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SUMMARY
The drivers of sporadic Alzheimer’s disease (AD) remain incompletely understood. Utilizing directly con-
verted induced neurons (iNs) fromAD-patient-derived fibroblasts, we identified ametabolic switch to aerobic
glycolysis in AD iNs. Pathological isoform switching of the glycolytic enzymepyruvate kinaseM (PKM) toward
the cancer-associated PKM2 isoform conferred metabolic and transcriptional changes in AD iNs. These
alterations occurred via PKM2’s lack of metabolic activity and via nuclear translocation and association
with STAT3 and HIF1a to promote neuronal fate loss and vulnerability. Chemical modulation of PKM2 pre-
vented nuclear translocation, restored amature neuronal metabolism, reversed AD-specific gene expression
changes, and re-activated neuronal resilience against cell death.
INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia

and a leading cause of death worldwide. The biochemical and

cellular changes in AD neurons are still incompletely understood,

and this situation is compounded by the paucity of adequate

model systems for recapitulating sporadic, age-dependent

changes in human cells from patients with AD. Biomarker and

postmortem (PM) studies of cerebrospinal fluid (CSF) and human

brain tissue have advanced our understanding of sporadic AD

pathology; furthermore, transcriptomics, proteomics, and

metabolomics are powerful tools to better understand disease-

related alterations in human patients (Bai et al., 2020; Higginbo-

tham et al., 2020; Johnson et al., 2020; Seyfried et al., 2017).

Besides the typical hallmarks of AD, characterized by aberrant

synaptic processes and progressive neuronal death, several

proteomic and metabolomic studies have independently identi-

fied deficits in splicing and metabolic alterations in AD (Bai

et al., 2020; Caldwell et al., 2020; Higginbotham et al., 2020;

Johnson et al., 2020; Marinaro et al., 2020; Seyfried et al.,

2017). In this regard, elevated levels of metabolic enzymes,

such as lactate dehydrogenase A (LDHA) and pyruvate kinase

M (PKM), have been suggested to be highly reproducible bio-
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markers in the CSF of individuals with AD (Higginbotham et al.,

2020; Sathe et al., 2019). However, although the identification

of potential biomarkers is pivotal, these large-scale human

studies are limited in that they only possess a correlative power.

To gain a more complete understanding of potential AD-

associated transcriptomic and metabolic alterations in neurons,

we generated directly converted induced neurons (iNs) from pa-

tient-derived fibroblasts by the overexpression of Ascl1:2A:Ngn2

(Mertens et al., 2015). Importantly, iNs maintain the aging signa-

tures of their donors (Huh et al., 2016; Kim et al., 2018; Mertens

et al., 2015) and are a unique model system to assess age-

related disease phenotypes in live human neurons (Jovi�ci�c

et al., 2015; Pircs et al., 2021; Victor et al., 2018).

We previously reported that AD-patient-derived iNs lose

mature neuronal markers and regress to a hypo-mature state,

which in itself parallels the malignant transformation in cancer

(Mertens et al., 2021). Understanding the mechanisms that

give rise to neuronal hypo-maturity would be invaluable, as it rep-

resents an early AD-related phenotype that might be reversible.

Neuronal metabolism stands out as a potential convergence

platform for aging and disease because multiple disease fea-

tures of AD, including DNA damage, oxidative stress, dysfunc-

tional enzymes, and cofactors, such as NAD+, are all directly
e Author(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Generation of iNs from patient-derived fibroblasts
(A and B) Schematic: generation of iNs from fibroblasts (A) and PSA-NCAM-based FACS purification (B).

(C) Phase-contrast images of fibroblasts at day 0 (overconfluent) and at different stages of conversion. Scale bars, 10 mm.

(D and E) Immunostainings of bIII-tub and NeuN (D) and quantification of bIII-tub and NeuN-positive cells (E) per DAPI (control, n = 7; AD, n = 5), showing median

and quartiles. Significance: unpaired t test, *p < 0.05 (E).

(F) Representative voltage responses of iNs elicited by current step stimulation. Arrows indicate distinctive features associated with specific intrinsic membrane

currents. Blue, inward rectification; red, Ca spike; olive, depolarizing voltage sag; green, rebound depolarization.
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linked to the unique metabolic state of postmitotic neurons

(Collins et al., 2017; Lautrup et al., 2019; Wang et al., 2021).

Here, we identified that PKM2, a key metabolic enzyme and nu-

clear factor in cancer, is expressed in AD neurons. Through both

metabolic and nuclear mechanisms, neuronal PKM2 instates a

cellular program that causes a loss of neuronal resilience in AD

patient-derived iNs; this program can be ameliorated by chemi-

cal PKM2 tetramerization.

RESULTS

Functional iNs directly converted from fibroblasts of
patients with AD and control donors
We obtained punch biopsies and dermal fibroblast cultures from

11 individuals with AD and 11 age-matched, nondemented con-

trol donors between 57 and 88 years of age (Figure S1A). The AD

group consisted of nine sporadic patients and two patients with

familial AD (APP-V717 and PS1-A246E), all of whom received
extensive clinical and research characterization and neuropsy-

chological testing (summary data include mini-mental state ex-

amination scores [MMSEs]). To minimize potential genetic

biases, both control and AD donors were matched according

to age, apolipoprotein E (ApoE) genotypes, and sex. Using a

transcription-factor-based direct neuronal conversion strategy

overexpressing the two pioneer transcription factors Ascl1 and

Ngn2, we generated cortical iNs from the donor fibroblasts (Fig-

ure 1A). We and others have previously reported that iNs pre-

serve the epigenetic information of their donor ages and reflect

an adult-like transcriptomic identity (Huh et al., 2016; Mertens

et al., 2015, 2021; Traxler et al., 2019). Following 21 days of con-

version, the majority of fibroblasts adopted a mature neuronal

morphology, and cells positive for the neuronal surface marker

PSA-NCAM were isolated by fluorescence-activated cell sorting

(FACS) and re-plated on Geltrex-coated culture substrates

(Figures 1B and 1C). Consistently, 93.2% ± 1.8% of the cells in

purified iN cultures were positive for bIII-tub, and 59.8% ±
Cell Metabolism 34, 1248–1263, September 6, 2022 1249



Figure 2. Gene expression network analysis of AD iNs and postmortem brain

(A) WGCNA analysis of transcriptomes of control and AD iNs (E-MTAB-10344) and postmortem (PM) brain transcriptomes (GSE5281).

(B and D) Cluster dendrograms representing groups of genes identified using WGCNA in iN (B) and PM (D) datasets with the assigned module colors.

(legend continued on next page)
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7.0% were neuronal nuclei (NeuN) positive (Figures 1D and 1E).

Notably, iNs from all control and AD donors could be enriched to

equally high purities and spontaneously developed synapse-like

structures marked by the co-expression of synapsin and post-

synaptic density protein 95 (PSD95) (Figure S1B). Electrophysio-

logical analysis of iNs from both groups revealed mature physi-

ological properties and strong intrinsic excitability, and many

iNs displayed voltage responses with characteristic features

that indicated the action of specific voltage-activatedmembrane

currents. Such features included inward rectification mediated

by voltage-activated Kir currents, depolarizing voltage sag medi-

ated by hyperpolarization-activated cation currents (Ih), calcium

spikes, and rebound depolarization mediated by low-threshold

Ca currents (Figure 1F).

Gene co-expression modules overlapping between AD
iNs and postmortem AD brains point toward aberrant
metabolic regulation
To explore the AD-related changes in the gene expression pat-

terns in patient-derived iNs, we performed weighted gene corre-

lation network analysis (WGCNA) on the whole-transcriptome

RNA-seq data of FACS-purified iNs from all control and AD sub-

jects (n = 21) (Figure 2A). The resulting co-expression network re-

vealed 29 distinct gene modules representing genes with similar

expression changes across all samples (Figure 2B). We were

particularly interested in those modules that showed clear, inter-

pretable enrichment for biological functions, so we performed a

gene set enrichment analysis (GSEA) that preserved 14 modules

holding significantly enriched gene ontology profiles. Module-

trait-relationship analysis allowed us to identify six modules

that showed a highly significant correlation with diagnosis (AD

or control) and the subjects’ cognitive abilities (MMSE); we refer

to these as the AD iN modules ADM1–ADM6 (Figures 2C, S1C,

and S1D). Notably, ADM1–3 showed a positive correlation with

AD diagnosis, whereas ADM4–6 showed a negative correlation.

None of the modules appeared to be skewed by donor age,

gender, or ApoE genotype, as no significant correlation was de-

tected (Figures 2C and S1E–S1G).

We next sought to investigate the extent to which AD-related

gene module expression in iNs reflected the human in vivo con-

dition by calculating reference modules based on transcriptomic

data from 30 PM hippocampal tissue samples from patients with

AD and controls (Figure 2D). Module-trait-relationship analyses

resulted in 20 distinct co-expression modules, seven of which

were identified as AD PM modules (PMM1–PMM7). Of these,

PMM1–3 showed significant positive correlation and PMM4–7

showed a significant negative correlation with AD diagnosis

(Figures 2E and S1H). Similar to the iN model, none of the seven

PMMs showed a significant correlation with gender as a poten-
(C and E) Module-trait relationship of the significant modules correlating to AD an

tissue (PMMs, postmortem modules) (E), with correlation values to MMSE, age,

(p < 0.05) values.

(F and G) Enriched GO terms inmodules significantly correlated positively (F) or ne

terms presented in the table. KEGG pathways are displayed in italic.

(H and I) UniProt keywords (H) and KEGG pathways (I) according to their adjusted

of each circle represents the number of genes of that pathway.

