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We present ongoing work towards incorporating the missing higher-order uncertainty (MHOU) determined 
through scale variations in the assessment of parton distribution functions (PDFs). Our PDFs fitting employs 
the NNPDF4.0 methodology and our theory covariance matrix framework to account for theory errors. This 
approach relies on the integration of MHOUs and their correlations via a theory covariance matrix. We validate 
our estimation and assess the impact of theory errors on the PDFs and on LHC phenomenology.
1. Introduction

The uncertainty of Parton Distribution Functions (PDFs) is a sig-

nificant limitation for achieving precision physics at the LHC. The 
NNPDF4.0 [1] determination has attained a nominal accuracy at the 
percent level, due to methodological advancements and an augmented 
quantity of experimental data. It is imperative to evaluate the reliability 
of this precision and determine if the corresponding accuracy is consis-

tent.

Referring to previous work, several papers have evaluated the im-

pact of methodology on PDF uncertainties (see Refs. [2,3]). However, 
theoretical uncertainties that affect the QCD predictions used in PDF fit 
have yet to be included in such determinations (an exception being [4], 
whose objective however is slightly different from our own).

Theoretical uncertainties stem from several sources, including para-

metric factors (such as the values of heavy quark masses) and non-

parametric factors. Nonetheless, the principal cause of theoretical 
uncertainties relates to missing higher orders in QCD computations 
(MHOUs). The current level of precision achieved in QCD calculations 
is typically at next-to-next-to-leading order (NNLO), with N3LO correc-

tions known only in limited cases [5]. At this perturbative level, the 
theoretical errors introduced by the missing higher-order terms are usu-

ally of the order of a few percent or larger, which is often comparable 
to the experimental systematics. For this reason, there is no justification 
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for including the latter and not the former in the figure of merit used 
for PDF determination [2].

In Refs. [6,7], we have introduced the theory covariance matrix 
framework. This framework permits the systematic inclusion of theory 
uncertainties in PDF fits. Additionally, in these references, we presented 
the first instance of this methodology being applied to the construc-

tion of a set of NLO PDFs with theoretical uncertainties, based on 
the NNPDF3.1 [8] PDF set and methodology. Nevertheless, a complete 
global NNLO PDF set including MHOUs is not currently available.

The aim of this work is to introduce the updated versions of the 
global PDF determination of NNPDF4.0, that will be presented in the 
upcoming NNPDF4.0MHOU publication. This update will include more 
precise central values and uncertainties which now consider the incor-

poration of MHOUs in the PDF determination process. These PDFs will 
be the new default for NNPDF sets of parton distributions.

This manuscript is organised as follows. The first paragraph pro-

vides a comprehensive introduction to the concept of scale variations, 
along with the explicit equations utilized for estimation. Subsequently, 
we outline the theory covariance matrix methodology and the decisions 
made regarding prescription. Then, we detail the dataset used in this 
PDF determination, which is based on the NNPDF4.0 dataset. Also, we 
show the theory covariance matrices determined for this dataset and 
we benchmark them at NLO where they can be compared to the known 
NNLO results. Finally, we present our findings and assess the impact of 
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theoretical errors on our determination of PDFs. Additionally, we pro-

vide examples of using these PDFs in computing LHC processes, both to 
evaluate the impact of MHOUs on physical predictions and to demon-

strate their practical applications.

2. Scale variations

We calculate MHOUs by supplementing the theory predictions with 
a theory covariance matrix obtained through scale variation. This para-

graph presents a concise outline of its implementation in the NNPDF 
theory pipeline [9], particularly in the EKO [10] software.

