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Abstract
The role of anharmonicity on superconductivity has often been disregarded in the past.
Recently, it has been recognized that anharmonic decoherence could play a fundamental role in
determining the superconducting properties (electron–phonon coupling, critical temperature,
etc) of a large class of materials, including systems close to structural soft-mode instabilities,
amorphous solids and metals under extreme high-pressure conditions. Here, we review recent
theoretical progress on the role of anharmonic effects, and in particular certain universal
properties of anharmonic damping, on superconductivity. Our focus regards the combination of
microscopic-agnostic effective theories for bosonic mediators with the well-established BCS
theory and Migdal–Eliashberg theory for superconductivity. We discuss in detail the theoretical
frameworks, their possible implementation within first-principles methods, and the experimental
probes for anharmonic decoherence. Finally, we present several concrete applications to
emerging quantum materials, including hydrides, ferroelectrics and systems with charge density
wave instabilities.
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1. Introduction: anharmonicity and
superconductivity

1.1. Historical perspective: anharmonicity and
superconductivity

In classic theories of phonon-mediated superconductivity,
such as BCS theory and Migdal–Eliashberg theory, phonons
were described as harmonic oscillators. In the second half of
the 1970s, the discovery of the ‘high-Tc’ (for that time) super-
conductivity in Niobium-based alloys which superconduct at
temperatures T > 10K prompted a change in paradigm.

Those materials were rich in structural instabilities often
linked to quasi-localized lattice (ionic) vibrations, or coupled
lattice-electronic instabilities of the Jahn–Teller type. Plakida
and co-workers developed early models addressing the influ-
ence, and enhancement, of the critical temperature Tc due to
highly anharmonic quasi-local vibrations (QLVs), in a first
series of papers [1, 2]. In these papers, the QLVsweremodeled
as two-level anharmonic wells by means of a pseudospin
formalism. Within the Eliashberg formalism, pairing proper-
ties containing contributions from these QLVs, distinct from
those of standard phonons, are shown to produce a significant
enhancement of the superconducting Tc.

Plakida et al [3] modified these models further to under-
stand the high temperature superconductivity in the copper
based materials such as La(Y)BaCuO [4]. In this model, the
structural instability, again described in the form of anhar-
monic wells with two levels, occurs due to the rotational
motions of the apical oxygen that are located within the
layered perovskite structure. Within this theory, highly anhar-
monic motions by the apical oxygens lead to the enhance-
ment of Tc. These motions are associated with an amplitude
of displacement d that is much greater than the mean-squared
displacement ⟨u2⟩ of the ions in the lattice. Given that λ,
the electron–phonon coupling, scales as the ionic motions
squared, along with the hierarchy of scales d2/⟨u2⟩ ≫ 1, one
can justify a significant rise of Tc caused by the soft, local-
ized unstable vibrations. Such an enhancement is also reflec-
ted in an effectively stronger electron–phonon coupling with
respect to that of the harmonic limit λharm, that is: λ/λharm ∼
d2/⟨u2⟩ ≫ 1. Furthermore, the enhancement may also occur
via polaron formation, leading to bi-polaronic theories of high-
Tc superconductivity [5].

While this enhanced electron–phonon coupling caused by
localized soft vibrational modes of the oxygen atoms is irre-
futable (and was shown early on in Raman experiments by
Müller, Liarokapis, Kaldis and co-workers [6–8]), it does
not fully explain the interesting phenomenology of cuprate
superconductivity in its entirety. These include d-wave sym-
metry of the paired wavefunction, a non-Fermi liquid normal
phase and the effects of magnetic correlations. Additionally,
these early models do not provide a systematic relationship
between Tc and lattice anharmonicity, since they focus on
two-level type excitations modeled as pseudospin excitations,
thus leaving out all the usual descriptors of lattice anhar-
monicity (i.e. phonon linewidth, Grüneisen parameter, etc).

Finally, these models, while they predict an enhancement of
Tc with anharmonic motions, they are unable to predict other
regimes where, instead, the anharmonicity is detrimental for
the superconductivity and thus causes a reduction of Tc.

More recently, anharmonic extensions of conventional
superconductivity theory have been proposed in the context
of rattling modes in caged thermoelectric-type materials, such
as filled skutterudites, β-pyrochlore oxides and clathrates [9].
A common feature of this material group is the existence of
nano-size cages of light atoms. The ion enclosed in the cage,
frequently called the guest ion, experiences a highly anhar-
monic potential and it can perform large amplitude oscilla-
tions, referred to as ‘rattling’.

In the context of superconductivity in this class of materi-
als (a known example is superconductivity in the β-pyrochlore
oxides which appears to be enhanced by anharmonicity [10]),
Oshiba and Hotta [9] developed a theory of superconductivity
using the Holstein ‘small polaron’ model as a the starting point
to treat electron–phonon contributions to the Hamiltonian
where large screening effects lead to small polaron radius and
large electron–phonon coupling constant. The next step was to
apply Migdal–Eliashberg theory to evaluate the Tc as a func-
tion of the quartic and sixth-order anharmonic coefficients in
the lattice Hamiltonian. Themodel predicts an enhancement of
Tc with increasing anharmonicity followed by a peak or max-
imum and then a declining regime—a superconducting dome.

The question of how anharmonicity affects superconduct-
ivity at a more fundamental level has however remained unex-
plored until recently. In [11] (see also [12]) the effect of anhar-
monicity of phonons (both acoustic and optical) has been
described at the level of BCS theory. For optical phonons,
a non-monotonic dependence of Tc on the parameter which
characterizes the lattice anharmonicity, i.e. the phonon damp-
ing or linewidth, was predicted, with a dome in Tc. The
enhancement can be explained thanks to dissipation acting
to connect bosons at different energy scales that combine
coherently to increase the effective electron–phonon coupling
and Tc. Mathematically, the wave-vector dependence in the
propagator is integrated out in the gap equation, and the integ-
ration combines high and low energy phonons coherently to
enhance the effective electron–phonon coupling and hence the
Tc. Such a mechanism was previously discussed in the context
of proton irradiated samples of La2−xBaxCuO4 [13].

Some experimental evidence of the enhancement regime
came in the study of filled skutterudite LaRu4As12, by using
electron irradiation to tune the phonon anharmonicity [14].
In practice, electron irradiation was used to suppress certain
anharmonic phonon modes by creation of suitable defects.
Upon suppressing the anharmonic phonon modes, the Tc was
observed to decreasemonotonically in the investigated regime.

The aim of this review is to further explore, on the basis
of the available literature, the effects of lattice anharmon-
icity, especially anharmonic damping, on superconductivity.
The emerging picture is that phonon anharmonicity [15] can
be viewed as a powerful means to determine significant vari-
ations in Tc, including both enhancement and suppression.
This becomes an issue of vital important in all the high-Tc
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superconducting materials, from the cuprates (for the reasons
explained above) to the high-pressure hydrides [16], where
light hydrogen atoms perform huge anharmonic zero-point
motions, and where anharmonicity is key to both determine
phase stability and superconductivity. In these materials, and
more in general in anharmonic crystals [17], clear guidelines
or understanding about these effects are still lacking. It is
hoped that theoretical concepts as embodied in an ‘anharmonic
theory of superconductivity’ will provide a deeper under-
standing of electron–phonon superconductivity in materials
with non-trivial lattice effects, such as strong anharmonicity,
phonon softening and lattice instabilities.

1.2. Boson damping mechanisms

Different microscopic origins of damping for the bosons
involved in the Cooper pairing of electrons can play a role
in the superconductivity mechanisms. These include glassy
damping due to disorder, damping due to electron–phonon
interaction, damping due to phonon–phonon interactions, just
to name the most important ones. In real materials with com-
plex chemistry, the interatomic potential is very far from being
harmonic, such that the intrinsically large anharmonicity of
the lattice dynamics leads to strong damping of phonons due
to phonon–phonon processes. The effect of anharmonicity on
the phonon dispersion curves is twofold. On one hand, the
bare phonon frequency gets strongly renormalized (typically,
lowered), while on the other hand the lifetime of the phonon
also gets reduced (damping).

