis between SV and no SV groups, 

we discarded genes with an FPKM value of 0 in more than 10% of samples. DGE was 

assessed through a logistic regression, which has been shown to deflate the rate of type I 

errors with respect to other statistical methods153. Genes were defined as DE if, in both 

datasets, they were under or over-expressed in the SV group compared to the no-SV group 

with a p-value less than 0.01 and an absolute fold change of 1.5. Under and Over expressed 

genes were given as input to WebGestaltR v0.4.6 R package154 for Over Representation 

Analysis (ORA), setting as functional database “Gene Ontology Biological Process (GO:BP) 

noRedundant” and “genome protein-coding” as reference gene set. We considered as 

enriched only those GO:BP terms with an FDR<0.1.  
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3.5. Germline correlation to somatic SV phenotype 

Germline QC-filtered SNVs prioritization was performed by selecting only rare (MAF ≤ 1% 

in gnomAD database v2.1.1 global population155) P/LP variants according to ACMG criteria. 

To perform pathway enrichment analysis, we listed genes that were affected by at least a 

P/LP variant in SV and in no-SV group, which subsequently served as input for 

WebGestaltR v0.4.6154. Over Representation Analysis (ORA) was performed setting 

“WikiPathway cancer156” as functional database and “genome protein-coding” as reference 

gene set (Figure 18). 

 

 
Figure 18. Workflow of pathway enrichment analysis of genes with germline P/PL SNVs. 

The scheme above figuratively describes the steps from germline P/LP SNVs selection to the pathway 

enrichment analysis of genes with at least one P/LP variant in SV and in no-SV group. Further details are 

provided in the main text. 
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Ethnicity of NBL samples was deduced using Peddy v0.4.8157, which takes germline SNVs 

as input and infers ancestry by the mean of a machine learning model trained on almost 

24,000 common (MAF ≥ 4%) bi-allelic SNPs of 2,504 individuals from 1000 Genomes 

(1000G) database158 with known ancestry. 

3.6. Statistical analysis and graphs 

All the statistical analyses were performed with R software v4.2.2159. Mann-Whitney U tests, 

Fisher’s exact tests, Chi-squared tests, multivariate and univariate logistic regressions were 

performed with base R. Firth’s corrected logistic regressions were executed with Logistf 

v1.24.1 R package160 Cox proportional-hazards models for OS and Event Free Survival 

(EFS) analyses were performed with Survival v3.5.3 R package161. Upset plots, onco-prints 

and heatmaps were drawn using ComplexHeatmap v2.14.0 Bioconductor package162. Other 

graphs, including box plots, violin plots, bar plots and segments were drawn with ggplot2 

v3.4.1 package163 or with base R. 
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4. Results 

4.1. NBL patients characterization 

In this dissertation we leveraged publicly available WGS data from 2 NBL studies: one 

represented by dbGaP study phs000467.v23.p89, which included 136 NBL patients from the 

TARGET database, herein indicated as the TARGET dataset for simplicity; the second 

included 180 NBL patients from two studies (EGAS00001001308164 and 

EGAS0000100434985) whose data are deposited in the EGA database, referred to as the 

EGA dataset. 

Firstly, we characterized patients of the two datasets according to their clinical 

characteristics. Table 4 summarizes the clinical status of NBL patients used in this 

dissertation. In both datasets, most of the subjects involved were males (TARGET=84; 

EGA=102). The majority of TARGET patients showed features of poor prognosis (INSS 

Stage 4, Age ≥ 18 months old, MYCN amplification and high-risk), while EGA patients were 

more balanced in this sense. Of note, 28 (15.6%) of EGA samples missed clinical 

information.  

