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Abstract. We discuss one of the many topics that illustrate the interaction

of Blaine Lawson’s deep geometric and analytic insights. The first author is

extremely grateful to have had the pleasure of collaborating with Blaine over

many enjoyable years. The topic to be discussed concerns the fruitful interplay

between nonlinear potential theory; that is, the study of subharmonics with re-

spect to a general constraint set in the 2-jet bundle and the study of subsolutions

and supersolutions of a nonlinear (degenerate) elliptic PDE. The main results

include (but are not limited to) the validity of the comparison principle and

the existence and uniqueness to solutions to the relevant Dirichlet problems on

domains which are suitably “pseudoconvex”. The methods employed are geo-

metric and flexible as well as being very general on the potential theory side,

which is interesting in its own right. Moreover, in many important geometric

contexts no natutral operator may be present. On the other hand, the potential

theoretic approach can yield results on the PDE side in terms of non standard

structual conditions on a given differential operator.
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1. Introduction

Our main aim is to give a partial survey of a research endeavor which was

initiated in a trio of papers of Harvey and Lawson [21], [22] and [23] published in

2009 that has grown into a wide ranging investigation with many interesting and

important avenues still to pursue. For simplicity of the exposition and in order to

make the discussion more accessible to analysts, we will focus on the Euclidean

setting of open subsets X of Rn, although X could also be a Riemannian manifold

as in [25] and [29], or an almost complex manifold as in [34]. We will emphasize

the fruitful interplay between nonlinear potential theory; that is, the study of the

family of F-subharmonics with respect to a given subequation (constraint set)

F ⊂ J 2(X) := X × J 2 := X × R× Rn × S(n), X ⊂ Rn (1.1)

and the study of solutions/subsolutions/supersolutions of a given fully nonlinear

(elliptic) PDE

F (x, J2
xu) := F (x, u(x), Du(x), D2u(x)) = 0, x ∈ X ⊂ Rn (1.2)
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determined by a given operator F ∈ C(J 2(X)). The equation (1.2) will also be

written more succinctly as

F (J2u) = 0 on X. (1.3)

Here J 2 is the vector space of 2-jets. We will use the notation J2
xu for the second

order Taylor development of u indifferently with respect to the differentiability of

u. This interplay has been developed in detail in [11], [12], [10] and [13].

Given the fully nonlinear setting, one cannot expect solutions to be regular in

general, and distribution theory is generally available for convex subequations or

equations in divergence form. Hence all notions are to be interpreted pointwise in

the viscosity sense that will be recalled in Definition 2.4 (see [33] for the equivalence

of the distributional approach and the viscosity approach in the convex case).

There is a satisfying unification that comes from a potential theoretic (pluripo-

tential theoretic) viewpoint as it includes classical (Laplacian) subharmonics, con-

vex and quasiconvex functions as well as new geometric potential theories (some

of which are useful for theoretical physics) as well as an immense universe of first

and second order potential theories determined by classes of (degenerate) elliptic

operators.

We now describe the main motivating principles. There are many opportunities

for cross-fertilization and synergy between the potential theory and the operator

theory. First, the conditions imposed on a constraint set F correspond to and

encode structural conditions on the operator F ; for instance, a convex constraint

set F corresponds to a concave operator F . Second, the subequation F “frees”

a given PDE from any particular form of F (many different F correspond to the

same F); this is an important point in the work of Krylov [51] on the general no-

tion of ellipticity. Moreover, F “liberates” the user from needing an operator F to

apply nonlinear elliptic potential theory. Third, “forgetting” about the operator

leads to interesting questions that at first glance might not seem important for

operator theory and provides a “machine” for formulating new conjectures and

theorems. For instance, taking one’s cue from known results in pluripotential the-

ory or convex analysis, one is led to seek generalizations in other potential theoretic

situations as well. Some examples of this will be discussed in subsection 1.2 be-

low. In this way, one can find “welcome surprises” in the operator theory. Fourth,

along with a rich abundance of geometrically motivated potential theories, there

are many new PDEs to discover. For example, as will be discussed in subsection
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1.1, while every calibrated geometry has an underlying potential theory, known

“natural” smooth operators are “rare gems”. Nevertheless, for any given subequa-

tion F , one can construct several “non smooth” operators. One good example is

the construction of the so-called canonical operator associated to a given subequa-

tion. This is a canonical construction that is scattered out, first in [25, Remark

14.11] and [24, Examples 3.4 and 3.5] and then better explained in [42, subsection

on canonical operators in section 6] and [10, Proposition 11.17]. It includes the

truncated Laplacians, among the many examples, so it might be referred to as the

“canonical eigenvalue operator construction”. These operators are discussed a bit

further in Example 1.16. Another good example is the signed distance operator

F (x, J) :=

{
dist(J, ∂Fx) J ∈ Fx
−dist(J, ∂Fx) J ∈ J 2 \ Fx

, (1.4)

where

Fx := {J ∈ J 2 : (x, J) ∈ F} (1.5)

is the fiber of F over x ∈ X. The operator (1.4) was studied in the pure second

order case in Theorem 3.2 of [51]. Finally, in the rare cases when a natural operator

F is known for a fixed F -potential theory, the operator F will have much to say

about the potential theory; for example, by taking derivatives of the equation.

Having stated the main aims and philosophical motivations, we proceed to de-

scribe the origins and objectives, along with key concepts, nice features, some

results and significant examples which illustrate the theory. We begin with dis-

cussion of the origins of the investigation which led to a hierarchy of potential

theories.

1.1. Potential theories: from calibrations to subequations. The story be-

gins in calibrated geometry. The geometric side of calibrated geometry was devel-

oped to emphasize the calibrated submanifolds which are those submanifolds for

which the calibration restricts to be the volume form. Said infinitesimally, a cali-

bration φ of degree p restricts to be a function on the Grassmannian of oriented

p-planes where it attains a maximum value of one on the subset G(φ) of p-planes

calibrated by φ. In turn, a submanifold is calibrated by φ if its tangent planes are

calibrated by φ.

The basic example (other than calibrated geodesics), going back to Wirtinger in

the last century, is the Kähler/symplectic form on Cn = R2n. Here the calibrated
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submanifolds are simply the complex curves in Cn. This geometric example, which

has an analytic side involving a rich and well developed potential theory (or more

precisely a pluripotential theory), then cries out for a pluripotential theory for other

calibrations, providing the impetus to search for general φ-potential theories.

The φ-subharmonic (or φ-plurisubharmonic) functions u are easy to define for

smooth functions (see [21]). One simply requires that the restriction of u to φ-

submanifolds is classically subharmonic (with respect to the Laplacian ∆). This

imposes a constraint on the second derivative (Hessian matrix) D2u of u at each

point. This constraint condition is that D2u resticts to have trace zero on any

p-plane calibrated by φ. More precisely, by identifying a p-plane W with the

orthogonal projection PW onto W and by using the natural inner product on

the space S(n) of second derivatives (i.e. the symmetric matrices), the second

derivative constraint set determined by G(φ) is just the polar cone

G(φ)◦ := {A ∈ S(n) : 〈A,PW 〉 := tr
(
A|W

)
≥ 0, ∀W ∈ G(φ)} (1.6)

of the set G(φ). This C∞ potential theory suffices for many purposes (see [21])

where it was noticed, as a (big) surprise, that the calibration plays a minor role

subordinate to the set G(φ) of distinguised/calibrated p-planes, including the case

of G being the full set of p-planes (see [23], [26], [27] and [30]), thus extending the

realm of φ-potential theories to G-potential theories.

In fact, replacing G(φ) by any closed set G ⊂ S(n) and then defining “G-

submanifolds” and “G-plurisubharmonic functions” as above, it is still possible to

obtain a robust G-pluripotential theory. Again, the constraint condition on the

second derivatives of a function u at each x ∈ X

〈D2u(x), PW 〉 := tr
(
D2u(x)|W

)
≥ 0, ∀W ∈ G; that is, D2u(x) ∈ G◦, (1.7)

defines G-plurisubharmonicity of u on X. These functions u are characterized by

their restrictions to G-submanifolds M that are also minimal; u is subharmonic

with respect to the induced Laplacian on M (see [32]). Therefore it is justified to

state that

G-pluripotential theory is the correct pluripotential theory for the geometry of

minimal G-submanifolds.

Note that if G := G(φ) with φ a calibration, each G-submanifold is automatically

actually absolutely volume minimizing (see [20]) and hence a minimal submanifold.
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Potential theory based on a closed subset G of the p-Grassmanian will be referred

to as the geometric case.

This unifies many known cases and includes lots of new interesting cases. First,

as our basic motivation, this includes classical pluripotential theory in complex

analysis by taking G to be the Grassmannian of complex lines in Cn as a subset of

real 2-planes. Second, taking G to be the full Grassmannian G(1,Rn) of real lines

in Rn we include convex function theory, providing more precision to the well-

known parallel between pseudoconvexity and convexity. Third, this leads to new

surprising examples not related to calibrations. As an example, for each degree p,

let G be the full Grassmannian of p-planes in Rn. One obtains a p-pluripotential

theory associated with the geometry of all minimal submanifolds of dimension

p. Another noteworthy new example is Lagrangian pluripotential theory, defined

by taking G = LAG to be the set of Lagrangian n-planes in Cn. This is the

appropriate potential theory for minimal Lagrangian submanifolds [40]. These are

the two cases where new natural polynomial operators were discovered. First, the

p-fold sum operator whose domain is the subequation G(p,Rn)◦ (see [23, (10.12)])

and second the Lagrangian Monge-Ampère operator (see [23, (10.11)] and [40]).

For the next level of generality, one can focus entirely on the second derivative

constraint set F ⊂ S(n), which in the geometric case is given by the polar F = G◦

of G. There is surprising simplicity here as well. Other than F being closed, a

single condition on F described below, which is called positivity (P), is needed.

This condition (P) ensures that the notion of F-subharmonicity for upper semi-

continuous u agrees with the definition D2u(x) ∈ F for C2 functions. Such sets F
are called subequations in S(n). This is the pure second order constant coefficient

case. This condition, besides providing the weakest possible condition ensuring

coherence between the two definitions of F -subharmonicity should also be viewed

as the weakest possible form of ellipticity.

As with classical potential theory (for the Laplacian), the regularity of a general

G-subharmonic function should only be required to be upper semi-continuous.