Anharmonicity arises from the non-harmonic character of
the interatomic interactions, although it can also arise from
the electron–phonon interaction itself. Here, we shall focus
on the lattice anharmonicity (neglecting the contributions
from electron–phonon interaction), and on the damping effect
(i.e. we take the phonon frequencies in the effective theories
as already renormalized).

1.2.1. Akhiezer damping of acoustic phonons. At finite tem-
perature, the main mechanism for damping of acoustic phon-
ons with long wavelengths is provided by the Akhiezer mech-
anism, whose form can be derived directly from hydrodynam-
ics (i.e. from viscoelasticity) [18]. From the point of view
of elastodynamics, the viscous contribution to the stress, σ ′

ij
(which is dissipative, and therefore odd under time reversal)
is added to the elastic component of the stress σelij to make
the overall total stress σij. In the context of linear viscoelasti-
city theory [19], this is tantamount to assume the so-called
Kelvin–Voigt model, which is the most suitable to describe
viscoelastic solids (in contrast to the Maxwell model, which
better applies to viscoelastic fluids). The corresponding elast-
odynamical equations reduce then to [18, 20, 21]:

ρ üi =∇jσij+ f exti (r) , σij = σel
ij +σ ′

ij , (1)

where Latin indices are used to denote spatial components.
The above equation expresses that the internal stress force
∇kσik plus the external force density f exti (r) is equal to the
acceleration of the elastic displacement field ui times the mass

density ρ of the medium (Newton’s law). At a linearized level,
i.e. for small deformations, the elastic contribution is given as
usual by σel

ij = CijklΥkl, where Cijkl is the elastic tensor and
Υkl ≡ 1/2(∇i uj+∇jui ) the linear strain tensor. In all real
solids (crystals with or without defects, glasses), there is a
dissipative component σ ′

ij to the stress tensor due to the vis-
cous component of the material response, which is propor-
tional to the deformation rate. This contribution is ultimately
due to anharmonicity of the lattice, and to finite temperature
effects. Its structure is given by σ ′

ij = ηijkl∂tΥkl [18], and can
be derived by symmetry arguments (hydrodynamics), or using
the Rayleigh dissipation function [20, 21]. Here, ηijkl repres-
ents the viscosity tensor. For isotropic systems, the elastic and
viscosity tensors can be written solely in terms of four para-
meters: the shear modulus G, the bulk modulus K, the shear
viscosity η and the bulk viscosity ζ (see [18] for details). In
the following, wewill restrict ourselves to this situation andwe
will also neglect possible odd responses [22]. After standard
manipulations, the elastodynamic equations with the viscous
dissipative contribution can be written in the form of a forced
damped harmonic oscillator. The transverse Green’s function
in the mixed (k, t) representation, GT(k, t− t ′), is readily found
by replacing the external force with a δ-function source:[

∂2t +(η/ρ) k2 ∂t+(G/ρ) k2
]
GT (k, t− t ′) = δ (t− t ′) (2)

and upon Fourier-transforming in time we get:

GT (k,ω) =
1

−ω2 +(G/ρ) k2 − iω (η/ρ) k2
(3)

and,mutatis mutandis, an analogous expression for the longit-
udinal Green’s function.

In general, we thus have the Green’s functions for longit-
udinal (L) and transverse (T) modes in the following generic
form:

GL,T (k,ω) =
1

Ω2
L,T (k)−ω2 − iωΓL,T (k)

, (4)

with the poles providing the following set of dispersion rela-
tions for transverse and longitudinal phonons, respectively:

ωL,T = vL,T k− iDL,T k
2 , (5)

v2T =
G
ρ
, v2L =

K + 2(d−1)
d G

ρ
, (6)

DT =
η

2ρ
, DL =

1
2ρ

[
ζ +

2(d− 1)
d

η

]
. (7)

These expressions are valid only for low frequency/
wavevector, but the higher order terms can be systematically
derived using a perturbative scheme known as the gradi-
ent expansion. In general, vL > vT since K,G> 0 for all
materials. Using equations (4) and (5) we therefore identify
ΩL,T(k) = vL,T k and

ΓL,T (k) = 2DL,T k
2, (8)

i.e. a diffusive viscous damping, known as Akhiezer sound
damping [23]. The root cause of Akhiezer damping is
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anharmonicity, as will be discussed in the following of this
section.

Importantly, this framework recovers the ubiquitously
observed finite temperature Γ∼ k2 scaling of the acoustic
phonon linewidth, which does not depend on the microscopic
details of the system. As a matter of fact, Akhiezer damping
perfectly reproduces the experimental data at low wavevector
(see for example [24] for a demonstration in a-Si3N4 and a-
SiO2 using the data of [25–29]).

The above derivation follows a hydrodynamic approach
[20] which is agnostic of the short-scale physics; by compar-
ing with the result of a microscopic approach based on the
Boltzmann transport equation for phonons, it has been shown
that [30]

DL =
CvTτU
2ρ

(
4
3
⟨γ2xy⟩− ⟨γxy⟩2

)
≈ CvTτU

2ρ
⟨γ2xy⟩ , (9)

where the last approximation for acoustic modes can bemotiv-
ated with the typical wild fluctuations of γ for low frequency
vibrational excitations in both crystals [31] and metal alloys
[32], hence ⟨γxy⟩ ≈ 0.

Here, we neglected the contribution from the bulk vis-
cosity ζ, since normally η≫ ζ. Furthermore, ⟨. . .⟩ indicates
averaging with respect to the Bose–Einstein distribution as
a weight, while γxy is the xy component of the tensor of
Grüneisen constants. Also, Cv is the specific heat at con-
stant volume, while τU is the average time interval between
two Umklapp scattering events. Since τU ∼ T−1 (which is an
experimental observation for most solids [30, 33]), the dif-
fusive constant DL, and also the sound damping, are weakly
dependent on temperature, i.e. a well-known experimental
fact [33], in the Akhiezer regime.

A substantially equivalent expression for the damping of
longitudinal phonons, in terms of an average Grüneisen con-
stant of the material γav, was proposed by Bömmel and
Dransfeld [33],

DL ≈
CvTτU
2ρ

γ2av, (10)

and provides a good description of the Akhiezer damping
measured experimentally in quartz at T > 60K [33].

In turn, the Grüneisen constant γ, or at least the leading
term [34] of γav or γxy above, can be directly related to the
anharmonicity of the interatomic potential. For perfect crys-
tals with pairwise nearest-neighbor interactions, the following
relation holds [34]

γ =−1
6
V ′ ′ ′ (a)a2 + 2 [V ′ ′ (a)a−V ′ (a)]

V ′ ′ (a)a+ 2V ′ (a)
, (11)

where a is the equilibrium lattice spacing between nearest-
neighbors, and V ′ ′ ′(a) denotes the third derivative of the
interatomic potential V(r) evaluated at r= a. Hence, the
phonon damping coefficient DL can be directly related to the
anharmonicity of the interatomic potential via the Grüneisen
coefficient and equation (11).

1.2.2. Klemens damping of optical phonons. The discussion
in this subsection closely follows [35]. On general grounds, the
lifetime of a optical phonon can be rationalized by looking at
its microscopic decay processes which are ultimately related to
anharmonic (phonon–phonon) interactions. As proved in the
pioneeringwork byKlemens [36], the leading decay channel is
the three-phonon scattering between two acoustic modes and
an optical one, which can be described using Boltzmann form-
alism and many-body perturbation theory. Above room tem-
perature, higher order processes become relevant as well and
cannot be neglected anymore [37]. Despite the various approx-
imations, Klemens result is in good agreement with controlled
experimental observations [38].

The damping of an optical phonon can be described via
the analytical model derived by Klemens. The starting point
was a master kinetic equation of the Boltzmann type for the
phonon population, combined with many-body theory up to
third order. This assumption means that only three-phonon
processes are accounted for in describing the phonon decay.
At high temperatures clearly also higher order terms may
play a role [37] but it has been shown experimentally that
the Klemens result is a reasonable description of the optical
phonon damping in comparison with experimental data in
many situations.