 
    TARGET EGA TOT 

Sex 
Male 84 (61.8%) 102 (56.7%) 186 (58.9%) 

Female 52 (32.9%) 78 (43.3%) 130 (41.1%) 

INSS Stage 

4 106 (77.9%) 88 (48.9%) 194 (61.4%) 

1,2,3,4S 30 (22.4%) 64 (35.6%) 94 (29.7%) 

N/A 0 (0%) 28 (15.6%) 28 (8.9%) 

Age at 
diagnosis 

≥18mo 104 (76.5%) 116 (64.4%) 220 (69.6%) 

<18mo 32 (23.5%) 36 (20%) 68 (21.5%) 

N/A 0 (0%) 28 (15.6%) 28 (8.9%) 

MYCN status 

Amplified 32 (23.5%) 41 (22.8%) 73 (23.1%) 

Not amplified 104 (76.5%) 111 (61.7%) 215 (68%) 

N/A 0 (0%) 28 (15.6%) 28 (8.9%) 

Risk 

High 107 (78.7%) 98 (54.4%) 205 (64.9%) 

Intermediate/Low 29 (21.3%) 54 (30%) 83 (26.3%) 

N/A 0 (0%) 28 (15.6%) 28 (8.9%) 

Table 4. Clinical characteristics of NBL Samples. The table provides a summary of the clinical 

characteristics of NBL samples of this study. 
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Some clinical markers showed a strong correlation to each other (Figure 19). In TARGET 

dataset, the INSS stage 4 strongly co-occurred with the age at diagnosis, with 96.2% of stage 

4 patients having an age at diagnosis greater than 18 months (two-tailed Fisher’s test P 

=1.6×10-22). A similar trend was also observed in EGA dataset, where the percentage of 

stage 4 patients with an age at diagnosis greater than 1.5 years was 87.5% (P =2.0×10-4). In 

both cohorts, we observed that the occurrence of MYCN amplification was rather 

independent from both stage and age at diagnosis (P > 0.05).  

 

 

 

Figure 19. Co-occurrence among clinical markers in the two NBL cohorts. 

Upset plot showing the number of samples with age ≥18 months at diagnosis, INSS stage 4 and MYCN 

amplification (bar plots on the right) in TARGET (top) and EGA (bottom) datasets. Bar plot on the top 

show the number of samples in which the clinical markers – flagged with a dot – co-occur. 
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We then performed ancestry analysis to account for population stratification. As expected, 

the great majority of samples belonged to European ethnicity (TARGET=94, 69.1%; 

EGA=164, 91.1%). A greater extent of population stratification was observed in the 

TARGET cohort, with a relevant proportion of African (25, 18.4%) and Latino-American 

(12, 8.8%) ancestries, consistently with the USA origin of this dataset165 (Figure 20).  

 
Figure 20. Inferred ethnicity of NBL samples. 

The upper panels show the results of a Principal Component Analysis (PCA) to predict ancestry of 

TARGET (left) and EGA (right) samples. On the x and the y axes are shown the value of the first and the 

second PC, respectively. PC values resulting from dimensional reduction of common SNPs of NBL 

samples were projected on the values of those of 1000G individuals. The table in the lower panel show 

the number of individuals for each predicted ancestry. 

AFR: African; AMR: Latino-American; EAS: East-Asian; EUR: Non-Finnish European; SAS: South-

East-Asians. 
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4.2.Genomic profiling of NBL samples 

In order to characterize NBL samples in the two cohorts, we assessed the somatic genomic 

landscape of the patients in the two datasets. In detail, we analyzed the somatic small DNA 

variants, comprehensive of SNVs and Indels (hereby referred to as somatic SNVs for 

simplicity), the CNAs and large-scale genomic rearrangements comprehensive of 

chromosome inversions and translocations. As one of the aims of this thesis is the 

characterization of genomic rearrangements in NBL, we put a main focus on the latter.  

4.2.1. Somatic SNVs 

As detailly described in Methods, somatic SNVs of NBL samples have been obtained 

differently for the TARGET and the EGA datasets. from the publicly available WGS VCF 

files of TARGET individuals, we selected SNVs that were called in the somatic but not in 

the corresponding germline sample, while somatic SNVs of EGA patients were called 

through matched normal-tumor variant calling pipeline. In both datasets, we excluded 

variants with a VAF lower than 5% and retained only SNVs with an alternative allele depth 

greater or equal than 5. First of all, we computed the genomic TMB as described in Methods. 