This extension, although carried out with Dirichlet duality and subaffine functions

in [23], is equivalent to a viscosity theory formulation (see Remark 4.9 of [23]).

The viscosity approach is more direct and can used easily for potential theories for

subequation constraint sets with variable coefficients and dependence on all the

jet variables (as will be discussed in the next paragraph). However, the (Dirichlet)
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duality continues to be important. It clarifies the notion of superharmonics and

leads to straightforward proofs of the comparison principle. This is examined

extensively in the constant coefficient setting in [10].

As a final step in the delineation of a hierarchy of potential theories, it is natural

to consider the extension from a pure second order constraint on second deriva-

tives in the Euclidian setting of open subsets X ⊂ Rn to the case of X being a

Riemannian manifold [25] or an almost complex manifold [34]. In local coordi-

nates, this constraint will have variable coefficients and may depend on the full

Taylor development up to second order (not just second derivatives). Return-

ing to the Euclidian setting, this suggests considering subequation constraint sets

F ⊂ J 2(X) = X × J 2 and their associated potential theories. The needed ax-

ioms for a robust potential theory are given in Definition 2.1 Briefly stated, one

adds two additional axioms (negativity (N) and topological stability (T)) to the

positivity (P) and requiring that F be closed. The interplay between nonlinear

potential theory and fully nonlinear elliptic PDEs most naturally takes place at

this level of the hierarchy. This will be discussed further, beginning in subsection

1.3.

An important part of the story is that in studying this hierarchy of possi-

ble levels of potential theories; φ-subharmonics, G-subharmonics and finally F -

subharmonics, a distinguished (differential) operator F is missing from the picture.

This absence of an operator has advantages (and disadvantages) which have been

noted above, and will be amplified below.

1.2. Some potential theoretic results suggested by complex analysis. A

surprising number of results in complex analysis (of several variables) can be es-

tablished in greater generality in nonlinear potential theory. We mention seven

such topics that were suggested by results in pluripotential theory. Most will be

stated in the pure second order case, but they provide impetus for investigating

them at all levels of the potential theory hierarchy. Here we are sketchy, leaving

many definitions to the references. Hence, rather than giving formal statements

of theorems, we will recall the main results informally.

1) The Andreotti-Frankel Theorem for subequations F ⊂ S(n): (see [26]

for details). First, F-convex domains can be defined. Then the notion of F-free

submanifolds extends that of totally real submanifolds and one has the following

result.
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An F-convex domain has the homotopy type of a CW -complex of dimension less

than or equal to the maximal dimension of an F-free subspace.

This maximal dimension is easy to calculate in the multitude of examples.

2) The Levi Problem in p-convex geometry: In [30] this problem is solved,

including the case of non-integer p. One has

Local p-convexity implies global p-convexity:

3) Boundary pseudoconvexity: For bounded domains Ω with smooth bound-

ary the following local to global result was established in Theorem 5.12 of [25] for

cone subequations F ⊂ S(n):

If ∂Ω is strictly F-pseudoconvex at each point, then ∂Ω has a smooth strictly

F-subharmonic defining function.

For subequations F ⊂ S(n) which are not cones, boundary convexity for F is

governed by the asymptotic behavior of F at infinity. This asymptotic behavior

is captured by a new subequation
−→
F which is a cone, so that the above can be

applied. See also Corollary 11.8 of [25] (and an incomplete discussion after the

proof) for the general case.

If strictness is dropped, then boundary pseudoconvexity does not imply existence

of a global plurisubharmonic defining function in complex analysis. On the other

hand, Forsternič recently proved that this is the case if G = G(p,Rn) and F = G◦

(see [17]). This is particularly interesting as it runs counter to our point made here

that generally speaking several complex variables is usually the source of results

for the other potential theories.

4) F-pluriharmonics for subequations F ⊂ S(n): These functions are the

analogue of the real part of holomorphic functions . They are defined by requiring

that the second derivative belongs to the largest linear subspace of F , referred to

as the edge of F (see [43]). In particular, in Theorem 9.3 of [43] conditions on

F are found that ensure that the family of functions that can be written locally

as the maximum of a finite number of F -pluriharmonics suffices for solving the

F -Dirichlet problem via the Perron process.

5) Removable singularities for subequations F on manifolds: Pluripo-

tential methods for proving removable singularity theorems in several complex

variables can be extended to F -pluripotential theory and used to prove



NONLINEAR POTENTIAL THEORY AND PDES 9

Removable singularity theorems in F-potential theory.

See [31] for details.

6) Tangents to subharmonics: Kieselman’s theory of tangents to plurisub-

harmonic functions in complex analysis can be extended to F -plurisubharmonic

functions if F is in a broad family of convex cones. The tangents to an F -

plurisubharmonic function u can be used to study the singularities of u. See

[41] and [39] for details. It is shown that

Tangents always exist and are maximal functions.

Maximal functions can be thought of as F -subharmonic functions with certain

singularities allowed. The strongest form of uniqueness of tangents is when strong

uniqueness holds; that is, the tangent of an F -plurisubharmonic function equals

the density times the Riesz kernel. It is shown that, except for P (where it is false)

Strong uniqueness of tangents holds if F is O(n) invariant.

This strong uniqueness fails in all three of the basic cases F = P , F = PC (the

case studied by Kieselman) and F = PH (the quarternionic case).

7) A Bombieri-Hörmander-Siu type structure theorem: The result for

the sets of high density for a plurisubharmonic function in complex analysis has

a weakened version which extends to F -subharmonic functions for many convex

F ⊂ S(n), concluding that

Strong uniqueness of tangents implies that sets of high density are discrete.

See section 14 of [41] for details.

Recently, Chu [9] dramatically improved this result by showing that the sin-

gular set of an F -subharmonic function stratifies, and proving each stratum is a

rectifiable set.

1.3. The Dirichlet problem. Much can be said about the interplay between

potential theory and operator theory by studying the Dirichlet problem. We will

focus here on the Euclidian (coordinate chart) setting. We assume that X is an

open subest in Rn and consider bounded domains Ω ⊂⊂ X with smooth (i.e. C2)

boundaries and boundary data functions ϕ ∈ C(∂Ω). One can state the standard

Dirichlet problem in a vague form as:

(DP) - Vague Formulation: Find a function h ∈ C(Ω) which satisfies:
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1) h is a solution on Ω, and

2) h|∂Ω = ϕ.

In order to be precise as to the meaning of solution in 1), one needs to start

with either a subequation constraint set F ⊂ J 2(X) or an operator F on the 2-jets

J 2(X). We want to make both choices and then bring them together.

The Dirichlet problem involves three basic questions: uniqueness, existence

and regularity. Uniqueness follows from the comparison principle

(Comparison) u ≤ w on ∂Ω ⇒ u ≤ w on Ω, (1.8)

for every pair of subharmonics/superharmonics for F (or for every pair of sub-

solutions/supersolutions to the equation F (J2u) = 0). Existence is established

by Perron’s method. The candidate solution is defined pointwise as the upper

envelope

u(x) := sup
w∈F

w(x), x ∈ Ω, (1.9)

of the Perron family F of subsolutions w with w|∂Ω ≤ ϕ. For comparison, roughly

speaking, the size, but not the shape of the domain Ω can be of importance.

By contrast, for existence one has a dichotomy between subequations F where

existence holds for all domains (with ∂Ω smooth), and subequations F with an

interesting distinguished boundary geometry of F-pseudoconvexity required for

existence (see subsection 1.4 below). It is important to have a condition on the

boundary ∂Ω which is a local (geometrical) requirement. Finally, the vast and

important regularity question will, in essence, not be treated here.

We now begin to describe the main ingredients in the two approaches, potential

theory and operator theory. The potential theoretic formulation starts with a

constraint set F ⊂ J 2(X), while the operator theoretic formulation starts with

an operator F whose domain is a subset G ⊂ J 2(X) (G ≡ J 2(X) is allowed and,

in fact, is frequently required in the literature). Additional conditions must be

imposed in either case.

(DP) - Potential Theoretic Formulation: Find h ∈ C(Ω) which satisfies:

1a) h is F-subharmonic on Ω (i.e. J2,+
x h ⊂ Fx for each x ∈ Ω).

1b) −h is F̃-subharmonic on Ω (i.e. J2,+
x (−h) ⊂ F̃x for each x ∈ Ω). Equiva-

lently, we will say that h is F-superharmonic on Ω.

2) h|∂Ω = ϕ.
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Here and below, Int denotes the interior of a set, Fx := {J ∈ J 2 : (x, J) ∈ F} is

the fiber of F over x, and F̃ is the dual of F (see Definition 2.2). The space J2,+
x h

of upper test jets of h at x are defined in (2.6) (also see Defintion 2.4). One can

easily see that the definition 1b) is equivalent to saying that the lower test jets

of h satisfy J2,−
x h ⊂ (IntFx)c, for each x ∈ Ω. Additional conditions placed on

the constraint set F are made precise in Definition 2.1. They are summarized by

saying that F is a subequation.

The operator theoretic formulation of (DP), although standard, requires some

explanation as well as some conditions on the operator F and its domain G, which

we give now for the sake of completeness.

Definition 1.1 (Proper elliptic operators). An operator F ∈ C(G) where either

G = J 2(X) (unconstrained case)

or

G ( J 2(X) is a subequation constraint set (constrained case).

is said to be proper elliptic if for each x ∈ X and each (r, p, A) ∈ Gx one has

F (x, r, p, A) ≤ F (x, r + s, p, A+ P ) ∀ s ≤ 0 in R and ∀P ≥ 0 in S(n). (1.10)

The pair (F,G) will be called a proper elliptic 1 (operator-subequation) pair.

The minimal monotonicity (1.10) of the operator F parallels the minimal mono-

tonicity properties (P) and (N) for subequations F . It is needed for coherence and

eliminates obvious counterexamples for comparison. This is explained for sube-

quations after Definition 2.4. A given operator F must often be restricted to a

suitable background constraint domain G ⊂ J 2(X) in order to have this minimal

monotonicity (the constrained case). The historical example clarifying the need

for imposing a constraint is the Monge-Ampère operator

F (D2u) = det(D2u), (1.11)

where one restricts the operator’s domain to be the convexity subequation G =

P := {A ∈ S(n) : A ≥ 0}. The scope of the constrained case is perhaps best

illustrated by the more general G̊arding-Dirichlet operators. See Example 1.12,

with (1.11) the fundamental case. These polynomial operators F of degree m have

1Such operators are often refered to as proper operators (starting from [14]). We prefer

to maintain the term “elliptic” to emphasise the importance of the degenerate ellipticity (P-

monotonicity in A) in the theory.
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an ordered sequence of G̊arding eigenvalues Λ1(A) ≤ · · ·Λm(A) which determine

branches of the equation F (J2u) = 0. The notion of branches well illustrates the

interplay between potential theory and operator theory and will be discussed in

Example 1.15.