The mean lifetime of the optical phonon is deduced within
Klemens’ theory as follows:

1
τ
= ω

J
24π

γ2G
h̄ω
Mv2

a3ω3

v3
C(α,β)

[
1+

2
ex− 1

]
(12)

where

C(α,β) =
2√
3

α−β

α+β
; x=

h̄ω
2kBT

. (13)

In the above formulae, ω refers to the phonon frequency in the
undamped limit, and this applies to either longitudinal (LO)
or transverse (TO) optical phonons. Furthermore, a3 is the
volume per atom, M is the ion mass, and v is the acoustic
phonon velocity within Debye approximation (since the decay
process of the optical phonon may involve acoustic phon-
ons). Also, J is the label of the allowed channels by which
the optical mode decays into acoustic phonons, and γG is the
Grüneisen parameter of the solid related to anharmonicity of
the interatomic potential. Finally,C is a coefficient on the order
of 0.1, which in the case of ionic crystals (e.g. alkali halides)
depends on the spring constants of the two different ion spe-
cies. This is because Klemens’ original derivation focused on
ionic crystals.

All these prefactors which appear in the Klemens formula
equation (12) can be put into a single coefficient ξ,

1
τ
= ω5ξ

[
1+

2
ex− 1

]
, (14)

where

ξ ≡ J
24π

γ2
h̄
Mv2

a3

v3
C(α,β) , (15)
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and ω the frequency of the optical phonon. According to
Klemens [36], the above expression equation (14) can be fur-
ther simplified. Using the Debye model, and approximating
the optical phonon frequency with the Debye frequency ωD,
one gets

1
τ
∝ ω2

D. (16)

Here, in good approximation, τ can be regarded as independ-
ent of the wavevector k. In the next sections, we will simply
assume that the optical mode is not too dispersing and its
frequency ωopt can be approximated, at least in the limit of
small wave-vector, by a constant. All in all, we will indicate
as Klemens damping the assumption that τ−1 ∼ ω5

opt, where
ωopt ≡ Reωopt(k= 0), and ωopt(k) is the dispersion relation
of the optical mode. The main difference with the Akhiezer
damping for acoustic phonons is that the Klemens damping is,
at least in first approximation, independent of the wave-vector
k, under the approximation detailed above.

1.3. The nature of the bosonic mediator

The starting point of the phenomenological theoretical frame-
work is the definition of the mediator φ responsible for the
pairing and for the superconducting instability. For simpli-
city, we will focus on phononic mediators. Despite most of the
treatmentwill identify the latter with acoustic/optical phonons,
we will keep the derivation as general as possible to account
for alternative bosonic mediators such as spin waves/magnons.

The fundamental object under scrutiny is the retarded
Green’s function for the mediator φ which in Fourier space
takes the general form

Gφ (ω,k) =
1

−ω2 +Ω2 (k)− iωΓ(k)
(17)

where ω,k are respectively frequency and wave-vector. Under
few assumptions, this is the most general expression for the
Green’s function and Ω,Γ are, at this point, undetermined
quantities which can be expanded in the low-energy limit,
sometimes referred to as the hydrodynamic limit or gradient
expansion, in a systematic power-series expansion in terms of
k. Examples of this sort can be found in [39] for relativistic flu-
ids, and in [40] for phases of matter with broken translations.
Importantly, this expansion is in general not convergent [41].

To continue, isotropy is assumed, where k≡ |⃗k|. The exten-
sion to anisotropic systems does not present any conceptual
difficulties but it is rather cumbersome and therefore not expli-
citly shown. The poles of the retarded Green’s function in
equation (17) define the dispersion relation ω(k) of the corres-
ponding excitations which is given by solving the following
equation:

−ω2 +Ω2 (k)− iωΓ(k) = 0 . (18)

Here, we take the frequency ω to be complex and the wave-
vector k to be real.

The Green’s function presented in equation (17) corres-
ponds to the following spectral function s(ω,k)

s(ω,k)≡− 1
π
ImGφ (ω+ iδ,k)

=
ωΓ(k)

π
[
(ω2 −Ω2 (k))2 +ω2Γ2 (k)

] , (19)

which is directly accessible via scattering experiments and
shows the typical Lorentzian shape.

In the following, we will consider two fundamentally dif-
ferent types of excitation. First, we discuss the scenario in
which the mediator corresponds to a gapless mode whose dis-
persion relation at low-energy is given by

Ω(k) = vk+ . . . , Γ(k) = Dk2 + . . . (20)

where the . . . indicate higher-order corrections in the wave-
vector k. Here, v defines the propagation speed while Γ =
Dk2 the diffusive sound attenuation. By abusing the lan-
guage, we will refer to D as the diffusion constant. Intuitively,
equation (20) can be identified as the low-energy solution of a
dynamical equation of the type:

∂2ϕ

∂t2
+ v2

∂ϕ2

∂x2
+D

∂

∂t
∂ϕ2

∂x2
= 0 (21)

with ϕ(t,x) = e−iωt+i kxϕ0, where using isotropy we have
assumed the spatial dependence to be only along the x direc-
tion. Equation (21) must be taken with a grain of salt since
low-energy sound modes usually appear in the context of
hydrodynamics from a more complicated dynamics in terms
of coupled fluctuations, e.g. particle number, momentum,
energy, etc and not from the dynamics of a single low-energy
variable.

The collective variable ϕ is the dynamical field correspond-
ing to the mediator φ. The most notable example obeying a
dispersion as in equation (20) is that of acoustic phonons. In
this concrete case, equation (21) corresponds to the dynamical
equation obtained from viscoelasticity theory where ϕ is iden-
tified with the infinitesimal displacement field [18]. For trans-
verse (T) and longitudinal (L) acoustic phonons, one obtains
(cfr section 1.2.1 above for the derivation):

v2T =
G
ρ
, v2L =

K + 2(d−1)
d G

ρ
, (22)

DT =
η

ρ
, DL =

1
ρ

[
ζ +

2(d− 1)
d

η

]
, (23)

where G,K,η,ζ,ρ are respectively the static shear modulus,
the static bulk modulus, the shear viscosity, the bulk viscosity
and the mass density of the system [18]. We have defined with
d the number of spatial dimensions and neglected the effects
from thermal expansion. For the moment, we will be agnostic
about the microscopic origin of the damping term Γ and we
will take v,D as pure phenomenological parameters. Because
of stability requirements, we have v2,D> 0.
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Figure 1. The spectral function for an underdamped acoustic mode
using equation (19) and the parameters defined in equation (20).
The dashed line shows the real part of the dispersion relation ω = vk
up to the Ioffe–Regel scale k⋆. The speed of sound is taken to unity
v= 1 while the diffusion constant D= 0.03,1 (left, right).

In this first situation, a fundamental scale in the problem is
given by the so-called Ioffe–Regel (IR) wave-vector k⋆ [42],
defined as the root of:

Ω(k⋆) = πΓ(k⋆) . (24)

The IR scale qualitatively indicates the energy at which the
acoustic mediator loses its well-defined propagating nature
and turns into a diffusive quasi-localized mode. Physically,
the larger the attenuation constant∼D, the lower the energy at
which the coherent nature of the mediator is lost. This is evid-
ent in figure 1 in which the spectral function of the bosonic
mediator is shown for two very different values of D.

A second relevant scenario is defined by the following
alternative choice

Ω(k) = ω0 +αk2 + . . . , Γ(k) = Γ0 + . . . (25)

where ω0 represents the energy gap (the ‘mass’ in particle
physics jargon) and Γ0 the wave-vector independent scatter-
ing rate. The parameter α takes into account the eventual mild
k dependence in the dispersion relation of the mode. Finite
values for ω0,Γ0 are prohibited for acoustic phonons because
of their Goldstone mode nature but they can naturally appear
once one considers optical modes which are not protected by
any fundamental symmetry breaking pattern. While the sign
of Γ0 is fixed by stability arguments to be positive, the one
of α is a priori undetermined and strongly dependent on the
microscopics of the system.

A simplified possibility is to neglect the k dependence in
equation (25), and consider a simpler dispersion relation:

ω2 = ω2
0 − i ωΓ0 . (26)

Once more, depending whether Re(ω)> Im(ω) or vice versa,
the dynamics will result underdamped or overdamped. The
transition roughly happens when ω0 ∼ Γ0. Therefore, we find
convenient to define a dimensionless parameter:

Γ̃≡ Γ0

ω0
, (27)

such that in the regime Γ̃≪ 1 we have a coherent well-defined
bosonic quasiparticle mediating the pairing, while for Γ̃≫ 1
the mediator becomes incoherent and does not correspond
anymore to a well-defined quasiparticle.