Of note, the TMB distribution was comparable between the datasets (µTARGET = 1.01 

mutations/MB; µEGA = 1.06 mutations/MB; two-sided Mann-Whitney U test P = 0.2). We 

then assessed the correlation of TMB with 4 NBL clinical markers (Risk group, INSS stage, 

Age at diagnosis and MYCN status) (Figure 21). As already observed and described in 

literature166, in both datasets, we observed a strong correlation of TMB with the high-risk 

subtype, the stage 4 and the ≥ 18 months at diagnosis patients, but no correlation with the 

MYCN gene status. We then prompted to assess the correlation of the TMB with the OS and 

EFS probability. TARGET OS and EFS showed not significant correlation with TMB, both 

in a univariate analysis (POS = 0.12, OROS = 1.82; PEFS =0.227, OREFS = 1.61) and in a 

multivariate Cox proportional-hazards model adjusted for INSS stage, Age at diagnosis and 

MYCN status (POS = 0.7, HROS = 1.12; PEFS =0.98, OREFS = 1.01) (Figure 22). Conversely, 

In EGA dataset TMB was associated to a lesser OS and EFS probability, but only in a 

univariate model (POS = 0.017, OROS = 2.35; PEFS =1.71×10-3, OREFS = 3.17), but was not 

predictive of OS or EFS in the multivariate analysis (POS = 0.27, HROS = 1.37; PEFS =0.11, 

OREFS = 1.46) (Figure 23). Altogether, our data confirm the association of TMB with poor 

prognosis, although it was not predictive of EFS and OS in any of the two datasets when 

correcting for covariates, although this result could be influenced by the co-occurrence of 

poor prognosis markers167 (see Figure 18).  
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Figure 21.  Distribution of TMB across NBL clinical markers.  

Box plots showing the distribution of TMB across the clinical markers of NBL (clockwise: Risk groups, 

INSS stage MYCN status and Age group) in TARGET (top) and EGA (bottom) datasets. P-values were 

computed through a two-sided Mann-Whitney U test.  
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Figure 22. OS and EFS probability across median-divided TMB groups in TARGET samples. 

The Kaplan-Meier curves show the OS (left) and EFS (right) probability in the TARGET dataset. The 

Odds Ratio (OR) and the P-value (P) in the graphs were computed by a two-tailed Fisher’s exact test. The 

tables below the curves show the results of a multivariate Cox proportioned-hazard regression model 

adjusting for MYCN status, INSS stage and the age at diagnosis. Squared dots and dashed lines represent 

the estimates and the standard errors, respectively. Red box highlights the contribution of the TMB to the 

OS (left) and EFS (right) probabilities in this model. 
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Figure 23. OS and EFS probability across median-divided TMB groups in EGA samples. 

 The Kaplan-Meier curves show the OS (left) and EFS (right) probability in the EGA dataset. The Odds 

Ratio (OR) and the P-value (P) in the graphs were computed by a two-tailed Fisher’s test. The tables 

below the curves show the results of a multivariate Cox proportioned-hazard regression model adjusting 

for MYCN status, INSS stage and the age at diagnosis. Squared dots and dashed lines represent the 

estimates and the standard errors, respectively. Red box highlights the contribution of the TMB to the OS 

(left) and EFS (right) probabilities in this model. 
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Subsequently, we prompted to identify driver mutations in NBL samples. To this end, we 

first prioritized somatic SNVs, selecting only non-synonymous coding SNVs annotated as 

pathogenic or likely pathogenic according to ClinVar (updated to July 2023), LoF mutations 

(frameshift indels, splicing and nonsense SNVs) with a CADD v1.6 score equal or greater 

than 25 or missense mutations with at least two out of three pathogenicity prediction scores 

(REVEL, M-CAP and CADD) above established thresholds (see Methods), as suggested by 

published guidelines144. We then selected variants falling in 566 genes annotated as TSG, 

oncogene or both (dual role) according to the COSMIC CGC database v98145. We found a 

total of 53 (µ = 0.39) and 91 (µ=0.50) prioritized somatic SNVs in TARGET and EGA 

samples, respectively (Figure 24), which was comparable between the two datasets (Mann-

Whitney U test’s P = 0.39). We detected key NBL driver mutations shared between the two 

dataset, including variants in ALK such as R1275Q (5 in TARGET and 9 in EGA), F1174L 

