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ABSTRACT. We discuss one of the many topics that illustrate the interaction
of Blaine Lawson’s deep geometric and analytic insights. The first author is
extremely grateful to have had the pleasure of collaborating with Blaine over
many enjoyable years. The topic to be discussed concerns the fruitful interplay
between nonlinear potential theory; that is, the study of subharmonics with re-
spect to a general constraint set in the 2-jet bundle and the study of subsolutions
and supersolutions of a nonlinear (degenerate) elliptic PDE. The main results
include (but are not limited to) the validity of the comparison principle and
the existence and uniqueness to solutions to the relevant Dirichlet problems on
domains which are suitably “pseudoconvex”. The methods employed are geo-
metric and flexible as well as being very general on the potential theory side,
which is interesting in its own right. Moreover, in many important geometric
contexts no natutral operator may be present. On the other hand, the potential
theoretic approach can yield results on the PDE side in terms of non standard

structual conditions on a given differential operator.
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1. INTRODUCTION

Our main aim is to give a partial survey of a research endeavor which was
initiated in a trio of papers of Harvey and Lawson [21], [22] and [23] published in
2009 that has grown into a wide ranging investigation with many interesting and
important avenues still to pursue. For simplicity of the exposition and in order to
make the discussion more accessible to analysts, we will focus on the Euclidean
setting of open subsets X of R", although X could also be a Riemannian manifold
as in [25] and [29], or an almost complex manifold as in [34]. We will emphasize
the fruitful interplay between nonlinear potential theory; that is, the study of the
family of F-subharmonics with respect to a given subequation (constraint set)

FCT(X)=XxJ*=XxRxR"xS8(n), XcCR" (1.1)

and the study of solutions/subsolutions/supersolutions of a given fully nonlinear
(elliptic) PDE

F(z,J?u) := F(z,u(r), Du(z), D*u(z)) =0, z€ X CR" (1.2)
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determined by a given operator F' € C(J?%(X)). The equation (1.2)) will also be

written more succinctly as
F(J?u) =0 on X. (1.3)

Here [J? is the vector space of 2-jets. We will use the notation J2u for the second
order Taylor development of u indifferently with respect to the differentiability of
u. This interplay has been developed in detail in [I1], [12], [10] and [13].

Given the fully nonlinear setting, one cannot expect solutions to be regular in
general, and distribution theory is generally available for convex subequations or
equations in divergence form. Hence all notions are to be interpreted pointwise in
the viscosity sense that will be recalled in Definition [2.4| (see [33] for the equivalence
of the distributional approach and the viscosity approach in the convex case).

There is a satisfying unification that comes from a potential theoretic (pluripo-
tential theoretic) viewpoint as it includes classical (Laplacian) subharmonics, con-
vex and quasiconvex functions as well as new geometric potential theories (some
of which are useful for theoretical physics) as well as an immense universe of first
and second order potential theories determined by classes of (degenerate) elliptic
operators.

We now describe the main motivating principles. There are many opportunities
for cross-fertilization and synergy between the potential theory and the operator
theory. First, the conditions imposed on a constraint set J correspond to and
encode structural conditions on the operator F'; for instance, a convex constraint
set F corresponds to a concave operator F. Second, the subequation F “frees”
a given PDE from any particular form of F' (many different F' correspond to the
same JF); this is an important point in the work of Krylov [51] on the general no-
tion of ellipticity. Moreover, F “liberates” the user from needing an operator F' to
apply nonlinear elliptic potential theory. Third, “forgetting” about the operator
leads to interesting questions that at first glance might not seem important for
operator theory and provides a “machine” for formulating new conjectures and
theorems. For instance, taking one’s cue from known results in pluripotential the-
ory or convex analysis, one is led to seek generalizations in other potential theoretic
situations as well. Some examples of this will be discussed in subsection be-
low. In this way, one can find “welcome surprises” in the operator theory. Fourth,
along with a rich abundance of geometrically motivated potential theories, there
are many new PDEs to discover. For example, as will be discussed in subsection
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[1.1, while every calibrated geometry has an underlying potential theory, known
“natural” smooth operators are “rare gems”. Nevertheless, for any given subequa-
tion JF, one can construct several “non smooth” operators. One good example is
the construction of the so-called canonical operator associated to a given subequa-
tion. This is a canonical construction that is scattered out, first in [25] Remark
14.11] and [24, Examples 3.4 and 3.5] and then better explained in [42] subsection
on canonical operators in section 6] and [10, Proposition 11.17]. It includes the
truncated Laplacians, among the many examples, so it might be referred to as the
“canonical eigenvalue operator construction”. These operators are discussed a bit
further in Example [I.16] Another good example is the signed distance operator

dist(J,0F,) J€EF,

1.4
—dist(J,0F,) Je T\ F, (1.4)

F(z,J) = {

where
Fo={JeJ?: (z,]) € F} (1.5)

is the fiber of F over x € X. The operator (1.4) was studied in the pure second
order case in Theorem 3.2 of [51]. Finally, in the rare cases when a natural operator
F' is known for a fixed F-potential theory, the operator F' will have much to say

about the potential theory; for example, by taking derivatives of the equation.

Having stated the main aims and philosophical motivations, we proceed to de-
scribe the origins and objectives, along with key concepts, nice features, some
results and significant examples which illustrate the theory. We begin with dis-
cussion of the origins of the investigation which led to a hierarchy of potential
theories.

1.1. Potential theories: from calibrations to subequations. The story be-
gins in calibrated geometry. The geometric side of calibrated geometry was devel-
oped to emphasize the calibrated submanifolds which are those submanifolds for
which the calibration restricts to be the volume form. Said infinitesimally, a cali-
bration ¢ of degree p restricts to be a function on the Grassmannian of oriented
p-planes where it attains a maximum value of one on the subset G(¢) of p-planes
calibrated by ¢. In turn, a submanifold is calibrated by ¢ if its tangent planes are
calibrated by ¢.

The basic example (other than calibrated geodesics), going back to Wirtinger in
the last century, is the Kéhler /symplectic form on C" = R?". Here the calibrated
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submanifolds are simply the complex curves in C". This geometric example, which
has an analytic side involving a rich and well developed potential theory (or more
precisely a pluripotential theory), then cries out for a pluripotential theory for other

calibrations, providing the impetus to search for general ¢-potential theories.

The ¢-subharmonic (or ¢-plurisubharmonic) functions u are easy to define for
smooth functions (see [2I]). One simply requires that the restriction of u to ¢-
submanifolds is classically subharmonic (with respect to the Laplacian A). This
imposes a constraint on the second derivative (Hessian matrix) D?*u of u at each
point. This constraint condition is that D?u resticts to have trace zero on any
p-plane calibrated by ¢. More precisely, by identifying a p-plane W with the
orthogonal projection Py onto W and by using the natural inner product on
the space S(n) of second derivatives (i.e. the symmetric matrices), the second

derivative constraint set determined by G(¢) is just the polar cone
G(¢)°:={AeS(n): (A Py) =tr (A|W) >0, YW e G(¢)} (1.6)

of the set G(¢). This C* potential theory suffices for many purposes (see [21])
where it was noticed, as a (big) surprise, that the calibration plays a minor role
subordinate to the set G(¢) of distinguised/calibrated p-planes, including the case
of G being the full set of p-planes (see [23], [26], [27] and [30]), thus extending the
realm of ¢-potential theories to G-potential theories.

In fact, replacing G(¢) by any closed set G C S(n) and then defining “G-
submanifolds” and “G-plurisubharmonic functions” as above, it is still possible to
obtain a robust G-pluripotential theory. Again, the constraint condition on the

second derivatives of a function v at each x € X
(D*u(z), Pw) = tr (D*u(z)w) >0, VW € G; that is, D*u(z) € G°, (1.7)

defines G-plurisubharmonicity of u on X. These functions u are characterized by
their restrictions to G-submanifolds M that are also minimal; u is subharmonic
with respect to the induced Laplacian on M (see [32]). Therefore it is justified to
state that

G-pluripotential theory is the correct pluripotential theory for the geometry of
minimal G-submanifolds.

Note that if G := G(¢) with ¢ a calibration, each G-submanifold is automatically
actually absolutely volume minimizing (see [20]) and hence a minimal submanifold.
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Potential theory based on a closed subset G of the p-Grassmanian will be referred
to as the geometric case.

This unifies many known cases and includes lots of new interesting cases. First,
as our basic motivation, this includes classical pluripotential theory in complex
analysis by taking GG to be the Grassmannian of complex lines in C™ as a subset of
real 2-planes. Second, taking G to be the full Grassmannian G(1,R") of real lines
in R™ we include convex function theory, providing more precision to the well-
known parallel between pseudoconvexity and convexity. Third, this leads to new
surprising examples not related to calibrations. As an example, for each degree p,
let G be the full Grassmannian of p-planes in R”. One obtains a p-pluripotential
theory associated with the geometry of all minimal submanifolds of dimension
p. Another noteworthy new example is Lagrangian pluripotential theory, defined
by taking G = LAG to be the set of Lagrangian n-planes in C". This is the
appropriate potential theory for minimal Lagrangian submanifolds [40]. These are
the two cases where new natural polynomial operators were discovered. First, the
p-fold sum operator whose domain is the subequation G(p, R™)° (see [23] (10.12)])
and second the Lagrangian Monge-Ampére operator (see [23), (10.11)] and [40]).