Notice that in general, effective parameters such as ω0,Γ0

are implicit functions of thermodynamic variables (temperat-
ure, doping, etc). In order to reveal their explicit dependence a
microscopic theory is needed. Nevertheless, we will see that in
some scenarios (for example the soft mode instability mech-
anism described in section 4.5) one can simply introduce a
convenient parameterization and obtain interesting physical
results.

Later in the paper, we will use the results of this section
to examine the manner in which superconducting proper-
ties, like critical temperature, are affected by the damping
and other parameters appearing in the dispersion relations,
equations (20)–(25).

2. Damped bosons: experimental probes

In this section we review various experimental probes used to
quantify anharmonic damping in the pairing mediators. This
can be achieved either by fitting the spectral line shape of
the boson or by directly measuring their correlation functions.
Typically, these observables are measured as a function of an
external control parameter like pressure, carrier concentration,
impurities, temperature etc. We broadly classify the probes
according to their coupling to the charge, as in lattice based
mediators like phonons, or to the spin, as in spin based medi-
ators such as spin fluctuations. The list of experiments dis-
cussed in each category below is by no means comprehensive
but rather a collection of representative examples that allows
the interested reader to further explore each topic. We begin
with probes of anharmonic damping in phonons.

2.1. Raman scattering

Raman scattering is the most widely used technique to meas-
ure phonon properties (frequency shifts and linewidths) in
quantum materials [43, 44]. The method involves measuring
the frequency shift of visible light scattered from a sample at
zero momentum. The anharmonic damping is then extracted
by fitting the line shape with well known anharmonic models
that contribute to the linewidth [17, 43, 45, 46]. Additionally,
the polarization of light can be varied to access different
symmetry channels of the crystal point group of the specific
materials. In principle, several scattering processes contrib-
ute to the phonon linewidth. These include electron–phonon,
multi-phonon, impurity scattering, lattice dislocations etc and
care must be taken to extract the purely anharmonic com-
ponent. The classic BCS superconductor MgB2 serves as an
illustrative example of extracting phonon anharmonicity using
Raman scattering (see figure 2). Here, the E2g phonon mode,
centered around ∼620 cm−1, has a large anomalous broad-
ening of ~200–280 cm−1 [47–51]. The experiments were
performed on clean samples and the electron–phonon coup-
ling was calculated to account for only about 50 cm−1. The
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Figure 2. Raman scattering spectra showing the broad E2g mode at
~620 cm−1 in MgB2 attributed to anharmonic phonon decay.
Reprinted (figure) with permission from [47], Copyright (2002) by
the American Physical Society.

remaining scattering was attributed to multi-phonon decay
from anharmonic effects (see [48] and references therein).
More recently, similar broadening effects and anharmonic
frequency shifts were also noticed in high pressure super-
conductors such as hydrides [52–54] and TlInTe2 [55], and
non-stoichiometric Fe based chalcogenide superconductors
KyFe2−x(Se,S)2 [56, 57]. We will further discuss the relation-
ship between superconductivity and anharmonicity for the spe-
cific case of TlInTe2 later in this review.

2.2. Inelastic x-ray scattering

Another widely used tool to extract anharmonic damping
effects in phonons involves inelastic x-ray scattering (IXS)
(see [58–60] for a review on phonon spectroscopy using IXS).
The IXS technique is also a photon-in/photon-out process like
Raman scattering, but is performed at higher (x-ray) energies
and is momentum resolved. Here an incoming photon with
a given energy and momentum scatters off a phonon in the
sample to create an outgoing photon with a different energy
and momentum. The frequency shift and linewidths at differ-
ent momentum transfers are then fit to theoretical models to
extract anharmonic damping effects. Like Raman scattering,
polarization of the incoming photons can be manipulated to
access different symmetry channels of the solid. In this regard,
IXS has become an invaluable probe for mapping out phonon
dispersion relations and extracting momentum and symmetry
dependent spectral lineshapes [58–60]. IXS spectra for vari-
ous metals and superconductors have been summarized in
[58–60]. Returning to the prototypical example of MgB2, IXS
spectra and phonon dispersions and linewidths were studied
in [61–63]. Momentum resolved data suggested that the broad
linewidth of the E2g phonon mode was dominated by the Γ-A
direction of the Brillouin zone (see figure 3). The contribution
to the linewidth from phonon anharmonicity was also found to

Figure 3. IXS spectra in MgB2. (Top) Symmetry decomposed data
with the E2g mode centered around 60 meV taken at a momentum
point 0.6 Γ−A. (Bottom) Momentum resolved width of the E2g

mode enhanced in the Γ−A direction. Reprinted (figure) with
permission from [61], Copyright (2003) by the American Physical
Society.

be smaller than the electron–phonon broadening in apparent
contradiction of earlier Raman scattering studies [47]. This
disagreement between IXS and Raman scattering was later
addressed in [63]. More recently, it was demonstrated that the
E2g mode is strongly coupled to electrons and higher-order
electron–phonon scatterings become relevant leading to large
effective phonon–phonon dampings at zero momentum [64,
65]. As a result, anharmonic linewidths are sometimes dif-
ficult to separate from the usual electron–phonon contribu-
tion, since phonon–phonon scatterings mediated by higher-
order electron–phonon scatterings have similar temperature
dependence [64, 65]. Finally, phonon linewidths from IXS
with momentum resolution have also been measured in other
superconducting systems such as cuprates [66–69], iron super-
conductors [70], soft phonon systems like CaAlSi [71] as well
as the newly discovered kagome superconductors [72].

2.3. Electron energy loss spectroscopy (EELS)

Our focus so far was on purely photonic probes. We now
turn to electronic scattering methods to probe phonon damp-
ing on material surfaces and thin films. EELS is a popu-
lar technique in this category where electrons with particu-
lar energy (and momentum, as is the case in the momentum
resolved counterpart M-EELS [73]) are shot into the sample
to determine the nature of surface phonons [74]. The energy
(and momentum) transfer to the sample is then determined
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from the kinematics of the scattered electron. In superconduct-
ors, EELS has been used predominantly to extract medium
to high energy (~30 meV–1 eV) electronic properties and
response functions. In principle, information of phononic
lineshapes can also be obtained depending on the energy res-
olution of the device; although, to our knowledge, a system-
atic study that isolates the effects of mode specific anhar-
monic phonon damping on the lineshape is currently missing.
This is due to the fact that coupling of electronic probes to
specific phonon symmetry modes is not straightforward with
high resolution unlike photon based probes. Early EELS data
in cuprates [75] studied and modeled surface optical phonon
line shapes. Recently, M-EELS measurements in the normal
state of the Cuprates [76] were analyzed [77, 78] to isol-
ate the phononic and electronic components, and determine
their independent and combined effects on correlation prop-
erties of the strange metal. In MgB2 [79], several phonon
excitation energies were associated to features obtained in the
EELS spectra. In strontium ruthenate [80], the bulk and surface
phonon lineshapes, and their coupling to quasi-1D electronic
bands was explored. However, neither phonon broadening due
to anharmonic damping nor its relationship to superconduct-
ivity were systematically studied in these works.

A comprehensive study of phonon broadening due to anhar-
monic decay in single unit cell FeSe films on strontium titan-
ate was examined by the authors of [81]. Properties of spe-
cific phonon frequency branches (α and β modes) such as the
energy and full width at half maximum (FWHM) as a func-
tion of temperature was modeled. The anharmonic contribu-
tion to the FWHM from multi-phonon decay processes was
obtained by subtracting the T = 0 (electron–phonon) contribu-
tion. Figure 4 shows the plots of the total FWHM (top panel)
and the extracted anharmonic component (bottom panel).

