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1 Introduction

The classification program of 3d N = 2 dualities is a fruitful field of research that boosted
once localization techniques made powerful tools available [1]. Indeed after the discovery
of mirror symmetry [2–4] and of Aharony duality [5] (see also [6]), it took the community
a decade to have another class of examples of 3d N = 2 dualities [7, 8]. These examples
were derived from the type IIB Hanany Witten (HW) setup [9], and they were motivated
by the ABJ(M) results [10, 11].

The matrix integral for the 3d N = 2 three sphere partition function, derived in full
generality [12–15], allowed to check the validity of these dualities and to define new ones,
thanks to the possibility to engineer real mass and Higgs flows. Such flows are ubiquitous
in the analysis of 3d SUSY gauge theories, and they usually give rise to a chiral like field
content, for the case of SQCD with unitary gauge group, i.e. there is a different number of
fundamentals Nf and on anti-fundamentals Na. This difference requires a non zero Chern-
Simons (CS) coupling for the invariance under large gauge transformations. Surprisingly
the integral identities relating the three sphere partition functions of the new dualities [17]
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were already known to the mathematical community for U(Nc) SQCD. The classification
of chiral dualities for 3d N = 2 SQCD was then extended to the SU(Nc) case in [18].

A further goal has been to formulate new 3d N = 2 dualities analogous to the various
generalization of 4d N = 1 Seiberg-like dualities. The simplest extension, due to [19],
regarded the case of adjoint SQCD with An type superpotential. Two dualities have been
proposed, with [8] or without [20] CS action and with Nf = Na.1 The chiral case was
then partially studied in [22, 23] for the U(Nc) case, while a uniform treatment was then
provided in [24] for both the U(Nc) and SU(Nc) case, generalizing the case without adjoints
(corresponding to the case of A1 type superpotential).

It is natural to wonder if these constructions can be generalized to the case of SQCD
with two adjoints interacting through a Dn+2-type superpotential. The 4d duality was
found in [25], and the 3d analogous constructions have been discussed in [8] for the case
with non-vanishing CS and more recently in [26] for the case with vanishing CS level.
This last case, obtained by dimensional reduction of the 4d duality of [25], through the
reduction scheme of [27], reveals a novelty in the structure of the Coulomb branch of the
3d model, because of the presence of charge-two monopole operators in the superpotential
of the magnetic phase. Furthermore only the case of odd n has been treated (see also [28]
for further comments on the relation between the even n case and real mass flows from the
USp(2Nc) SQCD with two antisymmetric version of this duality).

Here we start by considering the 3d N = 2 two adjoint SQCD U(Nc)0 duality of [26]
and through a series of real mass and Higgs flows we generalize the web found in [17] and
in [24] for the cases of SQCD and An adjoint SQCD respectively. Furthermore we gauge
the topological symmetry generalizing the construction to the SU(Nc) case as well. We
corroborate the various steps of our derivation by reproducing the flow on the three sphere
partition function, showing the cancellation of the divergent contributions, matching of
the CS contact terms and proposing the new integral identities for the chiral dualities. We
conclude our analysis by studying the case of two antisymmetric USp(2Nc)2k SQCD with
Dn+2-type superpotential, previously uncovered in the literature.

2 Review

2.1 The 3d partition function

In this section we give some basic results on the three-sphere partition function useful
for our analysis. The partition function of a 3d N = 2 SQFT, computed through local-
ization techniques on the squashed three-sphere S3

b [15], corresponds to a matrix integral
over a variable associated to the real scalar of the vector multiplet in the Cartan of the
gauge group.

The general structure of the partition function consists of classical contributions from
the Fayet-Iliopulos (FI) and the CS terms in the action, and contributions coming from
the one-loop determinants for the chiral and vector multiplets. If we consider a 3d N = 2

1Actually more dualities have been obtained by adding monopole superpotentials [21], but here we will
not discuss such possibility.
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supersymmetric gauge theory with gauge group G at CS level k, the S3
b partition function

takes the following form

ZGk(µa;λ) = 1
|W |

∫ rankG∏
i=1

dσi√
−ω1ω2

exp
(
−iπkσ2

i − iπλσi
)

×
∏
I

Γh(ω∆I + ρI(σ) + ρ̃I(µ)) ·
∏
α∈G+

Γ−1
h (±α(σ))

(2.1)

where µa are real parameters associated to the flavour symmetry, while ρ̃(µ) and ρ(σ)
are the weights of the flavour and gauge symmetry respectively. The α are the positive
roots of the gauge symmetry and they parametrize the contributions from the one-loop
determinant of the vector multiplet. The contribution of the FI, corresponding to the real
mass for the topological symmetry U(1)J , is parameterized by λ. The R-charges of the
chiral fields are parameterized by ∆I . The gaussian factor corresponds to the CS level k.
The normalization |W | is the order of the Weyl group of G.

In our notation, the one-loop dererminants are given in terms of hyperbolic Gamma
functions which can be written as the following infinite product

Γh(x) = e
iπ

2ω1ω2

(
(x−ω)2−

ω2
1+ω2

2
12

)
∞∏
j=0

1− e
2πi
ω1

(ω2−x)
e

2πiω2j
ω1

1− e−
2πi
ω2 e
− 2πiω2j

ω2

(2.2)

where ω1 = ib, ω2 = i/b and b is the squashing parameter of the three-sphere S3
b which is

defined by b2(x2
1 +x2

2) + b−2(x2
3 +x2

4) = 1; the ω parameter is defined as 2ω = ω1 +ω2. We
will often use the compound notation where

Γh(x; y) ≡ Γh(x)Γh(y), Γh(±x) = Γh(x)Γh(−x). (2.3)

The hyperbolic Gamma function obeys useful identities that are going to play an
essential role in our analysis. The first is the inversion formula

Γh(2ω − x)Γh(x) = 1 (2.4)

which in field theory corresponds to integrating out fields appearing in the superpotential
through holomorphic mass terms. The second one gives the asymptotic behavior of the
hyperbolic Gamma function

lim
|x|→∞

Γh(x) = e−
iπ
2 sign(x)(x−ω)2 (2.5)

and it corresponds in field theory to integrating out a massive field with a large real
mass term.
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Focusing on the chiral models of our interest, the partition function of a U(Nc)k theory
with Nf fundamentals, Na anti-fundamentals and two adjoints X,Y , at CS level k is

Z(Nf ,Na)
U(Nc)k (~µ;~ν; τX ; τY ;λ) = Γh(τX)NcΓh(τY )Nc

Nc!
√
−ω1ω2

Nc

∫ Nc∏
i=1

dσi exp
(
−iπλσi − iπkσ2

i

)

×
∏

1≤i<j≤Nc

∏
β=X,Y

Γh (τβ ± (σi − σj))
Γh (±(σi − σj))

×
Nc∏
i=1

Nf∏
a=1

Γh(µa + σi) ·
Na∏
b=1

Γh(νb − σi)

 .
(2.6)

The parameters µa, νa refer to the real masses of the fundamentals and anti-fundamentals
while the τX,Y are the real masses of the adjoints.

The chiral SU(Nc)k case can be recovered by the U(Nc)k one by gauging the topological
U(1)J symmetry which at the level of the partition function amounts to adding a factor
1
2e
iπλNcmB and integrating over λ, imposing the tracelessness condition on the adjoint

fields [24, 29]

Z(Nf ,Na)
SU(Nc)k(~µ;~ν; τX ; τY ) = Γh(τX)Nc−1Γh(τY )Nc−1

Nc!
√
−ω1ω2

Nc

∫ Nc∏
i=1

dσi δ
(
Nc∑
i=1

σi

)
exp

(
−iπkσ2

i

)

×
∏

1≤i<j≤Nc

∏
β=X,Y

Γh (τβ ± (σi − σj))
Γh (±(σi − σj))

×
Nc∏
i=1

Nf∏
a=1

Γh(µa +mB + σi) ·
Na∏
b=1

Γh(νb −mB − σi)

 .
(2.7)

2.2 Non-chiral 3d dualities with adjoint matter

We start our analysis from the 3d N = 2 duality for U(Nc)0 SQCD with Nf pairs of
fundamentals and anti-fundamentals and two adjoints interacting through a Dn+2-type
superpotential. The duality has been obtained in [26], from the circle reduction of the
4d duality of [25], by following the prescription of [27]. In the 3d limit the duality is
characterized by the unusual presence of superpotential interactions involving (dressed)
monopole operators of charge two. The duality relates

• 3d N = 2 U(Nc)0 SQCD with Nf flavours Q, Q̃ with two adjoints fields X,Y and
superpotential

Wele = TrXn+1 + TrXY 2 (2.8)

with n odd.