The unconstrained case, in which F is proper elliptic on all of J 2(X) is the case

usually treated in the literature and is perhaps best illustrated by the canonical

operators mentioned above.

We now recall the precise notion of solutions in the operator theoretic formula-

tion of the Dirichlet problem. The defintions again make use of upper/lower test

jets.

Definition 1.2 (Admissible viscosity solutions). Given F ∈ C(G) with G ⊂ J 2(X)

a subequation on an open subset X ⊂ Rn:

(a) a function u ∈ USC(X) is said to be an (G-admissible) viscosity subsolution

of F (J2u) = 0 on X if for every x ∈ X one has

J ∈ J2,+
x u ⇒ J ∈ Gx and F (x, J) ≥ 0; (1.12)

(b) a function u ∈ LSC(Ω) is said to be an (G-admissible) viscosity supersolu-

tion of F (J2u) = 0 on X if for every x ∈ X one has

J ∈ J2,−
x u ⇒ either [ J ∈ Gx and F (x, J) ≤ 0 ] or J 6∈ Gx. (1.13)

A function u ∈ C(Ω) is an (G-admissible viscosity) solution of F (J2u) = 0 on X

if both (a) and (b) hold.

In the unconstrained case where G ≡ J 2(X), the definitions are standard. In

the constrained case where G ( J 2(X), the definitions give a systematic way of

doing of what is sometimes done in an ad-hoc way (see [47] for operators of Monge-

Ampère type and [54] for prescribed curvature equations.) Note that (1.12) says

that the subsolution u is also G-subharmonic and that (1.13) is equivalent to saying

that F (x, J) ≤ 0 for the lower test jets which lie in the constraint Gx.
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(DP)′ - Operator Theoretic Formulation: Find h ∈ C(Ω) which satisfies:

1a)′ h is a (G-admissible) subsolution of F (J2h) = 0 on Ω (Definition 1.2(a)).

1b)′ h is a (G-admissible) supersolution of F (J2h) = 0 on Ω (Definition 1.2(b)).

2) h|∂Ω = ϕ.

We now discuss the equivalence of the potential theoretic and operator theoretic

formulations of the Dirichlet problem; that is, the equivalence of (DP) for a given

subequation F and (DP)′ for a given (proper elliptic) operator-subequation pair

(F,G). By the definitions, the equivalence of 1a) and 1a)′ is the same as the

following equivalence: for each x ∈ Ω one has

J2,+
x h ⊂ Fx ⇐⇒ both J2,+

x h ⊂ Gx and F (x, J) ≥ 0 for each J ∈ J2,+
x h.

This holds if and only if one has the correspondence relation

F = {(x, J) ∈ G : F (x, J) ≥ 0}. (1.14)

In addition, the equivalence of 1b) and 1b)′ is the same as the following equivalence:

for each x ∈ Ω one has

J2,+
x (−h) ⊂ F̃x ⇐⇒ J 6∈ Gx or [J ∈ Gxand F (x, J) ≤ 0], ∀ J ∈ J2,−

x h. (1.15)

Using duality (2.2) and J2,+
x (−h) = −J2,−

x h one can see that that the equivalence

(1.15) holds if and only if one has compatibility

IntF = {(x, J) ∈ G : F (x, J) > 0}. (1.16)

which for subequations F defined by (1.14) is equivalent to

∂F = {(x, J) ∈ F : F (x, J) = 0}. (1.17)

The pair of equivalences 1a)⇔ 1a)′ and 1b)⇔ 1b)′ is referred to as the correspon-

dence principle and will be discussed futher in section 4. These considerations

can be summarized in the following result.

Theorem 1.3 (Correspondence Principle). Suppose that F ∈ C(G) is proper el-

liptic and F , defined by the correspondence relation (1.14), is a subequation. If

compatibility (1.16) is satisfied, then h ∈ C(Ω) satisfies the correspondence prin-

ciple: 1a) ⇔ 1a)′ and 1b) ⇔ 1b)′. In conclusion, the two formulations (DP) and

(DP)′ are equivalent.
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Remark 1.4 (On compatibility). Given one of either a proper elliptic pair (F,G)

or a subequation F , finding the other so that both the correspondence relation

(1.14) and compatibility (1.16) hold can be impossible, easy or in between requiring

some work. For example, given any subequation F the pair (F,J 2(X)) with F the

signed distance operator (1.4) will do. Other natural choices of (F,J 2(X)) with F
given, which require some additional work, are the canonical operators introduced

in [42]. In the other direction, in subsection 1.5 we will present various examples

of determining the subequation F given a proper elliptic pair (F,G). In particular,

finding F is easy in Examples 1.6 and 1.7, requires some work in Examples 1.8,

1.9, 1.12 and 1.10, and is impossible in Example 1.18.

1.4. Boundary pseudoconvexity. The potential theoretic approach to the Dirich-

let problem (DP) naturally leads to an appropriate notion of pseudoconvexity for

∂Ω (smooth) required for existence. This is perhaps best illustrated by focusing on

the case of a constant coefficient pure second order subequation F ⊂ S(n) which

is a cone. The definition, with roots in [6], is given in [23, section 5] with several

equivalent formulations.

Definition 1.5 (Boundary pseudoconvexity). A smooth boundary ∂Ω is said to

be strictly F-pseudoconvex at x ∈ ∂Ω if

∃ t0 > 0 such that Ax + tPe(x) ∈ IntF , ∀ t ≥ t0, (1.18)

where Ax denotes the second fundamental form of ∂Ω at x with respect to the

inward pointing unit normal e(x) and Pe(x) is orthogonal projection onto the normal

line through e(x) (the eigenvalues of Ax are the principal curvatures of ∂Ω at x).

These (cone) subequations F divide into two kinds, those with and those without

a boundary geometry. By those without a boundary geometry we mean that all

boundaries ∂Ω are strictly F -pseudoconvex at all points. This is equivalent to

requiring that

∀A ∈ S(n),∀ e ∈ Sn−1 ∃ t0 > 0 such that Ax+tPe ∈ IntF , ∀ t ≥ t0, (1.19)

Taking A = 0 implies

Pe ∈ IntF for every e ∈ Sn−1. (1.20)

Conversely, if (1.20) holds then Pe+εA ∈ IntF for ε > 0 small, which is equivalent

to (1.19). This proves that F has no boundary (geometric) restriction for existence
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for the (DP) if and only if F is strictly elliptic, since (1.20) is one of the ways of

defining strict ellipticity. This proves that

the strictly elliptic potential theories are exactly the ones without a boundary

pseudoconvexity geometry.

It is easy to see that none of the geometric potential theories F = G◦, G a closed

subset of G(n,Rn)), satisfy (1.20); i.e. none are strictly elliptic, so each has a

boundary geometry. This geometry has the following nice description

∂Ω is strictly F = G◦-pseudoconvex at x ∈ ∂Ω ⇔ the restriction of the second

fundamental form Ax to any k-plane W ∈ G which is also tangential, i.e.

W ⊂ Tx∂Ω, has strictly positive trace.

1.5. Some examples of PDEs. The potential theory approach to treating non-

linear PDEs is well illustrated by many examples of operators (and classes of

operators). We mention a few here.

Example 1.6 (Perturbed Monge-Ampère). With fixed M ∈ C(Ω,S(n)) and

f ∈ C(Ω) non-negative, consider

det(D2u+M(x)) = f(x), x ∈ Ω ⊂⊂ Rn (1.21)

This is an important test example of Krylov [50, Example 8.2.4] for probabilistic

and analytic methods. It is also noteworthy because it fails to satisfy the standard

viscosity structural conditions for comparison as given in Crandall-Ishii-Lions [14,

condition (3.14)] unless M is the square of a Lipschitz continuous matrix valued

function. In [11], comparison is proved for general continuous M (along with the

existence of a unique continuous solution of the Dirichlet problem on strictly convex

domains). The potential theoretic proof, makes use of the compatible subequation

whose fibers are defined by

Fx := {A ∈ S(n) : A+M(x) ≥ 0 and F (x,A) := det(A+M(x))− f(x) ≥ 0}.

This was done with the introduction and application of the notion of (Hausdorff)

continuity of the fiber map

Θ : Ω→ ℘(S(n)) defined by Θ(x) := Fx, ∀x ∈ Ω.

This is a representative example of the “constrained case” in which operators

F come with domains; that is, F must be restricted to G defined by its fibers

Gx := {A ∈ S(n) : A+M(x) ≥ 0}.
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Example 1.7 (Special Lagrangian potential equation). With phase function

θ ∈ C(Ω, I) where I = (−nπ/2, nπ/2) consider

G(D2u) :=
n∑
k=1

arctan (λk(D
2u)) = θ(x), x ∈ Ω ⊂⊂ Rn (1.22)

The geometric interpretation of this equation is that the graph of the gradient of u

will have Lagrangian phase θ (see [20]). Comparison for constant phases, as well as

existence/uniqueness for the Dirichlet problem via Perron’s method, was proven in

[23]. For non-constant phases, comparison is difficult and not completely settled.

The operator G is particularly difficult to analyze if the non-constant phase θ

assumes a special phase value θk = (n− 2k)π/2, k = 1, . . . n− 1. Comparison was

proven in [16] if h has range in the first/last intervals Ik determined by θk. This

is the “relatively easy” case where G is concave/convex. The best result to date

was obtained in [12] for phases taking values in any phase interval

Ik = (θk−1, θk), k = 1, . . . n. (1.23)

There the key was to establish the fiber regularity of the fiber map

Θ(x) := {A ∈ S(n) : F (x,A) := G(A)− h(x) ≥ 0} ,

which is false across the special phase values. Combining comparison with the

appropriate pseudoconvexity assumption on Ω yields existence/uniqueness for the

Dirichlet problem for phases taking values in the intervals (1.23), as shown in

[45] (including a study of the needed pseudoconvexity). This is a representative

example of the unconstrained case (also pure second order) where the operator G

is increasing on all of S(n).