For the next level of generality, one can focus entirely on the second derivative
constraint set F C S(n), which in the geometric case is given by the polar F = G°
of G. There is surprising simplicity here as well. Other than F being closed, a
single condition on F described below, which is called positivity (P), is needed.
This condition (P) ensures that the notion of F-subharmonicity for upper semi-
continuous u agrees with the definition D*u(x) € F for C? functions. Such sets F
are called subequations in S(n). This is the pure second order constant coefficient
case. This condition, besides providing the weakest possible condition ensuring
coherence between the two definitions of F-subharmonicity should also be viewed

as the weakest possible form of ellipticity.

As with classical potential theory (for the Laplacian), the regularity of a general
G-subharmonic function should only be required to be upper semi-continuous.
This extension, although carried out with Dirichlet duality and subaffine functions
in [23], is equivalent to a viscosity theory formulation (see Remark 4.9 of [23]).
The viscosity approach is more direct and can used easily for potential theories for
subequation constraint sets with variable coefficients and dependence on all the

jet variables (as will be discussed in the next paragraph). However, the (Dirichlet)
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duality continues to be important. It clarifies the notion of superharmonics and
leads to straightforward proofs of the comparison principle. This is examined

extensively in the constant coeflicient setting in [10].

As a final step in the delineation of a hierarchy of potential theories, it is natural
to consider the extension from a pure second order constraint on second deriva-
tives in the Euclidian setting of open subsets X C R" to the case of X being a
Riemannian manifold [25] or an almost complex manifold [34]. In local coordi-
nates, this constraint will have variable coefficients and may depend on the full
Taylor development up to second order (not just second derivatives). Return-
ing to the Euclidian setting, this suggests considering subequation constraint sets
F C J*(X) = X x J? and their associated potential theories. The needed ax-
ioms for a robust potential theory are given in Definition Briefly stated, one
adds two additional axioms (negativity (N) and topological stability (T)) to the
positivity (P) and requiring that F be closed. The interplay between nonlinear
potential theory and fully nonlinear elliptic PDEs most naturally takes place at
this level of the hierarchy. This will be discussed further, beginning in subsection
1.3

An important part of the story is that in studying this hierarchy of possi-
ble levels of potential theories; ¢-subharmonics, G-subharmonics and finally F-
subharmonics, a distinguished (differential) operator F' is missing from the picture.
This absence of an operator has advantages (and disadvantages) which have been
noted above, and will be amplified below.

1.2. Some potential theoretic results suggested by complex analysis. A
surprising number of results in complex analysis (of several variables) can be es-
tablished in greater generality in nonlinear potential theory. We mention seven
such topics that were suggested by results in pluripotential theory. Most will be
stated in the pure second order case, but they provide impetus for investigating
them at all levels of the potential theory hierarchy. Here we are sketchy, leaving
many definitions to the references. Hence, rather than giving formal statements

of theorems, we will recall the main results informally.

1) The Andreotti-Frankel Theorem for subequations F C S(n): (see [20]
for details). First, F-conver domains can be defined. Then the notion of F-free
submanifolds extends that of totally real submanifolds and one has the following
result.
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An F-convex domain has the homotopy type of a CW -complex of dimension less
than or equal to the maximal dimension of an F-free subspace.

This maximal dimension is easy to calculate in the multitude of examples.

2) The Levi Problem in p-convex geometry: In [30] this problem is solved,
including the case of non-integer p. One has

Local p-convexity implies global p-convexity:

3) Boundary pseudoconvexity: For bounded domains {2 with smooth bound-
ary the following local to global result was established in Theorem 5.12 of [25] for
cone subequations F C S(n):

If 0% is strictly F-pseudoconvex at each point, then OS2 has a smooth strictly
F-subharmonic defining function.

For subequations F C S(n) which are not cones, boundary convexity for F is
governed by the asymptotic behavior of F at infinity. This asymptotic behavior
is captured by a new subequation ? which is a cone, so that the above can be
applied. See also Corollary 11.8 of [25] (and an incomplete discussion after the

proof) for the general case.

If strictness is dropped, then boundary pseudoconvexity does not imply existence
of a global plurisubharmonic defining function in complex analysis. On the other
hand, Forsterni¢ recently proved that this is the case if G = G(p,R™) and F = G°
(see [I7]). This is particularly interesting as it runs counter to our point made here
that generally speaking several complex variables is usually the source of results

for the other potential theories.

4) F-pluriharmonics for subequations F C S(n): These functions are the
analogue of the real part of holomorphic functions . They are defined by requiring
that the second derivative belongs to the largest linear subspace of F, referred to
as the edge of F (see [43]). In particular, in Theorem 9.3 of [43] conditions on
F are found that ensure that the family of functions that can be written locally
as the maximum of a finite number of F-pluriharmonics suffices for solving the

F-Dirichlet problem via the Perron process.

5) Removable singularities for subequations F on manifolds: Pluripo-
tential methods for proving removable singularity theorems in several complex
variables can be extended to F-pluripotential theory and used to prove
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Removable singularity theorems in JF-potential theory.

See [31] for details.

6) Tangents to subharmonics: Kieselman’s theory of tangents to plurisub-
harmonic functions in complex analysis can be extended to JF-plurisubharmonic
functions if F is in a broad family of convex cones. The tangents to an F-
plurisubharmonic function u can be used to study the singularities of u. See
[41] and [39] for details. It is shown that

Tangents always exist and are mazximal functions.

Maximal functions can be thought of as F-subharmonic functions with certain
singularities allowed. The strongest form of uniqueness of tangents is when strong
uniqueness holds; that is, the tangent of an F-plurisubharmonic function equals

the density times the Riesz kernel. It is shown that, except for P (where it is false)
Strong uniqueness of tangents holds if F is O(n) invariant.

This strong uniqueness fails in all three of the basic cases F = P, F = Pc (the
case studied by Kieselman) and F = Py (the quarternionic case).

7) A Bombieri-Hormander-Siu type structure theorem: The result for
the sets of high density for a plurisubharmonic function in complex analysis has
a weakened version which extends to F-subharmonic functions for many convex
F C 8(n), concluding that

Strong uniqueness of tangents implies that sets of high density are discrete.

See section 14 of [41] for details.

Recently, Chu [9] dramatically improved this result by showing that the sin-
gular set of an F-subharmonic function stratifies, and proving each stratum is a

rectifiable set.

1.3. The Dirichlet problem. Much can be said about the interplay between
potential theory and operator theory by studying the Dirichlet problem. We will
focus here on the Euclidian (coordinate chart) setting. We assume that X is an
open subest in R™ and consider bounded domains  CC X with smooth (i.e. C?)
boundaries and boundary data functions ¢ € C(0912). One can state the standard
Dirichlet problem in a vague form as:

(DP) - Vague Formulation: Find a function h € C(Q) which satisfies:
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1) his a solution on 2, and
2) h|aQ = Q.

In order to be precise as to the meaning of solution in 1), one needs to start
with either a subequation constraint set F C J2(X) or an operator F on the 2-jets
J?(X). We want to make both choices and then bring them together.

The Dirichlet problem involves three basic questions: uniqueness, existence
and regularity. Uniqueness follows from the comparison principle

(Comparison) u<w ond) = wu<w onf, (1.8)

for every pair of subharmonics/superharmonics for F (or for every pair of sub-
solutions/supersolutions to the equation F(J?*u) = 0). Existence is established
by Perron’s method. The candidate solution is defined pointwise as the upper
envelope

u(z) :=supw(x), =€ Q, (1.9)
wEF

of the Perron family § of subsolutions w with wjsq < ¢. For comparison, roughly
speaking, the size, but not the shape of the domain 2 can be of importance.
By contrast, for existence one has a dichotomy between subequations F where
existence holds for all domains (with 92 smooth), and subequations F with an
interesting distinguished boundary geometry of F-pseudoconvezity required for
existence (see subsection below). It is important to have a condition on the
boundary 02 which is a local (geometrical) requirement. Finally, the vast and
important regularity question will, in essence, not be treated here.

We now begin to describe the main ingredients in the two approaches, potential
theory and operator theory. The potential theoretic formulation starts with a
constraint set F C J?(X), while the operator theoretic formulation starts with
an operator F' whose domain is a subset G C J%(X) (G = J*(X) is allowed and,
in fact, is frequently required in the literature). Additional conditions must be
imposed in either case.

(DP) - Potential Theoretic Formulation: Find h € C(Q) which satisfies:

la) h is F-subharmonic on Q (i.e. J>Th C F, for each z € Q).
1b) —h is F-subharmonic on Q (i.e. J2T(=h) C F, for cach z € Q). Equiva-
lently, we will say that h is F-superharmonic on ).
2) hjga = .
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Here and below, Int denotes the interior of a set, F, := {J € J?: (x,J) € F}is
the fiber of F over x, and F is the dual of F (see Definition . The space J>Th
of upper test jets of h at x are defined in ([2.6]) (also see Defintion . One can
easily see that the definition 1b) is equivalent to saying that the lower test jets
of h satisfy J>~h C (Int F,)¢, for each x € 2. Additional conditions placed on
the constraint set F are made precise in Definition [2.1} They are summarized by
saying that F is a subequation.

The operator theoretic formulation of (DP), although standard, requires some
explanation as well as some conditions on the operator F' and its domain G, which
we give now for the sake of completeness.