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
0
3
2

Gauge Global
Field U(Nc) U(Ñc) SU(Nf )L SU(Nf )R U(1)A U(1)J U(1)R
Q � 1 � 1 1 0 rQ

Q̃ � 1 1 � 1 0 rQ

X Adj 1 1 1 0 0 2
n+1

Y Adj 1 1 1 0 0 n
n+1

V ±j` 1 1 1 1 −Nf ±1 (1− rQ)Nf + 2j+n`−(Nc−1)
n+1

W±q 1 1 1 1 −2Nf ±2 2(1− rQ)Nf + 2+4q−2(Nc−1)
n+1

q 1 � 1 � −1 0 2−n
n+1 − rQ

q̃ 1 � � 1 −1 0 2−n
n+1 − rQ

x 1 Adj 1 1 0 0 2
n+1

y 1 Adj 1 1 0 0 n
n+1

Mj` 1 1 � � 2 0 2rQ + 2j+n`
n+1

Ṽ ±j` 1 1 1 1 Nf ∓1 (rQ − 1)Nf + 2j+n`+(Nc+1)
n+1

W̃±q 1 1 1 1 2Nf ∓2 2(rQ − 1)Nf + 2+4q+2(Nc+1)
n+1

Table 1. Matter content of electric (upper) and magnetic (lower) U(Nc)0 theories.

• 3d N = 2 U(Ñc)0 SQCD with Ñc = 3nNf −Nc, Nf dual flavours q, q̃ and two adjoint
fields x, y interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)

+
∑

j=0,...,n−1
`=0,1,2
j`=0

V ±j,`Ṽ
±
n−j,2−` +

n−3
2∑

q=0
W±q W̃

±
n−3

2 −q
,

(2.9)

where singlets Mj,` are dual to the dressed mesons of the electric theory QXjY `Q̃, the
V ±j,` and W±q are the monopole operators of the electric theory with topological charges ±1
and ±2 respectively, acting as singlets in the magnetic phase. Notice that the monopole
operators V ±j,` enter in the superpotential with the condition j` = 0. This is going to be
the case also for some of our dualities, where the condition is going to be understood and
explicitly given only in the superpotential.

Observe that such monopole operators, defined through radial quantization from
states on S2 that carry a non-trivial magnetic flux background, are mapped to the states
TrXjY `| ± 1, 0 . . . , 0〉 and TrX2q| ± 1,±1 . . . , 0〉 respectively.

The global symmetry is SU(Nf )L × SU(Nf )R ×U(1)A ×U(1)J ×U(1)R, where U(1)A
is the axial symmetry, U(1)J is the topological symmetry and U(1)R is the R-symmetry.
The various fields transform as in table 1.
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The 4d/3d reduction of the duality of [25] has been recently studied also in [28] by
circle reduction of the conjectured identity between the 4d superconformal indices. The
final result, once the divergent contributions between the electric and the magnetic side of
the identity have been matched and canceled, corresponds to the identity that reproduces
the 3dN = 2 duality of [26] on the squashed three sphere partition function. The identity is

ZNfU(Nc)(µa;νa;τX ;τY ;λ)=ZNfU(Ñc)
(τX−τY −νa;τX−τY −µa;τX ;τY ;−λ)

×
n−1∏
j=0

2∏
`=0

Nf∏
a,b=1

Γh(jτX+`τY +µa+νb)

×
∏

j=0,...,n−1
`=0,1,2
j`=0

Γh

±λ2 +Nfω−
Nc−1

2 τX−
1
2

Nf∑
a=1

(µa+νa)+jτX+`τY



×
n−3

2∏
q=0

Γh

±λ+2Nfω+(Nc−1)τX−
Nf∑
a=1

(µa+νa)+(2q+1)τX

.
(2.10)

The parameters associated to the Nf fundamentals and anti-fundamentals satisfy the
constraint ∑Nf

a=1 µa = ∑Nf
a=1 νa = NfmA. The parameters associated to the adjoint are

fixed as
τX = 2ω

n+ 1 , τY = nω

n+ 1 (2.11)

reflecting the constraints imposed by the superpotential (2.8).

2.3 Classification of chiral-dualities

We conclude our review by surveying the case of chiral dualities for ordinary 3d N = 2
SQCD worked out in [17]. These dualities are characterized by a different number of
fundamentals Nf and anti-fundamentals Na, and by a CS level k. By comparing ∆F ≡
|Nf −Na| and 2k three different cases have been identified.

For historical reasons the classification proposed in [17] for such dualities reflects the
one worked out in the mathematical literature for the hyperbolic integral identities, corre-
sponding to the matching of the three sphere partition functions (see for example [30]). In
this case the chiral SQCD models are labelled by two non-negative integers [p,q]. These
integral identities are related to the physics of CS theories with chiral matter.

The relation between the integers [p,q] and the physical quantities can be made explicit
by defining these integers in terms of the effective CS level of a U(Nc)k theory

k± = k ± 1
2(Nf −Na). (2.12)

According to the signs of k±, there are four possible definitions

[p,q]a ≡ [−k+,−k−]a, [p,q]∗a ≡ [−k+, k−]∗a,
[p,q]b ≡ [k+, k−]b, [p,q]∗b ≡ [k+,−k−]∗b (2.13)

where the theory type a, b is chosen such that p,q > 0.
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This means that for any choice of k, Nf and Na one has to compute k± using (2.12)
and then one has to select in (2.13) the one with both p and q positive. The flip of the
sign of the CS term under duality imposes also that the dual of an a-theory is a b-theory
and viceversa [17].

We survey the classification the dualities of [17] following this notation and based
on the difference between ∆F and 2k (with k > 0, the case of k < 0 can be studied
analogously). In each case the electric theories are U(Nc)k SQCD with Nf fundamentals
and Na anti-fundamentals and vanishing superpotential. Depending on the value of [p,q]
one has

[p,0] ∆F = 2k Na < Nf ,

[p,q] ∆F < 2k Na 6= Nf ,

[p,q]∗ ∆F > 2k Na 6= Nf .

(2.14)

The gauge group of the dual magnetic chiral SQCD is

[p,0] U(Nf −Nc)−k ,

[p,q] U
(1

2(Nf +Na) + |k| −Nc

)
−k

,

[p,q]∗ U
(

max(Na, Nf )−Nc
)
−k

(2.15)

with Na fundamentals and Nf anti-fundamentals. In the last two cases the dual superpo-
tential is given by

Wmag = Mqq̃ (2.16)

while in the [p,0] case only there is an additional singlet T+ in the magnetic phase and
the superpotential is given by

Wmag = Mqq̃ + T+t− (2.17)

where T+ is dual to the electric monopole.
An analogous description holds for the SU(Nc) cases (see [18, 24]). Furthermore the

discussion has been extended to the case of adjoint SQCD with An-type superpotential
and unitary gauge group [22, 24]. In the following we will discuss the generalization to the
case of two adjoint SQCD with Dn+2-type superpotential and unitary gauge group.

3 Dualities for U(Nc) chiral SQCD with two adjoints

In this section, we study the chiral limit of the U(Nc)0 duality studied in [26]. We will use
the above-mentioned notation to differentiate the various theories with the addition of the
subscript [p,q]X,Y to underline the presence of two adjoints, similar to the notation of [24].

We introduce real mass flows on the electric side by turning on background fields for the
flavour symmetry and giving large vacuum expectation values to the scalars in the vector
multiplet of the flavour symmetry. This flow will lead in the IR to [p,q]X,Y theories. Then
we turn on background fields for the gauge symmetry on the magnetic side and consider
large vacuum expectation values to the scalars.
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This procedure is rephrased on the partition function (2.10) by considering consistent
assignments of shifts on the parameters associated to the flavour and to the gauge sym-
metry. For large shifts the asymptotic of the integral identities gives new finite identities
for the partition functions after factoring and canceling out the divergent contributions
between the electric and magnetic phases.