Example 1.8 (Eigenvalue equation for k-Hessian operators). With k =

1, . . . n and µ ∈ R fixed, consider

Sk(D
2u) + µu|u|k−1 = 0, x ∈ Ω ⊂⊂ Rn, (1.24)

where for A ∈ S(n) the k-Hessian operator is defined by

Sk(A) := σk(λ(A)) = σk(λ1(A), . . . , λn(A)) =
∑

1≤i1<···<ik≤n

λi1(A) · · ·λik(A).

Since the equation is k-homogeneous, one can search for eigen-directions (rays)

u that solve (1.24) for an eigenvalue µ. The operator Sk is degenerate elliptic
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(increasing in A) when restricted to the closed cone

Σk := {A ∈ S(A) : λ(A) ∈ Γk} with Γk := {λ ∈ Rn : σj(λ) > 0, j = 1, . . . , k},

the (closed) G̊arding cone associated to σk (kth elementary symmetric polynomial).

Notice that Sk interpolates between S1(D2u) = tr(D2u) = ∆u and Sn(D2u) =

det(D2u). One uses Σk as a background (subequation cone) constraint set; that

is, one looks for k-convex subharmonics and uses k-convex lower test functions for

supersolutions. The interesting case concerns u ≤ 0 and µ > 0 where the equation

has the “wrong”’ monotonicity in u. In [5], a maximum principle characterization

of a generalized principal eigenvalue in the sense of Berestycki-Nirenberg-Varadhan

[3] is proven as well as the existence of a corresponding eigenfunction vanishing

on the boundary. An important step in the proof is to prove an a priori Hölder

estimate, which is needed for compactness in an iterative scheme for the con-

struction of the eigenfunction. The proof shows that the theory of admissibility

constraints extends in a natural way the technique pioneered by Ishii-Lions [47] in

the unconstrained case.

Example 1.9 (Hyperbolic affine sphere equation). With X ⊂ Rn open and

f ∈ C(X) non-negative consider the following equation on X

[−u]n+2det(D2u) = f. (1.25)

The geometric interpretation of the equation emerges by setting h := −f so that

the equation becomes

det(D2u) = (h/u)n+2, (1.26)

which for u convex and neqative describes the graphing function of a hyperbolic

affine sphere with (constant) mean curvature h ≤ 0 as discussed in Cheng-Yau

[8]. Comparison for the equation (1.25) was established in [12]. This is another

representative (gradient-free) example of the constrained case, where (F,G) with

F (x, r, A) := (−r)n+2detA− f(x) and G = Q := N ×P .

Example 1.10 (Optimal transport equations). With X ⊂ Rn open, f ∈ C(X)

non-negative and g ∈ C(Rn) non-negative, consider the following equation on X

g(Du) det(D2u) = f. (1.27)

The functions f and g represent the source and target densities respectively which

should have the same mass (L1-norm) (see [15] and [55] for more details.)
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Comparison has been shown for constant target densities g in [12]. For non-

constant g, one requires the additional monotonicity property of directionality;

that is, there exists a closed convex cone D ⊂ Rn with non-empty interior and

vertex at the origin for which

g(p+ q) ≥ g(p) for each p, q ∈ D. (1.28)

Examples of g with directionality include

g(p) = −pn with D = {(p′, pn) ∈ Rn : pn ≥ 0}

and for k ∈ {1, . . . n}

g(p) =
k∏
j=1

pj with D = {(p1, . . . pn) ∈ Rn : pj ≥ 0 for each j = 1, . . . k}

For target densities g with directionality, comparison has been shown for constant

source densities f in [10] and for non-constant f in [13].

Remark 1.11. Examples 1.9 and 1.10 have a product structure

F (x, u,Du,D2u) = g(x, u)h(x,Du)G(x,D2u)− f(x).

This structure helps with the correspondence principle. One illustration of this

is provided by considering the following pair of constant coefficient gradient-free

operators

F (r, A) := −r det(A) and G(r, A) := −r + det(A).

The first operator is proper elliptic when restricted to the subequation Q = N ×P
and with F := {(r, A) ∈ Q : F (r, A) ≥ 0} one has the compatibility

∂F = {(r, A) ∈ F : F (r, A) = 0}

and hence the correspondence principle. On the other hand, while G is also proper

elliptic when restricted to Q (or even R× P), the boundary of

G := {(r, A) ∈ Q : G(r, A) ≥ 0}

includes N × {0}, so that all negative C2 affine functions will be G-harmonic but

the operator G is not zero on them. Thus the correspondence principle fails here.

Next we discuss perhaps what is perhaps the most interesting and important

class of examples. They illustrate why the constrained case is required.
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Example 1.12 (G̊arding-Dirichlet operators). These nonlinear operators are

obtained from G̊arding’s beautiful theory of hyperbolic polynomials [18]. We

briefly give the precise definition and enumerate a few examples. See [24] and

[23], [25], [29] and [10] for an extensive discussion.

Definition 1.13 (Hyperbolic polynomials). A homogeneous real polynomial F of

degree m on S(n) is I-hyperbolic if F (I) > 0 and for all A ∈ S(n) the one variable

polynomial F (sI + A) has all m roots real.

In keeping with the example F (A) := detA, it is useful to focus on the negatives

of the roots of F (sI +A), which are called G̊arding I-eigenvalues and are denoted

by Λ1(A), . . . ,Λm(A). Hence

F (sI + A) = F (A)
m∏
j=1

(s+ Λj(A)) and F (A) = F (I)
m∏
j=1

Λj(A). (1.29)

The open G̊arding cone

Γ := {A ∈ S(n) : Λj(A) > 0, j = 1, . . . ,m} (1.30)

is a convex cone, which, along with F , has many nice properties.

Definition 1.14 (G̊arding-Dirichlet operator2). An I-hyperbolic polynomial op-

erator F of degree m on S(n) is called a G̊arding-Dirichlet operator if P ⊂ Γ; that

is, if

A ≥ 0 ⇒ Λj(A) ≥ 0, j = 1, . . . ,m. (1.31)

In this case

(F,F := Γ) is a compatible operator-subequation pair. (1.32)

Also note that by (1.32) Λmin(A) is the canonical operator for the G̊arding

subequation F := Γ since

Λj(A+ tI) = Λj(A) + t, j = 1, . . . ,m.

Here are some important examples. Let λ1(A), . . . , λn(A) denote the standard

eigenvalues of A ∈ S(n). Of course, the Monge-Ampère operator

F (A) = detA =
n∏
j=1

λj(A)

2Perhaps they should be called G̊ariding-Monge-Ampère operators instead.
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is the prototype. We leave it to the reader to see that these examples are polyno-

mials. Perhaps the most interesting are those for which F := Γ is geometrically

defined; i.e. the cone subequation F := Γ equals the polar G◦ of a closed subset G

of one the Grassmanians. Two new examples of this special nature are as follows.

1. The p-fold sum operator ([23, p. 39] and [28, Proposition 7.11]): This is the

operator

F (A) :=
∏

i1<···<ip

(λi1(A) + · · ·+ λip(A)), where p = 1, . . . n. (1.33)

The degree of F is
(
n
p

)
and the closed G̊arding cone is Γ = G(p,Rn)◦. The canonical

operator for Γ is the sum of the first (smallest) p standard eigenvalues; i.e. the

p-th truncated Laplacian (see [23] and [4]).

2. The Lagrangian Monge-Ampère operator ([40, section 5]): This is the

operator

F (A) :=
∏(

1

2
trA± µ1 ± · · · ± µn

)
. (1.34)

Here A ∈ S(2n) is a real symmetric form on R2n = Cn, and ±µ1 . . . ± µn are the

eigenvalues of the skew Hermitian part of A. The 2n G̊arding eigenvalues are the

factors 1
2
trA ± µ1 ± · · · ± µn. The G̊arding subequation Γ is geometric. It is the

polar of G := LAG ⊂ GR(n,Cn), the set of Lagrangian n-planes. The plurisubhar-

monic functions; i.e. the Γ-subharmonic functions are those upper semicontinuous

functions that restrict to be ∆-subharmonic on Lagrangian affine planes in Cn.

A classical example, which is not geometric for k 6= 1, n is the k-Hessian operator

Sk(D
2u) discussed in Example 1.8. Two more new non geometric examples, which

have similarities with one another, are the following.

3. The δ-uniformly elliptic operator ([37, Appendix B]): This is the operator

F (A) := det (A+ δ(trA)I) with δ > 0, (1.35)

The G̊arding eigenvalues of F are

Λj(A) = λj(A) + δtr(A), j = 1, . . . n.

Hence the canonical operator for the G̊arding subequation Γ is

Λmin(A) = λmin(A) + δ trA.

4. The Pucci-G̊arding-Monge-Ampère operator ([29, section 4.5], [37, Ap-

pendix B], and in particular [42, Example 6.10]): Fix 0 < λ < Λ and consider the
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the “cube” in eigenvalue space

Cλ,Λ := {A ∈ S(n) : λI ≤ A ≤ ΛI} ⊂ P ⊂ S(n).

Its polar P−λ,Λ := C◦λ,Λ contains P◦ = P and hence is a subequation called the

Pucci or Pucci-G̊arding cone. The cone on Cλ,Λ, denoted by Cone(Cλ,Λ), has a

finite set of extreme rays through a subset S of the vertices of Cλ,Λ. The Pucci-

G̊arding-Monge-Ampère operator Fλ,Λ is defined to be the product of the linear

functionals in the set S. The factors are the G̊arding I-eigenvalues of Fλ,Λ. The

closed G̊arding cone is the Pucci cone P−λ,Λ. Its canonical operator is the minimal

eigenvalue, which is easily seen to be

Λmin(A) = λtrA+ + ΛtrA− ≥ 0,

where A = A+ + A− is the decomposition of A into positive and negative parts,

and hence

P−λ,Λ := {A ∈ S(n) : λtrA+ + ΛtrA− ≥ 0}.

Note that the Pucci-G̊arding operator Fλ,Λ has degree |S|.

The operator Sk and the operators 1., 3., and 4. above which involve the real

eigenvalues of A ∈ S(n) have complex and quaternionic analogues that are also

G̊arding-Dirichlet operators. See [24, section 5], [23, section 10] and [25, section

15] for more details.