(3 in TARGET and 4 in EGA), R1275L (2 in TARGET and 1 in EGA) and F1245V (1 in 

TARGET and 1 in EGA)168, the NRAS Q61K mutation (2 in TARGET and 5 in EGA)169, the 

KRAS G12D mutation (1 in TARGET and 1 in EGA)52 and the N546K mutation in FGFR1 

gene (1 in TARGET and 3 in EGA)52. A total of 10 genes was affected by point mutations 

in both datasets (Figure 25). As expected, in both datasets, ALK was by far the most 

frequently mutated gene. Mutations in genes with a certain recurrence and an established 

role in NBL such as ATRX, NRAS, KRAS, FGFR1 and PTPN11 were also observed in both 

cohorts52,85,170,171. TP53 gene was mutated in 4 deceased patients (2 in TARGET and 2 in 

EGA samples). This observation is in line with literature, as TP53 mutations – although rare 

– are known to be associated with poor prognosis in NBL172. We also found mutations in 

MYH9 gene in 3 samples (1 in TARGET and 2 in EGA samples). This gene has a well-

established role in many adult cancers, where it can act both as an oncogene and as a TSG173, 

but its function in NBL have not been hitherto investigated. Other 3 samples carried 

mutations in the SKI proto-oncogene (2 non-sense SNV in EGA and 1 missense SNV in 

TARGET). As MYH9, also SKI has a dual role in cancer and is mutated in several adult 

tumors174. However, given its role as inhibitor of TGF-β pathway – which promotes the 

Epithelial-to-Mesenchymal Transition (EMT) in NBL175 – a role as TSG is more likely in 

NBL. Finally, in 2 patients we reported 2 missense variants (one for each dataset) in ESR1, 

a TSG important for neuronal differentiation repressed by MYCN in NBL176. In order to 

better elucidate the role of these genes in NBL, we assessed their gene expression on a subset 

of 89 and 140 samples from TARGET and EGA set, respectively, whose RNA-seq data was 

available (see Methods). In both cohorts, we observed an over-expression of SKI in the low 

to intermediate-risk group, even when correcting for the loss of SKI (1p36) loss, a recurrently 

lost region in high-risk NBL177  (multivariate logistic regression P < 0.001, Figure 26).  
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Figure 24. Somatic SNVs in genes annotated as TSGs, oncogenes or both in Cosmic CGC v98 genes 

in NBL samples.  

The two oncoprints show the somatic mutations in CGC v98 genes annotated as TSGs, oncogenes or both. 

Cells are colored based on the functional consequence of the SNV. Top, right, bottom and left oncoprint 

annotations show the number of mutations in each sample, the number of mutations in each gene, clinical 

features of samples (INRG risk group, INSS stage MYCN status and age at diagnosis) and role in cancer 

(TSG, oncogene or dual role) according to CGC v98, respectively.  

0

1

2

3

Risk_group
Stage
MYCN_status
Age_at_Diagnosis

ro
le
_i
n_
ca
nc
er

ALK
MYCN
MET
NRAS
PTPN11
TP53
ARNT
ATRX
BLM
CBFB
EP300
ESR1
FGFR1
FGFR3
IRF4
KRAS
LEF1
MAX
MED12
MN1
MUC16
MYH9
NTRK2
PDGFRB
PIK3CA
POU5F1
PRDM16
PTK6
PTPN6
SIX2
SKI
STAT5B

0 5 10 15

TARGET

0

2

4

Risk_group
Stage
MYCN_status
Age_at_Diagnosis

ro
le
_i
n_
ca
nc
er

ALK
ATRX
NRAS
FGFR1
CSMD3
HRAS
BRCA2
KMT2A
LRP1B
MITF
MYH9
PTPN11
SETD1B
SKI
TNC
TP53
ZFHX3
ARID1A
ATM
ATP1A1
ATP2B3
BCL10
BCOR
BRAF
CACNA1D
CDKN2A
CREBBP
ESR1
EZH2
GATA2
IDH2
KDM5A
KRAS
MAP3K13
MECOM
MUC4
NF1
NOTCH2
NTRK3
ROS1
RPL5
SOX21
STAG2
TERT

0 5 10 15

EGA

Functional
consequence

nonsynonymous SNV
stopgain
splicing

Risk group
High
Low
N/A

INSS Stage
1
2
3
4
4s
N/A

MYCN
status

Amp
non−Amp
N/A

Age at
diagnosis

>18m
<18m
N/A

role in cancer
TSG
oncogene
dual_role



 59 

 
 

 
Figure 25. Frequency of genes affected by prioritized somatic SNVs shared between TARGET and 

EGA. 