3.1 The [p, p]X,Y case

The [p,p]X,Y duality (corresponding to the one studied in [8]) is obtained from the [0,0]X,Y
duality with Nf + k flavours by assigning a positive large real mass to k of them. In
the magnetic phase k dual quarks and anti-quarks are shifted with opposite signs while
2n(k2 + 2Nfk) components of the (dressed) mesons acquire a large mass accordingly. In
the IR, this will lead to the following duality:

• U(Nc)k SQCD with Nf fundamentals and anti-fundamentals Q, Q̃ and two adjoints
X,Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (3.1)

• U(Ñc)−k SQCD, with Ñc=3n(Nf+|k|)−Nc, Nf fundamentals and anti-fundamentals
q, q̃ and two adjoints x, y, interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−`y2−lq̃

)
. (3.2)

The two theories acquire a CS level k and −k respectively. The CS term lifts the Coulomb
branch of the U(Nc) model. It reflects in the dual side to integrate out the singlets corre-
sponding to the monopole of the electric phase.

To reproduce the duality on the partition function, we start from the equality (2.10)
and consider the following shifts of the real masses

mA → mA + k
Nf+ks

ma → ma − k
Nf+ks a = 1, . . . , Nf

ma → ma + Nf
Nf+ks a = 1, . . . , k

na → na − k
Nf+ks a = 1, . . . , Nf

na → na + Nf
Nf+ks a = 1, . . . , k

(3.3)

where we split the abelian axial part, mA, of the real masses for the flavour symmetry from
its non-abelian part ma, na.

At this level, when the shift is finite, the equality (2.10) still holds. To reproduce
the flow, we need study the large s limit on the partition functions by making use of the
asymptotic behavior of the hyperbolic Gamma function (2.5). One needs to be careful
when taking this limit since an infinite shift in the variables makes the integrals divergent.
Therefore we need check that in the limit the leading saddle point contributions cancel
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between the electric and magnetic partition functions [31]. We are left then with the
equality between

Zele =Z(Nf ,Nf )
U(Nc)k (µa; νa; τX ; τY ;λ) (3.4)

and

Zmag = eiπφe−
3iπ

4 nλ2Z(Nf ,Nf )
U(Ñc)−k

(τX − τY − νa; τX − τY − µa; τX ; τY ;−λ)

×
n−1∏
j=0

2∏
`=0

Nf∏
a,b=1

Γh(jτX + `τY + µa + νb),
(3.5)

where µa = ma+mA and νb = nb+mA, satisfying the constraint∑Nf

a=1 µa =
∑Nf

b=1 νb = NfmA.
There is a non-trivial complex exponential phase in the identity between Zele and Zmag.

This phase is essential for matching the partition functions of the two dual theories. It was
shown [32, 33] that the exponents are related to CS contact terms in two-point functions
of global symmetry currents. The complex phase φ in this case has the following form

φ = 2NfmAτY (Ñc − 2Nc + 3Nf + 3k(n− 1))− τ2
X

8

− 1
4τXτY

(
(1 + n+ n2) + 6N2

f + k2 + 6N2
c − 4Nf (k + 3Nc) + 4(Nc + Ñc)(Nf + k)

− (12k2 + 12NfNc + 18kNc)n+ 6(N2
f + 4Nfk + 4k2)n2

)
+ 3nNfm

2
A(k −Nf )

+ 3
2kn

Nf∑
a=1

(m2
a + n2

a).

(3.6)

This phase can be reproduced from the computation of the contact terms by a linear
combination of ∆kij ≡ keleij − kmag

ij , where the indices run over the abelian symmetries.
Explicitly, for this flow, the non-zero contact terms from the field theory [16, 17] are
given by

keleAA = 2× 1
2NcNf ,

kmag
AA = −2× 1

2ÑcNf + 6nN2
f ≡ keleAA − 3nNf (k −Nf ),

kelerA = 2× 1
2NcNf (∆− 1),

kmag
rA = −2× 1

2ÑcNf

(2− n
n+ 1 −∆− 1

)
+ 1

2N
2
f

∑
j=0,...,n−1
`=0,1,2

(
2∆ + 2j + n`

n+ 1 − 1
)

kelerr = 2× 1
2NcNf (∆− 1)2 + 1

2N
2
c

( 2
n+ 1 − 1

)2
+ 1

2N
2
c

(
n

n+ 1 − 1
)2
− 1

2N
2
c
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kmag
rr = −2× 1

2ÑcNf

(2− n
n+ 1 −∆− 1

)2
− 1

2N
2
c

( 2
n+ 1 − 1

)2
− 1

2N
2
c

(
n

n+ 1 − 1
)2

+ 1
2N

2
f

∑
j=0,...,n−1
`=0,1,2

(
2∆ + 2j + n`

n+ 1 − 1
)2

+ 1
2N

2
c

(3.7)

from which we find

∆kAA = 3nNf (k −Nf )m2
A

∆krA = 6nNf

1 + n
(Nf − k −Nc + nNf + 2nk)mAω

∆krr = − 1
2(n+ 1)2

(
(4n− 1)

(
9k2n2 − 6knNc + 2N2

c

)
− 6nNf

(
−k

(
8n2 + n− 1

)
+ 3nNc +Nc

)
+ n(3n(6n+ 1) + 5)N2

f

)
(3.8)

when setting ∆ = 1 and making explicit the real masses for the symmetries. For the other
dualities, the calculation is similar and we won’t carry it out explicitly.

Observe that in this case we have only a discrepancy in ∆krr with respect to the result
red from the exponent (3.6) in the partition function. This is nevertheless unphysical
because it only acts as a pure phase in the identity between Zele and Zmag.

3.2 The [p, q]X,Y case

The flow to the [p,q]X,Y duality is obtained starting from the [0,0]X,Y U(Nc)0 duality
with Nf flavours by assigning a positive large real mass to Nf − Nf1 fundamentals and
Nf −Nf2 anti-fundamentals. In the IR, this will lead the following duality:

• U(Nc)k SQCD with Nf1 fundamentals and Nf2 anti-fundamentals Q, Q̃, two adjoints
X and Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (3.9)

• U(Ñc)−k SQCD, with Ñc = 3nNf −Nc, Nf2 fundamentals q, Nf1 anti-fundamentals
q̃ and two adjoint fields x, y, interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)
. (3.10)

The CS levels of the two phases are given by k = Nf − 1
2(Nf1 +Nf2) and −k respectively.

The Coulomb branch of the electric phase is lifted and in the dual phase the dressed electric
monopoles acting as singlets are now massive and we integrated them out.
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To reproduce the duality on the partition function, we start from the equality (2.10)
and consider the following shifts in the real masses

mA → mA + 2Nf−Nf1−Nf2
2Nf s

ma → ma −
Nf−Nf1
Nf

s a = 1, . . . , Nf1

ma → ma + Nf1
Nf

s a = 1, . . . , Nf −Nf1

na → na −
Nf−Nf2
Nf

s a = 1, . . . , Nf2

na → na + Nf2
Nf

s a = 1, . . . , Nf −Nf2

σi → σi −
Nf1−Nf2

2Nf s i = 1, . . . , Nc

σ̃i → σ̃i −
Nf1−Nf2

2Nf s i = 1, . . . , 3nNf −Nc

λ→ λ+ (Nf2 −Nf1)s .