The next family of examples provides a good illustration of the interplay between

potential theory and operator theory.

Example 1.15 (Branches). The potential theory/subequation approach provides

a direct way of extending the Dirichlet problem (DP) for the Monge-Ampère op-

erator to the other branches Λk of det (D2u) = 0, where, except for k = 1, there is

no natural smooth operator F defining the solutions (or Λk-subharmonics). The

branch Λk ⊂ S(n) for k = 1, . . . n is the subequation defined by

Λk := {A ∈ S(n) : λk(A) ≥ 0}, (1.36)

where λ1(A) ≤ · · · ≤ λn(A) are the ordered eigenvalues of A ∈ S(n). Despite

the fact that det (D2u) is not a proper elliptic operator on Λk, the (DP) for Λk-

harmonics is meaningful. Existence and uniqueness for all boundary functions

ϕ ∈ C(∂Ω) under the appropriate geometrical conditions on ∂Ω was established
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in [23]. This theorem extends to branches of a more general G̊arding-Dirichlet

operator F = g of degree m defined by

Λg
k := {A ∈ S(n) : Λg

k(A) ≥ 0}, k = 1, . . .m.

These branches have a so-called canonical operator, which we discuss next.

Canonical operators well illustrate the unconstrained case.

Example 1.16 (Canonical operators). For clarity we focus on the pure second

order constant coefficient subequation case F ⊂ S(n). See the list of refernces

before the formula (1.4) above for more information. A canonical operator for F
is by definition a function F ∈ C(S(n)) with the following two properties:

F (A+ P ) ≥ F (A), ∀A ∈ S(n) and P ≥ 0 (1.37)

and for some constant c > 0

F (A+ tI) = F (A) + ct, ∀A ∈ S(n) and t ∈ R. (1.38)

Proposition 1.17 (Existence and uniqueness of canonical operators). Given a

subequation F ⊂ S(n), there exists a unique canonical operator F with F = {A ∈
S(n) : F (A) ≥ 0}.

The proof can be summarized succinctly by defining F by requiring

A0 + F (A0)I ∈ ∂F for all A0 ⊥ I (i.e. trA0 = 0)

and then extending F to all A = A0 + tI ∈ S(n), A0 ⊥ I by formula (1.38).

The canonical operator F for some of the examples above are as follows. One

has λ1(A) for the convexity subequation P , λ1(A) + · · ·λp(A) for the p-fold sube-

quation defined by (1.7) with G = G(p,Rn), 1
2
trA−µ1−· · ·−µn for the Lagrangian

subequation defined by (1.7) with G = LAG. As mentioned above, the G̊arding

subequation F = Γ has canonical operator Λmin(A), the minimal G̊arding eigen-

value operator. The k-th branch has canonical operator the k-th G̊arding eigen-

value operator. The construction of a canonical operator extends to subequations

F ⊂ J 2(X) if there is sufficient monotonicity (see section 11.4 of [10]).

We conclude this subsection with one last example. As we have indicated,

a general principle is that comparison holds with sufficient monotonicity. With

insufficient monotonicity comparison can fail even in the constant coefficient case

and even on arbitrarily small balls.
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Example 1.18 (Comparison fails). Consider the operators F,G ∈ C(Rn ×
S(n),R) defined by

F (p,A) := λmin(M(p,A)) and G(p,A) := λmax(M(p,A))

with M = Mα is the S(n)-valued function defined for α ∈ (1,+∞) by

M(p,A) := A+ |p|
α−1
n (Pp⊥ + αPp)) if p 6= 0 and M(0, A) := A.

where for p 6= 0, Pp, Pp⊥ are the projections onto the subspaces [p], [p]⊥; that is,

Pp =
1

|p|2
p⊗ p and Pp⊥ = I − Pp.

These operators are studied in [10]. Existence for the Dirichlet problem holds on

all balls (with continuous Dirichlet data). The comparison principle, maximum

principle and uniqueness of solutions fail on all arbitrarily small balls about every

point. A partial explanation of these failures is that the maximal monotonicity

cones for the associated (compatible) subequations F ,G are M := {0} × P ⊂
Rn × S(n), which have empty interior.

2. Fundamental aspects of nonlinear potential theory

In this section, we give a brief review of some key notions and fundamental re-

sults in the theory of F -subharmonic functions defined by a subequation constraint

set F .

2.1. Subequations, subharmonics and duality. Suppose that X is an open

subset of Rn with 2-jet space denoted by J 2(X) = X × (R×Rn ×S(n)). A good

definition of a constraint set with a robust potential theory was given in [25] (also

for manifolds).

Definition 2.1 (Subequations). A set F ⊂ J 2(X) is called a subequation (con-

straint set) if

(P) F satisfies the positivity condition (fiberwise); that is, for each x ∈ X

(r, p, A) ∈ Fx ⇒ (r, p, A+ P ) ∈ Fx, ∀P ≥ 0 in S(n).

(T) F satisfies three conditions of topological stability:

F = IntF ; (T1)

Fx = Int (Fx), ∀x ∈ X; (T2)
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(IntF)x = Int (Fx) , ∀x ∈ X. (T3)

(N) F satisfies the negativity condition (fiberwise); that is, for each x ∈ X

(r, p, A) ∈ Fx ⇒ (r + s, p, A) ∈ Fx, ∀ s ≤ 0 in R.

Notice that by property (T1), F is closed in J 2(X) and each fiber Fx is closed

in J 2 by (T2). In addition, the interesting case is when each fiber Fx is not all of

J 2, which we almost always assume. Also notice that in the constant coefficient

pure second order case F ⊂ S(n), property (N) is automatic and property (T)

reduces to (T1) F = IntF , which is implied by (P) for F closed. Hence in this

case subequations F ⊂ S(n) are closed sets simply satisfying (P).

The conditions (P), (T) and (N) have various (important) implications for the

potential theory determined by F . Some of these will be mentioned below (see the

brief discussion following Definition 2.4).

Next is duality, a notion first introduced in the pure second order coefficient

case in [23].

Definition 2.2 (The dual subequation). For a given subequation F ⊂ J 2(X) the

Dirichlet dual of F is the set F̃ ⊂ J 2(X) given by 3

F̃ := (−IntF)c = −(IntF)c (relative to J 2(X)). (2.1)

With the help of property (T), the dual can be calculated fiberwise

F̃x := (−Int (Fx))c = −(Int (Fx))c (relative to J 2), ∀x ∈ X. (2.2)

This is a true duality in the sense that one can show˜̃F = F and F is a subequation ⇒ F̃ is a subequation. (2.3)

Now comes the notion of F-subharmonicity for a given subequation F ⊂ J 2(X).

There are two different natural formulations for differing degrees of regularity. The

first is the classical formulation.

Definition 2.3 (Classical or C2 subharmonics). A function u ∈ C2(X) is said to

be F-subharmonic on X if

J2
xu := (u(x), Du(x), D2u(x)) ∈ Fx, ∀x ∈ X (2.4)

3Here and below, c denotes the set theoretic complement of a subset.
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with the accompanying notion of being strictly F-subharmonic if

J2
xu ∈ Int (Fx) = (IntF)x,∀x ∈ X. (2.5)

For merely upper semicontinuous functions u ∈ USC(X) with values in [−∞,+∞),

one replaces the 2-jet J2
xu with the set of C2 upper test jets

J2,+
x u := {J2

xϕ : ϕ is C2 near x, u ≤ ϕ near x with equality at x}, (2.6)

thus arriving at the following viscosity formulation.

Definition 2.4 (Semicontinuous subharmonics). A function u ∈ USC(X) is said

to be F-subharmonic on X if

J2,+
x u ⊂ Fx, ∀x ∈ X. (2.7)

We denote by F(X) the set of all F -subharmonics on X.

We now recall some of the implications that properties (P), (T) and (N) have

on an F -potential theory. Property (P) is crucial for C2-coherence, meaning

classical F -subharmonics are F -subharmonics in the sense (2.7), since for u which

is C2 near x, one has

J2,+
x = J2

xu+ (0, 0,P) where P = {P ∈ S(n) : P ≥ 0}.

The natural notion of w ∈ LSC(X) being F-superharmonic using lower test jets is

J2,−
x w ⊂ (Int (Fx))c , ∀x ∈ X, (2.8)

which by duality and property (T) is equivalent to −w ∈ USC(X) satisfying

J2,+
x (−w) ⊂ F̃x, ∀x ∈ X. (2.9)

That is,

w is F -superharmonic ⇔ −w is F̃ -subharmonic. (2.10)

Next note that property (T) insures the local existence of strict classical F -

superharmonics at points x ∈ X for which Fx is non-empty. One simply takes

the quadratic polynomial whose 2-jet at x is J ∈ Int (Fx). Finally, property (N)

eliminates obvious counterexamples to comparison. The simplest counterexample

is provided by the constraint set F ⊂ J2(R) in dimension one associated to the

equation u′′ − u = 0.
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2.2. Monotonicity. This fundamental notion appears in various guises. It is a

useful and unifying concept. One says that a subequation F is M-monotone for

some subset M⊂ J 2(X) if

Fx +Mx ⊂ Fx for each x ∈ X. (2.11)

For simplicity, we will restrict attention to (constant coefficient) monotonicity

cones; that is, monotonicity sets M for F which have constant fibers which are

closed cones with vertex at the origin.

First and foremost, the properties (P) and (N) are monotonicity properties.

Property (P) for subequations F corresponds to degenerate elliptic operators F

and properties (P) and (N) together correspond to proper elliptic operators. Note

that (P) plus (N) can be expressed as the single monotonicity property

Fx +M0 ⊂ Fx for each x ∈ X (2.12)

where

M0 := N × {0} × P ⊂ J 2 = R× Rn × S(n) (2.13)

with

N := {r ∈ R : r ≤ 0} and P := {P ∈ S(n) : P ≥ 0}. (2.14)

HenceM0 will be referred to as the minimal monotonicity cone in J 2. However, it

is important to remember thatM0 ⊂ J 2 is not a subequation since it has empty

interior so that property (T) fails.

Combined with duality and fiberegularity (defined in subsection 2.3), one has

a very general, flexible and elegant geometrical approach to comparison when a

subequation F admits a constant coefficient monotonicity cone subequation M.