3. Perturbative expansion and factorization

To establish the notation, we explicitly write out the perturbative 
expansion of an observable that is factorized in terms of a hard cross-

section and PDFs. We are limiting our analysis to inclusive electro-

production using a single parton species for simplicity. We examine a 
structure function, 𝐹 (𝑄2), which is dependent on a physical scale 𝑄2

and expressed through coefficient functions, 𝐶(𝑄2), expressed as an ex-

pansion in the strong coupling

𝑎𝑠 ≡
𝛼𝑠

4𝜋
, (1)

and a PDF 𝑓 (𝑄2). In Mellin space we simply have

𝐹 (𝑄2) = 𝐶(𝑄2)𝑓 (𝑄2). (2)

The partonic coefficient function at N𝑘LO it is given by

𝐶
(
𝑎𝑠(𝑄2)

)
= 𝑎𝑚

𝑠
(𝑄2)

𝑘∑

𝑗=0

(
𝑎𝑠(𝑄2)

)𝑗
𝐶𝑗 (3)

when the LO structure function is 𝑂(𝑎𝑚
𝑠
).

The scale dependence of the strong coupling 𝑎𝑠(𝑄2) and PDF 𝑓 (𝑄2)
are given by

𝜇2 𝑎𝑠(𝜇
2)

𝜇2 = 𝛽(𝑎𝑠(𝜇2)) = −
𝑘∑

𝑗=0

(
𝑎𝑠(𝜇2)

)2+𝑗
𝛽𝑗 , (4)

𝜇2 𝑓 (𝜇2)
𝜇2 = −𝛾

(
𝑎𝑠(𝜇2)

)
𝑓 (𝜇2). (5)

At N𝑘LO the beta function and anomalous dimensions are respectively 
given by

𝛽(𝑎𝑠(𝜇2)) = −
𝑘∑

𝑗=0

(
𝑎𝑠(𝜇2)

)2+𝑗
𝛽𝑗 , (6)

𝛾
(
𝑎𝑠(𝜇2)

)
=

𝑘∑

𝑗=0

(
𝑎𝑠(𝜇2)

)1+𝑗
𝛾𝑗 , (7)

where the coefficients 𝛽𝑗 are known up to 𝑘 = 4, while the coefficients 
𝛾𝑗 are known exactly up to 𝑘 = 2 and approximately for 𝑘 = 3.

The solution to (5) can be written in form of an evolution kernel 
operator (EKO) 𝐸(𝜇2 ← 𝜇2

0) [10]

𝑓 (𝜇2) =𝐸(𝜇2 ← 𝜇2
0)𝑓 (𝜇

2
0) (8)

Including the anomalous dimension to N𝑘LO accuracy yields a PDF 
𝑓 (𝑄2) whose scale dependence has a resummed (next-to-)𝑘-leading-

logarithmic (N𝑘LL) accuracy.

4. MHOU from scale variation

Predictions at the hadronic level rely on two quantities computed 
perturbatively: the coefficient functions (or partonic cross-sections), as 
shown in Eq. (3), and the anomalous dimensions, as shown in Eq. (7), 
which determine the scale dependence (Eq. (8)) of the PDFs. The pre-
2

diction’s uncertainty on either is caused by truncating the expansions 
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which are expressed as a series in the strong coupling 𝑎𝑠(𝑄2), further ex-

pressed perturbatively by solving Eq. (4) in terms of a reference value, 
typically 𝑎𝑠(𝑀𝑍 ).

The estimation of these MHOUs from scale variation is achieved by 
generating different expressions to a given accuracy, that differs by the 
subleading terms generated by the evaluation of the strong coupling 
at different scales. Starting with the coefficient function Eq. (3), we 
construct a scale-varied N𝑘LO coefficient function

�̄�(𝑎𝑠(𝜇2), 𝜌𝑟) = 𝑎𝑚
𝑠
(𝜇2)

𝑘∑

𝑗=0

(
𝑎𝑠(𝜇2)

)𝑗
�̄�𝑗 (𝜌𝑟) (9)

by requiring that

�̄�(𝑎𝑠(𝜌𝑟𝑄2), 𝜌𝑟) = 𝐶(𝑎𝑠(𝑄2))
[
1 +𝑂(𝑎𝑠)

]
, (10)

which fixes the coefficients �̄�𝑗 (𝜌𝑟) in terms of 𝐶𝑗 . Their explicit expres-

sions up to NNLO are

�̄�0(𝜌) = 𝐶0 , (11)

�̄�1(𝜌) = 𝐶1 +𝑚𝐶0𝛽0 ln𝜌 , (12)

�̄�2(𝜌) = 𝐶2 +
𝑚(𝑚+ 1)

2
𝐶0

(
𝛽0
)2 ln2 𝜌

+
(
(𝑚+ 1)𝐶1𝛽0 +𝑚𝐶0𝛽1

)
ln𝜌 . (13)

As can be seen in (11), at any given order 𝐶 and �̄� differ by subleading 
terms, so their difference can be taken as an estimate of the missing 
higher orders. We refer to this estimate of the MHOU on the partonic 
cross-sections as renormalization scale variation.