(3.11)

We study the limit of large s as stated before, checking that the divergent contributions
cancel between the electric and magnetic phases. We are left with the equality between

Zele = Z(Nf1 ,Nf2 )
U(Nc)k

(
µa; νb; τX ; τY ; λ̂

)
(3.12)

where
λ̂ = λ+ (Nf1 −Nf2)(mA − ω), (3.13)

and
Zmag = eiπφe−

3iπ
4 nλ2Z(Nf2 ,Nf1 )

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ; λ̃)

×
n−1∏
j=0

2∏
`=0

Nf1∏
a=1

Nf2∏
b=1

Γh(jτX + `τY + µa + νb)
(3.14)

where
λ̃ = −λ− (Nf1 −Nf2)(mA − τX + τY + ω). (3.15)

We set µa = ma+mA and νb = nb+mA, satisfying the constraint∑Nf

a=1 µa =
∑Nf

b=1 νb = NfmA.
The complex exponent φ, necessary for the equality between the partition functions,

has the following form

φ = −3
2mAτY

(
(1 + n)(Nf1 +Nf2)(2k +Nf1 +Nf2)− 2Ñc(Nf1 +Nf2) + 4Nf1Nf2(n− 2)

)
− τ2

X

8 −
τXτY

4
(
(1 + n+ n2) + 11Nf1Nf2 + 6n(n− 2)Nf1Nf2 − 6NcÑc

+ 1
4(1 + 24n2)(2k +Nf1 +Nf2)2 − 3(Nc − Ñc(1− n))(Nf1 +Nf2)

− 3
2(2k +Nf1 +Nf2)(Nf1 +Nf2)(1− n+ n2)

)
+ 3

4nm
2
A

(
(Nf1 +Nf2)(2k +Nf1 +Nf2)− 8Nf1Nf2

)
+ 3

4n

(2k +Nf1 −Nf2)
Nf1∑
a=1

m2
a + (2k −Nf1 +Nf2)

Nf2∑
a=1

n2
a

.
(3.16)

– 11 –



J
H
E
P
0
2
(
2
0
2
3
)
0
3
2

Again the phase in (3.16) can be reproduced from the difference between the contact terms
for the global abelian symmetries of the electric and the magnetic theories. We observe
here the same unphysical mismatch in ∆krr discussed in the [p,p]X,Y case.

3.3 The [p, 0]X,Y case

The flow to the [p,0]X,Y theory, we start from the [0,0]X,Y U(Nc)0 duality withNf flavours,
and give a positive large real mass to Nf −Nf1 fundamentals. In the IR, this will lead the
following duality:

• U(Nc)k theory with Nf1 fundamentals and Nf anti-fundamentals Q, Q̃, two adjoint
X and Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (3.17)

• U(Ñc)−k, where Ñc = 3nNf −Nc, with Nf fundamentals and Nf1 anti-fundamentals
q, q̃, two adjoint fields x, y interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)

+
∑

j=0,...,n−1
`=0,1,2
j`=0

V +
j,`Ṽ

+
n−j,2−` +

n−3
2∑

q=0
W+
q W̃

+
n−3

2 −q
.

(3.18)

The CS levels of the two phases are given by k = 1
2(Nf −Nf1) and −k respectively. Half

of the Coulomb branch is left in this case and it reflects in the presence of the singlets V +
j,`

and W+
q in the spectrum of the dual model.

To reproduce this duality on the partition function, we start from the equality (2.10)
and consider the following shifts for the real masses

mA → mA + Nf−Nf1
2Nf s

ma → ma −
Nf−Nf1
Nf

s a = 1, . . . , Nf1

ma → ma + Nf1
Nf

s a = 1, . . . , Nf −Nf1

σi → σi + Nf−Nf1
2Nf s i = 1, . . . , Nc

σ̃i → σ̃i + Nf−Nf1
2Nf s i = 1, . . . , 3nNf −Nc

λ→ λ+ (Nf −Nf1)s

(3.19)

where we split the axial abelian part, mA, for the flavour symmetry from its non-abelian
part ma, na.

We study the large s limit as stated before, checking that the leading saddle point
contributions cancel between the electric and magnetic partition functions, and we are left
with the equality between

Zele =Z(Nf1 ,Nf )
U(Nc)k (µa; νa; τX ; τY ; λ̂) (3.20)
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where
λ̂ = λ+ (Nf −Nf1)(mA − ω) (3.21)

and

Zmag = eiπφe−
1
4λ( 3

2nλ−η)Z(Nf ,Nf1 )
U(Ñc)−k

(τX − τY − νa; τX − τY − µa; τX ; τY ; λ̃)

×
n−1∏
j=0

2∏
`=0

Nf1∏
a=1

Nf∏
b=1

Γh(jτX + `τY + µa + νb)

×
∏

j=0,...n−1
`=0,1,2
j`=0

Γh

λ
2 +Nfω −

Nc − 1
2 τX −

1
2

Nf∑
a=1

(ma + na) + jτX + `τY



×
n−3

2∏
q=0

Γh

λ+ 2Nfω − (Nc − 1)τX −
Nf∑
a=1

(ma + na) + (2q + 1)τA



(3.22)

where µa = ma + mA and νb = nb + mA, which solve the constrain ∑Nf
a=1 µa = ∑Nf

b=1 νb =
NfmA, and

λ̃ = −λ+ (Nf −Nf1)(mA − τX + τY + ω), (3.23)

η = τX + 6τY − 2ω + n
(
6(2k +Nf1)(ω −mA) + τX(2n− 3Nc)− 4ω

)
. (3.24)

The complex exponent φ necessary for the equality between the partition functions to hold
has the following form

φ = 3mAτY ((2k +Nf1)2(n− 2) + 3Nf1(2k +Nf1)−NcNf1)

− τ2
X

16 −
τXτY

8
(
(1 + n+ n2) + 6N2

c + 2(Ñc +Nc)2 − 20k(2k +Nf1)

+ 6NcNf1(n− 2) + 6Nf1(2k +Nf1)(1− 2n2) + 6n(2k +Nf1)(4k + 2Nf1 − 3Nc)
)

+ 3
2m

2
An(8k2 + 2kNf1 −N2

f1) + 3kn
Nf∑
a=1

nsa .

(3.25)

Again the phase in (3.16) can be reproduced from the difference between the contact terms
for the global abelian symmetries of the electric and the magnetic theories. We observe here
the same unphysical mismatch in ∆krr discussed in the [p,p]X,Y and in the [p,q]X,Y case.

3.4 The [p, q]∗X,Y case

The flow to the [p,q]∗X,Y theory, we start from the [0,0]X,Y U(Nc)0 duality with Nf flavours
and give a positive large real mass to Nf1 anti-fundamentals and a negative large real mass
to Nf2 anti-fundamentals. In the IR, this will lead the following duality:
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• U(Nc)k theory with Nf fundamentals and Na = Nf − Nf1 − Nf2 anti-fundamentals
Q, Q̃, two adjoint X and Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (3.26)

• U(Ñc)−k, where Ñc = 3nNf −Nc, with Na fundamentals and Nf anti-fundamentals
q, q̃, two adjoint fields x, y interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)
. (3.27)

The CS levels of the two phases are given by k = 1
2(Nf1 −Nf2) and −k respectively. The

CB is lifted and the monopoles acting as singlets in the magnetic theory are integrated out.
To reproduce the duality on the partition function, we start from equality (2.10) and

consider the following shifts in the real masses

mA → mA + Nf1−Nf1
2Nf s

na → na −
Nf1−Nf2

Nf
s a = 1, . . . , Nf −Nf1 −Nf2

na → na + Nf−Nf1 +Nf2
Nf

s a = 1, . . . , Nf1

na → na −
Nf+Nf1−Nf2

Nf
s a = 1, . . . , Nf2

σi → σi + Nf2−Nf1
2Nf s i = 1, . . . , Nc

σ̃i → σ̃i + Nf2−Nf1
2Nf s i = 1, . . . , 3nNf −Nc

λ→ λ− (Nf1 +Nf2)s

(3.28)

where we split the abelian axial part mA of the real masses for the flavour symmetry from
its non abelian part ma, na.

We study the large s limit by making use of the asymptotic behavior of the hyperbolic
Gamma function (2.5). We check that the leading saddle point contributions cancel between
the electric and magnetic partition functions, and we are left with the equality between

Zele =Z(Nf ,Na)
U(Nc)k (µa; νa; τX ; τY ; λ̂) (3.29)

where
λ̂ = λ+ (Nf1 −Nf2)(mA − ω), (3.30)

and

Zmag = eiπφeiπλ(mA(Nc+Ñc)−3τY (Nf (n+1)−Nc))Z(Nf ,Nf1 )
U(Ñc)−k

(τX − τY − νa; τX − τY − µa; λ̃)

×
n−1∏
j=0

2∏
`=0

Nf∏
a=1

Na∏
b=1

Γh(jτX + `τY + µa + νb)

(3.31)

where
λ̃ = −λ− (Nf1 −Nf2)(mA − τX + τY + ω), (3.32)

with µa = ma +mA and νb = nb +mA solving the constrain ∑Nf
a=1 µa = ∑Nf

b=1 νb = NfmA.
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The complex exponent φ necessary for the equality between the partition functions to
hold has the following form

φ = (Nf1 −Nf2)

3mAτY (Nc − 3Nf ) + τXτY
4 (3Nc(n− 2) +Nf (8− 6n2))

+9
2m

2
AnNf + 3

2n
Nf∑
a=1

m2
a

 .
(3.33)

In this case the CS contact terms can be computed using the reduction of the [p,q]∗X,Y
duality to the [0,0]X,Y one. This requires a Higgsing in the magnetic phase and we obtain
the same results discussed above. We match all the contributions except the one of the
∆krr, but this mismatch is unphysical because it involves a pure phase.