Definition 1.1 (Proper elliptic operators). An operator F' € C(G) where either
G=J%X) (unconstrained case)

or

G € J?*(X) is a subequation constraint set  (comstrained case).

is said to be proper elliptic if for each z € X and each (r,p, A) € G, one has
F(x,r,p,A) < F(z,r+$,p,A+P) Vs<0inRandVP >0inS(n). (1.10)

The pair (F,G) will be called a proper ellipticﬂ (operator-subequation) pair.

The minimal monotonicity of the operator F' parallels the minimal mono-
tonicity properties (P) and (N) for subequations F. It is needed for coherence and
eliminates obvious counterexamples for comparison. This is explained for sube-
quations after Definition 2.4l A given operator F' must often be restricted to a
suitable background constraint domain G C J?(X) in order to have this minimal
monotonicity (the constrained case). The historical example clarifying the need
for imposing a constraint is the Monge-Ampere operator

F(D?*u) = det(D?u), (1.11)

where one restricts the operator’s domain to be the convexity subequation G =
P = {A € S(n): A>0}. The scope of the constrained case is perhaps best
illustrated by the more general Garding-Dirichlet operators. See Example [[.12]
with the fundamental case. These polynomial operators F' of degree m have

ISuch operators are often refered to as proper operators (starting from [14]). We prefer
to maintain the term “elliptic” to emphasise the importance of the degenerate ellipticity (P-
monotonicity in A) in the theory.



12 F.R. HARVEY AND K.R. PAYNE

an ordered sequence of Garding eigenvalues A1(A) < --- A, (A) which determine
branches of the equation F'(J?u) = 0. The notion of branches well illustrates the

interplay between potential theory and operator theory and will be discussed in
Example [1.15]

The unconstrained case, in which F is proper elliptic on all of J2(X) is the case
usually treated in the literature and is perhaps best illustrated by the canonical
operators mentioned above.

We now recall the precise notion of solutions in the operator theoretic formula-
tion of the Dirichlet problem. The defintions again make use of upper/lower test
jets.

Definition 1.2 (Admissible viscosity solutions). Given F' € C(G) with G C J%(X)
a subequation on an open subset X C R™:

(a) a function u € USC(X) is said to be an (G-admissible) viscosity subsolution
of F(J?u) =0 on X if for every z € X one has

JeJ*u = JeG, and F(z,J) > 0; (1.12)

(b) a function u € LSC(S) is said to be an (G-admissible) viscosity supersolu-
tion of F(J?*u) =0 on X if for every z € X one has

JeJ>u = ecither [J€G, and F(z,J)<0] or J¢&G,. (1.13)

A function u € C(Q) is an (G-admissible viscosity) solution of F(J?u) =0 on X
if both (a) and (b) hold.

In the unconstrained case where G = J?(X), the definitions are standard. In
the constrained case where G C J%(X), the definitions give a systematic way of
doing of what is sometimes done in an ad-hoc way (see [47] for operators of Monge-
Ampere type and [54] for prescribed curvature equations.) Note that says
that the subsolution u is also G-subharmonic and that is equivalent to saying
that F'(z,J) < 0 for the lower test jets which lie in the constraint G,.
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(DP)’ - Operator Theoretic Formulation: Find h € C(£2) which satisfies:
la) his a (G-admissible) subsolution of F(J?h) =0 on Q (Definition [1.2{(a)).
1b)' his a (G-admissible) supersolution of F(J*h) = 0 on Q (Definition [L.2[b)).

2) h|aQ = Q.
We now discuss the equivalence of the potential theoretic and operator theoretic
formulations of the Dirichlet problem; that is, the equivalence of (DP) for a given
subequation F and (DP)’ for a given (proper elliptic) operator-subequation pair

(F,G). By the definitions, the equivalence of la) and la) is the same as the
following equivalence: for each x € ) one has

J>*h ¢ F, <= both J>**hcC @G, and F(z,J)>0 foreach J & J> h.
This holds if and only if one has the correspondence relation
F={(z,J)€G: F(z,J)>0}. (1.14)

In addition, the equivalence of 1b) and 1b)’ is the same as the following equivalence:

for each x € ) one has
J2H(=h)C F, <= J &G, or|JeGand F(x,J)<0], VJ e J*h (1.15)

Using duality (2.2) and J>*(—h) = —J>~h one can see that that the equivalence
(1.15)) holds if and only if one has compatibility

Int F ={(z,J) € G: F(z,J) > 0}. (1.16)
which for subequations F defined by ([1.14) is equivalent to
OF ={(z,J) e F: F(z,J)=0}. (1.17)

The pair of equivalences 1la) < 1a)" and 1b) < 1b)’ is referred to as the correspon-
dence principle and will be discussed futher in section [dl These considerations
can be summarized in the following result.

Theorem 1.3 (Correspondence Principle). Suppose that F € C(G) is proper el-
liptic and F, defined by the correspondence relation , s a subequation. If
compatibility is satisfied, then h € C(Q) satisfies the correspondence prin-
ciple: la) < la)’ and 1b) < 1b)'. In conclusion, the two formulations (DP) and
(DP) are equivalent.



14 F.R. HARVEY AND K.R. PAYNE

Remark 1.4 (On compatibility). Given one of either a proper elliptic pair (F,G)
or a subequation F, finding the other so that both the correspondence relation
(1.14) and compatibility hold can be impossible, easy or in between requiring
some work. For example, given any subequation JF the pair (F, J2(X)) with F the
signed distance operator will do. Other natural choices of (F, 7%(X)) with F
given, which require some additional work, are the canonical operators introduced
in [42]. In the other direction, in subsection we will present various examples
of determining the subequation F given a proper elliptic pair (F,G). In particular,
finding F is easy in Examples [I.6] and [1.7] requires some work in Examples [I.8

1.9 and and is impossible in Example [I.18]

1.4. Boundary pseudoconvexity. The potential theoretic approach to the Dirich-
let problem (DP) naturally leads to an appropriate notion of pseudoconvexity for
082 (smooth) required for existence. This is perhaps best illustrated by focusing on
the case of a constant coefficient pure second order subequation F C S(n) which
is a cone. The definition, with roots in [6], is given in [23] section 5] with several

equivalent formulations.

Definition 1.5 (Boundary pseudoconvexity). A smooth boundary 0f is said to
be strictly F-pseudoconvex at x € IS if

dtp >0 such that A, +tFP.,) € IntF, Vit 2>t, (1.18)

where A, denotes the second fundamental form of 902 at x with respect to the
inward pointing unit normal e(z) and P, is orthogonal projection onto the normal
line through e(z) (the eigenvalues of A, are the principal curvatures of I at x).

These (cone) subequations F divide into two kinds, those with and those without
a boundary geometry. By those without a boundary geometry we mean that all
boundaries 0f) are strictly F-pseudoconvex at all points. This is equivalent to

requiring that
VAeSn),VeeS" ' Ity >0 suchthat A, +tP, € IntF, Vit >ty (1.19)
Taking A = 0 implies
P, € Int F for every e € S™ 1. (1.20)

Conversely, if (1.20]) holds then P,4+cA € Int F for € > 0 small, which is equivalent
to ((1.19). This proves that F has no boundary (geometric) restriction for existence
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for the (DP) if and only if F is strictly elliptic, since (1.20]) is one of the ways of
defining strict ellipticity. This proves that

the strictly elliptic potential theories are exactly the ones without a boundary
pseudoconvexity geometry.

It is easy to see that none of the geometric potential theories F = G°, GG a closed
subset of G(n,R™)), satisfy (1.20); i.e. none are strictly elliptic, so each has a
boundary geometry. This geometry has the following nice description

0N) 1s strictly F = G°-pseudoconvex at x € 02 < the restriction of the second
fundamental form A, to any k-plane W € G which is also tangential, i.e.
W C T, 080, has strictly positive trace.

1.5. Some examples of PDEs. The potential theory approach to treating non-
linear PDEs is well illustrated by many examples of operators (and classes of

operators). We mention a few here.

Example 1.6 (Perturbed Monge-Ampere). With fixed M € C(Q,S5(n)) and
f € C(22) non-negative, consider

det(D*u+ M(z)) = f(x), * € QCCR" (1.21)

This is an important test example of Krylov [50, Example 8.2.4] for probabilistic
and analytic methods. It is also noteworthy because it fails to satisfy the standard
viscosity structural conditions for comparison as given in Crandall-Ishii-Lions [14]
condition (3.14)] unless M is the square of a Lipschitz continuous matrix valued
function. In [II], comparison is proved for general continuous M (along with the
existence of a unique continuous solution of the Dirichlet problem on strictly convex
domains). The potential theoretic proof, makes use of the compatible subequation
whose fibers are defined by

Fo={AeSn): A+ M(x)>0and F(z, A) :=det(A+ M(z)) — f(x) > 0}.