Through the same procedure, we obtain an estimate of the MHOU on 
the anomalous dimension: we construct a scale-varied N𝑘LO anomalous 
dimension

�̄�(𝑎𝑠(𝜇2), 𝜌𝑓 ) = 𝑎𝑠(𝜇2)
𝑘∑

𝑗=0

(
𝑎𝑠(𝜇2)

)𝑗
�̄�𝑗 (𝜌𝑓 ) (14)

by requiring that

�̄�(𝑎𝑠(𝜌𝑓𝑄2), 𝜌𝑓 ) = 𝛾(𝑎𝑠(𝑄2))
[
1 +𝑂(𝑎𝑠)

]
, (15)

which fixes the coefficients �̄�𝑗 (𝜌𝑓 ) in terms of 𝛾𝑗 . The corresponding 
expressions are the same as equation (11) in the particular case 𝑚 =
1. Note that the uncertainty estimated through �̄�𝑗 (𝜌𝑓 ) translates into 
a MHOU on the PDF 𝑓 (𝑄2) when this is expressed through Eq. (8) in 
terms of the PDFs at the parametrization scale. We refer to this estimate 
of the MHOU on the PDF as factorization scale variation.

By substituting the scale-varied anomalous dimension �̄�(𝛼(𝜇2), 𝜌𝑓 )
in the expression Eq. (8) of the PDF one can see [7] that factorization 
scale variation can be equivalently performed directly at the level of the 
PDF, by defining a scale-varied PDF 𝑓 (𝑄2, 𝜌𝑓 ) whose scale dependence 
is given by a scale-varied EKO �̄�(𝑄2 ← 𝜇2

0 , 𝜌𝑓 ):

𝑓 (𝑄2, 𝜌𝑓 ) = �̄�(𝑄2 ← 𝜇2
0 , 𝜌𝑓 )𝑓 (𝜇

2
0), (16)

and the scale-varied EKO �̄�, computed at N𝑘LL, differs by subleading 
terms from the original EKO:

�̄�(𝑄2 ← 𝜇2
0 , 𝜌𝑓 ) =𝐸(𝑄2 ← 𝜇2

0)
[
1 +𝑂(𝑎𝑠)

]
. (17)

The scale-varied EKO can be constructed as

�̄�(𝑄2 ← 𝜇2
0 , 𝜌𝑓 ) =𝐾

(
𝑎𝑠(𝜌𝑓𝑄2), 𝜌𝑓

)
𝐸(𝜌𝑓𝑄2 ← 𝜇2

0), (18)

where at N𝑘LL (i.e. with the anomalous dimension computed at N𝑘LO) 
the extra evolution kernel 𝐾(𝑎𝑠(𝜌𝑓𝑄2), 𝜌𝑓 ) is given by the expansion

𝐾
(
𝑎𝑠(𝜌𝑓𝑄2), 𝜌𝑓

)
=

𝑘∑

𝑗=0

(
𝑎𝑠(𝜌𝑓𝑄2)

)𝑗
𝐾𝑗 (𝜌𝑓 ). (19)

Substituting this expansion in Eq. (17) fixes all coefficients 𝐾𝑗 (𝜌𝑓 ) in 

terms of 𝛾𝑗 . Their explicit expressions up to NNLO are
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𝐾0(𝜌) = 1 , (20)

𝐾1(𝜌) = 𝛾0 ln𝜌 , (21)

𝐾2(𝜌) =
1
2
𝛾0

(
𝛽0 + 𝛾0

)
ln2 𝜌+ 𝛾1 ln𝜌 . (22)

Performing factorization scale variation at the level of the PDF is 
equivalent to the earlier approach at the level of the anomalous dimen-

sion.