4 Dualities for SU(Nc) chiral SQCD with two adjoints

As discussed in section 2.1, one can start from the [0,0] U(Nc)0 duality and obtain a
duality for SU(Nc)0 by gauging the topological U(1)J symmetry [27]. This is achieved
by introducing a dynamical background multiplet for the topological symmetry. This
procedure introduces a mixed CS term in the action

L ⊃ AU(1) ∧ dTrAU(Nc) (4.1)

at level −1 between the new U(1) symmetry coming from the topological U(1)J and the
abelian subgroup of the gauge symmetry U(1) ⊂ U(Nc). In addition a new topological
U(1)J ′ is generated from the hodge dual of the gauged U(1)J field strength which is con-
served by virtue of the Bianchi identity. In the absence of monopoles, which are charged
under the gauged topological symmetry, the mixed CS term makes the two U(1) photons
massive and can be integrated out in the IR. In this case, the gauge group becomes SU(Nc)0
and the topological U(1)J ′ can be considered as the baryonic symmetry U(1)B under which
the flavour has canonically normalized charge 1/Nc.

In presence of fields charged under U(1)J the analysis has to be modified. It is the case
for example of many of the dual phases, where the electric monopoles are singlets in the
dual description. It follows that we cannot decouple the dynamics of the gauged U(1)J and
of the U(1) ⊂ U(Ñc) symmetries. In this case, the magnetic side will be a U(Ñc)0 × U(1)
gauge theory with a level −1 mixed CS term. In some case some further local duality
simplifies such sectors. For example when considering Aharony duality one can use the
SQED/XYZ duality.

Another common feature of the gauging of the topological symmetry leading from
U(Nc) to SU(Nc) in presence of adjoint matter, consists of imposing the tracelessness
condition [24, 29] on the adjoints. This can be achieved in two ways: one can either add a
flipping term in the superpotential on the magnetic side

Wflip = α0 Trx+ β0 Tr y, (4.2)
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which imposes then the tracelessness of the adjoints by the F-term equations for the singlets
α0 and β0, or consider the traceless adjoint representation of U(Ñc).

The procedure just described gives the following duality

• 3d N = 2 SU(Nc)0 SQCD with Nf flavours Q, Q̃ and two adjoint fields X,Y , with
superpotential

Wele = TrXn+1 + TrXY 2. (4.3)

• 3d N = 2 U(Ñc)0 × U(1) SQCD with Ñc = 3nNf −Nc, Nf dual flavours q, q̃ in the
non-abelian sector and two adjoints X,Y , n+ 2 pairs of fields V ±j,` and 1

2(n− 1) pairs
of fields W±q in the abelian gauge sector with opposite gauge charge. These fields
interact with the dressed monopoles and anti-monopoles of the U(Ñc) sector, that in
this case carry ±1 charge under the new U(1) gauged factor as well. There is also
a level −1 CS level between the abelian U(1) subgroup in the U(Ñc) and the other
U(1) gauge factor. The superpotential is given by

Wmag = Trxn+1 + Trxy2 + α0 Trx+ β0 Tr y + Tr
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)

+
∑

j=0,...,n−1
`=0,1,2
j`=0

V ±j,`Ṽ
±
n−j,2−` +

n−3
2∑

q=0
W±q W̃

±
n−3

2 −q
.

(4.4)

The non-anomalous global symmetry of the theories is SU(Nf )L × SU(Nf )R × U(1)A ×
U(1)B ×U(1)R under which the fields are charged as in table 2.

At the level of the partition function, the gauging procedure, is implemented by adding
a factor 1

2e
iπλNcmB to both side of the identity (2.10) and then integrating over λ. The

integral over the FI corresponds to the gauging of the U(1)J while the added exponential
factor carries the additional baryonic symmetry, whose real mass we label as mB. The
numerical factor 1/2 is added to ensure the proper normalization of the V ±j,` and W±q
under the gauged U(1)J . On the electric side, the only dependence on the FI is in the
exponential term that can be integrated upon shifting the Cartan variables by mB. This
will lead to flavour matter fields carrying baryonic charge. On the magnetic side, the fields
V ±j,` and W±q are charged under the topological U(1)J and therefore the integration is not
straightforward, i.e. a local mirror duality should be necessary to get rid of this sector. For
our purpose we will leave the integration on λ explicit on both sides whilst shifting the
Cartan on the electric side, making explicit the baryonic symmetry of the matter. This
will lead us to the identity between the electric partition function

Zele = Γh(τX)Nc−1Γh(τY )Nc−1

Nc!
√
−ω1ω2

Nc

∫
dξ
∫ Nc∏

i=1
dσi exp(−2iπξσi)

×
Nc∏
i=1

Nf∏
a=1

Γh(µa +mB + σi; νa −mB − σi)
∏

1≤i<j≤Nc

∏
β=X,Y

Γh(τβ ± (σi − σj))
Γh(±(σi − σj))

(4.5)
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Gauge Global
Field SU(Nc)0 SU(Nf )L SU(Nf )R U(1)A U(1)B U(1)R
Q 1 1 1 rQ

Q̃ 1 1 −1 rQ

X Adj 1 1 0 0 2
n+1

Y Adj 1 1 0 0 n
n+1

Field U(Ñc)0×U(1) SU(Nf )L SU(Nf )R U(1)A U(1)B U(1)R
q 0 1 −1 0 2−n

n+1 − rQ
q̃ 0 1 −1 0 2−n

n+1 − rQ
x Adj 0 1 1 0 0 2

n+1

y Adj 0 1 1 0 0 n
n+1

Mj` 10 � � 2 0 2rQ + 2j+n`
n+1

V ±j` 1±1 1 1 −Nf ±Nc (1− rQ)Nf + 2j+n`−(Nc−1)
n+1

W±q 1±2 1 1 −2Nf ±Nc 2(1− rQ)Nf + 2+4q−2(Nc−1)
n+1

Table 2. Matter content of the electric (upper) and magnetic (lower) theories after gauging the
topological symmetry. The subscript shows the charge of the fields under the gauged U(1)J .

and the magnetic partition function

Zmag = Γh(τX)Ñc−1Γh(τY )Ñc−1

Ñc!
√
−ω1ω2

Ñc

n−1∏
j=0

2∏
`=0

Nf∏
a,b=1

Γh(jτX + `τY +µa + νb)

×
∫

dξ
∫ Ñc∏

i=1
dσi exp

(
2iπξ

(
σi + Nc

Ñc
mB

)) Nf∏
a=1

Γh(τX − τY − νa +σi; τX − τY −µa−σi)

×
∏

1≤i<j≤Ñc

∏
β=X,Y

Γh(τβ ± (σi−σj))
Γh(±(σi−σj))

×
∏

j=0,...,n−1
`=0,1,2
j`=0

Γh

±ξ+Nfω−
Nc− 1

2 τX −
1
2

Nf∑
a=1

(µa + νa) + jτX + `τY



×

n−3
2∏

q=0
Γh

±2ξ+ 2Nfω+ (Nc− 1)τX −
Nf∑
a=1

(µa + νa) + (2q+ 1)τX


(4.6)

where we rescaled the FI as λ = 2ξ.2 The addition of the flipping terms in the magnetic
superpotential is reflected on the partition function by an additional Γh(2ω− τX ; 2ω− τY )
factor. Using the inversion formula (2.4), these factors cancel out with a factor of Γh(τX)
and Γh(τY ).