(J) Most abundant genes of top 10 UniProt keywords and top 10 KEGG pathway

(K) Chord plot showing the 17 genes that are present at least seven times in the
tially confounding factor (Figures 2E and S1I). Importantly, paral-

lel GSEA of ADM1–6 and PMM1–7 suggested a substantial func-

tional overlap between the iN and PM brain AD modules. Of the

pathways (KEGG and UniProt keywords) that were significantly

enriched within the positively correlating modules ADM1–3,

eleven terms (29.0%) were also enriched in PMM1–3, and of

the pathways within the negatively correlating modules ADM4–

7, 48 terms (42.1%) were also enriched in PMM4–7 (Figures 2F

and 2G). As expected, some of the resulting functional gene cat-

egories such as cell cycle, pathways in cancer, oxidative phos-

phorylation, and synaptic transmission corresponded to the

hypo-mature neuronal state in AD iNs that we have previously

described to be accompanied by less complex neuronal branch-

ing morphologies, decreased synaptic densities, and decreased

spontaneous network activity (Mertens et al., 2021). Most inter-

estingly, this analysis revealed a transcriptional pattern that

points toward aberrant metabolism in AD. The ten most

significant UniProt keywords encompassed phosphorylation,

alternative splicing, and acetylation (Figure 2H), and the ten

most significant KEGG pathways included carbon metabolism

and metabolic pathways (Figure 2I). Analysis of the ROSMAP

whole-brain PM AD dataset (n = 633) further supported this

notion, as the top KEGG pathways and UniProt keywords asso-

ciated with AD, independent of age and gender, overlapped with

our data (Figures S2A–S2C). To identify the individual key regu-

lators that contributed to the AD phenotype in iNs and were

detectable in PM brain tissue, we extracted the genes that

contributed to these top keywords and pathways with the high-

est frequency. This analysis revealed that 51 genes contributed

to six or more of these terms and that 17 genes contributed to

seven or more (Figures 2J and S1J), including enolases (ENO2

and ENO3), glucose-6-phosphate isomerase (GPI), malate dehy-

drogenase (MDH1), ATP citrate lyase (ACLY), phosphofructoki-

nase muscle (PFKM), and phosphoglycerate kinase (PGK1).

While all of these eight genes encode metabolic enzymes, only

the PKM encoded by the PKM gene contributed to nine terms.

PKM also stood out as amajor cellular state regulator with nucle-

ocytoplasmic regulation and epigenetic effects through phos-

phorylation and acetylation (Figures 2K and S1K; Alves-Filho

and Pålsson-McDermott, 2016; Yang and Lu, 2013). These

data suggest that aberrant metabolic and epigenetic regulation

involving PKMmight drive pathogenic alterations in AD neurons.

PKM isoform switching and a Warburg-like metabolic
signature are evident in iNs and postmortem prefrontal
cortex tissue from patients with AD
PKM has been extensively studied as both a glycolytic enzyme

and metabolic master regulator and also as a nuclear factor

that contributes tomalignant epigenetic transformation in various
d MMSE in iNs (ADMs, AD modules) (C) and modules correlating to AD in PM

gender, and ApoE genotype. Asterisks and bold values represent significant

gatively (G) to AD in cultured iNs and PM brain tissue, with the top common GO

p value (y axis) and nonstatistical Z score calculated by GoPlot (x axis). The area

s.

20 pathways and pathways that contain at least 14 of these genes.
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Figure 3. PKM isoform switch in AD iNs and postmortem brain tissue

(A) RNA-seq counts of PKM (control, n = 9; AD, n = 9).

(B) Schematic: PKM regulation by alternative splicing.

(legend continued on next page)
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tumors (Chen et al., 2019; Desai et al., 2014; Gao et al., 2012; Luo

et al., 2011; Wang et al., 2014; Yang et al., 2011, 2012a). Howev-

er, althoughPKM revealed itself as a central hubgene in ourmod-

ule-trait-relationship analysis in AD iNs, the total mRNA levels of

PKM showed no differential expression between control and AD

iNs (Figure 3A).Notably, PKMactivities are critically influencedby

alternative splicing, as it contains the two mutually exclusive

exons 9 and 10 (Chen et al., 2010). Inclusion of exon 9 forms

PKM1, the metabolically active isoform that contributes to pyru-

vate flux to supportmitochondrial oxidative phosphorylation (Fig-

ure 3B). Alternatively, the inclusion of exon 10 forms the PKM2

isoform, which has diminished metabolic activity. Imbalance in

favor of PKM2 leads to the accumulation of glycolyticmetabolites

and increased lactate production. This PKM-driven change is a

major component of the Warburg effect, which is instrumental

inmany cancers (Puckett et al., 2021). Interestingly,PKM isoform

quantification from our paired-end iN RNA-seq data revealed a

significant 4.7-fold shift toward PKM2 splicing in AD iNs, as evi-

denced by an elevated exon 10 inclusion (Figures 3C and 3D).

This change was not present in the donor fibroblasts, suggesting

that it is not a carryover from fibroblasts but instead a neuron-

specific phenomenon (Figure S2D). Furthermore, increased can-

cer-likePKM isoformswitchingwasalsoevident inRNA-seq from

633PMprefrontal cortex samples across Braak stages (De Jager

et al., 2018), as PKM1 levels were decreased and PKM2 levels

increased at the time of death in patients diagnosed with AD

(Figures 3E–3G and S2E). Patients with confirmed AD at the

time of death ultimately have a significantly increased PKM2/

PKM1 ratio (Figure 3H). Because bulk tissue transcriptome data

cannot ensure actual protein changes in neurons, we sought to

confirm elevated PKM2 levels in AD PM prefrontal cortex sec-

tions (n = 10 healthy control brains and n = 9 brains of patients

with sporadic AD). Immunofluorescent analysis revealed

elevated levels of total PKM2 immunofluorescence in neuron-

rich layers (Figure 3I). The colocalization of NeuN with PKM2

was significantly more likely in AD sections, as PKM2 intensity

was 3.1-fold higher in NeuN areas, and interestingly, AD-linked

PKM2 was found to predominantly localize to neuronal nuclei

over perinuclear regions (Figure 3J). Consistently, AD iNsdemon-

strated similar 1.5-fold-increased PKM2 protein levels by immu-

nocytochemistry (Figure 3K).

To assess the functional consequences of elevated neuronal

PKM2mRNA and protein in AD, themetabolic enzymatic activity

of PKM in iNs was assessed by measuring the pyruvate levels

generated in a certain amount of time using a colorimetric assay.

Indeed, AD iNs showed a markedly decreased metabolic PKM

activity compared with control iNs (Figure 4A). Further, an accu-

mulation of secreted lactate was consistently evident from

colorimetric assays (Figure 4B). To obtain a more detailed un-
(C) RNA-seq reads mapped to exons 9 and 10 of the PKM.

(D) Bar plot representing exon 10/9 ratios (control, n = 9; AD, n = 9).

(E–H) Analysis of ROSMAP bulk transcriptomic dataset (n = 633), divided bas

compared with Braak 0, DF 632; PKM1, F = 4.28, p = 0.0003; PKM2, F = 0.84, p

(I and J) Immunostaining of prefrontal cortex of human postmortem brain tissue (c

Total PKM2 measured in neuron-rich outer layers (Mann-Whitney test) and in Ne

(K) Immunostaining and quantification of total PKM2 in MAP2-ROI in control (n = 5

the donor). Scale bars, 10 mm.

(A–D and H–N) Bars, mean; error bars, SD; significance, unpaired t test unless o
derstanding of PKM-induced metabolic reprogramming in AD

iNs, we performed a semiquantitative ultra-high-performance

liquid chromatography-mass spectrometry (UHPLC-MS) me-

tabolomic analysis (De Jager et al., 2018). Evaluation of total

UHPLC-MS metabolite levels confirmed a global metabolic

switch, as a principal component analysis (PCA) on the 160 me-

tabolites that were reliably detected could clearly separate con-

trol and AD iNs along the component PC7, which is functionally

enriched for glycolytic pathways and enzymes (Figures 4C, S3A,

and S3B). To expose the metabolic pathways most severely

impaired by AD-related PKM dysfunction, we performed a

multi-omic integration of our RNA-seq transcriptome and

UHPLC-MS datasets using the integrative molecular pathway

level analysis (IMPaLA) (Kamburov et al., 2011). IMPaLA clearly

ranked carbon metabolism as the most critically altered meta-

bolic pathway in AD iNs, as it was scored with the highest signif-

icance and highest rich factors for genes and metabolites (Fig-

ure 4D). Led by these data, we assessed the individual

glycolytic metabolites (UHPLC-MS) and their corresponding ca-

nonical glycolytic enzyme genes. Indeed, we detected an

increased mRNA abundance of metabolic transporters and en-

zymes, all of which are consistent with the previously reported

LDHA overabundance in AD iNs (Figure 4E; Mertens et al.,

2021). Furthermore, the UHPLC-MS metabolome data substan-

tiated a general Warburg-like metabolic switch toward glycol-

ysis in AD iNs as, in addition to lactate secretion, the glycolytic

intermediate metabolites glucose-6-phosphate, 1,3-BP-glycer-

ate, phosphoenolpyruvate (PEP), and intracellular lactate levels

were increased (Figure 4E). Interestingly, the peak of accumu-

lated glycolytic metabolites was at PEP/1,3-BP-glycerate, thus

directly prior to the bottleneck reaction of PKM (Figure 4E).

Consistently, we detected a significant increase in glucose up-

take in AD iNs (Figures 4F and S4A). Globally, these changes

represent a significant increase in all averaged glycolytic metab-

olites (Figure 4G). Interestingly, and similar to most cancers

(Vander Heiden et al., 2009), the glycolytic switch occurs in the

absence of global mitochondrial failure, as tracing of 13C6-

glucose demonstrated a stable flux to citrate (Figures 4H, S4B,

and S4C). This notion is substantiated by the normal protein

levels of the mitochondrial gatekeeper PDH, there being no dif-

ference in the total levels of TCA cycle metabolites, the normal

mitochondrial membrane potentials, and the unchanged ATP/

ADP ratios of the AD neurons (Figures S4D–S4H). Furthermore,

oxidative phosphorylation remained intact, as demonstrated by

unchanged SDH activity (complex II of ETC; measured as the

flux from succinate to fumarate) and there being no differences

in mitochondrial respiration between AD and healthy age-

matched control iNs (Figures S4I and S4J). Thus, increased

lactate production did not occur at the cost of TCA cycle
ed on Braak stages (one-way ANOVA, Dunnett’s multiple comparison test,

= 0.53) or diagnosis after death (Mann-Whitney test).

ontrol, n = 10; AD, n = 9). Scale bars, 1,000 mm in (I) and 500 and 100 mm in (J).

uN-ROIs compared with perinuclear regions.