2.4. Probes of Grüneisen constant

The importance of the Grüneisen constant or Grüneisen para-
meter as a quantitative estimate of the extent of anharmon-
icity in superconductors has been recently emphasized. Since
the Grüneisen constant essentially describes how the acoustic
phonon frequencies change with volume, it can be measured
by mechanical ways by linking to the nonlinear elastic beha-
vior of the solid.

Gilvarry [82–84] was able to connect the Murnaghan
equation of state of nonlinear elasticity (linking changes in
pressure to changes in volume) to the traditional Grüneisen
assumption that the normal mode frequencies ωi of the lattice
model for particles exhibiting anharmonic interactions should
have the volume dependence,

γi =
∂ lnωi
∂V

(28)

where V is the material volume so that γi describes how
the normal mode frequencies change with material volume,
regardless of the detailed molecular origin of the volume
change. For reference, the Grüneisen exponent γi for an ideal
harmonic (Debye) lattice material equals 1/3, i.e. for all of the

Figure 4. (Top) Fits of the full width at half maximum (FWHM) for
different anharmonic models with multi-phonon decay channels in
single unit cell FeSe on strontium titanate substrate. (Bottom)
Extracted phonon–phonon contribution to the FWHM by
subtracting the T = 0 electron–phonon component in the two optical
phonon anharmonic model. Reprinted (figure) with permission from
[81], Copyright (2016) by the American Physical Society.

normal modes. More generally, the Grüneisen parameter γG,
represents an average over the normal modes of the material,
so that γG normally differs from 1/3 in materials having more
realistic intermolecular interactions. Gilvarry’s anharmonic
extension of the Debye model assuming equation (28) and a
constancy of the Poisson ratio, leads exactly to Murnaghan’s
equation of state where the scaling exponent γM equals,

γM = 2γG +
1
3
, (29)

which provides a link between the microscopic atomic dynam-
ics and macroscopic elasticity. A power-law scaling of the
normal mode frequencies with V was originally motivated
by schematic choices of anharmonic interparticle potentials
(Mie or Lennard–Jones) where the repulsive and attractive
contributions to this potential have variable power exponents.
This was already considered by Grüneisen [85] and many
others [82–84]. In general, the Grüneisen parameter γG can
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be specialized to particular normal modes [31] or mode types
(longitudinal or transverse) [86]. Often, however, an appro-
priately defined average over all the modes of the system is
assumed. This approximation seems to be particularly suit-
able for glass-forming liquids and amorphous solids where the
existence of well-defined normal modes of the type found in
crystals is not so well defined.

We then have a semi-empirical equation of state generaliz-
ing the Debye theory in which there is an explicit link between
the microscopic measure of anharmonicity γG and the macro-
scopic measure derived empirically from nonlinear elasticity.
The importance of the Murnaghan equation in understanding
the temperature dependence of relaxation in condensed mater-
ials has become appreciated [87]. From a thermodynamic per-
spective, γG describes the rate of change of the pressure as the
internal energy varies at a constant volume and this interpret-
ation leads to an explicit expression in terms of the specific
heat CV, the thermal expansion coefficient and the isothermal
compressibility [82–84, 88],

There are extensive tabulations of γG measured experi-
mentally and the many properties to which it is interrelated
[89–92]. The application of γG in materials science has been
discussed recently in [93, 94]. Recently, there have been
significant advances in the first principle computation of
the average γG and the Grüneisen exponent for particular
modes [31, 32].

2.5. Inelastic neutron scattering (INS)

Neutrons scattering off lattice vibrations forms another com-
plementary probe of phonon dispersions and linewidths (see
[95, 96] for early conceptual work). Unlike the previous
probes, neutrons do not couple through the charge due to their
charge neutrality. Rather the coupling to the lattice occurs
through atomic displacements via interactions with the nuc-
lei. These interactions are typically modeled with a short range
‘hard core’ isotropic potentials [97]. Like IXS and EELS, neut-
ron scattering is capable of extracting mode and momentum
resolved phonon dispersions and linewidths. Earlier INS work
in Nb3Sn by Axe and Shirane [98] found abrupt changes in
the lifetimes of certain transverse acoustic phonon modes near
the superconducting transition temperature. They further dis-
cussed certain empirical relationships between superconduct-
ivity and damping induced by anharmonicity and electron–
phonon coupling. In liquid helium, [99] used INS to extract
phonon linewidths at various temperatures and wave vectors,
and classified the total INS structure factor and dampings
according to one-phonon and multi-phonon contributions. In
the cuprates, early INS studies [100, 101] laid out the role of
anharmonic phonon damping and electron–phonon coupling
to the linewidths of various phonon modes as well as their
relationship to superconductivity. In the iron based supercon-
ductor CaFe2As2, large phonon linewidths were found [102]
from INS opening up a possible role for anharmonicity in
the pnictides. Yamaura et al [103] assigned excitation of two
distinct phonon modes to different types of extremely anhar-
monic phonons arising from ‘quantum rattling’ in deuterium
doped LaFeAsO. In the YNi2B2C superconductor, momentum

resolved INS phonon linewidths were studied in [104, 105].
These authors concluded that the scattering rate was dom-
inated by electron–phonon coupling rather than anharmon-
icity. Finally, in MgB2, first-principles calculations of lattice
dynamics were performed and found to be in agreement with
INS data [106]. In this work, a giant anharmonicity of the E2g

in-plane boron phonons and nonlinear electron–phonon coup-
ling was found to be important for understanding supercon-
ductivity. Anomalous behavior of the phonon density of states
(DOS) due to multi-phonon processes in MgB2 was further
explored in [107].

2.6. Atomic scattering

Scattering of inert gas atoms such as Helium over crystal
surfaces is another tool to probe properties of surface phon-
ons [108–110]. The technique involves inert gas atoms with
an initial momentum and energy incident on a crystal surface,
and interacting with lattice vibrations via a generic two-body
atomic potential. The energy andmomentum transferred to the
phonons is measured from the inelastically scattered atoms;
the kinematics and decay of the vibrations can then be mapped
out using this information. Phonon dispersions obtained from
surface scattering using He atoms for most part agree with
EELS measurements, and the two techniques complement
each other in covering much of the surface phonon vibrational
spectra [110]. In superconductors, Helium atom scattering has
been used over the last several years to extract the electron–
phonon coupling constant [111–114]. Sklyadneva et al [111],
for example, used inelastic Helium atom scattering to meas-
ure electron–phonon coupling strengths for each phononmode
in superconducting Pb films. The mode/momentum specificity
of the couplings has yet to be properly exploited to study
other superconducting families. Obtaining anharmonic effects
including anharmonic phonon damping in superconductors
using atomic scattering has been less explored. One rare
example [115] is the case of metallic Aluminumwhere Helium
atom scattering was used to obtain surface-phonon anharmon-
icity and linewidths on the Al(100) and Al(111) surfaces. The
results were shown to be in good agreement with molecular
dynamics simulations over a range of wave vectors and tem-
peratures. Over the last decade, due to the utility of atomic
scattering to study properties surface phonons, the coupling
between Dirac fermions and phonons on the surface of the
strong topological insulators has also been studied in a mode-
specific manner [116, 117]. We anticipate applications of this
technique to measure low-lying ‘topological phonon’ [118,
119] surface modes and their potential relationship to super-
conductivity in the near future [120].