2With this normalization, the exponential term for the FI has an added factor 2 which will be implicit.
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4.1 The [p, p]X,Y case

To flow to the [p,p]X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf + k

fundamentals and anti-fundamentals and give a positive large, but finite, real mass to k
flavours. In the IR, this will lead to the following duality

• SU(Nc)k SQCD with Nf fundamentals and anti-fundamentals Q, Q̃, two adjoints
X,Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (4.7)

• U(Ñc)−k×U(1)3n SQCD with Ñc = 3n(Nf + |k|)−Nc, a level −1 mixed CS, Nf dual
fundamentals and anti-fundamentals q, q̃, two traceless adjoint fields x, y interacting
through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)
. (4.8)

The fields V ±j,` and W±q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k and −k respectively. From here on
we omit in the magnetic phase the singlets needed to make the adjoint traceless since we
can integrate them out in the IR.

At this stage, one could also decouple the dynamics of the massive photons in the two
gauge U(1) in the magnetic side, because we do not have matter charged under U(1)J .

On the partition function, the real mass flow that produces the above-mentioned du-
ality, is given by the assignment of real masses of (3.3). The real mass associated to the
baryonic U(1)B symmetry does not get shifted.

We study the limit of large s on both the electric (4.5) and magnetic (4.6) parti-
tion functions by making use of the asymptotic behavior of the hyperbolic Gamma func-
tion (2.5). We check that the leading saddle point contributions cancel between the electric
and magnetic phases, and we are left with the equality between

Zele = Z(Nf ,Nf )
SU(Nc)k(µa; νa; τX ; τY ) (4.9)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =
n−1∏
j=0

2∏
`=0

Nf∏
a,b=1

Γh(jτX + `τY + µa + νb)

× eiπφ
∫

dξ eiπ(2mBNcξ−3nξ2)Z(Nf ,Nf )
U(Ñc)−k

(τX − τY − νa; τX − τY − µa; τX ; τY ;−ξ).

(4.10)

From (4.10) we can see the level 3n CS of the U(1) gauge factor and the −1 mixed CS,
in the term mBξ, between the abelian subgroup of the U(Ñc) and the abelian U(1) gauge
group. Again the real masses satisfy the constrain ∑Nf

a=1 µa = ∑Nf
a=1 νa = NfmA where

µa = ma +mA and νa = na +mA.
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The complex exponent φ needed for the matching is given by

φ = 3m2
AnNf (k −Nf )− km2

BNc + τX
2 ωmA

(
3n(n+ 1)(2N2

f + k2 − (2n2 + 1)(Nf + k)

− 3Ncn(Nf − k) + kNf (6n(n− 1) + 2Nc)
)
− τ2

X

8
(
1 +Nc(2k + 1)− 2(Nf + k)

)
− τXτY

8
(
(2n2 + 8n− 1)− 4(Nf + k)(1 + 2n+ 2n2) + 12(1 + 2n+ n2)N2

f

+ (54n2 + 33n− 1)k2 + 2(30n2 + 33n− 1)Nfk − 12(n+ 1)NfNc − 4(6n+ 1)kNc

+Nc(3Nc + 4n)
)

+ 3
2kn

Nf∑
a=1

(
m2
a + n2

a

)
.

(4.11)

4.2 The [p, q]X,Y case

To flow to the [p,q]X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf funda-
mentals and anti-fundamentals and give a positive large real mass to Nf−Nf1 fundamentals
and Nf −Nf2 anti-fundamentals. This will lead to the following duality

• SU(Nc)k SQCD with Nf1 fundamentals and Nf2 anti-fundamentals Q, Q̃, two adjoints
X,Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (4.12)

• U(Ñc)−k × U(1)3n SQCD with Ñc = 3nNf − Nc, a level −1 mixed CS between the
two U(1)s, Nf2 dual fundamentals and Nf1 dual anti-fundamentals q, q̃, two traceless
adjoint fields x, y interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)
. (4.13)

The fields V ±j,` and W±q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k = Nf − 1

2(Nf1 +Nf2) and −k
respectively.

To reproduce this duality at the level of the partition function, we start from the
equality between (4.5) and (4.6) and consider the following shifts in the real masses

mA → mA + 2Nf−Nf1−Nf2
2Nf s

mB → mB −
Nf1−Nf2

2Nf s

ma → ma −
Nf−Nf1
Nf

s a = 1, . . . , Nf1

ma → ma + Nf1
Nf

s a = 1, . . . , Nf −Nf1

na → na −
Nf−Nf2
Nf

s a = 1, . . . , Nf2

na → na + Nf2
Nf

s a = 1, . . . , Nf −Nf2

σ̃i → σ̃i −
Nf1−Nf2

2Nf s i = 1, . . . , 3nNf −Nc

ξ → ξ − Nf1−Nf2
2 s .

(4.14)
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We study the limit of large s on both the electric (4.5) and magnetic (4.6) partition functions
by making use of the asymptotic behavior of the hyperbolic Gamma function (2.5). We
check that the leading saddle point contributions cancel between the electric and magnetic
phases, and we are left with the equality between

Zele = Z(Nf1 ,Nf2 )
SU(Nc)k (µa; νa; τX ; τY ) (4.15)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =
n−1∏
j=0

2∏
`=0

Nf1∏
a=1

Nf2∏
b=1

Γh(jτX + `τY + µa + νb)

× eiπφ
∫

dξ eiπ(2mBNcξ−3nξ2)Z(Nf1 ,Nf2 )
U(Ñc)−k

(τX − τY − νa; τX − τY − µa; τX ; τY ; ξ̂)

(4.16)
where

ξ̂ = ξ − Nf1 −Nf2

2 (mA − τX + τY + ω). (4.17)

From (4.16) we can see the level 3n CS of the U(1) gauge factor and the −1 mixed CS,
in the term mBξ, between the abelian subgroup of the U(Ñc) and the abelian U(1) gauge
group. Again the real masses satisfy the constrain ∑Nf

a=1 µa = ∑Nf
a=1 νa = NfmA where

µa = ma +mA and νa = na +mA.
The complex exponent φ needed for the matching is given by

φ = 3m2
An
(
N2
f −Nf (4Nf2 + k) + 2Nf2(Nf2 + 2k))

)
−m2

BkNc

+ τX
2 mA

(
2nN2

f2(n− 3) + 3nN2
f (3n− 1) + 2k(Nc(1 + 3n) + 3nNf (n− 3))

+Nf (2 + 2n2 + 12kn2 + 3nNc + 6nNf2(n− 3))
)

+ 2mBωNc(Nf2 −Nf + k)

− τ2
X

8
(
1 + 2Nf +Nc(1 + 2k)

)
− τXτY

8
(
− 1 + 8n+ 2n2 +N2

f (−1 + 33n+ 6n2)

+ 2Nf2k(−13 + 9n− 6n2) +Nf2(−13 + 9n− 6n2) + 2Nf

(
(−2 + 13Nf2 − 6Nc)

− n(4 + 9Nf2 + 6Nc) + n2(−4 + 6Nf2 + 24k)
)

+Nc(4n+ k(8− 12n))

+ 3N2
c

)
+ 3

2n

(Nf −Nf2)
Nf1∑
a=1

µ2
a + (Nf −Nf1)

Nf2∑
a=1

ν2
a

.
(4.18)

4.3 The [p, 0]X,Y case

To flow to the [p,0]X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf flavours
and give a positive large real mass to Nf−Nf1 fundamentals. This will lead to the following
duality

• SU(Nc)k SQCD with Nf1 fundamentals and Nf anti-fundamentals Q, Q̃, two adjoints
X and Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (4.19)
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• U(Ñc)−k × U(1) 3
2n

SQCD with Ñc = 3nNf −Nc, a level −1 mixed CS between the
two U(1)s, Nf dual fundamentals and Nf1 dual anti-fundamentals q, q̃, two traceless
adjoints x, y interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)

+
∑

j=0,...,n−1
`=0,1,2
j`=0

V +
j,`Ṽ

+
n−j,2−` +

n−3
2∑

q=0
W+
q W̃

+
n−3

2 −q
.