Bar plot showing the mutation rate in both dataset of 10 genes affected by prioritized SNVs (see main 

text and Methods) in at least one patient of both datasets. 
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Figure 26. SKI proto-oncogene expression is increased in low to intermediate risk group. 

Boxplot showing the distribution of ESR1, MYH9 and SKI expression (expressed as Fragment per 

Kilobase per Million or FPKM) across risk groups (high vs low to intermediate) in TARGET (top) and 

EGA (bottom) cohorts. SKI is the only differentially expressed gene, being over-expressed in the low to 

intermediate (low-int) risk group, even when correcting for 1p loss. P-values were achieved through a 

multivariate logistic regression. ***: p<0.001; ns: P>0.05. 
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4.2.2. Copy Number profiling 

As stated in Introduction, NBL is characterized by typical and recurrent CNAs, many of 

which are directly linked to patients’ outcome57. In order to profile the CN status of NBL 

samples, we performed a CN analysis on somatic tissues and evaluated the correlation of 

CNAs with clinical status. Briefly, for the TARGET samples, we used the already publicly 

available files of somatic relative coverage (see Methods) of genomic windows of 2Kb, 

where to each window corresponded the natural logarithm (ln) of copy number ratio (hereby 

referred as logR) under a diploid model and normalized for CG-content and mappability. 

For samples in EGA dataset, from BAM files we i) computed the coverage of normal and 

tumor samples in windows of 2Kb, and ii) normalized for CG-content and mappability. The 

logR of tumor samples was computed using the normalized-coverage of its respective 

normal counterpart. Using as input the relative and normalized coverage files, we applied a 

segmentation algorithm to retrieve regions of contiguous CN status whose boundaries and 

statistical significance was assessed using Gistic v2.0136. We defined as “gain” and “loss” 

segments with logR ≥ 0.223 and logR ≤ -0.288, corresponding to CN ≥ 2.5 and CN ≤ 1.5 in 

diploid regions, respectively. The resulting CN profile of somatic samples of the two datasets 

was comparable (cosine similarity = 0.95) and the frequency of CNAs consistent with 

literature data178 (Figure 27).  

As it is well known that aneuploid (or numerical) and segmental (or focal) CNAs are 

generally associated to a better and a worse prognosis, respectively57, we checked the 

distribution of aneuploid and focal CNAs and evaluated their correlation with clinics. We 

defined numerical (also referred to as whole-chromosome) or focal CNAs whether more or 

less than 85% of bases of a chromosome was involved in the same type of CNA (loss or 

gain), respectively (Figure 28). As expected, patients with poor prognosis markers were 

enriched in segmental CNAs, whilst aneuploidies associated with good prognosis179 (Figure 

28). We then assessed the presence of segmental or whole-arm CNAs on chromosome arms 

of each NBL samples. in order to exclude false positive observations, we considered only 

CNAs whose regions of gain or loss overlapped between TARGET and EGA (Figure 29). A 

total of 15 CNAs was shared between the two datasets, whose 8 were defined as gain or 

amplification (defined as CN ≥ 8 in diploid regions) and 7 as loss (1p loss, 1q gain, 2p gain, 

3p loss, 4p loss, 5p gain, 7q gain, 9p loss, 11q gain, 11q loss, 12q gain, 14q gain, 16q loss, 

17q gain and 19p loss) (Figures 29 and 30). These arms are characterized by recurrent NBL 

CNAs, both focal and numerical178.  
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Figure 27. Copy number profiling of TARGET and EGA NBL samples 

CN profile of TARGET (top) and EGA (bottom) NBL tumor samples. Y and x-axes represent the 

percentage of samples with gain (red) or loss (blue) and the chromosomes (23 stands for chromosome X), 

sorted by genomic position. Recurrent NBL loss and gain are shown and labelled in blue and red, 

respectively. 
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Figure 28. Numerical CNAs are associated with good prognosis, conversely to focal CNAs. 