2.7. Point contact spectroscopy (PCS)

Over the last several decades, the capability of designing nano-
meter size orifices at the junction of metals and superconduct-
ors has enabled a new spectroscopic tool to probe electronic
properties. Termed as PCS, such an experimental geometry
has been successful in quantifying various electronic relaxa-
tion mechanisms in metals, superconductors, heavy fermion
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systems (see [121–123] for detailed reviews) and non-fermi
liquids [124]. Relevant to our discussion is the role played
by PCS in extracting energy resolved electron–phonon inter-
actions in metals and superconductors. For normal metals,
the basic geometry consists of a nanometer(s)-thick dielec-
tric layer that separates two metallic films. The dielectric layer
contains a small constriction with a diameter of the order of the
scattering length of the electron injected into it. The resistance
of the ‘point’ contact is given approximately by the interpola-
tion formula

R≃ Rsh

(
1+

3πd
16vfτe−ph

)
, (30)

τ−1
e−ph =

2π
h̄

ˆ eV

0
dω α2 (ω)F(ω) . (31)

Here Rsh =
16ρrl
3π d2 is the Sharvin resistance, ρr is the resistivity,

l (τ−1
e−ph) is the electron–phonon scattering length (rate), vf the

Fermi velocity, d the diameter of the constriction and eV the
bias voltage. The information of electron–phonon coupling is
contained in α(ω) and the phonon DOS is given by F(ω). The
equation (31) is an interpolation formula for the contact res-
istance between the clean (l> d; dominated by Rsh) and dirty
(l< d; dominated by Maxwell resistance RM ≡ ρr/d) limits.
The derivative of the bias dependent contact resistance is pro-
portional to the second derivative of the voltage with respect
to the current and is given by

dR
dV

∝ d2V
dI2

= Rsh
3π2ed
8h̄vf

α2F(eV) . (32)

The key quantity on the right hand side is the Eliashberg func-
tion α2F(eV)which is the convolution of the phonon DOS and
the electron phonon coupling function. Thus from the deriv-
ative of the contact resistance, information about the phonon
linewidths can be obtained, and the method has been applied
to a wide variety of metals to extract the Eliashberg func-
tion [121]. A formal theory justifying equation (32) appears
in [125, 126]. Returning to our prototypical case of MgB2, a
damped maximumwas found above 60 meV (width ~15meV)
consistent with the E2g phonon modes [127–129] observed
in other probes. To our knowledge, there is currently no sys-
tematic PCS study that separates the linewidth contributions
originating from anharmonic and electron–phonon interaction
effects. An effort in this direction could greatly complement
existing Raman and neutron scattering analyses discussed in
previous subsections.

2.8. Spin based techniques

Pairing in a superconductor can also occur through a ‘spin-
fluctuation’ based bosonic mediator as opposed to phonons
[130]. Detecting anharmonic damping in such bosons requires
spin-based experimental probes where the coupling of the
probe to the boson occurs through the spin quantum number.
Broadly speaking, there are two categories of techniques that
can access damping effects in spin based mediators: resonance

Figure 5. La139 NMR linewidth at low temperatures in
La1.88Sr0.12CuO4. Inset shows the line shape at two different
temperatures. Reprinted (figure) with permission from [138],
Copyright (2008) by the American Physical Society.

and magnetization based probes. In resonance based probes—
examples include nuclear magnetic resonance (NMR), nuc-
lear quadrupole resonance (NQR) and muon spin resonance
(µSR)—a nucleus or incident muon spin in the sample pre-
cesses at its Larmor frequency (ωl) determined by a combin-
ation of an applied and internal magnetic fields. The spin can
then decay due to its coupling to the environment, in this case,
the fluctuating spins that mediate superconductivity, through
hyperfine interactions (for conceptional foundations of the
technique, see [131]). Under certain circumstances, either an
enhanced decay rate or broadening of the precession linewidth
at low temperature can imply a freezing of the spins to due to
damping or ‘glassiness’ in the spin fluctuations. This occurs
when spin correlation time becomes long enough to be com-
parable to ω−1

l and can be indicative of a spin-glass phase with
no long-rangemagnetic order. Existing evidence of glassy spin
mediators in the cuprate and iron based superconductors has
been established through NMR/NQR [132–138], µSR [139]
and neutron scattering [139, 140]. Figure 5 shows the broad-
ening of the La139 NMR linewidth in La1.88Sr0.12CuO4 as
seen in [138]. Magnetization and magnetic susceptibility are
other indicators of freezing of spins and spin-glass physics.
Conventional signatures include shift of the ac susceptibility
cusp with frequency [141, 142], irreversible dc magnetiza-
tion in the field-cooled and zero field-cooled states [141–146]
and a direct measurement of the Edwards–Anderson spin-
glass order parameter [143, 144]. These techniques have
been extensively applied in the cuprate [143, 144] and iron
based [141, 142, 145, 146] superconductors where spin fluc-
tuations are thought to play an important role in the pairing
mechanism. A more thorough exposition of the aforemen-
tioned topics can be found in [147].

3. Phonon damping from first principles

While the focus of this review is to phenomenologically under-
stand the role of anharmonic damping of the bosonicmediators
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on superconductivity, in this section we briefly review exist-
ing literature that calculate boson damping/linewidth from
first-principles. Our objective here is to open up the pos-
sibility of integrating bosonic damping into first principles
calculations of superconducting properties. Such a scheme
could involve incorporating ab-initio data for both the bosonic
damping and dispersion relations of real materials into well
established routines that evaluate quantities such as Eliashberg
functions, coupling constants and critical temperature. Most
of the focus so far has been on the calculation of anhar-
monic damping in phonons. The original theories of phonon
damping due to anharmonicity [17, 43, 46, 148, 149] con-
sidered anharmonic interactions up to fourth order contribu-
tions to the Hamiltonian. Each term in the expansion is asso-
ciated with harmonic (second-order) and anharmonic (higher
order) force constants. The shift of the phonon frequencies
and linewidths were evaluated by a diagrammatic perturbation
expansion of the self-energy. The broadening of the phonon
line was specifically determined using second order perturb-
ation theory of the third order anharmonic term in the expan-
sion of the total energy. This approach was applied to Raman
linewidths of Si, Ge and α-Sn [43] and it was argued that
a combination of optical and acoustical phonons were the
key decay channels that contributed to the linewidths. More
recently, Green’s function based methods have been advanced
to study the role of anharmonic damping and other quantum
effects on the phonon DOS [150] and electron–phonon
couplings [151].

The simplest incorporation of theoretically determined
linewidths into first principles is to evaluate the harmonic
and anharmonic force constants ab initio. For example, the
matrix elements of the anharmonic tensor that contribute to
the linewidths are third-order differentials of the total free
energy for a single unit cell with respect to the phonon dis-
placement amplitudes. These can then be obtained via dens-
ity functional perturbation theory [152–156]. This approach
was applied to optical phonons at the zone center in Ge, Si,
and C where the temperature and pressure dependencies of
the linewidth were calculated [153, 154] and shown to be
in good agreement with experiments. Similarly, longitudinal
and transverse linewidths of zinc-blende semiconductors such
as AlAs, GaAs, InP and GaP were determined [155] and
the temperature dependence of the damping was shown to
be consistent with Raman data. More recently, density func-
tional second order perturbation theory was applied to noble
metals [157] Cu, Ag and Au, and has been used to understand
thermal conductivity and phonon linewidths in the dichalco-
genide MoS2 [158]. A similar approach was used to show that
dynamical phonon anomalies (beyond the Born–Oppenheimer
approximation) can considerably modify the electron–phonon
coupling strength λ and transition temperature Tc in conven-
tional superconductors [159]. First principles calculations to
evaluate accurate interatomic forces was also applied to study
the thermodynamics of crystals at finite temperature taking
into account anharmonic effects. Termed as ‘self-consistent

ab initio lattice dynamics (SCAILD)’ [160], the method was
employed to understand the stability of several body-centered
cubic metals whose lattice structure was unstable at low tem-
perature but stabilized at higher temperatures.

An alternate approach toward first principle computation of
linewidths is a simplified version of the Car–Parinello scheme
[161, 162]. The Car–Parinello method unifies density func-
tion theory and molecular dynamics simulations to provide
an accurate description of the inter-atomic forces, ground
state and finite temperature properties (like energy shifts and
linewidths) of quantum mechanical systems. However, the
method is computationally intensive when applied to real
materials. Wang et al [163–165] simplified the scheme by
calculating free energies and inter-atomic forces by com-
bining molecular dynamics with an empirical tight-binding
method rather than density functional theory. This enabled
an approximate but efficient way of analyzing lattice and
electronic properties. The method was used to study tem-
perature dependence of anharmonic frequency shifts and
linewidths in Si and diamond [163–165], and was shown to
be in good agreement with data. A molecular dynamics based
approach was also implemented to understand the stability
of body-centered cubic lattice phases of Li and Zr at high
temperatures [166].