(4.20)

The fields V ±j,` and W±q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k = 1

2(Nf −Nf1) and −k respectively.
To reproduce this duality on the partition function, we start from the equality be-

tween (4.5) and (4.6) and consider the following shifts of the real masses

mA → mA + Nf−Nf1
2Nf s

mB → mB + Nf−Nf1
2Nf s

ma → ma −
Nf−Nf1
Nf

s a = 1, . . . , Nf1

ma → ma + Nf1
Nf

s a = 1, . . . , Nf −Nf1

σ̃i → σ̃i + Nf−Nf1
2Nf s i = 1, . . . , 3nNf −Nc

ξ → ξ + Nf−Nf1
2 s .

(4.21)

We study the limit of large s on both the electric (4.5) and magnetic (4.6) parti-
tion functions by making use of the asymptotic behavior of the hyperbolic Gamma func-
tion (2.5). We check that the leading saddle point contributions cancel between the electric
and magnetic phases, and we are left with the equality between

Zele = Z(Nf1 ,Nf )
SU(Nc)k (µa; νa; τX ; τY ) (4.22)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =
n−1∏
j=0

2∏
`=0

Nf1∏
a=1

Nf∏
b=1

Γh(jτX + `τY + µa + νb)

× eiπφ
∫

dξ ei
π
2 ξ(η−3nξ)Z(Nf ,Nf1 )

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ; ξ̂)

×
n−3

2∏
q=0

Γh

2ξ + 2Nfω − (Nc − 1)τX −
Nf∑
a=1

(ma + na) + (2q + 1)τA


×

∏
j=0,...n−1
`=0,1,2
j`=0

Γh

ξ +Nfω −
Nc − 1

2 τX −
1
2

Nf∑
a=1

(ma + na) + jτX + `τY


(4.23)
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where

ξ̂ = −ξ + Nf −Nf1

2 (mA − τX + τY + ω),

η = 4mBNc − 6nmANf + (1− 3nNc + 2n2)τX + 6τY − 2ω(1 + 2n− 3nNf ).
(4.24)

From (4.23) we can see the level 3
2n CS of the U(1) gauge factor and the −1 mixed CS,

in the term mBξ, between the abelian subgroup of the U(Ñc) and the abelian U(1) gauge
group. Again the real masses satisfy the constrain ∑Nf

a=1 µa = ∑Nf
a=1 νa = NfmA where

µa = ma +mA and νa = na +mA.
The complex exponent φ needed for the matching is given by

φ = −3
2m

2
AnNf (Nf − 6k)− kNcm

2
B + τX

4 mA

(
6nN2

f (n+ 1) + 4kNc(1 + 3n)

+Nf

(
1 + 2n2 + 3nNc + 12kn(3 + n)

))
+ 2kNcmBω −

τ2
X

16
(
1− 2Nf +Nc(1 + 4k)

)
− τXτY

16
(
(−1 + 8n+ 2n2) + 3N2

c + 12N2
f (1 + n)2 + 4Nf

(
− (1 + 2n+ 2n2)

− 3Nc(1 + n) + (−13 + 9n+ 18n2)k
)

+Nc
(
4n+ k(16− 24n)

))
+ 3kn

Nf∑
a=1

n2
a .

(4.25)

4.4 The [p, p]∗X,Y case

To flow to the [p,q]∗X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf flavours
and give a positive large real mass to Nf1 anti-fundamentals and a negative large real mass
to Nf2 anti-fundamentals. This will lead to the following duality

• SU(Nc)k SQCD with Nf fundamentals and Na = Nf −Nf1 −Nf2 anti-fundamentals
Q, Q̃, two adjoints X and Y interacting through the superpotential

Wele = TrXn+1 + TrXY 2. (4.26)

• U(Ñc)−k × U(1) SQCD with Ñc = 3nNf − Nc, a level −1 mixed CS between the
two U(1)s, Na dual fundamentals and Nf dual anti-fundamentals q, q̃, two traceless
adjoints x, y interacting through the superpotential

Wmag = Trxn+1 + Trxy2 +
n−1∑
j=0

2∑
`=0

Tr
(
Mj,`qxn−1−jy2−`q̃

)
. (4.27)

The fields V ±j,` and W±q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k = 1

2(Nf1−Nf2) and −k respectively.
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To reproduce this duality on the partition function we start from the equality be-
tween (4.5) and (4.6) and consider the following shifts of the real masses



mA → mA + Nf1−Nf2
2Nf s

mB → mB −
Nf1−Nf2

2Nf s

na → na −
Nf1−Nf2

Nf
s a = 1, . . . , Nf −Nf1 −Nf2

na → na + Nf−Nf1 +Nf2
Nf

s a = 1, . . . , Nf1

na → na −
Nf−Nf1 +Nf2

Nf
s a = 1, . . . , Nf2

σ̃i → σ̃i + Nf1−Nf2
2Nf s i = 1, . . . , 3nNf −Nc

ξ → ξ − Nf1 +Nf2
2 s .

(4.28)

We study the limit of large s on both the electric (4.5) and magnetic (4.6) parti-
tion functions by making use of the asymptotic behavior of the hyperbolic Gamma func-
tion (2.5). We check that the leading saddle point contributions cancel between the electric
and magnetic phases, and we are left with the equality between

Zele = Z(Nf ,Na)
SU(Nc)k(µa; νa; τX ; τY ) (4.29)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =
n−1∏
j=0

2∏
`=0

Nf∏
a=1

Na∏
b=1

Γh(jτX + `τY + µa + νb)

× eiπφ
∫

dξ eiπηξZ(Na,Nf )
U(Ñc)−k

(τX − τY − νa; τX − τY − µa; τX ; τY ;−ξ̂)

(4.30)

where

ξ̂ = ξ + Nf1 −Nf2

2 (mA − τX + τY + ω),

η = 2mBNc + 6nmANf − (1− 3nNc + 2n2)τX − 6τY + 2ω(1 + 2n− 3nNf ).
(4.31)

From (4.23) we can see the level −1 mixed CS, in the term mBξ, between the abelian
subgroup of the U(Ñc) and the abelian U(1) gauge group. Observe that in this case, differ-
ently from the [p,q] cases studied above, the CS level associated to the gauged topological
symmetry is vanishing. This is because the competition between the shift that gives rise
to the non-trivial vacuum of the U(1)J sector and the shift associated to the axial sym-
metry give opposite signs to the divergent masses of the charged fields, i.e. the fields V ±j,`
and W±q . This implies that in this case the duality is preserved with a flat direction in
the Coulomb branch of the gauged U(1)J symmetry. Again the real masses satisfy the
constrain ∑Nf

a=1 µa = ∑Nf
a=1 νa = NfmA where µa = ma +mA and νa = na +mA.
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The complex exponent φ needed for the matching is given by

φ = 9nNfkm
2
A − kNcm

2
B + τX

2 (Nf1 −Nf2)
(
Nc(1 + 3n)− 3nNf (n+ 3)

)
mA

+Nc(Nf2 −Nf1)mBω + τ2
X

2
(
nNf (13− 9n− 18n2) +Nc(−1− 4n+ 6n2)

)

+ 3
2n(Nf1 −Nf2)

Nf∑
a=1

m2
a.

(4.32)

5 Dualities for USp(2Nc) chiral SQCD with two anti-symmetric

In this section we start by setting up the notation for USp(2Nc) theories and their dualities.
The partition function of a CS-theory with USp(2Nc)k gauge group can be found starting
from (2.1). In particular, for the case of our interest, with 2Nf fundamentals and two
anti-symmetric rank two tensors A,B, the partition function is given by

Z2Nf
USp(2Nc)2k

(~µ; τA; τB) = Γh(τA)NcΓh(τB)Nc

2NcNc!
√
−ω1ω2

Nc

∫ Nc∏
i=1

dσi exp
(
−iπkσ2

i

)∏2Nf
a=1 Γh(µa ± σi)

Γh(±2σi)

×
∏

1≤i<j≤Nc

∏
α=A,B

Γh(τα ± σi ± σj)
Γh(±σi ± σj)

.