The histograms (top) show the distribution of the percentage of altered bases (gain or loss) for three 

chromosomes (chr3, chr12 and chr17) across the EGA samples, taken as an example. Arms with ≥ 85% 

of altered bases (red and blue dashed lines for gain and loss, respectively) were labeled as affected by 

numerical (or aneuploid) CNAs, otherwise as segmental CNAs. The bottom bar plots show the frequency 

of aneuploid CNAs (light blue) and segmental CNAs (orange) across NBL clinical markers (Risk, INSS 

stage, age at diagnosis and MYCN status. P-values and OR were assessed through a two-sided Fisher’s 

exact test.   
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Figure 29. Regions of gain/amplification and loss across the genome in the two datasets 

The figure shows the significant gain/amplification (top) and loss (bottom) regions found with Gistic2.0 

in TARGET (orange segments) and EGA (blue segments) datasets. The golden-shaded rectangles 

highlight the 15 shared regions, 8 of gain/amplification (mapping on 1q, 2p, 5p, 7q, 11q, 12q, 14q, 17q) 

and 7 of loss (on 1p, 3p, 4p, 9p, 11q, 16q, 19p).  

  

Gain/Amplification
1 3 5 7 9 11 13 15 17 19 21 X

2 4 6 8 10 12 14 16 18 20 22 Y

TARGET EGA

Loss
1 3 5 7 9 11 13 15 17 19 21 X

2 4 6 8 10 12 14 16 18 20 22 Y

TARGET EGA



 65 

 
Figure 30. Landscape of focal and numerical CNAs of NBL samples. 

Heatmaps showing the numerical and the focal CNAs across NBL samples of TARGET (top) and EGA 

(bottom) datasets, alongside the percentage of samples with focal or numerical CNAs (right), clinical 

characteristics of samples (bottom) and the number of focal (orange) and numerical (steely gray) CNAs 

per sample (top). For graphical representation, samples with unknown clinical features were removed 

from the EGA heatmap. Chromosome arms in brackets show the location of the respective focal CNAs. 
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To assess the correlation with clinics, each numerical and focal CNA was tested for 

enrichment in the two risk groups (high and low to intermediate). In detail, we performed a 

Firth’s logistic regression to account for CNAs imbalance in the two risk groups and for 

the absence of some CNAs in a particular risk group (for instance, focal 11q gain was 

absent in low to intermediate tumors in TARGET dataset, see Figure 30)146. To increase 

the statistical power of the analysis, we finally performed an inverse variance-weighted 

meta-analysis using standard error and estimate parameters of the analyses carried out on 

single datasets180 (Figure 31).  

 

 

 
Figure 31. Correlation between focal and numerical CNAs and INRG risk groups. 

Forest plot showing the results of a Firth’s corrected logistic regression between focal (left) and numerical 

(right) CNAs and risk groups (high versus low to intermediate). P-value ranges are depicted in the legend 

on the right. 
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Consistently with literature data, we found that the high-risk subtype was enriched in focal 

gain/amplifications on 1q, 2p, 11q, 12p and 17q, as well as focal deletions on 1p, 3p, 4p, 9p 

and 11q15,181–184. On the other hand, low-intermediate risk group was enriched in numerical 

gain on chromosomes 1, 2, 7, 11 and 17, and in numerical loss on chromosomes 3, 4, 11 and 

19.  While it is known that aneuploidies of chromosomes 3, 4, 7 and 17 correlate to a better 

outcome181,182,185, for the other numerical CNAs (chr1 gain, chr2 gain, chr11 loss, chr12 gain 

and chr19 loss) no association has been hitherto established. The frequency of these 

numerical alterations across risk groups is shown in Figure 32.  

 

 
Figure 32. Frequency of low to intermediate-associated numerical CNAs across risk groups. 