This was done with the introduction and application of the notion of (Hausdorff)

continuity of the fiber map
©:Q — p(S(n)) defined by O(z) := F,, Vz e

This is a representative example of the “constrained case” in which operators
F' come with domains; that is, F' must be restricted to G defined by its fibers
G, ={AeSn): A+ M(z) > 0}.
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Example 1.7 (Special Lagrangian potential equation). With phase function
0 € C(Q,1) where I = (—nn/2,nm/2) consider

G(D?u) = Z arctan (\,(D*u)) = 0(x), * € QCCR" (1.22)
k=1

The geometric interpretation of this equation is that the graph of the gradient of u
will have Lagrangian phase 6 (see [20]). Comparison for constant phases, as well as
existence /uniqueness for the Dirichlet problem via Perron’s method, was proven in
[23]. For non-constant phases, comparison is difficult and not completely settled.
The operator G is particularly difficult to analyze if the non-constant phase 6
assumes a special phase value 0, = (n — 2k)n/2,k =1,...n — 1. Comparison was
proven in [16] if A has range in the first/last intervals [, determined by 6. This
is the “relatively easy” case where GG is concave/convex. The best result to date
was obtained in [12] for phases taking values in any phase interval

Ik: ((9]671,(9]6), k= 1,77, (123)
There the key was to establish the fiber regularity of the fiber map
O(r) :={AeSn): F(z,A):=G(A) — h(z) >0},

which is false across the special phase values. Combining comparison with the
appropriate pseudoconvexity assumption on 2 yields existence/uniqueness for the
Dirichlet problem for phases taking values in the intervals , as shown in
[45] (including a study of the needed pseudoconvexity). This is a representative
example of the unconstrained case (also pure second order) where the operator G
is increasing on all of S(n).

Example 1.8 (Eigenvalue equation for k-Hessian operators). With k£ =
1,...n and p € R fixed, consider

Sp(D*u) + pulu)*~' =0, z€Qcc R, (1.24)
where for A € S(n) the k-Hessian operator is defined by

Sip(A) == 0k(A(A)) = or(M(A), ..., A\ (A)) = Z iy (A) -+ N (A).

1<t << <n

Since the equation is k-homogeneous, one can search for eigen-directions (rays)
u that solve (1.24) for an eigenvalue p. The operator Sy is degenerate elliptic
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(increasing in A) when restricted to the closed cone
Ye:={A€S(A): ANA) €T} withTp:={XAeR":0;(X) >0,7=1,...,k},

the (closed) Garding cone associated to oy (kth elementary symmetric polynomial).
Notice that Sy interpolates between S;(D?*u) = tr(D?*u) = Au and S, (D?*u) =
det(D?u). One uses X as a background (subequation cone) constraint set; that
is, one looks for k-convex subharmonics and uses k-convex lower test functions for
supersolutions. The interesting case concerns u < 0 and g > 0 where the equation

”? monotonicity in u. In [5], a maximum principle characterization

has the “wrong
of a generalized principal eigenvalue in the sense of Berestycki-Nirenberg-Varadhan
[3] is proven as well as the existence of a corresponding eigenfunction vanishing
on the boundary. An important step in the proof is to prove an a priori Holder
estimate, which is needed for compactness in an iterative scheme for the con-
struction of the eigenfunction. The proof shows that the theory of admissibility
constraints extends in a natural way the technique pioneered by Ishii-Lions [47] in

the unconstrained case.

Example 1.9 (Hyperbolic affine sphere equation). With X C R" open and
f € C(X) non-negative consider the following equation on X

[—u]""2det(D?*u) = f. (1.25)
The geometric interpretation of the equation emerges by setting h := — f so that
the equation becomes

det(D*u) = (h/u)"*?, (1.26)

which for u convex and neqative describes the graphing function of a hyperbolic
affine sphere with (constant) mean curvature h < 0 as discussed in Cheng-Yau
[8]. Comparison for the equation (1.25) was established in [12]. This is another
representative (gradient-free) example of the constrained case, where (F,G) with

F(z,r,A) := (—r)""*det A — f(z) and G=Q:=N xP.

Example 1.10 (Optimal transport equations). With X C R" open, f € C'(X)

non-negative and g € C'(R") non-negative, consider the following equation on X
g(Du) det(D?*u) = f. (1.27)

The functions f and g represent the source and target densities respectively which
should have the same mass (L'-norm) (see [I5] and [55] for more details.)
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Comparison has been shown for constant target densities g in [I2]. For non-
constant g, one requires the additional monotonicity property of directionality;
that is, there exists a closed convex cone D C R"™ with non-empty interior and

vertex at the origin for which
g(p+q) > g(p) for each p,q € D. (1.28)

Examples of g with directionality include

g(p) = —pn with D ={(p’,p,) € R": p, >0}

and for k € {1,...n}

k
g(p):Hpj with D= {(p1,...pn) €R":p; >0 foreach j =1,.. .k}

j=1
For target densities g with directionality, comparison has been shown for constant

source densities f in [10] and for non-constant f in [13].

Remark 1.11. Examples and have a product structure
F(z,u, Du, D*u) = g(x,u)h(z, Du)G(x, D*u) — f(z).

This structure helps with the correspondence principle. One illustration of this
is provided by considering the following pair of constant coefficient gradient-free

operators
F(r,A) == —rdet(A) and G(r,A) = —r +det(A).

The first operator is proper elliptic when restricted to the subequation @ = N x P
and with F :={(r,A) € Q: F(r, A) > 0} one has the compatibility

OF ={(r,A) e F: F(r,A) =0}

and hence the correspondence principle. On the other hand, while G is also proper
elliptic when restricted to Q (or even R x P), the boundary of

G ={(r,A)eQ: G(r,A) >0}

includes N x {0}, so that all negative C* affine functions will be G-harmonic but
the operator G is not zero on them. Thus the correspondence principle fails here.

Next we discuss perhaps what is perhaps the most interesting and important
class of examples. They illustrate why the constrained case is required.
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Example 1.12 (Garding-Dirichlet operators). These nonlinear operators are
obtained from Garding’s beautiful theory of hyperbolic polynomials [I8]. We
briefly give the precise definition and enumerate a few examples. See [24] and
[23], [25], [29] and [I0] for an extensive discussion.

Definition 1.13 (Hyperbolic polynomials). A homogeneous real polynomial F of
degree m on S(n) is I-hyperbolic if F(I) > 0 and for all A € S(n) the one variable
polynomial F(sI + A) has all m roots real.

In keeping with the example F'(A) := det A, it is useful to focus on the negatives
of the roots of F(s] + A), which are called Garding I-eigenvalues and are denoted
by Ai(A), ..., Ay, (A). Hence

F(sI+A) = H5+A and F(A ﬁ . (129

The open Garding cone
Fr'={AeSn): N;(A)>0,7=1,...,m} (1.30)
is a convex cone, which, along with F', has many nice properties.

Definition 1.14 (Garding-Dirichlet operatoxﬂ). An [-hyperbolic polynomial op-
erator F' of degree m on S(n) is called a Garding-Dirichlet operator if P C I'; that
is, if
A>0 = AN(A) >0, j=1,....m. (1.31)
In this case
(F,F :=T) is a compatible operator-subequation pair. (1.32)

Also note that by (1.32) Amin(A) is the canonical operator for the Garding
subequation F := T since

Here are some important examples. Let A\;(A),..., A\,(A) denote the standard
eigenvalues of A € §(n). Of course, the Monge-Ampere operator

= detA =[] A;(A)
j=1

2Perhaps they should be called Gdriding-Monge-Ampére operators instead.
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is the prototype. We leave it to the reader to see that these examples are polyno-
mials. Perhaps the most interesting are those for which F := T is geometrically
defined; i.e. the cone subequation F := I equals the polar G° of a closed subset G
of one the Grassmanians. Two new examples of this special nature are as follows.

1. The p-fold sum operator ([23, p. 39] and [28] Proposition 7.11]): This is the

operator

F(A) = J[ Qu(A)+---+X,(4), wherep=1,...n. (1.33)
iy <o <ip
The degree of F'is (Z) and the closed Garding cone is I' = G(p, R")°. The canonical

operator for I' is the sum of the first (smallest) p standard eigenvalues; i.e. the
p-th truncated Laplacian (see [23] and [4]).

2. The Lagrangian Monge-Ampeére operator ([40, section 5]): This is the
operator

F(A):=]] (%trA +up k-t un) : (1.34)

Here A € 8(2n) is a real symmetric form on R?" = C", and 4 ... & u, are the
eigenvalues of the skew Hermitian part of A. The 2" Garding eigenvalues are the
factors %trA + iy £ - - £ p1,. The Garding subequation T is geometric. It is the
polar of G := LAG C Gg(n,C"), the set of Lagrangian n-planes. The plurisubhar-
monic functions; i.e. the I'-subharmonic functions are those upper semicontinuous

functions that restrict to be A-subharmonic on Lagrangian affine planes in C™.

A classical example, which is not geometric for k # 1, n is the k-Hessian operator
Si(D?*u) discussed in Example . Two more new non geometric examples, which
have similarities with one another, are the following.

3. The /-uniformly elliptic operator ([37, Appendix B]): This is the operator
F(A) :=det (A+6(trA)l) with § > 0, (1.35)
The Garding eigenvalues of F are
Aj(A) = Nj(A) +6tr(4), j=1,...n
Hence the canonical operator for the Garding subequation T is

Amin(A) = Amin(A) + OtrA.

4. The Pucci-Garding-Monge-Ampere operator (|29, section 4.5], [37, Ap-
pendix B], and in particular [42, Example 6.10]): Fix 0 < A < A and consider the
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the “cube” in eigenvalue space
Capn:={A€eSn): MM <A<AI} CPCS(n).