(5.1)

The 3d duality for the USp(2Nc)0 case was worked out in [28] and relates

• 3d N = 2 USp(2Nc)0 SCQD with 2Nf flavours Q and two anti-symmetric rank-two
tensors A,B interacting through the superpotential

Wele = TrAn+1 + TrAB2. (5.2)

• 3d N = 2 USp(2Ñc)0 SQCD where Ñc = 3nNf −Nc−2n−1, with 2Nf dual flavours
q, two anti-symmetric rank-two tensors a, b interacting through the superpotential

Wmag = Tr an+1 + Tr ab2 +
n−1∑
j=0

2∑
`=0
Mj,`qa

jb`q

+
∑

j=0,...,n−1
`=0,1,2
j`=0

Yj,`Ỹn−j,2−` +
n−3

2∑
q=0

ZqZ̃n−3
2 −q

.
(5.3)

The non-anomalous global symmetry of the teories is SU(2Nf ) × U(1)A × U(1)R under
which the fields transform as in table 3.
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Gauge Global
Field USp(2Nc) USp(2Ñc) SU(2Nf ) U(1)A U(1)R
Q � 1 � 1 rQ

A 1 1 0 2
n+1

B 1 1 0 n
n+1

Y ±j` 1 1 1 −2Nf 2(1− rQ)Nf + 2j+n`−2(Nc+n)
n+1

Z±q 1 1 1 −4Nf 4(1− rQ)Nf + 2+4q−4(Nc+n)
n+1

q 1 � � −1 2−n
n+1 − rQ

a 1 1 0 2
n+1

b 1 1 0 n
n+1

Mj=0,...,n−1
j,0 1 1 2 2rQ + 2j

n+1

Mj=0,...,n−1
2

2j,1 1 1 2 2rQ + 4j+n
n+1

Mj=0,...,n−3
2

2j+1,1 1 1 2 2rQ + 4j+n+2
n+1

Mj=0,...,n−1
j,2 1 1 2 2rQ + 2j+2n

n+1

Ỹ ±j` 1 1 1 2Nf 2(rQ − 1)Nf + n`+2(j+Nc+n+1)
n+1

Z̃±q 1 1 1 4Nf 4(rQ − 1)Nf + 4(q+Nc+n)+6
n+1

Table 3. Matter content of USp(2Nc)0 and USp(2Ñc)0 dual theories.

At the level of the partition function, this duality corresponds to the identity

Z2Nf
USp(2Nc)(µa; τA; τB) = Z2Nf

USp(2Ñc)
(τA − τB − µa; τA; τB)

×
n−1∏
j=0

2∏
`=0

∏
1≤a<b≤2Nf

Γh(jτA + `τB + µa + µb)

×
n−3

2∏
q=0

2Nf∏
a=1

Γh((2q + 1)τA + τB + 2µa)

×
∏

j=0,...,n−1
`=0,1,2
j`=0

Γh

jτA + `τB + 2Nfω − (Nc + n)τA −
2Nf∑
a=1

µa



×
n−3

2∏
q=0

Γh

(2q + 1)τA + 4Nfω − 2(Nc + n)τA − 2
2Nf∑
a=1

µa

 .

(5.4)

The superpotential (5.2) fixes the values of the real masses for the adjoint fields

τA = 2ω
n+ 1 , τB = nω

n+ 1 . (5.5)

This duality is going to be our starting point.
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In the following we want to construct the duality for non-vanishing CS level. We
consider the duality without CS terms and with 2(Nf +k) fundamental flavours and assign
a positive real mass to 2k. By integrating out the massive fields we arrive at the duality
between

• USp(2Nc)2k SQCD with 2Nf fundamentals Q and two anti-symmetric rank-two ten-
sors A,B interacting through the superpotential

Wele = TrAn+1 + TrAB2. (5.6)

• USp(2Ñc) SQCD with Ñc = 3n(Nf + |k|) − Nc − 2n − 1, 2Nf fundamentals q and
two anti-symmetric rank-two tensors a, b interacting through the superpotential

Wmag = Tr an+1 + Tr ab2 +
n−1∑
j=0

2∑
`=0
Mj,`qa

jb`q. (5.7)

The electric and the magnetic theories acquire a CS level 2k and −2k respectively

The dressed monopole operators of the electric theory acting as singlets in the dual phase
become massive and are integrated out.

To reproduce this flow at the level of the partition function, we start from the equal-
ity (5.4) and consider the following shifts in the real masses


mA → mA + k

Nf+ks

ma → ma − k
Nf+ks a = 1, . . . , 2Nf

ma → ma + Nf
Nf+ks a = 1, . . . , 2k .

(5.8)

We study the limit of large s on both sides of the identity (5.4) by making use of the
asymptotic behavior of the hyperbolic Gamma function (2.5). We check that the leading
saddle point contributions cancel between the electric and magnetic phases, and we are left
with the equality between

Zele = Z2Nf
USp(2Nc)2k

(µa; τA; τB), (5.9)

and

Zmag = eiπφZ2Nf
USp(2Ñc)−2k

(τA − τB − µa; τA; τB)

×
n−1∏
j=0

2∏
`=0

∏
1≤a<b≤2Nf

Γh(jτA + `τB + µa + µb).
(5.10)

To evaluate the asymptotic behavior of the factor coming from the singlets, or the electric
mesons under the duality map, in the magnetic theory, we make use of the following
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decomposition formula

∑
a,b=1,...,2k

a<b

(jτA + `τB + µa + µb − ω) = 2(k − 1)
2k∑
a=1

µ2
a +

( 2k∑
a=1

µa

)2

+ (4k − 2)(jτA + `τB − ω)
2k∑
a=1

µa

+ k(2k − 1)(jτA + `τB − ω)2.

(5.11)

The complex exponent φ necessary for the equality between the partition functions to
hold has the following form

φ = 12nNf (k −Nf )m2
A + 6τA

(
− 1− 2n− 2Nc + 2Nf (1 + n) + 2k(−1 + 2n)

)
mA

+ τ2
A

24 (6k − 3) + τAτB
12

(
4k − 12k2(1 + 24n2) + 3

(
− 7− 25n(1 + n)− 24N2

f (1 + n)2

− 24Nc(1 + 2n)− 24N2
c + 24Nf (1 + n)(1 + 2n+ 2Nc)

+ 4k(12Nf − 72nNf (1 + n) + n(39 + 77n+ 54Nc))
))

− 3n


2Nf∑
a=1

ma

2

− 2k
2Nf∑
a=1

m2
a

.
(5.12)

6 Conclusions

In this paper we studied 3d N = 2 dualities for two adjoint U(Nc) and SU(Nc) SQCD
with Dn+2-type superpotential and odd n. This generalizes the constructions of [17, 18]
for SQCD and of [22–24] for adjoint SQCD. The dualities are obtained starting from the
one obtained in [26] from the 4d/3d reduction. The classification is constructed through
real mass flows, Higgs flows and the gauging of the topological symmetry. We corroborated
these construction by checking the various steps with the help of the three sphere partition
function. Furthermore we matched the CS contact terms across the dual phases with
the complex phases that can be read in the integral identities on the three sphere. We
concluded by proposing a duality for USp(2N)2k SQCD with two antisymmetric and Dn+2
type superpotential that was overlooked in the literature.

There are interesting aspects of such dualities and possible generalizations that we did
not investigate and that we leave for future projects. For example we did not match the
superconformal index across the new dual phases. This should provide a stronger check
of the dualities obtained here. Another aspect that we did not investigate corresponds to
find mirror dualities for the U(1) sectors in the duals of the SU(Nc) dualities in presence of
charged matter fields. Such mirrors could simplify the structure of the dual models, that
so far are given in terms of product groups. A further generalization of the construction is
related to chiral models with monopole superpotentials. In the SQCD case such possibility
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has been discussed in [34] for the case of linear monopole superpotential and in [35] for
SQCD with quadratic monopole superpotential. In the An case a similar extension (with
quadratic monopoles) has been proposed in [36]. The analysis could be extended also to
the dualities with monopole superpotential for the Dn+2 case studied in [37]. We conclude
observing that a full list of 4d dualities for SU(Nc) SQCD with two tensors has been
provided in [38]. It should be possible to reduce such dualities to 3d and that to study
the chiral limit of these cases as well. This is an interesting possibility because some of
the models in the classification have also an interpretation in terms of the HW setup [39].
This may allow to study the 4d/3d reduction from a T-duality in the HW setup along the
lines of [40, 41] and the chiral dualities as discussed in [24]
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