) and AD (n = 7) iNs (two independent experiments per donor; shape represents

therwise indicated, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 4. Metabolome reveals Warburg-like metabolic switch in AD iNs

(A) Colorimetric assay to determine PKM activity in control (n = 7) and AD (n = 6) iNs (Mann-Whitney test).

(B) Colorimetric assay to detect secreted lactate in the supernatant of control (n = 9) and AD (n = 10) iNs.

(C) Density plot of PC7 of 160 metabolites measured by UHPLC-MS of control (n = 10) and AD (n = 10) iNs.

(D) Integrative transcriptomics and metabolomics (IMPaLa) analysis showing over-represented pathways including gene and metabolites rich factors.

(E) UHPLC-MS metabolic landscape in control (left; n = 10) and AD (right; n = 10) iNs. Circles represent Z scores of respective metabolites. Size and color of the

font indicate the RNA-seq expression levels of related enzymes.

(F) Glucose consumption measured as the drop of extracellular glucose after 6 h in culture.

(G) Combined averages of all detected glycolytic metabolites in iNs.

(H and I) Tracing of isotope-labeled glucose after 6-h incubation with 13C6-glucose. Fraction of labeled glucose detected in lactate and citrate (n = 10 per group).

Dots represent individual donors throughout the figure. Bars, mean; error bars, SD; violin plots, median and quartiles. Significance: unpaired t test,

*p < 0.05, **p<0.01.
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function, as AD iNs appeared to sustain oxidative metabolism

and increase their glucose consumption to fuel glycolysis above

normal levels. Furthermore, consistent with the mouse models

of AD (Hou et al., 2018) and observed increased DNA damage

repair in old and AD iNs (Huh et al., 2016; Mertens et al.,

2021), AD iNs showed a higher demand for NAD+ that was
1254 Cell Metabolism 34, 1248–1263, September 6, 2022
evident from decreased NAD+ levels, which likely supported

the shift to aerobic glycolysis (Figure S4K). However, while sup-

plementation with nicotinamide riboside (NR) increased the

levels of NAD+ and precursors, it was not sufficient to reverse

glycolytic activity or neuronal lactate secretion (Figures S4L

and S4M). Taken together, these data indicate that the isoform



Figure 5. Nuclear PKM2 activity alters the neuronal epigenetic landscape

(A) Schematic: phosphorylated PKM2 translocates to the nucleus to interact with transcription factors to regulate gene expression.

(B and C) Immunostaining (B) and quantification (C) of p-PKM2(Ser37) (control, n = 8; AD, n = 5). Scale bars, 10 mm.

(D and E) Immunostaining (D) and quantification (E) of phosphorylated histone 3 (T11) of MAP2-positive neurons (control, n = 6; AD, n = 5). Scale bars, 10 mm.

(F) ATAC-seq profiles around transcriptional start sites of genes regulated by HIF1a, STAT3, and b-catenin (CTNNB1), based on ReMap2020 (control, n = 11; AD,

n = 9).

(G) HOMER motif enrichment analysis of AD differentially open peaks for HIF1a and STAT3, as previously published (Mertens et al., 2021).

(H and I) Differential expression (H) and GO term enrichment (I) of significant genes regulated by HIF1a or STAT3.

(B–H) Violin plots: median and quartiles. Significance: unpaired t test, *p < 0.05, **p < 0.01.
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switch from PKM1 to PKM2 in AD iNs is associated with a meta-

bolic switch in AD iNs, which shared similarities with the War-

burg effect described in many cancers.

Cancer-like isoform imbalance and nuclear
translocation of PKM2 impair the epigenetic landscape
of AD iNs
The gene co-expression module analysis of our transcriptome

data indicates both a direct metabolic and an indirect nuclear ef-
fect of increased PKM2/1 ratios to promote neuronal metabolic

reprogramming (Zheng et al., 2016). In addition to a decrease

in metabolic PKM activity, alternative splicing of PKM in favor

of PKM2 leads to an increased nuclear translocation of PKM.

While PKM1 forms a tetrameric complex that cannot enter the

nucleus, PKM2 forms dimers that, upon nuclear translocation,

acquire protein kinase activity and support the tumor-promoting

transcription factors HIF1a, STAT3, and b-catenin (Figure 5A;

Alves-Filho and Pålsson-McDermott, 2016; Luo et al., 2011;
Cell Metabolism 34, 1248–1263, September 6, 2022 1255
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Yang et al., 2011). The phosphorylation of PKM2 at serine 37 (p-

PKM2) is a critical step that triggers its nuclear translocation

(Yang et al., 2012b). Immunocytochemical analysis of p-PKM2

revealed pronounced p-PKM2-positive nuclear puncta in the

majority of AD iNs, leading to a 1.46-fold increase in p-PKM2

nuclear signal (Figures 5B and 5C). Nuclear p-PKM2 phosphor-

ylates threonine 11 on histone 3 (H3T11-P), and indeed, immuno-

cytochemistry showed bright H3T11-P puncta and a 1.31-fold

increased H3T11-P signal in AD iNs, validating an increased pro-

tein kinase activity of PKM2 in the nucleus of AD iNs (Figures 5D

and 5E). Because collaboration with HIF1a, STAT3, and b-cate-

nin is the key mechanism through which pathogenic nuclear

PKM2 promotes cancer transformation, we examined chromatin

accessibility around genes regulated by these transcription fac-

tors using assay for transposase-accessible chromatin (ATAC)

sequencing data from control and AD iNs (n = 20). The integra-

tion of iN ATAC data with ChIP-seq data (ReMap2020) for each

transcription factor demonstrated increased chromatin accessi-

bility around HIF1a- and STAT3-regulated genes (Figure 5F). No

difference in chromatin accessibility was observed at genes

regulated by b-catenin. The PKM2 boosting of HIF1a and

STAT3 transcriptional activation was further supported by a

significant enrichment of HIF1a and STAT3 binding motifs in

differentially accessible chromatin regions in AD iNs (Figure 5G;

Mertens et al., 2021). Consistently, a substantial majority of 73%

of genes regulated by HIF1a and 64% of genes regulated by

STAT3 showed an upregulation in mRNA abundance in AD iNs

(Figure 5H). GSEA revealed that the genes induced by

PKM2::HIF1a were involved in the generation of precursor me-

tabolites and energy and carbohydrate metabolic processes

and that the PKM2::STAT3-induced genes promoted damage

signaling, cytokine activity, and apoptosis (Figure 5I).

We next isolated neuronal transcriptome changes from the

single-nuclei RNA-seq data of PMbrain tissue of six healthy con-

trol donors and six patients with AD (Figure S6A). These data

showed consistently increased signatures for glycolysis, HIF1a

signaling, STAT3 signaling, and apoptosis effector genes in the

neuronal population (Figure S6B; Grubman et al., 2019). Besides

neurons, microglia also switched to glycolysis in AD brains,

which is an indicator of microglia activation (Lauro and Limatola,

2020). These data suggest that, in addition tometabolic rewiring,

an excess of nuclear PKM2 activities promotes a malignant

cellular state in AD iNs and may be how hypo-mature neurons

re-instate competency for apoptosis (Kole et al., 2013).

Induction of aerobic glycolysis in iNs causes immature-
like apoptotic competency
During later cellular stages of the disease, AD is characterized by

extensive neuronal cell death. This is particularly striking because

maturing neurons develop efficient apoptotic brakes to avoid

neuronal loss over decades of need. Neuronal de-differentiation

toward a hypo-mature state might dismantle these apoptotic

brakes and contribute to the AD pathophysiology (Arendt et al.,

2000; Kole et al., 2013; Mertens et al., 2021). Furthermore, imma-

ture neurons respond to glycolytic induction with apoptosis (Bo-

laños et al., 2010; Herrero-Mendez et al., 2009). Consistently, as

evidenced in the longitudinal RNA-seq gene expression profiles

from differentiating induced pluripotent stem cell (iPSC)-derived

neurons, PKM2/1 splicing ratios and pro-apoptotic gene expres-
1256 Cell Metabolism 34, 1248–1263, September 6, 2022
sion become strongly suppressed in parallel with neuronal matu-

ration at the same timewhen anti-apoptotic genes become grad-

ually established (Figure S5; Hollville et al., 2019; Schafer et al.,

2019). According to PM brain single-nucleus RNA-seq data,

apoptosis is the predominant death pathway in AD neurons,

whereas astrocytes and oligodendrocytes show increased

gene expression of necroptosis-related genes in AD (Figure S6C).

This specificity is clearly mirrored in AD iNs, where the main nec-

roptosis regulators MLKL and RIPK3 are barely detectable at the

mRNA level, and no differences were observed between control

and AD iNs; however, a more detailed protein analysis is required

to evaluate the relative importance of different cell death

pathways in AD neurons (Figure S6D). Despite the fact that spo-

radic AD iNs displayed a hypo-mature state (Mertens et al., 2021)

and that the UniProt term apoptosis was significantly enriched in

the gene module ADM2, we did not observe considerable frac-

tions of control or AD iNs positive for the apoptotic marker

cleaved caspase-3 (Casp3) under standard culture conditions

(Figures 6A and 6B). To specifically test for the potential re-gain

of apoptotic competency in AD iNs, we exposed iNs to the

Bcl2-inhibitor ABT-737, a pro-apoptotic stimulant, and initially

monitored a dose-dependent increase in the proportion of cells

positive for Casp3 (Figures 6C and 6D). Notably, AD iNs re-

sponded with increased cell death compared with control cells

to concentrations of 0.16 mM and higher (Figure 6D). We subse-

quently exposed all control and AD iNs to 0.3 mMABT-737, which

resulted in 3- and 5-fold increases in Casp3 staining in control

and AD iNs, respectively (Figures 6E and 6F). Interestingly, the

fold increase in Casp3-positive cells significantly correlated

with the fold increase of glycolytic intermediates as measured

by UHPLC-MS, suggesting that the metabolic switch in neurons

is directly tied to their hypo-mature apoptotic competency

(Figure 6G).