Its polar Py, := C3 5 contains P° = P and hence is a subequation called the
Pucci or Pucci-Garding cone. The cone on Cy a, denoted by Cone(Cy ), has a
finite set of extreme rays through a subset S of the vertices of Cyr. The Pucci-
Garding-Monge-Ampére operator F p is defined to be the product of the linear
functionals in the set S. The factors are the Garding /-eigenvalues of F) o. The
closed Garding cone is the Pucci cone Py ,. Its canonical operator is the minimal

eigenvalue, which is easily seen to be
Apin(A) = Mr AT + Atr A~ >0,

where A = AT + A~ is the decomposition of A into positive and negative parts,
and hence

Pia = {Ae8n): MrAT + Atr A~ > 0}.
Note that the Pucci-Garding operator F) o has degree |S|.

The operator S; and the operators 1., 3., and 4. above which involve the real
eigenvalues of A € S(n) have complex and quaternionic analogues that are also
Garding-Dirichlet operators. See [24], section 5], [23, section 10] and [25], section

15] for more details.

The next family of examples provides a good illustration of the interplay between
potential theory and operator theory.

Example 1.15 (Branches). The potential theory/subequation approach provides
a direct way of extending the Dirichlet problem (DP) for the Monge-Ampere op-
erator to the other branches Ay of det (D?u) = 0, where, except for k = 1, there is
no natural smooth operator F' defining the solutions (or Aj-subharmonics). The
branch Ay, C §(n) for kK =1,...n is the subequation defined by

A :={AeS(n): M(A) >0}, (1.36)

where \(A) < .-+ < A, (A) are the ordered eigenvalues of A € S(n). Despite
the fact that det (D?u) is not a proper elliptic operator on Ay, the (DP) for Ay-
harmonics is meaningful. Existence and uniqueness for all boundary functions

¢ € C(09) under the appropriate geometrical conditions on 0 was established
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in [23]. This theorem extends to branches of a more general Garding-Dirichlet
operator F' = g of degree m defined by

Al ={AeSn):AJ(A) >0}, k=1,...m.

These branches have a so-called canonical operator, which we discuss next.
Canonical operators well illustrate the unconstrained case.

Example 1.16 (Canonical operators). For clarity we focus on the pure second
order constant coefficient subequation case F C S(n). See the list of refernces
before the formula above for more information. A canonical operator for F
is by definition a function F' € C(S(n)) with the following two properties:

F(A+P)>F(A), YA€ S(n)and P> 0 (1.37)
and for some constant ¢ > 0

FA+tl)=F(A)+ct, VAe S(n)andt e R. (1.38)

Proposition 1.17 (Existence and uniqueness of canonical operators). Given a

subequation F C S(n), there exists a unique canonical operator F with F = {A €

S(n): F(A) > 0}.

The proof can be summarized succinctly by defining F' by requiring
A() + F(Ao)] € OF for all A(] 1T (1e tI‘AQ = O)
and then extending F' to all A= Ay +tI € S(n), Ag L I by formula ([1.38)).

The canonical operator F' for some of the examples above are as follows. One
has A1 (A) for the convexity subequation P, A\j(A) + --- A\,(A) for the p-fold sube-
quation defined by with G = G(p,R"), %trA—ul —-+-—, for the Lagrangian
subequation defined by with G = LAG. As mentioned above, the Garding
subequation F = I has canonical operator Ay,(A), the minimal Garding eigen-
value operator. The k-th branch has canonical operator the k-th Garding eigen-
value operator. The construction of a canonical operator extends to subequations
F C J?*(X) if there is sufficient monotonicity (see section 11.4 of [10]).

We conclude this subsection with one last example. As we have indicated,
a general principle is that comparison holds with sufficient monotonicity. With
insufficient monotonicity comparison can fail even in the constant coefficient case

and even on arbitrarily small balls.
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Example 1.18 (Comparison fails). Consider the operators F,G € C(R" x
S(n),R) defined by
F(p,A) := Auin(M(p, A)) and G(p, A) := Anax (M (p, A))
with M = M, is the S(n)-valued function defined for a € (1,400) by
M(p,A):= A+ |p|** (P. +aP,) ifp#0 and M(0,A):= A

where for p # 0, P,, P,. are the projections onto the subspaces [p], [p|*; that is,

1

P, = Wp@p and B,. =1- P,

p
These operators are studied in [I0]. Existence for the Dirichlet problem holds on
all balls (with continuous Dirichlet data). The comparison principle, maximum
principle and uniqueness of solutions fail on all arbitrarily small balls about every
point. A partial explanation of these failures is that the mazimal monotonicity

cones for the associated (compatible) subequations F,G are M = {0} x P C
R"™ x §(n), which have empty interior.

2. FUNDAMENTAL ASPECTS OF NONLINEAR POTENTIAL THEORY

In this section, we give a brief review of some key notions and fundamental re-
sults in the theory of F-subharmonic functions defined by a subequation constraint
set F.

2.1. Subequations, subharmonics and duality. Suppose that X is an open
subset of R™ with 2-jet space denoted by J%(X) = X x (R x R"” x §(n)). A good
definition of a constraint set with a robust potential theory was given in [25] (also
for manifolds).

Definition 2.1 (Subequations). A set F C J?(X) is called a subequation (con-

straint set) if
(P) F satisfies the positivity condition (fiberwise); that is, for each z € X
(r,p,A) e F, = (rp,A+P)eF,, YP>0inS(n).
(T) F satisfies three conditions of topological stability:
F =Int F; (T1)
F,=Int (F,), V€ X; (T2)
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(Int F), =Int (F,), Ve X. (T3)
(N) F satisfies the negativity condition (fiberwise); that is, for each x € X

(r,p,A)€F, = (r+spA€cF, ¥Vs<0inR.

Notice that by property (T1), F is closed in J?(X) and each fiber F, is closed
in J2 by (T2). In addition, the interesting case is when each fiber F, is not all of
J?, which we almost always assume. Also notice that in the constant coefficient
pure second order case F C S(n), property (N) is automatic and property (T)
reduces to (T1) F = Int F, which is implied by (P) for F closed. Hence in this
case subequations F C S(n) are closed sets simply satisfying (P).

The conditions (P), (T) and (N) have various (important) implications for the
potential theory determined by F. Some of these will be mentioned below (see the
brief discussion following Definition .

Next is duality, a notion first introduced in the pure second order coefficient
case in [23].

Definition 2.2 (The dual subequation). For a given subequation F C J?(X) the
Dirichlet dual of F is the set F C J*(X) given by

F = (—Int F)* = —(Int F)* (relative to J>(X)). (2.1)

With the help of property (T), the dual can be calculated fiberwise
Fo = (—=Int (F,))° = —(Int (F,))¢ (relative to J?), V€ X. (2.2)
This is a true duality in the sense that one can show

F=F and Fisasubequation = F is a subequation. (2.3)

Now comes the notion of F-subharmonicity for a given subequation F C J?(X).
There are two different natural formulations for differing degrees of regularity. The

first is the classical formulation.

Definition 2.3 (Classical or C? subharmonics). A function v € C?*(X) is said to
be F-subharmonic on X if

J2u = (u(x), Du(z), D*u(z)) € F, Vo €X (2.4)

T

3Here and below, ¢ denotes the set theoretic complement of a subset.
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with the accompanying notion of being strictly F-subharmonic if
J2u € Int (F,) = (Int F),,Va € X. (2.5)
For merely upper semicontinuous functions u € USC(X') with values in [—o0, +00),
one replaces the 2-jet J2u with the set of C? upper test jets
JE Ty = {J2p : o is C* near z, u < ¢ near x with equality at z}, (2.6)
thus arriving at the following viscosity formulation.

Definition 2.4 (Semicontinuous subharmonics). A function u € USC(X) is said

to be F-subharmonic on X if
J2tucC F,, VreX. (2.7)

We denote by F(X) the set of all F-subharmonics on X.

We now recall some of the implications that properties (P), (T) and (N) have
on an F-potential theory. Property (P) is crucial for C%-coherence, meaning
classical F-subharmonics are F-subharmonics in the sense (2.7)), since for v which

is C? near x, one has
J2 = J2u+(0,0,P) where P={PcS(n): P>0}
The natural notion of w € LSC(X) being F-superharmonic using lower test jets is

T

J2"w C (Int (F,))°, Vo€ X, (2.8)
which by duality and property (T) is equivalent to —w € USC(X) satisfying
J2H(—w) C Fp, Yz e X. (2.9)

That is,

w is F-superharmonic < —uw is F-subharmonic. (2.10)

Next note that property (T) insures the local existence of strict classical F-
superharmonics at points x € X for which F, is non-empty. One simply takes
the quadratic polynomial whose 2-jet at x is J € Int (F,). Finally, property (N)
eliminates obvious counterexamples to comparison. The simplest counterexample
is provided by the constraint set F C J?(R) in dimension one associated to the
equation u” —u = 0.
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2.2. Monotonicity. This fundamental notion appears in various guises. It is a
useful and unifying concept. One says that a subequation F is M-monotone for
some subset M C J*(X) if

Fr+ M, C F, foreach z € X. (2.11)

For simplicity, we will restrict attention to (constant coefficient) monotonicity
cones; that is, monotonicity sets M for F which have constant fibers which are
closed cones with vertex at the origin.

First and foremost, the properties (P) and (N) are monotonicity properties.
Property (P) for subequations F corresponds to degenerate elliptic operators F
and properties (P) and (N) together correspond to proper elliptic operators. Note
that (P) plus (N) can be expressed as the single monotonicity property

Fi+ My C F, foreachz e X (2.12)

where
Mo =N x{0} xPC J*=RxR"x S(n) (2.13)

with
N:={reR: r<0} and P:={Pe€S(n): P>0} (2.14)

Hence M will be referred to as the minimal monotonicity cone in J?. However, it
is important to remember that M, C J? is not a subequation since it has empty
interior so that property (T) fails.