A key ingredient to this approach is the Subharmonic Addition Theorem:

F +M⊂ F ⇒ F(X) + F̃(X) ⊂ M̃(X). (2.15)

This result reduces the comparison principle for F to the Zero Maximum Principle

for the constant coefficient dual cone subequation M̃; that is, for all Ω ⊂⊂ X

(ZMP) z ≤ 0 on ∂Ω ⇒ z ≤ 0 on ∂Ω, (2.16)

∀ z ∈ USC(Ω) ∩ M̃(Ω). This reduction of comparison to (ZMP) will be referred

to as the monotonicity-duality method and will be discussed in section 3.
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Monotonicity is also used to formulate reductions when certain jet variables

are “silent” in the subequation constraint F . for example, one has

(pure second order) Fx +M(P) ⊂ Fx : M(P) := R× Rn × P

(gradient free) Fx +M(N ,P) ⊂ Fx : M(N ,P) := N × Rn × P

M(P) and M(N ,P) are fundamental constant coefficient (cone) subequations

which can be identified with P ⊂ S(n) and Q := N × P ⊂ R × S(n). One can

identify F with subsets of the reduced jet bundles X × S(n) and X × (R× S(n)),

respectively, “forgetting about” the silent jet variables (see Chapter 10 of [10]).

Two important “reduced” examples are worth drawing special attention to.

Example 2.5 (The convexity subequation). The convexity subequation is F =

X ×M(P) and reduces to X ×P which has constant coefficients (each fiber is P)

and for u ∈ USC(X)

u is P-subharmonic ⇔ u is locally convex

(away from any connected components where u ≡ −∞).

The convexity subequation has its canonical operator F ∈ C(S(n),R) defined

by the minimal eigenvalue F (A) := λmin(A), for which

P = {A ∈ S(n) : λmin(A) ≥ 0}. (2.17)

The dual subequation F̃ has constant fibers given by

P̃ = {A ∈ S(n) : λmax(A) ≥ 0} (2.18)

which is the subaffine subequation. The set P̃(X) of dual subharmonics agrees

with SA(X) the set of subaffine functions defined as those functions u ∈ USC(X)

which satisfy the subaffine property (comparison with affine functions): for every

Ω ⊂⊂ X one has

u ≤ a on ∂Ω ⇒ u ≤ a on Ω, for every a affine. (2.19)

The fact that P̃(X) = SA(X) is shown in [23]. The subaffine property for u is

stronger than the maximum principle for u since constants are affine functions. It

has the advantage over the maximum principle of being a local condition on u.

This leads to the comparison principle for all pure second order constant coefficient

subequations [23] and extends to variable coefficient subequations [12] using a

notion of fiberegularity, as will be discussed in section 3.
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Example 2.6 (The convexity-negativity subequation). The constant coefficient

gradient-free subequation F = X×M(N ,P) reduces to X×Q ⊂ X× (R×S(n))

whose (constant) fibers are

Q = N ×P = {(r, A) ∈ R× S(n) : r ≤ 0 and A ≥ 0}. (2.20)

The (reduced) dual subequation has (constant) fibers

Q̃ = {(r, A) ∈ R× S(n) : r ≤ 0 or A ∈ P̃}. (2.21)

The set Q̃(X) of dual subharmonics agrees with SA+(X), the set of subaffine plus

functions defined as those functions u ∈ USC(X) which satisfy the subaffine plus

property: for every Ω ⊂⊂ X one has

u ≤ a on ∂Ω ⇒ u ≤ a on Ω, for every a affine with a|Ω ≥ 0, (2.22)

from which the (ZMP) for Q̃ subharmonics follows immediately. The fact that

Q̃(X) = SA+(X) is shown in [10] together with the additional equivalence

SA+(X) := {u ∈ USC(X) : u+ := max{u, 0} ∈ SA(X) = P̃ (X)}, (2.23)

The validity of the (ZMP) forQ-subharmonics leads to the comparison principle by

the monotonicity-duality method for all gradient free subequations with constant

coefficients in [10] and extends to variable coefficient gradient-free subequations in

[12], using the notion of fiberegulaity.

2.3. Fiberegularity. This fundamental notion can be used to pass from constant

coefficient subequations (and operators) to ones with variable coefficients.

Definition 2.7. A subequation F ⊂ J 2(X) is fiberegular if the fiber map Θ is

(Hausdorff) continuous; that is, if the set-valued map

Θ : X → K(J 2) defined by Θ(x) := Fx, x ∈ X

is continuous when the closed subsets K(J 2) of J 2 are equipped with the Hausdorff

metric

dH(Φ,Ψ) := max

{
sup
J∈Φ

inf
J ′∈Ψ
||J − J ′||, sup

J ′∈Ψ
inf
J∈Φ
||J − J ′||

}
where

||J || = ||(r, p, A)|| := max

{
|r|, |p|, max

1≤k≤n
|λk(A)|

}
is taken as the norm on J 2.
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This notion was first introduced in [11] in the special case F ⊂ X × S(n). We

will also refer to Θ as a continuous proper elliptic map since it takes values in the

closed (non-empty and proper) subsets of J 2 satisfying properties (P) and (N). If

F isM-monotone for some (constant coefficient) monotonicity cone subequation,

fiberegularity has the more useful equivalent formulation: there exists J0 ∈ IntM
such that for each fixed Ω ⊂⊂ X and η > 0 there exists δ = δ(η,Ω) such that

x, y ∈ Ω, |x− y| < δ =⇒ Θ(x) + ηJ0 ⊂ Θ(y). (2.24)

Note that property holds for each fixed J0 ∈ IntM (see [13]) and that in the pure

second order and gradient-free cases there is a “canonical” reduced jet J0 = I ∈
S(n) and J0 = (−1, I) ∈ R × S(n), respectively. Also note that fiberegularity is

uniform on bounded domains as the δ in (2.24) is independent of x, y ∈ Ω.

Fiberegularity is crucial since it implies the uniform translation property

for subharmonics : if u ∈ F(Ω), then there are small C2 strictly F-subharmonic

perturbations of all small translates of u which belong to F(Ωδ), where Ωδ := {x ∈
Ω : d(x, ∂Ω) > δ}.

Theorem 2.8 (Uniform translation property for subharmonics). Suppose that a

subequation F is a fiberegular andM-monotone on Ω ⊂⊂ Rn for some monotonic-

ity cone subequation M. Suppose that M admits a strict approximator; that is,

there exists ψ ∈ USC(Ω) ∩ C2(Ω) which is strictly M-subharmonic on Ω. Given

u ∈ F(Ω), for each θ > 0 there exist η = η(ψ, θ) > 0 and δ = δ(ψ, θ) > 0 such that

uy,θ = τyu+ θψ belongs to F(Ωδ), ∀ y ∈ Bδ(0), (2.25)

where τyu( · ) := u( · − y).

In the pure second order and gradient-free cases (F ⊂ Ω×S(n) and F ⊂ Ω×(R×
S(n)), one always has a quadratic strict approximator ψ and the theorem holds for

all continuous coefficient F which are minimally monotone (with M = P ⊂ S(n)

and M = Q = N × P ⊂ R × S(n) respectively) as shown in [11], [12]. The

general M-monotone and fiberegular case is treated in [13]. In this general case,

the hypothesis of the existence of a strict approximator ψ creates no additional

problems if the objective is to prove comparison. This is because one knows from

[10, Theorem 6.2] that the existence of a strict approximator ψ forM ensures the

validity of the (ZMP) for M̃, which is needed for our monotonicity duality method.

Moreover, the (constant coefficient) monotonicity cone subequations which admit

strict approximators are well understood by the study made in [10].
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2.4. Subharmonic addition for quasiconvex functions. Many results about

F -subharmonic functions u are more easily proved if one assumes that u is also

locally quasiconvex4. Then, one can make use of quasiconvex approximation to

extend the result to semicontinuous u. Here we discuss some of the main results

in this direction. See [52] for an extensive treatment, which borrows heavily from

[35] and [36].

Definition 2.9. A function u : C → R is λ-quasiconvex on a convex set C ⊂ Rn if

there exists λ ∈ R+ such that u+ λ
2
| · |2 is convex on C. A function u : X → R is

locally quasiconvex on an open set X ⊂ Rn if for every x ∈ X, u is λ-quasiconvex

on some ball about x for some λ ∈ R+.

Such functions are twice differentiable for almost every5 x ∈ X by a very easy

generalization of Alexandroff’s theorem for convex functions (the addition of a

smooth function has no effect on differentiability). This is one of the many prop-

erties that quasiconvex functions inherit from convex functions. Quasiconvex func-

tions are used to approximate u ∈ USC(X) (bounded from above) by way of the

sup-convolution, which for each ε > 0 is defined by

uε(x) := sup
y∈X

(
u(y)− 1

2ε
|y − x|2

)
, x ∈ X. (2.26)

One has that uε is 2
ε
-quasiconvex and decreases pointwise to u as ε→ 0+. There is

an underlying pure second order potential theory for λ-quasiconvex functions on

X; namely with respect to the λ-quasiconvexity subequation

Pλ := {A ∈ S(n) : A+ λI ∈ P}. (2.27)

Two important results follow.

Theorem 2.10 (The Almost Everywhere Theorem). For locally quasiconvex func-

tions u

J2
xu = (u(x), Du(x), D2u(x)) ∈ Fx for Ln-a.e. x ∈ X ⇐⇒ u ∈ F(X).

4We have adopted the term quasiconvex which is consistent with the use of quasi-

plurisubharmonic function in several complex variables. Quasiconvex functions are sometimes

referred to as semiconvex functions, although this term is a bit misleading. They are functions

whose Hessian (in the viscosity sense) is locally bounded from below.
5With respect to the Lebesgue measure on Rn.
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This result is proven [36]. The main point in the proof is to control the measure

of the set of upper contact points near x if u is quasiconvex. This control comes

from either of two results obtained independently by Slodkowski [53] and Jensen

[48]. These two measure theoretic results are shown to be equivalent in [35].

Theorem 2.11 (The Subharmonic Addition Theorem: Quasiconvex Version).

Suppose that the subequations F ,G and H satisfy

Fx + Gx ⊂ Hx, for each x ∈ X. (Jet addition)

If u ∈ F(X) and v ∈ G(X) are locally quasiconvex, then

u+ v ∈ H(X). (Subharmonic addition)

This result appears in [36] and follows easily from the almost everywhere the-

orem. Subharmonic addition extends to u, v ∈ USC(X) by quasiconvex approxi-

mation in various situations. This extension has been accomplished for constant

coefficient subequations F in [10], for subequations associated to inhomogeneous

pure second order equations in [42] and for fiberegularM-monotone subequations

F in [13].