To determine whether a metabolic shift in AD neurons was

directly responsible for their apoptotic competency, we induced

aerobic glycolysis in control neurons by exposing the cells to

100 mM cobalt-(II)-chloride (CoCl2) and 100 mM deferoxamine

(together termed CoDo) (Figure 6H). CoDo provoked a broad

hypoxic phenotype in control iNs, which included increased aer-

obic glycolysis, as evident from a 2.9-fold increase in lactate pro-

duction and a significantly increased translocation of PKM2 into

the nucleus (Figures 6I, 6J, and S6H). To monitor the acute cyto-

nuclear translocation changes of PKM2 in response to CoDo, we

cloned an EGFP-tagged PKM2 fusion protein (EGFP:PKM2) into

a lentiviral vector and transduced fully converted control iNs

to avoid PKM2 effects on the direct conversion process (Fig-

ure 6K). Time-lapse fluorescence imaging following 2 days of

EGFP::PKM2 expression revealed that CoDo readily induced

PKM2 nuclear translocation within an hour of treatment (Fig-

ure 6L). Nonetheless, as with AD iNs, we detected no basal

toxicity of CoDo at this low concentration (Figures 6M, 6N, and

S6G). However, when we exposed CoDo-treated control iNs to

0.3 mM ABT-737, a significant 4.3-fold increase in Casp3-posi-

tive iNs was evident (Figures 6M, 6N, S6E, and S6F). However,

CoDo also elicited effects that wentmarkedly beyond the pheno-

types observed in AD iNs in that it decreased neuronal MMP and

metabolic flux into the TCA cycle (Figures S6G and S6I). Tomore

authentically simulate neuronal AD phenotypes in control iNs, we

assessed PKM2-overexpressing iNs (PKM2-OE; Figure 6K).



Figure 6. A metabolic shift induces AD-like apoptotic competency in human neurons

(A and B) Immunostaining (A) and quantification (B) of cleaved caspase-3 over DAPI of bIII-tub-positive control and AD iNs (control, n = 9; AD, n = 7). Scale bars,

50 mm. Green arrows point out Casp3-positive neurons.

(C) Schematic: induction of neuronal apoptosis by ABT-737 treatment.

(D) Cell death assessed by cleaved caspase 3/bIII-tub-positive cells of control (green) and AD (teal) iNs in response to 0–1 mM ABT-737.

(E and F) Immunostaining (E) and quantification (F) of cleaved caspase-3 in bIII-tub neurons after Bcl2 inhibition in control (n = 10) and AD (n = 8) iNs. Scale

bars, 50 mm.

(G) Pearson correlation analysis of cleaved caspase-3 immunostaining and glycolytic metabolites (UHPLC-MS).

(H and I) Control iNs treated with CoDo for 2 days (H) showed increased lactate secretion (vehicle, n = 5; CoDo, n = 5) (I).

(J) Quantification of p-PKM2 FI in the nucleus/cytoplasm comparing vehicle-treated (n = 6) and CoDo-treated control iNs (n = 6).

(K) Immunostainings of bIII-tub and EGFP fluorescence of EGFP::PKM2 transduced iNs. Dotted lines show cytoplasmic ROI. Scale bars, 100 and 25 mm.

(L) Longitudinal EGFP::PKM2 localization in vehicle-treated (n = 3) or CoCl2-treated (n = 4) control iNs.

(M and N) Immunostaining (M) and quantification (N) of cleaved caspase-3 positive cells/DAPI before and after ABT-737 (vehicle and CoDo, n = 6; one-way

ANOVA, DF: 23, F = 21.34, p < 0.0001, Dunnett’s multiple comparison). Scale bars, 50 mm.

Dots represent individual donors throughout the figure. Bars, mean; error bars, SD; significance, unpaired t test, *p < 0.05, **p < 0.01, ***p < 0.001.
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UHPLC-MS metabolomics of PKM2-OE iNs revealed a pattern

of glycolytic metabolite accumulation very similar to AD iNs,

especially for 1,3-BP-glycerate, PEP, and secreted lactate (Fig-
ure S6I). Similar to AD iNs, PKM2-OE did not affect the 13C6-

glucose flux into mitochondria, but it did not alter the NAD+/

NADH ratios in control iNs (Figures S4N and S6H–S6J).
Cell Metabolism 34, 1248–1263, September 6, 2022 1257



Figure 7. PKM2 inhibition ameliorates PKM2-induced apoptotic competency

(A) Schematic: shikonin treatment prevents PKM2 nuclear translocation and increases metabolic enzymatic activity.

(B) Longitudinal EGFP::PKM2 localization in vehicle-treated (n = 3), CoCl2-treated (n = 4), and CoCl2+shikonin-treated (n = 4) control iNs.

(legend continued on next page)
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Importantly, however, PKM2-OE alone is sufficient to induce

apoptotic competency in healthy iNs, indicating that PKM2

greatly mediates a concerted metabolic switch and associated

cell death vulnerability of old neurons (Figure S6K). Thus, in

contrast to other cell types where the Warburg effect is linked

to apoptotic escape, neurons respond to the switch toward aer-

obic glycolysis with an increased competency to functionally

respond to an apoptotic stimulus, contributing to exacerbated

neuronal cell death in AD.

Chemical inhibition of PKM2 prevents its nuclear
translocation and ameliorates neuronal AD phenotypes
While the PKM1 isoform assembles into a catalytically active

tetramer, PKM2 lacks this tendency. Instead, it promotes a

metabolic switch by (1) accumulating glycolytic metabolites

and directing pyruvate toward lactate production and (2) trig-

gering glycolytic gene expression in the nucleus. Given the

pivotal role of PKM2 inmany cancers, compounds that tetramer-

ize PKM2 have been developed to reduce aerobic glycolysis and

prevent its malignant nuclear activity (Figure 7A; Chen et al.,

2011; Li et al., 2018; Zhao et al., 2018). Indeed, we observed

that 10 mM of the PKM2-inhibitor shikonin efficiently blocked

the nuclear translocation of EGFP:PKM2 within hours, as evi-

denced in live-cell time-lapse fluorescence imaging of control

iNs (Figure 7B). Treatment for up to 10 days did not result in

any apparent neuronal morphological alterations, and immuno-

cytochemical analysis revealed that prolonged shikonin treat-

ment sustained the significantly reduced nucleocytoplasmic

ratios of p-PKM2 by 15% (Figures 7C and 7D). We observed

that shikonin treatment further resulted in a 1.4-fold decreased

H3T11-P signal in AD iNs at day 10 (Figures 7E and 7F) and led

to a 50% reduction in neuronal protein levels of total PKM2 (Fig-

ure S7A). Because PKM2-OE is sufficient to induce a Warburg-

likemetabolic switch, we next posited the question as towhether

shikonin treatment would ameliorate Warburg-like signatures

and restore a mature neuronal metabolic profile. We repeated

semiquantitative UHPLC-MS, and, indeed, AD iNs treated with

shikonin globally reflected the metabolic landscape of control

iNs. No accumulation of upstream PEP or 1,3-BP-glycerate

was detected, indicating a full re-gain of regular PKM1 enzymatic

activity (Figure 7G). Furthermore, PKM2 tetramerization restored

low global levels of glycolytic metabolites (Figure S7B) and

normalized neuronal lactate secretion to a basal level (Fig-

ure S7C). Shikonin also restored NAD+ in AD iNs, without

affecting mitochondrial membrane potential or glucose flux

into mitochondria (Figures S4O, S7D, and S7E). This finding indi-

cates that the AD phenotype may depend on, but substantially
(C–F) Immunostaining and quantification of nuclear p-PKM2 (C and D) and H3T11

Scale bars, 10 mm.

(G) Glycolytic metabolites measured by UHPLC-MS-based metabolomics. Size a

shikonin, n = 4).

(H) PCA-based bulk RNA-seq (control, n = 3; AD and AD-S, n = 8).

(I and J) Transcriptomic analysis of AD neuronal fate-loss gene sets (I) and hypo-m

after 10 days of treatment.

(K) Similarity profiles of control, AD, AD + shikonin iNs to neuronal differentiation

(L) Quantification of immunostainings for cleaved caspase-3/DAPI in control (n =

F = 4.027, p = 0.03). Scale bars, 50 mm.

(M) Radar plot of described phenotype and rescue with shikonin.

(D–L) Dots represent individual donors throughout the figure. Bars, mean; error bar
extends from, the age-associated mitochondrial decline

observed in old human neurons (Kim et al., 2018). Because shi-

konin treatment could efficiently block the nuclear translocation

of PKM2, we assessed transcriptome-wide effects of shikonin

treatment on AD and control iNs (n = 8 shikonin-treated AD

iNs, n = 8 vehicle-treated AD iNs, and n = 3 untreated control

iNs). The AD iN samples clustered separately from the control

samples along PC1/PC2 based on differentially expressed

genes, and strikingly, treatment with shikonin markedly and

consistently led to a global transcriptome shift of all AD iN sam-

ples toward the control samples (Figure 7H). Furthermore, shiko-

nin specifically alleviated cancer-transformation-like hypo-

mature transcriptome signatures from the AD iNs, as it removed

oncogenic transformation and apoptosis-related gene sets and

restored normal gene expression patterns related to mature syn-

aptic properties (Figures 7I and 7J). Partial neuronal fate loss in

AD iNs had been reported previously and was also evident

from this independent RNA-seq experiment (Figure 7K; Mertens

et al., 2021). Importantly, shikonin-treated AD iNs partially

reversed this signature and showed increasing mapping with

progressive neuronal maturation (Figures 7K and S7F). Because

apoptotic competency is characteristic of immature neurons and

nuclear PKM2 can drive apoptotic effector gene expression in

old AD iNs, we sought to functionally address whether PKM2

tetramerization could indeed prevent neuronal cell death in

response to an apoptotic stimulus. We further quantified

Casp3-positive neurons following ABT-737 exposure in both

the presence and absence of shikonin. We detected a substan-

tial decrease in apoptotic neurons in response to shikonin treat-

ment (Figure 7L). Our data indicate that PKM2 inhibition restored

global transcriptomic and functional features of mature neuronal

resilience on several levels close to normal (Figure 7M). These

findings demonstrate a key role for PKM in controlling the human

neuronal metabolic identity and neuronal fitness and resilience

and suggest that targeting PKM could positively affect sporadic

AD phenotypes in age-equivalent, patient-derived human

neurons.