Combined with duality and fiberegularity (defined in subsection , one has
a very general, flexible and elegant geometrical approach to comparison when a
subequation F admits a constant coefficient monotonicity cone subequation M.
A key ingredient to this approach is the Subharmonic Addition Theorem:

F+MCF = F(X)+FX)c M(X). (2.15)

This result reduces the comparison principle for F to the Zero Maximum Principle

for the constant coefficient dual cone subequation M ; that is, for all Q CcC X
(ZMP) 2<0ondl = z<0ondN, (2.16)

Vz € USC(Q) N M(R). This reduction of comparison to (ZMP) will be referred
to as the monotonicity-duality method and will be discussed in section [3]
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Monotonicity is also used to formulate reductions when certain jet variables
are “silent” in the subequation constraint F. for example, one has

(pure second order) F,+ M(P)C Fp: M(P) =RxR"xP

(gradient free) F,+MN,P)C F,: MWN,P):=N xR"xP

M(P) and M(N,P) are fundamental constant coefficient (cone) subequations
which can be identified with P C S(n) and @ := N x P C R x §(n). One can
identify F with subsets of the reduced jet bundles X x S(n) and X x (R x §(n)),
respectively, “forgetting about” the silent jet variables (see Chapter 10 of [10]).

Two important “reduced” examples are worth drawing special attention to.
Example 2.5 (The convexity subequation). The convexity subequation is F =

X x M(P) and reduces to X x P which has constant coefficients (each fiber is P)
and for u € USC(X)

u is P-subharmonic < wu is locally convex

(away from any connected components where u = —o0).
The convexity subequation has its canonical operator F € C(S(n),R) defined
by the minimal eigenvalue F'(A) := Apin(A), for which
P={AecSn): An(4) >0} (2.17)
The dual subequation F has constant fibers given by
P ={A€S(n): Anax(4) >0} (2.18)

which is the subaffine subequation. The set P(X) of dual subharmonics agrees
with SA(X) the set of subaffine functions defined as those functions u € USC(X)
which satisfy the subaffine property (comparison with affine functions): for every
(2 CC X one has

u<a ond) = wu<a onf), forevery a affine. (2.19)

The fact that P(X) = SA(X) is shown in [23]. The subaffine property for u is
stronger than the maximum principle for u since constants are affine functions. It
has the advantage over the maximum principle of being a local condition on wu.
This leads to the comparison principle for all pure second order constant coefficient
subequations [23] and extends to variable coefficient subequations [I2] using a
notion of fiberegularity, as will be discussed in section [3]
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Example 2.6 (The convexity-negativity subequation). The constant coefficient
gradient-free subequation F = X x M (N, P) reduces to X x @ C X x (Rx S(n))

whose (constant) fibers are
Q=N xP={(r,A)eRx8(n):r<0 and A>0}. (2.20)
The (reduced) dual subequation has (constant) fibers
Q={(r,A)eRxS8(n):r<0 or AcP}. (2.21)

The set @(X ) of dual subharmonics agrees with SA™(X), the set of subaffine plus
functions defined as those functions u € USC(X) which satisfy the subaffine plus
property: for every 2 CC X one has

u<a ondl = wu<a onf2, forevery a affine with ag = 0, (2.22)

from which the (ZMP) for Q subharmonics follows immediately. The fact that
Q(X) = SA*(X) is shown in [I0] together with the additional equivalence

SAT(X) :={u € USC(X) : u' :=max{u,0} € SA(X) = P(X)},  (2.23)

The validity of the (ZMP) for Q-subharmonics leads to the comparison principle by
the monotonicity-duality method for all gradient free subequations with constant
coefficients in [10] and extends to variable coefficient gradient-free subequations in
[12], using the notion of fiberegulaity.

2.3. Fiberegularity. This fundamental notion can be used to pass from constant
coefficient subequations (and operators) to ones with variable coefficients.

Definition 2.7. A subequation F C J?(X) is fiberegular if the fiber map O is
(Hausdorff) continuous; that is, if the set-valued map

O:X — K(J?) defined by O(x) :=F,, v€X

is continuous when the closed subsets K(J?) of J? are equipped with the Hausdorff

metric
dy (O, V) = inf [[J—J inf ||J — J
(P, V) maX{igg},gqj|| - sup inf | II}
where

111 = 116, A)]| = max{w, 1, max w<A>|}

1<k<n

is taken as the norm on J2.
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This notion was first introduced in [I1] in the special case F C X x S(n). We
will also refer to © as a continuous proper elliptic map since it takes values in the
closed (non-empty and proper) subsets of J? satisfying properties (P) and (N). If
F is M-monotone for some (constant coefficient) monotonicity cone subequation,
fiberegularity has the more useful equivalent formulation: there exists Jy € Int M
such that for each fixed @ CC X and n > 0 there exists 6 = §(n,2) such that

r,yeQjr—yl<o = O(z)+nJy CO(y). (2.24)

Note that property holds for each fixed Jy € Int M (see [13]) and that in the pure
second order and gradient-free cases there is a “canonical” reduced jet Jy = I €
S(n) and Jy = (—1,1) € R x S§(n), respectively. Also note that fiberegularity is
uniform on bounded domains as the § in is independent of x,y € Q.

Fiberegularity is crucial since it implies the uniform translation property
for subharmonics : if u € F(Q), then there are small C* strictly F-subharmonic
perturbations of all small translates of u which belong to F(£s), where Q5 := {x €
Q:d(x,00) > 6}

Theorem 2.8 (Uniform translation property for subharmonics). Suppose that a
subequation F is a fiberegular and M-monotone on Q2 CC R™ for some monotonic-
ity cone subequation M. Suppose that M admits a strict approximator; that is,
there exists 1 € USC(Q) N C%(Q) which is strictly M-subharmonic on Q. Given
u € F(Q), for each 8 > 0 there exist n = n(y,0) > 0 and 6 = 6(¢,0) > 0 such that

Uy g = Tyu+ 0¢ belongs to F(s), Vy € Bs(0), (2.25)

where T u( ) == u(- —y).

In the pure second order and gradient-free cases (F C 2xS(n) and F C Qx(Rx
S(n)), one always has a quadratic strict approximator ¢ and the theorem holds for
all continuous coefficient F which are minimally monotone (with M =P C S(n)
and M = Q@ = N x P C R x §(n) respectively) as shown in [I1], [I2]. The
general M-monotone and fiberegular case is treated in [I3]. In this general case,
the hypothesis of the existence of a strict approximator v creates no additional
problems if the objective is to prove comparison. This is because one knows from
[10, Theorem 6.2] that the existence of a strict approximator ¢ for M ensures the
validity of the (ZMP) for M, which is needed for our monotonicity duality method.
Moreover, the (constant coefficient) monotonicity cone subequations which admit
strict approximators are well understood by the study made in [10].
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2.4. Subharmonic addition for quasiconvex functions. Many results about
JF-subharmonic functions u are more easily proved if one assumes that u is also
locally quasiconvexﬁ Then, one can make use of quasiconvex approximation to
extend the result to semicontinuous u. Here we discuss some of the main results
in this direction. See [52] for an extensive treatment, which borrows heavily from
[35] and [36].

Definition 2.9. A function u : C' — R is A-quasiconvez on a convex set C' C R" if
there exists A € Ry such that u+ 4| - |* is convex on C. A function u: X — R is
locally quasiconvex on an open set X C R"™ if for every z € X, u is A-quasiconvex

on some ball about x for some A € R,.

Such functions are twice differentiable for almost everyﬂ x € X by a very easy
generalization of Alexandroff’s theorem for convex functions (the addition of a
smooth function has no effect on differentiability). This is one of the many prop-
erties that quasiconvex functions inherit from convex functions. Quasiconvex func-
tions are used to approximate u € USC(X) (bounded from above) by way of the
sup-convolution, which for each € > 0 is defined by

1

u®(zx) := sup <u(y) ——|y— x|2) , reX. (2.26)
yGX 25

One has that u° is %—quasiconvex and decreases pointwise to u as ¢ — 0. There is

an underlying pure second order potential theory for A-quasiconvex functions on

X; namely with respect to the A-quasiconvezity subequation
Pr:={AeS(n): A+ € P}. (2.27)
Two important results follow.

Theorem 2.10 (The Almost Everywhere Theorem). For locally quasiconvex func-

tions u
J2u = (u(z), Du(x), D*u(z)) € F, for L"-ae. v€ X <+ uecF(X).

“We have adopted the term quasiconvex which is consistent with the use of quasi-
plurisubharmonic function in several complex variables. Quasiconvex functions are sometimes
referred to as semiconver functions, although this term is a bit misleading. They are functions
whose Hessian (in the viscosity sense) is locally bounded from below.

SWith respect to the Lebesgue measure on R™.
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This result is proven [36]. The main point in the proof is to control the measure
of the set of upper contact points near x if u is quasiconvex. This control comes
from either of two results obtained independently by Slodkowski [53] and Jensen
[48]. These two measure theoretic results are shown to be equivalent in [35].