First-principles evaluation of anharmonic phonon proper-
ties hasmade rapid progress in recent years since the discovery
of hydride superconductors. In the hydrides, anharmonicity is
known to be substantial and standard perturbative approaches
fail [167]. Typically, variational approaches such as the self-
consistent harmonic approximation (SCHA) [168–170] are
employed in non-perturbative settings. In the last couple of
years, the method has also been generalized to include time
dependent effects to simulate nuclear dynamics [171, 172].
However, this approach is computationally intensive and a
stochastic version of the SCHA (called the SSCHA) has
been explored [167, 173–176] to determine anharmonic free
energy, thermal transport and superconducting properties. In
the case of palladium and platinum hydrides, it was shown
that phononic spectra are strongly renormalized by anharmon-
icity and harmonic approximations overestimate the super-
conducting transition temperature [174, 175]. The SSCHA
allows computation of anharmonic phonon linewidths arising
from phonon–phonon interactions. Figure 6 shows the full
width half maximum of palladium hydride phonon spectrum
obtained from SSCHA [173]. Alternatively, one can adopt the
self-consistent phonon theory (SCP) with anharmonic force
constants, see e.g. [177, 178] for recent developments and the
current state of the art. These techniques directly stem from the
original work of Born and Hooton [168, 179]. A brief review
of various first principle methods for treating anharmonicity
and phonon lifetimes can be found in [177]. Despite these
attempts, currently there are no systematic studies that take
into account anharmonic damping effects to examine super-
conducting properties from first principles, and efforts in this
direction are much needed.
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Figure 6. Phononic dispersions and linewidths for palladium
hydride at 295 K. Red (blue) dashed line is the spectrum from
harmonic approximation (SSCHA). The shaded yellow region is the
calculated linewidth. Reprinted (figure) with permission from [173],
Copyright (2015) by the American Physical Society.

4. Damped bosons: minimal theory of
superconductivity

In this section, we would like to understand how the super-
conducting properties, and specially the critical temperature
Tc, are affected by the low-energy parameters appearing in
the dispersion relations equations (20)–(25). In order to make
the analysis more concrete, in the following we will expli-
citly identify the bosonic mediator with acoustic and optical
phononic modes.

4.1. BCS theory: acoustic phonons

The discussion in the next two subsections follows [11].
We first consider the situation in which the bosonic medi-
ators are acoustic phonons that obey the simple dispersion
relation in equation (20). Moreover, in this section, we will
limit ourselves to standard BCS superconductors described
BCS theory (see [180] for a comprehensive review). SWe
start our discussion from the Green’s function expressed in
equation (17), which allows us to re-write the phonon propag-
ator as:

Π(Ωn,k) = G (iΩn,k) =
1

v2k2 +Ω2
n+Dk2|Ωn|

. (33)

Here, Ωn = 2πnT correspond to the bosonic Matsubara fre-
quencies where T is the temperature of the system and n an
integer index which serves as label. The phonon damping, or
linewidth, which appears in the last term in the denominator
of the above expression must be positive, due to the analytical
properties of the response functions involved in the quantum
theory of dissipative systems, see [181, 182].

Figure 7. Superconductivity mediated by acoustic phonons. The
critical temperature Tc as a function of the damping constant D for
several values of the velocity of acoustic phonons v ∈ [0.8,1.8]
(from black to yellow). Reprinted (figure) with permission from
[12], Copyright (2022) by the American Physical Society.

Common algebraic manipulations [180, 183] yield to the
superconducting gap equation,

∆(iωn,k) =
g2

β V

∑
q,ωm

∆(iωm,k+ q) Π(k, iωn− iωm)

ω2
m+ ξ2k+q+∆(iωm,k+ q)2

, (34)

where g is the coupling that quantifies the attractive pairing
interaction, V the volume and β ≡ 1/T. Moreover, ξk ≡ k2 −µ
is the free electron dispersion in presence of a chemical poten-
tial µ. For simplicity, we set the electron mass to 2me = 1 and
work in reduced units. Finally, we assume the gap∆(iωn,k) =
∆ to be independent of the frequency and the wave-vector.
Then, we replace the sum over the wave-vector k with a con-
tinuous integration over the energy ξ,

1
V

∑
q

→ 1

(2π)d

ˆ
ddq→

ˆ
N(ξ)dξ , (35)

where N(ξ) is the DOS at energy ξ. We then assume a constant
density of state N(ξ)≈ N(0). All in all, the superconducting
critical temperature Tc can be readily obtained by imposing
that the superconducting gap vanishes, ∆= 0. The behavior
of the critical temperature Tc is plotted in figure 7 as a func-
tion of the anharmonic damping parameterD. The figure illus-
trates that Tc always decreases monotonically. Physically, this
implies that anharmonicity, ∝D, is always detrimental for the
onset of superconductivity under these assumptions (see [12]
for more details).

4.2. BCS theory: optical phonons

Until now, we have mainly considered the case in which the
electronic pairing is mediated by the interaction with acous-
tic phonons. In this case, because of their acoustic nature the
damping is a quadratic function of the wave-vector k, i.e.
Γ∼ k2 (Akhiezer mechanism). Here, we consider the altern-
ative scenario in which the ‘glue’ is provided by optical phon-
ons. In this case, the damping coefficient, or phonon life-
time, is independent of the wave vector, as derived using
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perturbation theory by Klemens [36]. Moreover, the life-
time of the optical phonons is controlled by their decay into
acoustic phonons and ultimately by the Grüneisen constant
squared.

For the optical phononmodes, we assume the following dis-
persion relation

Ωopt (k) = ω0 + αk2. (36)

where ω0 is the optical phonon mass and α is curvature of the
dispersion. We further choose a damping independent of wave
vector, which we denote by Γ. With these assumptions, the
bosonic propagator takes the following form

Π(iΩn,k) =
1[

ω2
0 + 2ω0αk2 +O (k4)

]
+Ω2

n+Γ |Ωn|
. (37)

We now implement the propagator Π(iΩn,k) above into the
gap equation. The theoretical predictions for Tc as a function
of anharmonic damping constant Γ that we obtain are shown
in in figure 8.

Our predictions demonstrate that low and moderate anhar-
monic phonon damping can lead to an enhancement of the
critical temperature. The rise of Tc is followed by a peak
for optimal damping and then subsequently a decrease for
very large values of anharmonic damping. Therefore, it is
evident that anharmonic damping can lead to a substantial
increase in Tc for a range of mass values. This behavior must
be contrasted with the case of acoustic phonons where Tc is
monotonically suppressed. Furthermore, as shown in the lower
panel of figure 8, our model predicts that the damping-induced
enhancement, and the peak, become larger upon decreasing
the optical phonon energy gap ω0. Finally, one can also exam-
ine the role of the curvature coefficient,α, in the optical disper-
sion relation on the transition temperature. It affects the per-
cent of enhancement as well as the peak value—both become
larger as the coefficient α becomes smaller. Hence approach-
ing a flat optical dispersion, typically seen in DFT computa-
tions of optical phonons in hydride materials [167], is favor-
able to the absolute value of Tc; however, the enhancement
effect is reduced in the process. To understand the increase in
Tc, we observe that phonon dispersion and anharmonic damp-
ing behave in such a way as to superpose bosons at differ-
ent energy scales. The superposition acts to combine vari-
ous phonons with different energies coherently to increase the
superconducting transition temperature. This occurs because,
mathematically, the k-dependence in the propagator is integ-
rated out in the gap equation. Such an integration combines
low and high energy phonons coherently and, thereby, increas-
ing the electron–phonon coupling effectively. In the oppos-
ite limit when the linewidth dominates the dispersion spec-
trum, the phonons are no longer able to provide a sufficiently
strong pairing for the electrons. Thus there is eventually a
suppression of Tc for sufficiently large Γ as demonstrated
in figure 8.

Figure 8. Optical phonon mediated superconductivity. Plots of
critical temperature as a function of damping for various vo (top)
and optical gap/mass (bottom). (Top) v2o ∈ [2,8] (from black to
yellow), where v2o = 2ω0α, and the optical mass is fixed to ω0 = 0.3.
(Bottom) ω0 ∈ [0.1,0.7] (from black to yellow) with a fixed value
v2o = 4. Reprinted (figure) with permission from [12], Copyright
(2022) by the American Physical Society.