DISCUSSION

Cellular stress and injury represent well-established triggers of

cellular de-differentiation in diverse biological systems (Jopling

et al., 2010; Poplawski et al., 2020; Renthal et al., 2020; Tzahor

and Poss, 2017), and features of neuronal fate instability and

de-differentiation have been described as pathological hall-

marks of AD (Arendt, 2012; Herrup and Yang, 2007; McShea

et al., 2007; Yang et al., 2001). PM AD single-cell transcriptome
-P (E and F) in AD iNs with and without shikonin (vehicle, n = 6; shikonin, n = 5).

nd color of the circles are indicative of abundance (control, n = 3; AD, n = 4; AD-

aturity gene sets (J) in control (n = 3), AD (n = 8), and AD + shikonin iNs (n = 8)

trajectory of neural stem cells to neurons (Schafer et al., 2019).

9), AD (n = 8), and shikonin-treated AD (n = 8) iNs (one-way ANOVA, DF: 25,

s, SD; violin plots, median and quartiles. Significance: unpaired t test, *p < 0.05.
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analyses have indicated that AD is associated with the evidence

of metabolic reprogramming to aerobic glycolysis in neurons

(Marinaro et al., 2020). In this context, our current findings sug-

gest that a cancer-like metabolic switch underlies fate instability

and several downstream AD features in patient-derived iNs,

such as reduced morphological complexity, lower numbers of

synaptic-like structures, and reduced frequency of Ca2+

neuronal activity (Mertens et al., 2021). This Warburg-effect-

like metabolic switch to aerobic glycolysis was predicted by

gene expression module-trait-relationship analyses, which

distinguished eight candidate genes that appeared to be highly

linked to the clinical manifestation of AD in the patient-derived

iNs. Isoform switching of PKM is characteristic of the Warburg

effect and is a prime example of the roles of metabolism beyond

the mere adaptations to energy demands (Alves-Filho and Påls-

son-McDermott, 2016; Traxler et al., 2021). Several proteome

studies of PM brain tissues and CSFs from patients with AD re-

vealed that PKM is a prominent glycolytic enzyme correlating

with AD pathology (Higginbotham et al., 2020; Johnson et al.,

2020). Here, we show that an isoform switch from PKM1 to

PKM2 occurs in AD iNs, leading to pathogenic PKM2 accumula-

tion and activity in the nucleus. PKM2 is known to specifically

interact with and enhance the transcription factors STAT3 and

HIF1a, which are known to exert stress-related and pro-onco-

genic programs (Alves-Filho and Pålsson-McDermott, 2016;

Yang et al., 2012a). This is in accordance with previous findings

describing an upregulation of oncogenic signaling pathways in

AD neurons (iNs and PM brain tissue), including HIF1a signaling

that is aberrantly activated despite a normoxic environment

(Marinaro et al., 2020; Mertens et al., 2021). Our data further pro-

vide evidence that metabolic rewiring via PKM2 is causative for

AD-related neuronal defects, as the induction of glycolysis in

iNs from healthy age-matched donors increases the susceptibil-

ity to apoptotic stimuli. This change necessitates the nuclear

translocation of PKM2, and we and others have previously

demonstrated that normal human aging leads to an impairment

of nucleocytoplasmic transport and compartmentalization

(Jovi�ci�c et al., 2015; Mertens et al., 2015). Thus, it remains to

be determined whether young neurons react similarly or whether

this effect is indeed age dependent. Furthermore, the observa-

tions of both alterations within metabolic genes in PM AD neu-

rons (Marinaro et al., 2020) and age-related mitochondrial

impairment in iNs (Kim et al., 2018) raise the question of whether

metabolic rewiring is indeed a pathogenic program in AD or

rather an adaptation to mitochondrial dysfunction. Defects in

mitochondrial respiration, accumulation of mtDNA damage,

impaired mitophagy, or increased ROS production are hallmarks

of aging and contribute to the susceptibility of neurons to dis-

eases (Chen et al., 2020; Fang et al., 2019). While mitochondrial

dysfunctions are known to contribute to the pathology of AD and

have been found in PM brain tissues (Swerdlow, 2011), our data

support the view that the activation of this anti-neuronal meta-

bolic state is not merely an adaptation to mitochondrial defects

but is deliberately mobilized to support the metabolic needs of

the pathogenic program unfolding within AD iNs, which may

eventually lead to the mitochondrial pathologies characteristic

of AD. The present data indicate that the switch to aerobic

glycolysis is independent of age or ApoE genotype, similar to

the Warburg effect in cancer, wherein increased aerobic glycol-
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ysis is observed despite functional mitochondria (Vaupel and

Multhoff, 2021). These findings are based on our model that

maintains age-associated features, among others mitochondrial

dysfunctions that contribute to the susceptibility of old neurons

to diseases (Kim et al., 2018). This age-related mitochondrial

dysfunction does not exclude the possibility that AD iNs do not

re-wire mitochondrial metabolism to generate precursors for

epigenetic modulation (Traxler et al., 2021). Exacerbated mito-

chondrial dysfunctions might further emerge in the later stages

of disease progression.

Extensive research in the cancer fields has well established

that successful malignant transformation of a cell necessitates

substantial rewiring between metabolic states (Ward and

Thompson, 2012). As a result, metabolic regulators such as

PKM have emerged as part of the focus of ‘‘anti-Warburg’’

drug development to fight cancer (Chen et al., 2011; Su et al.,

2019; Wang et al., 2018; Zhao et al., 2018). Here, we show

consistent data in this regard by utilizing aged human neurons

in which the chemical inhibition of PKM2 translocation reduced

PKM2 loads in the nucleus and restored amature neuronal meta-

bolic profile. However, in contrast to the data from cancer

research, where PKM2 tetramerization induced the apoptosis

of tumor cells, in our system, shikonin treatment restored

apoptotic brakes that enabled mature neurons to survive for de-

cades (Benn and Woolf, 2004; Kole et al., 2013). These seem-

ingly divergent observations can be explained by the fact that

the inhibition of PKM2 in neurons slows the glycolytic rate

(Zhao et al., 2018) to prevent its toxic effect on neurons (Zheng

et al., 2016) and inhibits the nonmetabolic nuclear roles of

PKM2 that cause epigenetic fate loss of neurons. Thus, PKM2 in-

hibition in neurons not only leads to a decrease in toxic glycolytic

metabolites but also reverses the fate loss and thus re-instates

neuronal brakes to prevent apoptosis. Further research is

needed to understand the similarities and differences between

the metabolic switch in aged human neurons and different types

of cancer. Importantly, here we have identified PKM2 as a target

and shikonin as a lead compound that targets the metabolic AD

signature and reduces AD features in human iNs. These findings

may have direct clinical relevance, as compounds targeting PKM

are currently being assessed in clinical trials but not in the

context of neurodegeneration (Li et al., 2018).

Our study offers detailed insights into themetabolic rewiring of

age-equivalent neurons from patients with sporadic AD and

identifies PKM2 as a key regulator of metabolic and other AD-

related changes. These insights contribute toward a better

understanding of the age-dependent progression of AD and pro-

vide an impetus for the redirection of the existing therapeutic

strategies for AD.

Limitations of study
One limitation of the iN model system is the lack of interaction

with surrounding glial cells, which contributes to the metabolic

homeostasis in the brain (Afridi et al., 2020). The establishment

of powerful tools to reprogram somatic cells and iPSCs into

induced astrocytes, oligodendrocytes, and microglia will enable

co-culture experiments comprising iNs and other cell types of

the brain to study the metabolic interactions during normal aging

and neurodegeneration. Furthermore, our system does not reca-

pitulate the effects of long-term exposure to Warburg-like
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metabolic changes, as recurrent media changes prevent the

accumulation of toxic proteins or metabolites that might lead

to additional pathologies. Long-term multicellular 3D cultures

developed for postmitotic iNs might enhance our understanding

of long-term exposure to the metabolic switch in AD.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti Beta-III-tubulin BioLegend Cat#MMS-435P; RRID:AB_2313773

Rabbit anti Beta-III-tubulin BioLegend Cat#802001; RRID:AB_2564645

Mouse anti NeuN EMD Millipore Cat#MAB377; RRID:AB_2298772

Rabbit anti NeuN Cell Signaling Cat#24307T; RRID:AB_2651140

PE-conjugated anti PSA-NCAM Miltenyi Biotec Cat#130-117-394; RRID:AB_2727931

Rabbit anti Synapsin Merck Cat#574778; RRID:AB_565174

Mouse anti PSD-95 (clone K28/42) NeuroMab Cat#75028; RRID:AB_2292909

Chicken anti Map2 Abcam Cat#ab5392; RRID:AB_2138153

Rabbit PKM2 (phospho-Ser37) Sabbiotech Cat#11456

Mouse PKM2 R&D systems Cat#MAB72441

Rabbit Histone 3 (phospho T11) Abcam Cat#ab5168, RRID:AB_304759

Rabbit cleaved caspase 3 (asp175)(5A1E) Cell Signaling Cat#9664; RRID:AB_2070042

Mouse PDH-E1a Santa Cruz Cat#sc-377092; RRID:AB_2716767

Mouse PKM2 ThermoFisher Scientific Cat#TA190266

Alexa Fluor 488-conjugated Donkey Anti Rabbit IgG Thermo Fisher Scientific Cat#A-21206; RRID:AB_2535792

Alexa Fluor 647-conjugated Donkey Anti Rabbit IgG Thermo Fisher Scientific Cat#A-31573; RRID:AB_2536183

Alexa Fluor 488-conjugated Donkey Anti Mouse IgG Thermo Fisher Scientific Cat#A-21202; RRID:AB_141607

Alexa Fluor 647-conjugated Donkey Anti Mouse IgG Thermo Fisher Scientific Cat#A-31571; RRID:AB_162542

Alexa Fluor 647-conjugated Donkey Anti Chicken IgY Millipore Cat#AP194SA6; RRID:AB_2650475