Theorem 2.11 (The Subharmonic Addition Theorem: Quasiconvex Version).
Suppose that the subequations F,G and H satisfy

Fi+ Gy CHyy for each z € X. (Jet addition)
Ifue F(X) and v € G(X) are locally quasiconvez, then

u+v e H(X). (Subharmonic addition)

This result appears in [36] and follows easily from the almost everywhere the-
orem. Subharmonic addition extends to u,v € USC(X) by quasiconvex approxi-
mation in various situations. This extension has been accomplished for constant
coefficient subequations F in [10], for subequations associated to inhomogeneous
pure second order equations in [42] and for fiberegular M-monotone subequations
F in [13].

Subharmonic addition is very important when combined with the following im-

plication between monotonicity and jet addition
Fo+ M, CF, = F, +.7?x C /\796, for each z € X. (2.28)

This combination has the very interesting consequence that if M is a monotonicity
cone subequation for F, then sums of F-subharmonics and F-subharmonics are
M -subharmonics. Thus, when M has constant coefficients, comparison for F
reduces to the validity of the zero maximum principle (ZMP) for M-subharmonics
where M has constant coefficients since M does. This is a constant coefficient
potential theory and has been analyzed extensively in [10], where the validity of the
(ZMP) is well understood for constant coefficient monotonicity cone subequations.
This will be briefly reviewed at the end of section [3| below.

2.5. A “tool kit” for F-subharmonics (subsolutions). Some of the “nuts
and bolts” of handling F-subharmonic functions are briefly described here. The
first result is both useful for checking whether a given function is F-subharmonic
and also sheds light on the notion of viscosity subsolutions.
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Lemma 2.12 (Definitional Comparison). Let F C J?(X) be a subequation and
consider u € USC(X).

(a) If u is Fsubharmonic on X, the following form of comparison holds on any
bounded domain 2 CC X:

u+v<0omd) = ut+v<0on

for each v € USC(Q) N C2(Q) which is strictly F-subharmonic on ).

(b) Conwversely, suppose that for each x € X there are arbitrarily small neigh-
borhoods 2 CC X about x where the above form of comparison holds. Then
u s F-subharmonic on X.

Part (a) is a well-known principle in the viscosity theory of PDEs and is here
recast on the potential theory side with the help of duality. Part (b) is novel (also
for its natural formulation on the operator theory side in both constrained and
unconstrained cases) and shows that the fundamental notion in viscosity theory
is the validity of this form of the comparison principle. The proof of definitional
comparison can be found in [I0] for constant coefficient F and in [13] for the

general case.

The next tool is widely used to prove that a given function is F-subharmonic

by a contradiction argument.

Lemma 2.13 (Bad Test Jet Lemma). Let F C J?*(X) be a subequation. Suppose
that u € USC(X) is not F-subharmonic at xo € X. Then there exist € > 0,p > 0
and a 2-jet J ¢ F, such that the (unique) quadratic function Q; with J2,Q; = J

is an upper test function for u at x in the following e-strict sense:

u(z) — Qy(z) < —€lx —xo|*  Va € B,(xg) with equality at x.

This is merely the contrapositve of the definition of being subharmonic in x
making use of e-strict upper test jets yield an equivalent definition see [25].

In addition to the C?%-coherence property and the uniform translation property
(for continuous M-monotone F) discussed above, one has many additional prop-

erties which are useful in various constructions.

Proposition 2.14 (Elementary properties of F(X)). Let F C J*(X) be a sube-
quation. Then the following properties hold:

(i) local: uw e USC(X) is locally F-subharmonic < u € F(X);
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(i) maximum: wu,v € F(X) = max{u,v} € F(X);

(iii) sliding: we F(X) = u—me F(X) foranym>0;

(iv) decreasing limits: {u}reny C F(X) decreasing = u 1= limg_, o, ug €
F(X);

(v) uniform limits: {uy}ren C F(X) locally uniformly converging tou =
u € F(X);

(vi) families locally bounded above: if § C F(X) is a non-empty family
of functions which are locally uniformly bounded from above, then the upper
semicontinuous envelope E] u* of the Perron function u(-) := sup,ez w(-)
belongs to F(X).

Furthermore, if F has constant coefficients, the following also holds:

(vii) translation: u e F(X) < u(-—y) € F(X +y), for any y € R™.

These are familiar properties for the viscosity theory of nonlinear elliptic PDEs,
although stated typically only in the unconstrained case. See [25] for the proofs of

this general potential theoretic version.

3. COMPARISON BY THE MONOTONICITY-DUALITY-FIBEREGULARITY METHOD

In this section, we present a clean elegant and flexible method for proving com-
parison (the comparison principle) in nonlinear potential theory. It makes use
of the two ingredients monotonicity and duality, along with some form of regu-
larity of the subequation. There are three incarnations of the needed regularity:
constant coefficients, tameness for subequations defined by inhomogeneous equa-
tions, and fiberegularity. The method works when a given subequation admits a
suitable constant coefficient monotonicity cone subequation M. When the com-
parison principle is combined with a correspondence principle, comparison can be

transferred to nonlinear elliptic PDEs.

3.1. Statement and history of the general result. The method has evolved
from the constant coefficient pure second order case [23]. The general theorem in
Euclidian space is the following result [13, Theorem 4.3].

6We recall that u*(z) := limsup,_, o+ {u(y) : y € X N B,(z)} for each x € X and that u® is
the minimal USC(X) function with v < u* on X.
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Theorem 3.1 (A general comparison theorem). Let 2 C R" be a bounded domain.
Suppose that a subequation F C J*(Q) is fiberegular and M-monotone on Q for
some monotonicity cone subequation M. If M admits a C*-strict subharmonic v

on Q, then comparison holds for F on Q; that is,
u<wond = u<wonf) (CP)

for all u € USC(Q) which are F-subharmonic on Q, and for all w € LSC(Q) which
are JF-superharmonic on ).

The evolution of this result can be summarized in the following way.

(1) For F, = F C S(n) (constant coefficient pure second order) see [23], where

M =P and ¢(z) := 3|z|*>. Here one can say

(CP) holds for all subequations F C S(n) and for all domains 2 CC R".

(2) For F C Q x 8(n) (fiberegular variable coefficient pure second order) see [11],

where M =P and ¢(z) := 3|z|>. Here one can say

(CP) holds for all fibereqular subequations F C Q x S(n) and for all domains
QCccR™

Of course an interesting case here is an inhomogeneous subequation F defined by
F(D?*u) — f(z) > 0. In [42], assuming a condition called tame on the operator F,
(CP) was established. One can show that F' tame implies that F is fiberegular, so
this result is a special case of (2).

(3) For F, = F C R x 8(n) (constant coefficient gradient free) see [25, Theorem
13.4] where M = Q = N x P and ¢(z) := $(Jz|> — R?), R >> 0. Here one can
say

(CP) holds for all subequations F C R x S(n) and for all domains Q@ CC R™.

(4) For F C Q@ x (R x8(n)) (fiberegular variable coefficient gradient-free) see [12],
where M = Q =N x P and ¢(z) := ;(|z|* — R?), R >> 0. Here one can say

(CP) holds for all fiberegular subequations F C 2 x R x S(n) and for all domains
QCccR™

(5) For F, = F C J*(Q) (general constant coefficients) see [10], where there is
also a complete study of which cones M admit .
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(6) For the general case F C J2(2) (fiberegular) see [I3], where one imports the
class of admissible cones M from the constant coeflicient case.

3.2. Outline of the proof. The main steps in the proof are the following.
Step 1: First, use duality to reformulate (CP) as:
u+v<0ondl = wu+v<0on{ (CP")

for all u € USC(€) N F() and v € USC(Q) N F(Q) (both subharmonic). Define
v := —w and then the equivalence in translates to the equivalence of (CP)
and (CP’). Next, note that (CP’) is just the zero maximum principle (ZMP) for
the sum of F and F subharmonics:

(ZMP) 2<0ond = z<0on o, (3.1)
vz € USC(Q) N (F(Q) + F(Q)). Thus it remains to prove (ZMP) in (3.1).

Step 2 (Jet Addition): Establish the fundamental jet addition formula (|29,
Lemma 4.1.2])

Fo+ M, CF, — Fx+.7?mC/\A/l/x, for each z € X. (3.2)

This formula follows from elementary properties of duality and monotonicity.

Step 3: Establish the Almost Everywhere Theorem and the quasiconvex version
of the Subharmonic Addition Theorem (see Theorems and to conclude

z=u+ve M)

ifue F(QQ)andwv e F (Q) are locally quasiconvex. This difficult step relies on the
Jensen or Slodkowski or Federer Lemmas.

Step 4: Use fiberegularity to prove the full Subharmonic Addition Theorem
F(Q) + F(Q) € M(Q).
Step 5: Apply the following constant coefficient result [I0, Theorem 6.2].

Theorem 3.2 (The Zero Maximum Principle for Dual Monotonicity Cones). Sup-
pose that M is a constant coefficient monotonicity cone subequation that admits a

C?-strict subsolution v on a domain Q CC R"™. Then the zero maximum principle

holds for M on Q; that is,
2<00nd) = 2<0o0nQ (ZMP)
for all z € USC(Q) N M(9).
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Proof. M is a (constant coefficient) subequation and hence satisfies the sliding
property
z—meM(Q) foreach m € [0,400).

Since z —m < 0 on 0f2 compact
z—m+e <0on 0 for each e sufficiently small.

Since z —m € M(Q) and since £¢p € C(Q) N C%(Q) is strictly M-subharmonic,

by the definitional comparison Lemma [2.12| (with F = Mand F =M = M) one
has

z—m-+¢ey <0on ) foreach ¢ sufficiently small.