Bar plot showing numerical gain of chromosomes 1, 2, 7, 12 and 12 and numerical loss of chromosomes 

3, 4, 11 and 19, which correlated with low to intermediate (low/int) risk group in a meta-analysis (see 

Figure 31). Note that frequencies are relative to the combination of the two datasets. 
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Interestingly, the presence of at least one of these aneuploidies predicted survival, both alone 

and in a multivariate model with age at diagnosis, INSS stage, MYCN status and the dataset 

belonging as covariates (Figure 33). Altogether, these data suggest that the presence of 

specific numerical CNAs predict good outcome, and therefore that their detection might be 

implemented for a better clinical stratification of NBL. 

 

 
Figure 33. Aneuploidy of at least one of chromosome 1, 2, 3, 4, 7, 11, 12, 17 and 19 predicts 

survival in samples from EGA and TARGET datasets. 

The Kaplan-Meier graph on the left shows the OS probability of NBL samples divided according the 

presence (red line) or the absence (blue line) of at least one of the numerical CNAs listed above in a 

univariate model, while the table on the right shows the results of a multivariate Cox proportioned-hazard 

regression model adjusting for MYCN status, INSS stage and the age at diagnosis. Squared dots and 

dashed lines represent the estimates and the standard errors, respectively. Red box highlights the 

contribution of the presence of these numerical CNAs to the OS probability in this model. 
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4.2.3. Genomic Rearrangement profiling 

Genomic rearrangements are defined as mutations that change the karyotypic profile of a 

cell. They can be divided in 4 group of SVs according to their effect on karyotype: deletions, 

duplications, inversion and translocations. The latter can be further divided into balanced or 

unbalanced translocations, based on if they are coupled to a gain or loss of genomic material 

or are CN neutral, respectively. While the presence and clinical and biological implications 

of large-scale deletions and duplications have been extensively investigated in NBL – and 

also dissected in the previous paragraph – only few studies have been carried out so far to 

unravel the role of inversions and translocations88,93,186. To shed light on the role of 

inversions and translocations (hereby collectively referred to as SVs for simplicity) in NBL 

we analyzed frequency, clinical implications and biological role of SVs in samples from 

TARGET and EGA cohorts. Concerning the first dataset, we retrieved SVs from publicly 

available files of “High confidence SV calls” (see Methods) and selected only inversions, 

translocations and complex variants that involved two different chromosomes (labeled as 

translocations) or CN neutral complex variants on the same chromosome. Finally, we 

discarded SVs mapping in short arm of acrocentric chromosomes (13p, 14p, 15p, 21p and 

22p) and on Y chromosome due to the low mappability of these regions. SVs in EGA dataset 

was called using Manta137, low quality SVs discarded and afterward we selected only SVs 

supported by a conspicuous number of reads (see Methods). The distribution of SVs in the 

two datasets was comparable (Figure 34). In TARGET dataset we found a total of 469 

(µ=3.45) translocations and 296 inversions (µ=2.35), for a total of 765 (µ=5.80) SVs; In 

EGA dataset we found a total of 732 (µ=4.07) translocations and 466 inversions (µ=2.59), 

for a total of 1,198 (µ=6.65) SVs. As expected, in both datasets high risk tumors were 

enriched in SVs (Figure 34). Moreover, survival analysis showed that the presence of a least 

an SV (NTARGET = 112 (82.35%), NEGA = 141 (78.3%)) was able to predict OS and EFS 

survival in a multivariate Cox proportioned-hazard regression model in TARGET dataset, 

but only in a univariate analysis in EGA cohort (Figures 35 and 36), although the result could 

be influenced by the co-linearity with clinical markers like the age at diagnosis and the INSS 

stage 4. TERT rearrangements – defined as inversions/translocations with one of the two 

breakpoints mapping 300kb upstream and downstream TERT (see Methods) – were detected 

in 15.9% and 9.2% of TARGET and EGA samples, respectively (Figure 37). 

We then prompted to assess the frequency of translocations and inversions to identify novel 

low-frequency recurrent SVs. As expected, the three most frequent SVs were t(11q-17q), 

t(1p-17q), and TERT rearrangements, alterations well-characterized in NBL46,88,186. This 

analysis highlighted other novel unreported SVs, which were found in at least 4 and 6 

samples in TARGET and EGA datasets, respectively, corresponding to a frequency of about 