Cy3-conjugated Donkey Anti-Mouse IgG Jackson ImmunoRes. Cat#715-165-151; RRID:AB_2315777

Cy3-conjugated Donkey Anti-Rabbit IgG Jackson ImmunoRes. Cat#711-165-152; RRID:AB_2307443

Anti-Mouse HRP Detection Module Bio-Techne Cat#DM-002

Bacterial and virus strains

NEB Stable Competent E. coli New England Biolabs Cat#C3040H

Biological samples

Fibroblast cultures from cohort (see Figure S1A) this study and Mertens et al. (2021) Figure S1A

Chemicals, peptides, and recombinant proteins

Trizol-LS reagent Thermo Fisher Cat#10296010

Puromycin Sigma Aldrich Cat#P8833

TrypLE dissociation reagent Thermo Fisher Scientific Cat#12604013

B-27 supplement Thermo Fisher Scientific Cat#17504044

N2 supplement Thermo Fisher Scientific Cat#17502048

Non-Essential Amino Acids (NEAA) supplement Thermo Fisher Scientific Cat#M7145

Laminin coating reagent Sigma Aldrich Cat#L2020

Geltrex coating reagent Thermo Fisher Scientific Cat#A1413201

Y-27632 (ROCK inhibitor) StemCell Technologies Cat#72308

Dibutyryl-cyclic-AMP Santa Cruz Cat#sc-201567B

Recombinant Noggin R&D systems Cat#6057NG

CHIR99021 LC Laboratories Cat#C-6556

LDN-193189 Sanova Pharma Cat#HY-12071

A83-1 Santa Cruz Biotech Cat#K1119

Forskolin LC Laboratories Cat#F-9929

SB-431542 MedChem Cat#HY-10431

Poly-L-ornithine coating reagent Sigma Aldrich Cat#A-004-C

Doxycycline Sigma Aldrich Cat#089M4004V

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

KnockOut Serum Replacement (KOSR) Thermo Fisher Scientific Cat#10828010

BrainPhys culture media StemCell Technologies Cat#05790

Shikonin Santa Cruz Cat#sc-200391

D-Glucose C13 Santa Cruz Cat#sc-239643A

Cobaltchloride Santa Cruz Cat#sc-252623

Deferoxamine-mesylate Sigma Aldrich Cat#138-14-7

ABT737 Tocris Cat#6835

JC-1 dye Thermo Fisher Cat#T3168

Triton X-100 reagent Sigma Aldrich Cat#X100

DAPI fluorescence reagent for DNA Sigma Aldrich Cat#D8417

TURBO DNAse for NGS library preparation Ambion Cat#AM2238

DNAse for cell culture Roche Cat#4716728001

TruSeq Stranded mRNA Sample Prep kit Illumina Cat#20020594

SuperScript III First-Strand Synthesis System Thermo Fisher Scientific Cat#18080051

Tagment DNA Enzyme and Buffer kit Illumina Cat# 20034197

cOmplete EDTA-free Protease Inhibitor Cocktail Roche Cat#11836170001

PhosSTOP Phosphatase Inhibitors Zymo Research Cat#PHOSS-RO

RIPA Lysis and Extraction Buffer Thermo Fisher Scientific Cat#89900

Critical commercial assays

Lactate assay kit Merck Cat#MAK064-KT

Lactate assay kit Biocat Cat#K607

ATP/ADP ratio kit Sigma Aldrich Cat#MAK135

NAD/NADH Kit Sigma Aldrich Cat#MAK037

NAD-NADH-Glo Assat Promega Cat#G9071

Caspase-Glo 3/7 Promega Cat$G8090

PKM activity assay Sigma Aldrich Cat#MAK072

ProteinSimple 12-230 kDa Separation Module Bio-Techne Cat#SM-W004

ProteinSimple Jess 25-Capillary Cartridges Bio-Techne Cat#PS-CC01

Deposited data

RNA-Seq after shikonin treatment ArrayExpress E-MTAB-11855

UHPLC-MS Metabolomics Metabolomics Workbench ST002213

UHPLC-MS Metabolomics Shikonin Metabolomics Workbench ST002214

Oligonucleotides

TruSeq RNA-Seq Single Indexes Set A Illumina Cat#20020492

TruSeq RNA-Seq Single Indexes Set A Illumina Cat#20020493

Recombinant DNA

pLVXUbC-rtTA-Ngn2:2A:Ascl1 Herdy et al., 2019 Addgene #127289

pCSC-hSyn1::dsRed Mertens et al., 2015 N/A

pLVXTP-EGFP-PKM2 This paper N/A

Software and algorithms

STAR Aligner https://github.com/alexdobin/STAR N/A

Babraham Bioinformatics TrimGalore https://www.bioinformatics.

babraham.ac.uk/projects/

trim_galore/

N/A

Samtools https://samtools.github.io/ N/A

DESeq2 https://github.com/mikelove/DESeq2 N/A

Hypergeometric Optimization of Motif

Enrichment (HOMER)

http://homer.ucsd.edu/homer/ N/A

deepTools https://deeptools.readthedocs.io/ N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

bedtools https://bedtools.readthedocs.io/ N/A

MBF Bioscience Neurolucida https://www.mbfbioscience.com/

neurolucida

N/A

Integrative Genomics Viewer - Broad Institute (IGV) https://software.broadinstitute.org/

software/igv/

N/A

Metaboanalyst https://www.metaboanalyst.ca/ N/A

FlowJo https://www.flowjo.com/ N/A

GraphPad Prism https://www.graphpad.com/ N/A

STRING-db https://string-db.org/ N/A

DAVID Functional Annotation https://david.ncifcrf.gov/ N/A

Reduce + Visualize Gene Ontology (REVIGO) http://revigo.irb.hr/ N/A

FACSChorus Software Becton Dickinson N/A

ZEN Imaging Software Carl Zeiss N/A

ImageJ https://imagej.nih.gov/ij/ N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jerome

Mertens (Jerome.Mertens@uibk.ac.at).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d iN RNA-Seq and ATAC-Seq data have been deposited on ArrayExpress and are publicly available as of the date of publication.

UHPLC-MSmetabolomics data were uploaded onMetabolomicsWorkbench. Post-mortem transcriptome data were processed

from previously published data available on GEO. Uncropped images and all values from the graphs are available in Data S1.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fibroblasts and iNs
Human fibroblasts were obtained from the UCSD Shiley-Marcos Alzheimer‘s disease research center (ADRC) and provided written

informed consent. All procedures were approved by local human subjects committees. The cohort consists of 14 male and 8 female

donors between 56 and 88 years (Figure S1A), most of whom underwent clinical assessment as part of the UCSD ADRC study.

Fibroblasts were cultured in DMEM containing 15 % fetal bovine serum and 0.1 % non-essential amino acids at 37�C with 5 %

CO2. They were transduced with a lentivirus pLVXUbC-rtTA-Ngn2:2A:Ascl1 (Addgene: #127289) and selected with puromycin

(1 mg/ml) as previously described (Mertens et al., 2021). To initiate conversion, puromycin-selected fibroblasts were pooled 3:1

and, after 24 hours, medium was changed to neural conversion medium for three weeks. Neural conversion medium is based on

DMEM:F12 and Neurobasal (1:1), supplemented with N2 supplement (1x, ThermoFisher), B27 supplement (1x, ThermoFisher), doxy-

cycline (2 mg/ml, Sigma Aldrich), Laminin (1 mg/ml, Sigma Aldrich), dibutyryl-cyclic-AMP (100 mg/ml, Santa Cruz), human recombinant

noggin (150 ng/ml, R&D), LDN-193189 (0.5 mM, Sanova Pharma), A83-1 (0.5 mM, Santa Cruz), CHIR99021 (3 mM, LC Laboratories),

forskolin (5 mM, LC Laboratories) and SB-431542 (10 mM, MedChem).

After three weeks of conversion, cells were detached with TrypLe (ThermoFisher) and either plated on Geltrex-coated

(ThermoFisher) m-slides (ibidi) or FACS sorted. For sorting, cells were detachedwith TrypLE and stainedwith PSA-NCAM-PE (Milteny

Biotec) in sorting buffer (150 mM myo-inositol and 5 mg/mL polyvinyl alcohol in PBS and ddH2O) containing 5 % FBS. Cells were

sorted in PBS containing EDTA (Invitrogen), Rock-inhibitor (10 mM), and DAPI and plated in conversion media containing Rock-inhib-

itor and z-VAD(OMe)-FMK. Cells were treated with shikonin (10 mM, ChemCruz) or NR (300 mM, ChromaDeX) 1 week before FACS

sorting until harvest. Cobalt-II-Chloride (100 mM, Santa Cruz) and deferoxamine (100 mM, Sigma Aldrich) treatment was initiated after

FACS sorting until harvest.
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METHOD DETAILS

Immunocytochemistry
Cells were fixed with 4 % paraformaldehyde and stained in PBS containing 0.05 % Triton-X100 and 5 % FBS. Cells were incubated

with primary antibodies PKM2 (Origene, 1:500, TA347018), p-PKM2 (Eubio, 1:500, #11456-2), H3T11-P (Abcam, 1:100, ab5168),

cleaved caspase 3 (Cell Signaling, 1:1000, #9664), b-III-tubulin (BioLegend, 1:1000, #802001), Synapsin (Merck, 1:750, #574778),

PSD95 (ThermoFisher, 1:300, MA1046), NeuN (CellSignaling, 1:100, #24307T) at 4�C overnight and incubated with secondary

antibodies for two hours at room temperature, followed by 10 minutes of DNA staining with DAPI (ThermoFisher, 300nM,

D21490). Images were taken with the Leica DMi8 microscope and analyzed in FIJI. Nuclear expression of p-PKM2 was measured

as IntDen in region-of-interests (ROIs) set based on DAPI; total neuronal expression was measured as IntDen in ROIs based on

MAP2. For assessment of synapse-like structures, neurons were transduced with synapsin-RFP (Addgene #22909). Neuronal

morphology was assessed based on b-tubulin using the Neuroanatomy SNT plugin in ImageJ, measuring neurite length from the

cell body to the furthest connection, and the complexity of the branching on these neurites.