Specifically, these two methods coincide up to sub-subleading terms. 
Within a PDF determination context, carrying out factorization scale 
variations at the level of the PDFs is simple, as it solely necessitates 
modifying the EKO utilised for computing PDF evolution. We use this 
method to conduct factorisation scale variation for the purpose of com-

puting the theory covariance matrix.

5. The theory covariance matrix framework

The partonic cross-sections’ and the PDFs’ MHOUs are estimated 
through renormalization and factorization scale variations, respec-

tively. They are incorporated into a theory covariance matrix, which 
is constructed as outlined in references [6,7]. Here we provide a brief 
summary on the construction recipe.

First, we define the shift in theory prediction for the 𝑖-th datapoint 
due to renormalization and factorization scale variation

Δ𝑖(𝜌𝑓 , 𝜌𝑟) ≡ 𝑇𝑖(𝜌𝑓 , 𝜌𝑟) − 𝑇𝑖(0,0), (23)

where 𝑇𝑖(𝜌𝑓 , 𝜌𝑟) is the prediction for the 𝑖-th datapoint obtained by 
varying the renormalization and factorization scale by a factor 𝜌𝑟, 𝜌𝑓
respectively.

Next, we choose a correlation pattern for scale variation, as fol-

lows [6,7]:

• factorization scale variation is correlated for all datapoints, because 
the scale dependence of PDFs is universal;

• renormalisation scale variation is correlated for all data points 
within the same category, so either belonging to the same ob-

servable (such as fully inclusive DIS cross-paragraphs) or different 
observables within the same process (such as, for example, the 𝑍
transverse momentum and rapidity distributions).

This necessitates the classification of processes; for example, we treat 
charged-current and neutral-current deep-inelastic scattering as distinct 
processes. The adopted process categorization is given in a later para-

graph.

We finally define the theory covariance matrix between two data-

points 𝑖, 𝑗 as

𝑆𝑖𝑗 = 𝑛𝑚

∑

𝑉𝑚

Δ𝑖(𝜌𝑓 , 𝜌𝑟𝑖 )Δ𝑗 (𝜌𝑓 , 𝜌𝑟𝑗 ), (24)

where the sum runs over the space 𝑉𝑚 of the 𝑚 scale variations that are 
included and 𝑛𝑚 is a normalization factor. The factorization scale 𝜌𝑓 is 
always varied in a correlated way, while the renormalization scales 𝜌𝑟𝑖 , 
𝜌𝑟𝑗

are varied in a correlated way (𝜌𝑟𝑖 = 𝜌𝑟𝑗
) if datapoints 𝑖 and 𝑗 belong 

to the same category, but are varied independently if 𝑖 and 𝑗 belong 
to different categories. The normalization factors were computed for 
various choices of the space 𝑉𝑚 of scale variations and for various values 
of 𝑚 in Ref. [7], to which we refer for details.

As in Refs. [6,7] we consider scale variation by a factor 2, so

𝜅𝑓 = ln𝜌𝑓 = ±ln4 𝜅𝑟 = ln𝜌𝑟 = ±ln4. (25)

In Ref. [7], the authors explored various options for the allowed param-

eter space.

One of these options involved allowing 𝜅𝑟 and 𝜅𝑓 to take on all 
values (0, ± ln 4) for each datapoint, resulting in a 9-point prescription 
3

with 𝑚 = 8 variations from the central value.
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Here we adopt as a default the commonly used 7-point prescription, 
with 𝑚 = 6, which is obtained from the former by discarding the two 
outermost variations, in which 𝜅𝑟 = + ln 4, 𝜅𝑓 = − ln 4 or 𝜅𝑟 = − ln 4, 𝜅𝑓 =
+ ln 4. The explicit expressions for the theory covariance matrix with the 
7-point prescription are given in Eqs. (4.18)-(4.19) of Ref. [7].

6. Dataset and validation

In this paragraph, we begin by specifying the datasets and process 
categorisation utilized for determining the theory covariance matrix 
and for the fit. We then present the theory covariance matrices for both 
NLO and NNLO. Finally, we concisely describe and employ the valida-

tion procedure previously utilised in [6,7].