Subharmonic addition is very important when combined with the following im-

plication between monotonicity and jet addition

Fx +Mx ⊂ Fx =⇒ Fx + F̃x ⊂ M̃x, for each x ∈ X. (2.28)

This combination has the very interesting consequence that ifM is a monotonicity

cone subequation for F , then sums of F -subharmonics and F̃ -subharmonics are

M̃-subharmonics. Thus, when M has constant coefficients, comparison for F
reduces to the validity of the zero maximum principle (ZMP) for M̃-subharmonics

where M̃ has constant coefficients since M does. This is a constant coefficient

potential theory and has been analyzed extensively in [10], where the validity of the

(ZMP) is well understood for constant coefficient monotonicity cone subequations.

This will be briefly reviewed at the end of section 3 below.

2.5. A “tool kit” for F-subharmonics (subsolutions). Some of the “nuts

and bolts” of handling F -subharmonic functions are briefly described here. The

first result is both useful for checking whether a given function is F -subharmonic

and also sheds light on the notion of viscosity subsolutions.
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Lemma 2.12 (Definitional Comparison). Let F ⊂ J 2(X) be a subequation and

consider u ∈ USC(X).

(a) If u is Fsubharmonic on X, the following form of comparison holds on any

bounded domain Ω ⊂⊂ X:

u+ v ≤ 0 on ∂Ω =⇒ u+ v ≤ 0 on Ω

for each v ∈ USC(Ω) ∩ C2(Ω) which is strictly F̃-subharmonic on Ω.

(b) Conversely, suppose that for each x ∈ X there are arbitrarily small neigh-

borhoods Ω ⊂⊂ X about x where the above form of comparison holds. Then

u is F-subharmonic on X.

Part (a) is a well-known principle in the viscosity theory of PDEs and is here

recast on the potential theory side with the help of duality. Part (b) is novel (also

for its natural formulation on the operator theory side in both constrained and

unconstrained cases) and shows that the fundamental notion in viscosity theory

is the validity of this form of the comparison principle. The proof of definitional

comparison can be found in [10] for constant coefficient F and in [13] for the

general case.

The next tool is widely used to prove that a given function is F -subharmonic

by a contradiction argument.

Lemma 2.13 (Bad Test Jet Lemma). Let F ⊂ J 2(X) be a subequation. Suppose

that u ∈ USC(X) is not F-subharmonic at x0 ∈ X. Then there exist ε > 0, ρ > 0

and a 2-jet J /∈ Fx such that the (unique) quadratic function QJ with J2
x0
QJ = J

is an upper test function for u at x in the following ε-strict sense:

u(x)−QJ(x) ≤ −ε|x− x0|2 ∀x ∈ Bρ(x0) with equality at x0.

This is merely the contrapositve of the definition of being subharmonic in x0

making use of ε-strict upper test jets yield an equivalent definition see [25].

In addition to the C2-coherence property and the uniform translation property

(for continuous M-monotone F) discussed above, one has many additional prop-

erties which are useful in various constructions.

Proposition 2.14 (Elementary properties of F(X)). Let F ⊂ J 2(X) be a sube-

quation. Then the following properties hold:

(i) local: u ∈ USC(X) is locally F-subharmonic ⇔ u ∈ F(X);
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(ii) maximum: u, v ∈ F(X) =⇒ max{u, v} ∈ F(X);

(iii) sliding: u ∈ F(X) =⇒ u−m ∈ F(X) for any m > 0;

(iv) decreasing limits: {uk}k∈N ⊂ F(X) decreasing =⇒ u := limk→∞ uk ∈
F(X);

(v) uniform limits: {uk}k∈N ⊂ F(X) locally uniformly converging to u =⇒
u ∈ F(X);

(vi) families locally bounded above: if F ⊂ F(X) is a non-empty family

of functions which are locally uniformly bounded from above, then the upper

semicontinuous envelope 6 u∗ of the Perron function u( · ) := supw∈Fw( · )
belongs to F(X).

Furthermore, if F has constant coefficients, the following also holds:

(vii) translation: u ∈ F(X) ⇐⇒ u(· − y) ∈ F(X + y), for any y ∈ Rn.

These are familiar properties for the viscosity theory of nonlinear elliptic PDEs,

although stated typically only in the unconstrained case. See [25] for the proofs of

this general potential theoretic version.

3. Comparison by the monotonicity-duality-fiberegularity method

In this section, we present a clean elegant and flexible method for proving com-

parison (the comparison principle) in nonlinear potential theory. It makes use

of the two ingredients monotonicity and duality, along with some form of regu-

larity of the subequation. There are three incarnations of the needed regularity:

constant coefficients, tameness for subequations defined by inhomogeneous equa-

tions, and fiberegularity. The method works when a given subequation admits a

suitable constant coefficient monotonicity cone subequation M. When the com-

parison principle is combined with a correspondence principle, comparison can be

transferred to nonlinear elliptic PDEs.

3.1. Statement and history of the general result. The method has evolved

from the constant coefficient pure second order case [23]. The general theorem in

Euclidian space is the following result [13, Theorem 4.3].

6We recall that u∗(x) := lim supr→0+{u(y) : y ∈ X ∩ Br(x)} for each x ∈ X and that ux is

the minimal USC(X) function with u ≤ u∗ on X.
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Theorem 3.1 (A general comparison theorem). Let Ω ⊂ Rn be a bounded domain.

Suppose that a subequation F ⊂ J 2(Ω) is fiberegular and M-monotone on Ω for

some monotonicity cone subequation M. If M admits a C2-strict subharmonic ψ

on Ω, then comparison holds for F on Ω; that is,

u ≤ w on ∂Ω =⇒ u ≤ w on Ω (CP)

for all u ∈ USC(Ω) which are F-subharmonic on Ω, and for all w ∈ LSC(Ω) which

are F-superharmonic on Ω.

The evolution of this result can be summarized in the following way.

(1) For Fx ≡ F ⊂ S(n) (constant coefficient pure second order) see [23], where

M = P and ψ(x) := 1
2
|x|2. Here one can say

(CP) holds for all subequations F ⊂ S(n) and for all domains Ω ⊂⊂ Rn.

(2) For F ⊂ Ω×S(n) (fiberegular variable coefficient pure second order) see [11],

where M = P and ψ(x) := 1
2
|x|2. Here one can say

(CP) holds for all fiberegular subequations F ⊂ Ω× S(n) and for all domains

Ω ⊂⊂ Rn.

Of course an interesting case here is an inhomogeneous subequation F defined by

F (D2u)− f(x) ≥ 0. In [42], assuming a condition called tame on the operator F ,

(CP) was established. One can show that F tame implies that F is fiberegular, so

this result is a special case of (2).

(3) For Fx ≡ F ⊂ R× S(n) (constant coefficient gradient free) see [25, Theorem

13.4] where M = Q = N × P and ψ(x) := 1
2
(|x|2 − R2), R >> 0. Here one can

say

(CP) holds for all subequations F ⊂ R× S(n) and for all domains Ω ⊂⊂ Rn.

(4) For F ⊂ Ω× (R×S(n)) (fiberegular variable coefficient gradient-free) see [12],

where M = Q = N ×P and ψ(x) := 1
2
(|x|2 −R2), R >> 0. Here one can say

(CP) holds for all fiberegular subequations F ⊂ Ω×R×S(n) and for all domains

Ω ⊂⊂ Rn.

(5) For Fx ≡ F ⊂ J 2(Ω) (general constant coefficients) see [10], where there is

also a complete study of which cones M admit ψ.
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(6) For the general case F ⊂ J 2(Ω) (fiberegular) see [13], where one imports the

class of admissible cones M from the constant coefficient case.

3.2. Outline of the proof. The main steps in the proof are the following.

Step 1: First, use duality to reformulate (CP) as:

u+ v ≤ 0 on ∂Ω =⇒ u+ v ≤ 0 on Ω (CP’)

for all u ∈ USC(Ω) ∩ F(Ω) and v ∈ USC(Ω) ∩ F̃(Ω) (both subharmonic). Define

v := −w and then the equivalence in (2.10) translates to the equivalence of (CP)

and (CP’). Next, note that (CP’) is just the zero maximum principle (ZMP) for

the sum of F and F̃ subharmonics:

(ZMP) z ≤ 0 on ∂Ω ⇒ z ≤ 0 on ∂Ω, (3.1)

∀ z ∈ USC(Ω) ∩ (F(Ω) + F̃(Ω)). Thus it remains to prove (ZMP) in (3.1).

Step 2 (Jet Addition): Establish the fundamental jet addition formula ([29,

Lemma 4.1.2])

Fx +Mx ⊂ Fx =⇒ Fx + F̃x ⊂ M̃x, for each x ∈ X. (3.2)

This formula follows from elementary properties of duality and monotonicity.

Step 3: Establish the Almost Everywhere Theorem and the quasiconvex version

of the Subharmonic Addition Theorem (see Theorems 2.10 and 2.11 to conclude

z = u+ v ∈ M̃(Ω)

if u ∈ F(Ω) and v ∈ F̃(Ω) are locally quasiconvex. This difficult step relies on the

Jensen or Slodkowski or Federer Lemmas.

Step 4: Use fiberegularity to prove the full Subharmonic Addition Theorem

F(Ω) + F̃(Ω) ⊂ M̃(Ω).

Step 5: Apply the following constant coefficient result [10, Theorem 6.2].

Theorem 3.2 (The Zero Maximum Principle for Dual Monotonicity Cones). Sup-

pose that M is a constant coefficient monotonicity cone subequation that admits a

C2-strict subsolution ψ on a domain Ω ⊂⊂ Rn. Then the zero maximum principle

holds for M̃ on Ω; that is,

z ≤ 0 on ∂Ω =⇒ z ≤ 0 on Ω (ZMP)

for all z ∈ USC(Ω) ∩ M̃(Ω).
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Proof. M̃ is a (constant coefficient) subequation and hence satisfies the sliding

property

z −m ∈ M̃(Ω) for each m ∈ [0,+∞).

Since z −m < 0 on ∂Ω compact

z −m+ εψ ≤ 0 on ∂Ω for each ε sufficiently small.