Immunohistochemistry of post-mortem brain sections
Formalin-fixed prefrontal cortex slices embedded in paraffin of 10 healthy old control subjects (Braak 1-2) and 10 patients with

sporadic AD (Braak 3-4) were obtained from the Shiley Marcos Alzheimer’s Disease Research Center in San Diego. After deparaffi-

nization, antigen retrieval was achieved using HIER buffer (ThermoFisher) before staining with PKM2 (ThermoFisher, TA190266) and

NeuN (Abcam, ab104224) at the suggested dilutions. Background fluorescence was reduced using Sudan Black B before mounting

in PVA-DAPCO. Images were taken at the Olympus VS120 automated slide scanner and analyzed using ImageJ. Total PKM2 levels

weremeasured in outer cortical layers, followed bymeasurement of PKM2 fluorescence intensity in NeuN-ROIs and extended NeuN-

ROIs to measure perinuclear regions.

Mass spectrometry metabolomics
A total of 150,000 FACS-sorted iNs were treated with 13C6-Glucose (Santa Cruz, sc-239643A) for six hours before collecting cell pel-

lets and supernatant to resuspend in Lysis Buffer (50:30:20 MeOH:Acetonitrile(ACN):H2O, 2 Million cells per mL) or mix 1:25 in Lysis

Buffer, respectively. After vortexing for 30minutes at 4�C, proteins were precipitated when centrifuging for 10minutes at 18.000 x g at

4�C. The supernatant containingmetabolites was resolved over the Kinetex C18 column (2.1 x 150mm, 1.7 mm, Phenomenex) using a

Vanquish UHPLC system and analyzed with the high-resolution Q Exactivemass spectrometer (Thermo Scientific) at 35 �C. A volume

of 10 ml for pellets and 20 ml for supernatant analysis was injected for positive and negative ion mode, using a 5 minutes gradient at

450 ml/min from 5% to 95% of ACN/0.1% Formic Acid In Water/0.1% Formic Acid (positive mode) and 95% ACN/5% water/1mM

ammonium acetate in 5%ACN/95%water/1mMammonium acetate (negative mode). Raw files were converted tomzXML file format

using Raw converter (He et al., 2015) and technical replicates were used to control technical variability. Only metabolites with a

coefficient of variation (CV = SD/mean) < 20%were considered for this report. Metabolite assignment to KEGG compounds was per-

formed usingMAVEN, and normalization to protein content measuredwith nanodropwas performedwithMetaboanalyst (Pang et al.,

2021). Statistical z-scores were calculated for visualization. Relative glucose consumption was measured by calculating the pres-

ence of glucose in the supernatant after six hours of incubation, and as the sumof all detected labeledmetabolites in the flux analysis.

Metaboanalyst software was used for enrichment analysis of PCs.

Targeted metabolic assays
For metabolic assays, fibroblasts were converted for three weeks and 50.000- 100.000 FACS-sorted iNs were plated on Geltrex-

coated, white- or black-walled 96-well plates. Four to seven days after re-plating, supernatant was analyzed using colorimetric

lactate assays (Biovision, #K607 or Merck MAK064). Attached cells were processed using the Pyruvate Kinase activity assay Kit

(Sigma Aldrich, MAK072), the ATP/ADP ratio kit (Sigma Aldrich, MAK135), or the NAD/NADH kit (Sigma Aldrich, MAK037 or Promega,

G9071) according to themanufacturers’ instructions. Recording of signals was performed using the Enspire Multimode Plate Reader

platform (PerkinElmer).

Mitochondrial membrane potential
Three week-converted iNs were treated were stained in suspension using 2 mMof the JC-1 dye (ThermoFisher, T3168) for 20minutes

and analyzed by flow cytometry. Neurons were identified according to PSA-NCAM staining (BD FACS Melody). Analysis was per-

formed using FlowJo v10 (BDBiosciences) in the PSA-NCAM+ population. Histograms of red and green fluorescencewere assessed,

and geometric means were extracted.

Capillary Western blot analysis
PDH protein was quantified in lysed pellets of FACS-purified iNs using the ProteinSimple Jess (Biotechne) and the 12-230 kDa Jess

Separation Module in the NIR channel. Pellets were lysed in RIPA Lysis and extraction Buffer (ThermoFisher) containing cOmplete

EDTA-free Protease Inhibitor Cocktail (Merck, 11873580001) and PhosSTOP (Merck, 4906845001). Anti-PDH antibody (Santa Cruz,

sc-377092, 1:50) was incubated for 60 minutes, followed by standard default run settings provided by ProteinSimple. Data analysis

was performed using Compass software.
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Apoptosis assay
To evaluate neuronal resilience, we converted fibroblasts for three weeks and plated two wells of 50.000 FACS-sorted iNs for

each donor on Geltrex-coated m-Plates with 96 wells and black walls (ibidi). Two to five days after sorting, we treated one

well of each donor with the Bcl-2 inhibitor ABT-737 (Tocris, 0.16 mM, #6835) for eight hours and fixed all the cells with 4 %

paraformaldehyde. Subsequently, we stained for cleaved caspase 3 and either b-III-tubulin or MAP2 (Neuromics, CH22103) and

stained DNA with DAPI.

Fluorescent cell time-lapse imaging
For time-lapse imaging, fibroblasts were converted for at least three weeks and plated on m-slide eight-well coverslips. Within one

week, cells were transduced with pLVXTP-EGFP-PKM2 according to the Lenti-X GoStick value (Takara). Green fluorescent cells

could be observed 24 hours after transduction. To image EGFP::PKM2 localization, we stained the nucleus with siRDNA (Spiro-

chrome) 30 minutes before imaging with the Leica DMi8 microscope in an environmental chamber, allowing cells to be under stable

conditions of 37�C and 5% Co2.

Electrophysiological analysis
For electrophysiological recordings, three-week-old induced neurons were plated on Geltrex-coated plastic coverslips (Thermanox)

and cultured for at least one week after re-plating. Spontaneous synaptic activity and evoked responses were recorded in whole cell

patch clamp conditions at room temperature using aMulticlamp 700B amplifier (Molecular Devices) and acquiredwith DASYLab v.11

(National Instruments) at 20kHz. Patch pipettes with input resistances of 6–8 MUwere pulled from standard wall glass of 1.5-mmOD

(Precision Instruments) and filled with a solution containing (in mM) K-gluconate 100, KCl 10, KOH 10, MgCl2 2, NaCl 2, HEPES 10,

EGTA 0.2, D-glucose 5; pH set to 7.3. The bath solution (artificial cerebrospinal fluid) was composed of NaCl 140, KCl 5, CaCl2 2,

MgCl2 1, HEPES 5 and D-glucose 10; pH set to 7.5. To record voltage responses of the identified iNs, we used incremental levels

of constant, rectangular current steps of 350-ms duration. The initial current step level was –50 to –100 pA, depending on the

observed input resistance of the cell. Steps were incremented by + 2.5 pA in successive cycles of stimulation at a rate of 1 Hz. Anal-

ysis of the evoked responses was performed in software developed by A. Sz€ucs (NeuroExpress). For each cell, several physiological

parameters, including the resting membrane potential, rheobase, input resistance, membrane time constant, and spike amplitude,

were measured.

WGCNA of RNA-Seq data
WGCNA was performed separately on the transcriptomic data of E-MTAB-10352 and the GSE5281 dataset, using the R package

developed by P. Langfelder and S. Horvath (Langfelder and Horvath, 2008). For each dataset, a soft threshold was applied according

to the approximate scale-free topology, and the modules were identified by the constructed unsigned gene network. Eigengenes of

each module were correlated to the traits of interest (Alzheimer’s yes(1)/no(0), MMSE 1-30, female(0)/male(1), age 53-89, ApoE ge-

notype (23,33,43,34)). Genes of modules significantly correlated to AD and MMSE were extracted and used for gene set enrichment

analysis. We summarized all KEGG and UniProt terms for each significant module using GoPlot analysis and plotted them according

to their adjusted p-value and non-statistical p-value, as calculated by the R package [z-score = (upregulated – downregulated genes

of each term)/root(number of genes in this term)]. We quantified the abundance of each gene in the top 10 KEGG andUniProt terms to

check for the most abundant genes and depictured them in a chordplot with the GoPlot package.

Integrated Molecular Pathway Level Analysis
For integrative analysis of transcriptomic andmetabolomic data, we uploaded transcriptomic data of the E-MTAB-10352 dataset and

generated UHPLC-MS metabolomics data of the same patients to the IMPaLa webtool (Kamburov et al., 2011). IMPala generates

enrichment analysis and calculates adjusted p-values and rich factors (the degree of enrichment for each term) for genes and me-

tabolites separately and jointly. For analysis, we focused on KEGG pathways and depictured the top KEGG pathways according to

the joint adjusted p-value in a bubble plot using R.

ATAC-Seq analysis
To analyze the chromatin openness around genes regulated by PKM-regulated transcription factors, we downloaded human ChIP-

Seq data from ReMap2020 (Chèneby et al., 2018), and using deeptools we calculated chromatin openness according to the ATAC-

Seq dataset E-MTAB-10352 from the patients mentioned in this study (Ramı́rez et al., 2016). Heatmaps of open chromatin around the

transcriptional start site (-1500, +2500) and text files of the respective profiles were generated for each patient with deeptools. We

subsequently analyzed the mean of the profile openness of each patient with Prism to perform statistical analysis. Based on the

ReMap2020 genes, we extracted mRNA abundance from fpkm-normalized transcriptomic data and calculated if the respective

genes were up- or downregulated in AD; then we performed gene set enrichment analysis on the upregulated genes. Additionally,

we performed HOMER motif finding for DE of ATAC peaks identified with HOMER, as previously described (Mertens et al., 2021).

mRNA sequencing (RNA-Seq) analysis
iNs were directly sorted into Trizol LS reagent (Thermo Fisher) and RNA was extracted according to the manufacturer’s protocol,

followed by TURBO DNase digestion (Thermo Fisher). RNA integrity was assessed using the Bioanalyzer High Sensitivity RNA
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Analysis Kit (Agilent). A cDNA library was generated using the TruSeq Stranded mRNA Sample Preparation Kit (Illumina) and

sequenced paired-end 75 at the NExtSeq 500 platform. Read trimming was performed using TrimGalore and mapped with STAR

to the hg38 before generating rawcounts using featureCounts. Differential expression analysis was performed after variance stabi-

lizing transformation (vst) using DESeq2. Hypomaturity and differentiation trajectory gene sets were extracted from Mertens et al.