7. Dataset definition and process categorization

For the PDF set with MHOUs included, we utilized the entire 
NNPDF4.0 dataset, which is described in detail in [1]. To ensure the 
accuracy of the scale variation method, however, different kinematic 
cuts were applied to the data, similarly to what was carried out in [6].

For the NNLO fit, we utilized identical DIS cuts to those presented 
in [6]. This corresponded to a value of 𝑄2 = 13.9 GeV2. Additionally, 
we introduced a lower maximum accepted value for 𝜏 =𝑀2∕𝑠 for the 
fixed-target DY data. Specifically, Max(𝜏) was reduced to 0.02 from its 
previous value of 0.08. Both cuts are motivated by the scale varia-

tions method to guarantee that the energy scale used to evaluate the 
strong coupling, such as 𝜅2

𝑟∕𝑓𝑄
2 in DIS, remains perturbative when 

𝜅2
𝑟∕𝑓 = (0.5)2. The NNLO fit consists of a total of 3521 points.

The cuts for the NLO case are largely the same. However, scale vari-

ations in NLO for DIS are known to be unreliable and unstable for 
𝑄2 ≲ 18 GeV2. Therefore, we have chosen to use a higher cut, specif-

ically 𝑄2 = 18 GeV2, for the NLO DIS predictions. As a result, the total 
number of points for determining the NLO PDFs is 3278.

As detailed previously, the theory covariance matrix is formulated 
to incorporate a correlation pattern for scale variations. Specifically, the 
renormalisation scale variation is correlated for all data points within 
the same category. This requires the data used for determining PDFs to 
be classified in various process categories. Note that this was also done 
in [6], but in this work we propose an improved categorization. Here 
we summarise our choices.

As in [6], we considered charged current and neutral current DIS as 
different processes. We did the same for charged current and neutral 
current DY, as opposed to the single DY process used in [6].

We kept the Jets and Top processes but we also added singletop, 
photon and dijet.

8. Theory covariance matrices at NLO and NNLO

The theory covariance matrices at NLO and NNLO are shown in 
Fig. 1. As expected, the absolute value of the NNLO theory covari-

ance matrix is nearly one-tenth of the NLO theory covariance matrix. 
Nonetheless, the correlations between datasets appear to stay relatively 
consistent in shape. Additionally, it proves worthwhile to observe the 
influence of the theory covariance matrix once added to the experimen-

tal covariance matrix, as this sum is actually utilized in the fit. Fig. 2

displays the normalized sum of the experimental and theory covariance 
matrices for both NLO and NNLO. The off diagonal elements are expect-

edly higher at NLO than at NNLO where the effect of theory covariance 
matrix becomes almost negligible due to the dominant experimental 
contribution.

9. Comparing NLO theory errors to known NNLO shifts

To verify the accuracy of our theory error estimation, and whether 
it is able to reproduce the real difference between a given perturbative 

order and the next, we perform the same kind of validation proposed 



A. Barontini

Fig. 1. Theory covariance matrix plots for NLO (top) and NNLO (bottom).

in [6,7]. This involves comparing the diagonal values of the theory co-

variance matrix at NLO, specifically NLO
𝑖𝑖

, with the expected known 
difference between NNLO and NLO, specifically 𝑇NNLO

𝑖
(0, 0) −𝑇NLO

𝑖
(0, 0), 

for all data points described in the previous paragraph. This compari-

son is illustrated in Fig. 3 where both the differences and theoretical 
uncertainties are normalized with respect to the central NLO predic-

tions 𝑇NLO
𝑖

(0, 0). The validation results indicate that our estimation of 
the theoretical uncertainties is somewhat conservative, particularly in 
the case of DIS, and that it effectively captures the behaviour of the 
NNLO.

10. Results

In this paragraph we summarise the main achievements of this work: 
the preliminary NLO and NNLO PDFs determinations that systemati-

cally accounts for theory errors. In particular, first we show the impact 
of including theory errors in a PDF fit, mainly focusing on how the PDF 
central values and the uncertainties change.