Passing to the limit for ¢ — 0%, and then m — 07 yields z < 0 on . O

The utility of the General Comparison Theorem is greatly facilitated by the
detailed study of monotonicity cone subequations in [10], which we briefly review.
There is a three parameter fundamental family of monotonicity cone subequations

consisting of
M D)= {4 € 9% v < ol pe D, Az W1

where
v € [0,400), R € (0,+00] and D C R",

where D is a directional cone; that is, a closed convex cone with vertex at the origin
and non-empty interior (see Definition 5.2 and Remark 5.9 of [10]). The family
is fundamental in the sense that for any monotonicity cone subequation, there
exists an element M (v, D, R) of the family with M(v, D, R) C M (see Theorem
5.10 of [I0]. Hence if F is an M-monotone subequation, then it is M(y, D, R)-
monotone for some triple (v, D, R). Moreover, from Theorem 6.3 of [10], given any
element M = M(v, D, R) of the fundamental family, one knows for which domains
Q) cC R" there is a O?-strict M-subharmonic and hence for which domains €2 one
has the (ZMP) for M -subharmonics according to Theorem There is a simple
dichotomy. If R = 400, then arbitrary bounded domains €2 may be used, while in
the case of R finite, any {2 which is contained in a translate of the truncated cone
Dgr := D N Bg(0).
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4. THE CORRESPONDENCE PRINCIPLE

In this section, we discuss structural conditions on a given proper elliptic oper-
ator F with domain G C J?(X) which ensure that the constraint set F defined
by the compatibility relation (|1.14))

Fi={(x,])€G: F(z,J)>0}} (4.1)

satisfies the two conditions needed for the the Correspondence Principle of Theo-
rem [L3l We recall that the these two conditions are:

F defined by (4.1)) is a subequation (in the sense of Definition (4.2)
and compatibility ((1.16) between F and F":
Int F = {(z,J) € G: F(z,J) > 0}, (4.3)

or equivalently
OF ={(z,J) e F: F(x,J)=0}. (4.4)

F defined by (4.1)) will be a subequation if it satisfies the three properties of
positivity (P), negativity (N) and topological stability (T). The first two (P) and
(N) are equivalent to the (fiberwise) monotonicity property that for each z € X

(r,p,A)eF, = (r+s,pA+P)eF,, ¥Vs<0inR,P>0inS(n),

which clearly follows from the same monotonicity property for the domain G and
and the proper ellipticity of F' on G (see (|1.10]):

F(z,r+s,p,A+P) > F(z,r,p,A), ¥Y(r,p,A) € G,,s <0inRand P> 0inS(n).

This leaves the topological property (T). Recall that it requires the three conditions

F =Int F; (T1)
F.=Int (F,), Va e X; (T2)
(Int ), =Int (F,), VzeX. (T3)

In the constant coefficient case, property (T) reduces to property (T1). In the
gradient free case, one can show that property (T1) follows from properties (P)
and (N) since F is closed. In the general constant coefficient case, a sufficient
condition for (T1) is that F is closed and is M-monotone for some monotonicity
cone subequation (see Proposition 4.7 of [10]). F defined by is closed by the
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continuity of F'. Hence, if (F,G) is a constant coefficient M-monotone pair, then
F defined by (4.1)) is indeed a subequation.

In the variable coefficient case, assuming that (F,G) is an M-monotone pair,
then the argument above (fiberwise) yields the property (T2). This leaves proper-
ties (T1) and (T3). It is not hard to see that if F is closed, then properties (T2)
plus (T3) imply (T1) (see Proposition A.2 of [I3]). Hence for a M-monotone pair
(F,G), the constraint set F defined by will be a subequation if F is closed
and satisfies (T3). Moreover, since the inclusion (Int F)_ C Int (F,) is automatic
for each z € X, (T3) reduces to the reverse inclusion, which holds provided that F
is M-monotone and fiberegular in the sense of Definition This fact is proved
in Proposition A.5 of [I3]. Moreover, as shown in Theorem 6.1 of [I3], F will be
fiberegular if G is fiberegular provided that F' satisfies a mild reqularity condition
(see below). In addition, fiberegularity of F ensures that F is closed (see
Proposition A.6 of [13]). We collect some of these observations in the following

Lemma.

Lemma 4.1. Suppose that (F,G) is an M-monotone operator-subequation pair for
some monotonicity cone subequation, with G = J*(X) or G € J*(X) a fibereqular
subequation. Suppose that (F,G) satisfies the regularity condition: for some fixed
Jo € Int M, given Q CC X and n > 0, there exists 6 = §(n, ) > 0 such that

F(y,J+nJy) > F(x,J), Va,y € Q with |x — y| < 4. (4.5)
Then the constraint set F defined by (4.1)) is a (fibereqular M-monotone) sube-

quation.

Finally, we discuss structural conditions on a proper elliptic operator F' with
domain G C J?(X) for which the constraint set F defined by (4.1)) satisfies com-

patibility (4.3)) (or equivalently (4.4)). In the situation of Lemma [4.1] which en-
sures that F defined by (4.1]) is a subequation, by the topological property (T3)

it suffices to have (4.3)) fiberwise; that is,
IntF,={J€G,: F(z,J) >0}, Ve X. (4.6)

This condition is often easily checked for a given pair (F,G) which determines F
by checking that F'(z,J) = 0 for J € F, and using some strict monotonicity such
as: for each z € X with some fixed Jy € Int M there exists ¢y > 0 such that

F(SL’,J—f—th) > F(q:,J), Vit € (O,to),VJ S (‘3}} (47)
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Compatibility in this situation of a homogeneous equation F(J?u) = 0 is relatively
simple because one need only pay attention to F' in a neighborhood of the zero
locus of F' (with domanin G).

More structure is required if one would like to treat the inhomogeneous equation
F(J*u) =9, ¢ e C(X) (4.8)

for a given constant coefficient operator F'. This is true even for constant sources
1 = c¢. This case has been studied extensively in [I0], which we now review.
There the domain G was denoted instead by JF, which we will also do below.
In the constrained case, where F C J? is a (constant coefficient) subequation,
compatibility is defined by the two conditions

ir}fF is finite (and denoted by c¢o) (4.9)

and
OF ={JeF: F(J)=cp}. (4.10)

Given an operator-subequation pair (F, F), the values ¢ € F(F) are called admis-

sible levels of F', since otherwise the level set {F = ¢} is empty.

More is needed in order to treat the inhomogeneous equation F(J*u) = ¢ for
all of the admissible levels. In order to avoid some obvious pathologies, one must
assume that the operator F' € C(F) is topologically tame; that is, for each
admissible level ¢ € F(F),

the level set F(c) :={J € F: F(J) = c} has empty interior. (4.11)

This condition serves an additional purpose. Namely, if (F, F) is a proper elliptic
operator-subequation pair with F' topologically tame, then for every admissible
level ¢ € F(F) the upper level set

Fo={JeF: F(J)>c} (4.12)

satisfies the topological property (T). Hence each F,. is a subequation since prop-
erties (P) and (N) are encoded by the proper ellipticity. The obvious pathologies
eliminates by topological tameness of F' are explained in [I0), section 11.1]. For
example, if some admissible level set F(c) has non-empty interior, then one has
many counterexamples for comparison by considering perturbations v+ ¢ of a local
C? solution to F(J?v) = ¢ with ¢ smooth, compactly supported and with small

C2-norm.
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Some strict monotonicity for the operator F' provides a convenient structural
condition on the operator which eliminates such pathologies. More precisely,
for constant coefficient compatible pairs (F, F) which are M-monotone for some
monotonicity cone subequation M, topological tameness is equivalent the
following structural condition of strict M-monotonicity on F"

3Jp € Int M such that F(J +tJy) > F(J) for each J € Fandt > 0. (4.13)

In the gradient-free case this monotonicity is the weakest possible notion of being
strictly proper elliptic. Moreover, these equivalent notions (4.11)) and (4.13)) are
also equivalent to any one of the following three conditions (see Theorem 11.10 of

[101):

1) F(J+ Jo) > F(J) for each J € F and each J, € Int M,
2) {J e F:F(J)>c}=IntF, for each admissible level ¢ € F(F);
3) F(c) =F.N (—]—N"C> for each admissible level ¢ € F(F).

Combining compatibility with strict M-monotonicity, one has a correspondence
principle for the solutions of the inhomogeneous equation (4.8)), which are precisely
the Fy-harmonics for the subequation with fibers

Fow) ={F € F: F(J)>¢(x)}, z€X. (4.14)

More precisely, one has the following result whose proof follows directly from the

proof of the constant source case 1) = ¢ given in Theorem 11.13 of [10].

Theorem 4.2 (Correspondence principle). Suppose that (F,F) is a compatible
M-monotone (operator-subequation) pair for some monotonicity cone subequation
M with F strictly M-monotone in the sense (4.13). Then, for any ¢ € C(X)
taking values in F(F), a function u € C(X) is an F-admissible solution of the
equation F(J*u) = v in X if and only if u is Fy-harmonic in X. In particular,
foruw € USC(X) and w € LSC(X) one has

u is an F-admissible subsolution of F(J*u) =1 <= wu is Fy-subarmonic
and

w is an F-admissible supersolution of F(J*u) =1 < —w is ﬁp—subarmonic.
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