(2021) and log2 fold changes for each gene were plotted. Pearson correlation between our iN transcriptomic dataset and published

iPSC-neural stem cell (NSC) differentiation data (Schafer et al., 2019) was performed in R based on fpkm-normalized counts. To

analyze PKM splicing in paired-end transcriptomic data, we BAM files of each patient were assessed with the Integrative Genomics

Viewer (IGV) and Exon-8-to-9, and Exon-9-to-10 splicing was quantified using Sashimi plot function. Splicing changes were further

confirmed with HOMER exon counts, which was also applied to the transcriptomic dataset of NSC differentiation.

Seahorse mitochondrial analysis
Six week-converted iNs were seeded at equal concentrations on a Seahorse XF96 Microplate coated with Geltrex and incubated for

48 hours to allow cells to adhere. Medium was then changed to Seahorse phenol red-free DMEM supplemented with N2 and B27 to

perform the XF Cell Mito stress test (Agilent) according to the manufacturer’s instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Log2 fold changes of pseudobulk analysis of single-cell transcriptomics of human post-mortem brain tissues were extracted from a

published dataset (Grubman et al., 2019) for PKM2-related genes and plotted using R for each described cell type. ImageJ was used

to analyze immunofluorescence images, and the detailed procedure is described in the ICC section. Prism was used to calculate

statistics for non-omics data and normal distribution was evaluated using the Shapiro-Wilk test. Data was analyzed with the method

indicated in each figure. Significance evaluations are marked as *p<0.05, **p<0.01, ***p<0.001 in the figures and the statistical test

including n numbers are included in the figure legends. Metabolomics data were normalized to cell count and statistics were

performed using the normalization to median in Metaboanalyst software.
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Figure S1. Gene network analysis of a cohort of control and AD iNs 
Related to Figure 2. (A) Clinical data of 11 control and 11 patients with AD in this study. (B) iNs labeled 
with lentivirus expressing RFP under synapsin promoter, stained for synapsin and PSD95. Scale bar= 
10 µm (C-D) Gene modules of iNs identified by WGCNA and their correlation to AD and MMSE. (E-
G) Correlation of ADM1-ADM6 to gender, age and ApoE. (H-I) Gene modules of post-mortem brain 
and their correlation to AD and the only known variable, gender. (J) Chordplot of the 17 most 
abundant genes in the top 20 KEGG pathways and UniProt keywords and their pathway contribution. 
(K) Heatmap of gene expression of the 17 most abundant genes across the iN cohort. 
 
 
 



 
   
  Figure S2. Gene network analysis of post-mortem brains of ROSMAP study 
Related to Figures 2 and 3. (A) Cluster dendrogram of WGCNA analysis of vst-normalized 
ROSMAP transcriptomic data. (B) Gene modules significantly correlated to AD as a bar plot and 
their correlation values presented in the table. (C) KEGG pathways and UniProt keywords of AD-
related gene modules. (D) PKM1 and PKM2 isoform counts comparing starting fibroblasts and 
iNs from the same donors. (E) FPKM-normalized PKM1 and PKM2 isoform counts in ROSMAP 
based on post-mortem diagnosis (n=633). Significance: Mann-Whitney test, **p=0.005, 
***p=0.0005. 

 
 
 
 
 



 
 
Figure S3. PCA of UHPLC-MS metabolomics in iNs 
Related to Figure 4. (A) Dotplots of PC1-PC7 comparing control and AD iNs based on their metabolic 
profile (n=10 per group). (B) Enrichment analysis using Metaboanalyst of top 20 metabolites of PC7.  
 
 
 
 
 
 



 
Figure S4. Mitochondrial function remains unaffected in AD iNs 
Related to Figure 4. (A) Glucose consumption as sum of labeled metabolic intermediates after six 
hours of treatment with U-13C6-Glucose. (B) Scheme of glucose flux to TCA cycle and involvement in 
electron transport chain (ETC). (C) Fraction of heavy-labeled Citrate. (D-E) Protein level of PDH 
measured by ProteinSimple (n=11 control, n=9 AD). (F) Mitochondrial membrane potential (JC-1 
dye) analyzed by FACS (control n=9, AD n=10). (G) Average of TCA metabolites in AD iNs (n=9) 
compared to controls (n=9). (H) Ratio of ATP and ADP levels as measured by UHPLC-MS. (I) Heavy-
labeled fumarate/succinate level (succinate dehydrogenase (SDH) activity). (J) Mitochondrial 
respiration measured by seahorse mitochondrial stress test (n=7 control, n=6 AD). (K) Colorimetric 
assay measuring total free NAD+ levels. (L) Restoration of NAD+/NADH ratio in control and AD iNs 
measured by a luminescence assay (n=6 control, 5 AD; one-way ANOVA, DF: 21; F-value 18.31, p-
value <0.0001), and the precursor nicotinamide measured by UHPLC-MS (n=3 control, 2 AD) after 
NR supplementation (300 µM, 72 hours). (M) Effects of NR supplementation on lactate secretion 
(colorimetric assay, n=5 control, n=9 AD, average for each donor of four independent experiments, 



one-way ANOVA, DF: 27, F-value 3.677, p-value 0.02) and total glycolytic metabolite levels (UHPLC-
MS, n=3 AD, n=2 AD + NR). (N-O) Effects of PKM2 overexpression (n=4 control, n=6 overexpression, 
unpaired t-test) and shikonin treatment (n=6 control, n=5 AD, one-way ANOVA, p-value 0.0021, F-
value 7.335, DF 21) on total NAD+ levels and NAD+/NADH ratios measured by UHPLC-MS after 10 
days of treatment and FACS-purification. Significance: unpaired t-test, *p<0.05, **p<0.001, 
***p<0.005. 
 
 
 

 
Figure S5. Apoptotic and PKM gene expression during neuronal differentiation 
Related to Figure 6. (A) Schematic: timeline RNA-Seq differentiating iPSC-derived NSCs (Schafer et 
al., 2019). (B) Genes associated with the GO term “neuronal maturation” (GO:0042551) increase their 
expression along differentiation. (C) PKM2/PKM1 ratio decreases as neurons differentiate. (D-E) 
Differentiating neurons increase gene expression related to the neuronal apoptotic brake and decrease 
neuronal pro-apoptotic genes, as identified according to Holville et al. (2019). 
 



 
 
Figure S6. Induction of aerobic glycolysis in AD iNs using CoDo and PKM2 
overexpression 
Related to Figure 6. (A) UMAP of single-nuclei transcriptomic data of post-mortem brain tissue, 
modified from Grubman et al. (2019). (B) Violin plots representing log2FC of PKM-related gene 
expression in the neuronal subpopulation, and (C) heatmap showing median of log2FC of genes 
related to the indicated pathways comparing different cell populations in the human brain. (D) 
Distribution of FPKM-normalized counts of main necroptosis-related genes in control and AD iNs 
(n=10 per group). (E) Cell death of control and AD iNs with vehicle treatment, 100 µM and 300 µM 
CoCl2. (F) Cell death assessed by cleaved caspase3/b-tubulin-positive cells of AD iNs. (G) 
Mitochondrial membrane potential in control and AD iNs with and without CoDo treatment (n=3 per 
group). (H) Neuronal morphology assessed by b-tubulin staining in control, CoDo-treated control, 
and AD iNs (n=9, scale bar 10 µm). Average length measured from cell body to end of longest 
dendrites; hierarchy representing complexity of branching (one-way ANOVA, length: p-value 
<0.0001, F-value 14.27, DF 26; hierarchy: p-value 0.0089, F-value 6.12, DF 21). (I) UHPLC-MS 
metabolomics comparing control iNs overexpressing GFP::PKM2 for 48 hours (n=3), and CoDo 



treated iNs (n=2) compared to GFP-vehicle treated control iNs (n=3). Size and color of circles 
represent z-scores of respective metabolites. (J) UHPLC-MS measurement of labeled citrate after six 
hours of 13C6 Glucose treatment. (K) Lactate secretion measured by colorimetric assay in control iNs 
overexpressing GFP-vehicle or GFP::PKM2 (n=3 per group). (L) Apoptosis competence measured by 
the Luminescence Caspase 3/7-Glo assay (n=2 per group, one-way ANOVA, DF: 7, F-value 6.496, p-
value 0.04). Significance: unpaired t-test, *<0.05, **<0.01. 
 
 
 
 

 
Figure S7. Shikonin restores mature neuronal phenotype 
Related to Figure 7. (A) Immunostaining and quantification of total PKM2 FI in MAP2-ROIs in AD 
iNs with and without shikonin (vehicle n=6, shikonin n=5, unpaired t-test). Scale bar = 10 µm. (B) 
Average of all detected glycolytic metabolites measured by UHPLC-MS-based metabolomics (DF:10, 
F-value 10.12, p-value 0.0064). (C) Colorimetric assay measuring lactate levels in supernatant of 
control (n=9), AD (n=8) and shikonin-treated AD (n=7) iNs normalized to total protein (DF:23, F-
value 5.087, p-value 0.01). (D) Mitochondrial membrane potential of iNs treated with and without 
shikonin measured by JC-1 in PSA-NCAM+ neurons (n=3 per group, DF:11, F-value 0.78, p-value 
0.48). (E) Tracing of isotope-labeled glucose after six hours of incubation with 13C6-Glucose. Fraction 
of labeled glucose detected in citrate (n=10 per group, DF:10, F-value 0.18, p-value 0.8). (F) 
Correlation of trajectory genes in control (n=3), AD (n=8) and AD + shikonin (n=8) iNs to neuronal 
differentiation from NSCs to neurons (Schafer et al. 2019) for each patient. (B-E) Significance: one-
way ANOVA *<0.05, **<0.01. 
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