Since z − m ∈ M̃(Ω) and since εψ ∈ C(Ω) ∩ C2(Ω) is strictly M-subharmonic,

by the definitional comparison Lemma 2.12 (with F = M̃ and F̃ =
˜̃M =M) one

has

z −m+ εψ ≤ 0 on Ω for each ε sufficiently small.

Passing to the limit for ε→ 0+, and then m→ 0+ yields z ≤ 0 on Ω. �

The utility of the General Comparison Theorem 3.1 is greatly facilitated by the

detailed study of monotonicity cone subequations in [10], which we briefly review.

There is a three parameter fundamental family of monotonicity cone subequations

consisting of

M(γ,D, R) :=

{
(r, p, A) ∈ J 2 : r ≤ −γ|p|, p ∈ D, A ≥ |p|

R
I

}
where

γ ∈ [0,+∞), R ∈ (0,+∞] and D ⊆ Rn,

where D is a directional cone; that is, a closed convex cone with vertex at the origin

and non-empty interior (see Definition 5.2 and Remark 5.9 of [10]). The family

is fundamental in the sense that for any monotonicity cone subequation, there

exists an element M(γ,D, R) of the family with M(γ,D, R) ⊂ M (see Theorem

5.10 of [10]. Hence if F is an M-monotone subequation, then it is M(γ,D, R)-

monotone for some triple (γ,D, R). Moreover, from Theorem 6.3 of [10], given any

elementM =M(γ,D, R) of the fundamental family, one knows for which domains

Ω ⊂⊂ Rn there is a C2-strictM-subharmonic and hence for which domains Ω one

has the (ZMP) for M̃-subharmonics according to Theorem 3.2. There is a simple

dichotomy. If R = +∞, then arbitrary bounded domains Ω may be used, while in

the case of R finite, any Ω which is contained in a translate of the truncated cone

DR := D ∩BR(0).
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4. The correspondence principle

In this section, we discuss structural conditions on a given proper elliptic oper-

ator F with domain G ⊂ J 2(X) which ensure that the constraint set F defined

by the compatibility relation (1.14)

F := {(x, J) ∈ G : F (x, J) ≥ 0}} (4.1)

satisfies the two conditions needed for the the Correspondence Principle of Theo-

rem 1.3. We recall that the these two conditions are:

F defined by (4.1) is a subequation (in the sense of Definition 2.1) (4.2)

and compatibility (1.16) between F and F :

IntF = {(x, J) ∈ G : F (x, J) > 0}, (4.3)

or equivalently

∂F = {(x, J) ∈ F : F (x, J) = 0}. (4.4)

F defined by (4.1) will be a subequation if it satisfies the three properties of

positivity (P), negativity (N) and topological stability (T). The first two (P) and

(N) are equivalent to the (fiberwise) monotonicity property that for each x ∈ X

(r, p, A) ∈ Fx ⇒ (r + s, p, A+ P ) ∈ Fx, ∀ s ≤ 0 in R, P ≥ 0 in S(n),

which clearly follows from the same monotonicity property for the domain G and

and the proper ellipticity of F on G (see (1.10)):

F (x, r+s, p, A+P ) ≥ F (x, r, p, A), ∀(r, p, A) ∈ Gx, s ≤ 0 in R and P ≥ 0 in S(n).

This leaves the topological property (T). Recall that it requires the three conditions

F = IntF ; (T1)

Fx = Int (Fx), ∀x ∈ X; (T2)

(IntF)x = Int (Fx) , ∀x ∈ X. (T3)

In the constant coefficient case, property (T) reduces to property (T1). In the

gradient free case, one can show that property (T1) follows from properties (P)

and (N) since F is closed. In the general constant coefficient case, a sufficient

condition for (T1) is that F is closed and is M-monotone for some monotonicity

cone subequation (see Proposition 4.7 of [10]). F defined by (4.1) is closed by the
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continuity of F . Hence, if (F,G) is a constant coefficient M-monotone pair, then

F defined by (4.1) is indeed a subequation.

In the variable coefficient case, assuming that (F,G) is an M-monotone pair,

then the argument above (fiberwise) yields the property (T2). This leaves proper-

ties (T1) and (T3). It is not hard to see that if F is closed, then properties (T2)

plus (T3) imply (T1) (see Proposition A.2 of [13]). Hence for aM-monotone pair

(F,G), the constraint set F defined by (4.1) will be a subequation if F is closed

and satisfies (T3). Moreover, since the inclusion (IntF)x ⊂ Int (Fx) is automatic

for each x ∈ X, (T3) reduces to the reverse inclusion, which holds provided that F
is M-monotone and fiberegular in the sense of Definition 2.7. This fact is proved

in Proposition A.5 of [13]. Moreover, as shown in Theorem 6.1 of [13], F will be

fiberegular if G is fiberegular provided that F satisfies a mild regularity condition

(see (4.5) below). In addition, fiberegularity of F ensures that F is closed (see

Proposition A.6 of [13]). We collect some of these observations in the following

Lemma.

Lemma 4.1. Suppose that (F,G) is anM-monotone operator-subequation pair for

some monotonicity cone subequation, with G = J 2(X) or G ( J 2(X) a fiberegular

subequation. Suppose that (F,G) satisfies the regularity condition: for some fixed

J0 ∈ IntM, given Ω ⊂⊂ X and η > 0, there exists δ = δ(η,Ω) > 0 such that

F (y, J + ηJ0) ≥ F (x, J), ∀x, y ∈ Ω with |x− y| < δ. (4.5)

Then the constraint set F defined by (4.1) is a (fiberegular M-monotone) sube-

quation.

Finally, we discuss structural conditions on a proper elliptic operator F with

domain G ⊂ J 2(X) for which the constraint set F defined by (4.1) satisfies com-

patibility (4.3) (or equivalently (4.4)). In the situation of Lemma 4.1, which en-

sures that F defined by (4.1) is a subequation, by the topological property (T3)

it suffices to have (4.3) fiberwise; that is,

IntFx = {J ∈ Gx : F (x, J) > 0}, ∀x ∈ X. (4.6)

This condition is often easily checked for a given pair (F,G) which determines F
by checking that F (x, J) = 0 for J ∈ ∂Fx and using some strict monotonicity such

as: for each x ∈ X with some fixed J0 ∈ IntM there exists t0 > 0 such that

F (x, J + tJ0) > F (x, J), ∀t ∈ (0, t0),∀ J ∈ ∂Fx. (4.7)
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Compatibility in this situation of a homogeneous equation F (J2u) = 0 is relatively

simple because one need only pay attention to F in a neighborhood of the zero

locus of F (with domanin G).

More structure is required if one would like to treat the inhomogeneous equation

F (J2u) = ψ, ψ ∈ C(X) (4.8)

for a given constant coefficient operator F . This is true even for constant sources

ψ = c. This case has been studied extensively in [10], which we now review.

There the domain G was denoted instead by F , which we will also do below.

In the constrained case, where F ⊂ J 2 is a (constant coefficient) subequation,

compatibility is defined by the two conditions

inf
F
F is finite (and denoted by c0) (4.9)

and

∂F = {J ∈ F : F (J) = c0}. (4.10)

Given an operator-subequation pair (F,F), the values c ∈ F (F) are called admis-

sible levels of F , since otherwise the level set {F = c} is empty.

More is needed in order to treat the inhomogeneous equation F (J2u) = c for

all of the admissible levels. In order to avoid some obvious pathologies, one must

assume that the operator F ∈ C(F) is topologically tame; that is, for each

admissible level c ∈ F (F),

the level set F(c) := {J ∈ F : F (J) = c} has empty interior. (4.11)

This condition serves an additional purpose. Namely, if (F,F) is a proper elliptic

operator-subequation pair with F topologically tame, then for every admissible

level c ∈ F (F) the upper level set

Fc := {J ∈ F : F (J) ≥ c} (4.12)

satisfies the topological property (T). Hence each Fc is a subequation since prop-

erties (P) and (N) are encoded by the proper ellipticity. The obvious pathologies

eliminates by topological tameness of F are explained in [10, section 11.1]. For

example, if some admissible level set F(c) has non-empty interior, then one has

many counterexamples for comparison by considering perturbations v+ϕ of a local

C2 solution to F (J2v) = c with ϕ smooth, compactly supported and with small

C2-norm.
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Some strict monotonicity for the operator F provides a convenient structural

condition on the operator which eliminates such pathologies. More precisely,

for constant coefficient compatible pairs (F,F) which are M-monotone for some

monotonicity cone subequation M, topological tameness (4.11) is equivalent the

following structural condition of strict M-monotonicity on F :

∃ J0 ∈ IntM such that F (J + tJ0) > F (J) for each J ∈ F and t > 0. (4.13)

In the gradient-free case this monotonicity is the weakest possible notion of being

strictly proper elliptic. Moreover, these equivalent notions (4.11) and (4.13) are

also equivalent to any one of the following three conditions (see Theorem 11.10 of

[10]):

1) F (J + J0) > F (J) for each J ∈ F and each J0 ∈ IntM;

2) {J ∈ F : F (J) > c} = IntFc for each admissible level c ∈ F (F);

3) F(c) = Fc ∩
(
−F̃c

)
for each admissible level c ∈ F (F).

Combining compatibility with strictM-monotonicity, one has a correspondence

principle for the solutions of the inhomogeneous equation (4.8), which are precisely

the Fψ-harmonics for the subequation with fibers

Fψ(x) = {F ∈ F : F (J) ≥ ψ(x)}, x ∈ X. (4.14)

More precisely, one has the following result whose proof follows directly from the

proof of the constant source case ψ = c given in Theorem 11.13 of [10].

Theorem 4.2 (Correspondence principle). Suppose that (F,F) is a compatible

M-monotone (operator-subequation) pair for some monotonicity cone subequation

M with F strictly M-monotone in the sense (4.13). Then, for any ψ ∈ C(X)

taking values in F (F), a function u ∈ C(X) is an F-admissible solution of the

equation F (J2u) = ψ in X if and only if u is Fψ-harmonic in X. In particular,

for u ∈ USC(X) and w ∈ LSC(X) one has

u is an F-admissible subsolution of F (J2u) = ψ ⇐⇒ u is Fψ-subarmonic

and

w is an F-admissible supersolution of F (J2u) = ψ ⇔ −w is F̃ψ-subarmonic.
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