Then, we focus on the perturbativity of the results, comparing NLO 
and NNLO PDFs with and without theory errors.

Finally, we show the impact of these new PDF set on phenomenol-
4

ogy, again focusing on the perturbativity of the result.
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Fig. 2. Theory covariance matrix plus experimental covariance matrix normal-

ized to diagonal element for NLO (top) and NNLO (bottom).

11. Impact of theory errors

In Fig. 4 we show the comparison of the gluon and singlet NNLO 
PDFs with and without theory errors. Although the theory covariance 
matrix introduces a source of uncertainties, the PDF uncertainties per-

sist at about the same size even with the inclusion of theory errors, 
except in the case of the singlet at a relatively small x-value. Moreover, 
central values appear to be more susceptible to the influence of the-

ory errors than uncertainties. This outcome is unsurprising given the 
deweighting effect of the theory covariance matrix on the datasets that 
are most affected by theory errors.

12. Perturbativity improvements

Including theory errors in a PDF fit is expected to significantly en-

hance perturbativity. Specifically, this entails that the NLO PDFs with 
theory errors will approximate the NNLO PDFs more closely than the 
NLO PDFs without theory errors. Fig. 5 shows a comparison of the ratios 
NNLO∕NLO for gluon and singlet PDFs with and without accounting 

for theoretical errors. Overall, the NLO PDFs are closer to the NNLO 
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Fig. 3. Comparison of the difference between the NNLO and the NLO predictions (in black) to the theory errors as estimated by the diagonal entry of the theory 
covariance matrix  at NLO for all the datapoints.
Fig. 4. The NNLO gluon and the singlet PDFs in logarithmic scale, as determined 
with (in green) and without (in orange) theory errors. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

PDFs when considering theoretical errors, particularly for the singlet 
PDF around 𝑥 = 0.1, as can be observed.

It is anticipated that using such PDFs to compute predictions will 
yield similar results, as demonstrated in the next paragraph.

13. Impact on phenomenology

Finally, we provide an example of how the inclusion of theory errors 
5

in the NNPDF4.0 PDFs influences relevant predictions for phenomenol-
Fig. 5. NNLO∕NLO gluon and singlet PDFs with (in green) and without (in 
orange) theory errors.

ogy. Specifically, Fig. 6 presents Higgs production computed via NLO 
and NNLO PDFs, with and without errors (produced with PineAPPL 
[11]). To simplify the comparison of PDFs, the matrix element used for 
such predictions has been kept fixed at NLO in all four cases. We con-

firm that accounting for theory errors improves perturbativity, also at 
the level of predictions.

14. Conclusions

In this work we summarised some of the results that will be pre-
sented in the upcoming NNPDF4.0MHOU publication. In particular, we 
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Fig. 6. Higgs production predictions obtained with NLO and NNLO PDFs with 
and without theory errors [11]. Note that the matrix element employed is al-

ways at NLO to facilitate the PDF comparison. It is relevant to note that the 
NLO-MHOU (in green) prediction is always closer to the NNLO (in blue or in 
orange) predictions than the NLO-CENTRAL (i.e. without theory errors) one (in 
red).

presented our ongoing work to produce the first NNLO PDF determina-

tion that systematically includes theory errors affecting the theoretical 
predictions entering in the fit. We stressed that accounting for the the-

ory errors is necessary to get faithful central values and uncertainties 
as theory errors are now of about the same size of experimental and 
methodological errors. We have outlined how the scale variations tech-

nique can be utilised to estimate theory errors and introduced a general 
framework, i.e. the theory covariance matrix formalism, for incorporat-

ing such theory errors into a PDF fit. We validated our estimation by 
examining the NLO and NNLO theory covariance matrices, as well as 
comparing our NLO estimate to the known NNLO-NLO shifts. Lastly, we 
presented our final results, focusing on the improvements on the per-

turbativity of both the PDFs themselves and of the predictions obtained 

using PDFs that account for theory errors. Additionally, our findings 
indicated that incorporating the theory covariance contribution to the 
total covariance matrix employed in the fit does not notably impact the 
ultimate uncertainties of the PDFs. On the contrary, it affects their cen-

tral values.
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