4.3. Eliashberg theory for damped phonons

In this section, we consider a different theoretical approach in
which the superconducting transition is treated by means of
Eliashberg theory [184, 185]. The discussion in this subsec-
tion closely follows [184]. More concretely, as mediators, we
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consider acoustic phonons with quadratic attenuation constant
whose Green’s function is parameterized as usual:

G(ω,k) =
1

ω2 − Ω2 (k) + iωΓ(k)
, (38)

with propagating term given byΩ2 = v2 k2 and the attenuation
constant by Γ = Dk2. From equation (38), we can derive the
corresponding spectral function which is given by [184]:

B (ω,k) =
ωΓ(k)

π
[
(ω2 − Ω2 (k))2 + ω2Γ2 (k)

] . (39)

We can then express Eliashberg spectral function in the fol-
lowing form [185]:

α2F
(⃗
k, k⃗ ′,ω

)
≡ N (µ) |g⃗k,⃗k ′ |

2B
(⃗
k− k⃗ ′,ω

)
. (40)

In the formula above, N (µ) represents the electronic DOS
computed at µ (chemical potential). Additionally, g⃗k,⃗k ′ is
the electron–phonon matrix element. Following the steps in
[185], spectral function that is averaged over the Fermi sur-
face reads:

α2F(ω) =
1

N (µ)2

∑
k⃗,⃗k ′

α2F
(⃗
k, k⃗ ′,ω

)
δ
(
ϵ⃗k − µ

)
δ
(
ϵ⃗k ′ − µ

)
.

(41)

For simplicity, we take the matrix elements to be constant in
wave-vector, i.e. g⃗k,⃗k ′ ≡ g. In this way, the previous equation
takes the simplified form:

α2F(ω) =
g2

N (µ)

∑
k⃗,⃗k ′

B
(⃗
k− k⃗ ′,ω

)
δ
(⃗
k2 − µ

)
δ
(
k⃗ ′

2
− µ

)
.

(42)

In the expression above, we have assumed the typical elec-
tronic band of the form ϵ⃗k = k⃗2. To make further progress, we
convert the previous sum into a 2D integral using the rela-
tion

∑
k⃗ =

V2
(2π)2

´
kdkdϕk with the wave-vector amplitude

k ∈ [0,∞] andϕk ∈ [0,2π]. Spatial isotropy dictates thatB(⃗k−
k⃗ ′,ω) depends only on the difference (⃗k − k⃗ ′)2, which can be
expressed in polar coordinates as(⃗

k − k⃗ ′
)2

= k2 + k ′
2 − 2kk ′ cos(ϕk − ϕk ′). (43)

All in all, we can perform the above integral and obtain the
final result [184]:

α2F(ω) =
g2

4 (2π)4 N

ˆ
B
(
X2,ω

)
dϕk dϕk ′ (44)

B
(
X2,ω

)
=

ωDX2

π (ω2 − v2X2)
2
+ ω2D2X4

(45)

X2 ≡ 2µ (1 − cos(ϕk − ϕk ′)) (46)

where the electronic DOS is assumed to be constant,N (µ) =
N. This final integral in equation (44) can be performed
numerically.

At this point, we can use the standard definition for the
electron–phonon mass enhancement parameter,

λ(v,D) = 2
ˆ ∞

0

α2F(ω)
ω

dω , (47)

determining the effective (dimensionless) strength of the
electron–phonon interactions. In order to estimate the crit-
ical temperature Tc, we use the Allen–Dynes formula [186]
given by:

Tc =
f1 f2ωlog

1.2
exp

(
− 1.04 (1+λ)

λ− u⋆ − 0.62λu⋆

)
(48)

where

ωlog = exp

(
2
λ

ˆ ∞

0
dω
α2F(ω)
ω

lnω

)
(49)

represents the characteristic energy scale of phonons for
pairing in the strong-coupling limit, while f 1, f 2 are semi-
empirical correction factors, as defined in [186]. The para-
meter u⋆ encodes the strength of the Coulomb interactions and
it is determined experimentally and tabulated in the literature
for various materials; we will take it as an external input from
tabulated literature data. That said, all the SC properties are
determined by the shape of the spectral function α2F(ω).

As a concrete application of this framework, let us consider
as a bosonic mediator an acoustic phonon described by the
following choice,

Ω(k) = vk− v
2kVH

k2 , Γ(k) = Dk2 , (50)

where v is the speed of sound, D the attenuation con-
stant and kVH the location of the Van-Hove singularity. In
figure 9, we show the results for this choice of mediators.
The Eliashberg function α2F(ω) shows a clear peak which
broaden upon increasing the attenuation constant D. Both
the effective electron–phonon coupling λ and the critical
temperature Tc decrease monotonically upon increasing the
attenuation constant of the acoustic phonon which mediates
the pairing. In other words, one finds that, in the case of
acoustic phonons, the anharmonic damping is detrimental to
superconductivity.

4.4. BCS theory: glassy spins

Randomness, when taken into account collectively through
electron correlation effects yields interesting phases of mat-
ter [188]. The spin glass (SG) phase forms one such example
which has been thoroughly studied as well as observed in
the phase diagrams of correlated electronic systems [132–146,
189, 190]. The phenomenology of the SG is remarkable [147].
Typically, the SG phase is characterized by aging, linear in
temperature of the AC susceptibility peak, hysteretic effects in
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Figure 9. The Eliashberg function α2F(ω) corresponding to the
mediator dispersion relation in equation (50). The insets show the
coupling constant λ and Tc as a function of the damping parameter
D. λ0 and Tc,0 are the values at the smallest damping D= D0 =
100. In this figure, the other parameters are fixed to v= 5000,
kVH = 1, kF = 1/2, g2k = C(vk)2, C= 0.03 and µ∗ = 0.1.
Reproduced from [187]. © IOP Publishing Ltd. All rights reserved.

the DC magnetization and a cusp in the thermodynamic spe-
cific heat, to name a few. On the theoretical side, SG order
phase occurs when the spin average on each lattice site is
non-zero, but vanishes when spatially averaged over the entire
lattice [191]. For the purposes of this discussion, we note a
key property of the temporal dependence τ of spin correlation
function at the SG critical point: it follows a power law of the
form [191–194]

Π(τ)≡ [⟨Siµ (τ)Siµ (0)⟩]∼
1
τ 2
. (51)

We define Siµ as the spin at site i with its µth compon-
ent, and the square and angular brackets denote the site and
thermal averages respectively. In frequency space, the correl-
ation function behaves as Π(ω)∼ |ω|, i.e. it is linear in fre-
quency indicating that dissipation is a necessary (but not suf-
ficient) condition for a SG.

Spin fluctuations have been studied extensively as potential
mediators of superconductivity [195, 196]. In the proximity of
a SG phase, correlators of the form appearing in equation (51)
modify the spin fluctuation propagator [13]. Since the dissip-
ative component arises from randomness that is exclusively
a property of the spin sector, it constitutes an anharmonicity
of the spin mediator. To see how this occurs, we write the
model for the total bosonic propagator by additing the dis-
sipative (anharmonic) contribution from equation (51). As a
result, the total action consists of a free term S0[Ψ,Ψ∗] and a
dissipative term Sdiss[Ψ,Ψ∗]. These are given by

S [Ψ,Ψ∗] = S0 [Ψ,Ψ
∗] + Sdis [Ψ,Ψ

∗]

S0[Ψ,Ψ
∗] =

ˆ
ddrdτ

[
κ|∇Ψ(r, τ) |2 + |∂τΨ(r, τ) |2

+M2|Ψ(r, τ) |2
]
,

Sdiss [Ψ,Ψ
∗] =

∑
k,ωn

(2η |ωn|) |Ψ(k,ωn) |2.

Here Ψ is the bosonic field, ωn is the Matsubara frequency, η
is the dissipation (anharmonicity) parameter, κ is the energy
scale of the bosonic velocity (or spatial stiffness), and the para-
meterM2 is the square mass that is proportional to the inverse
correlation length. The bosonic propagator Π(k, iωn− iωm)
for the action S[Ψ,Ψ∗] takes the form

Π(k, iωn) =
α

κk2 +ω2
n + 2η|ωn|+M2

.

Here k= |k| and α is a constant with dimensions of energy
(see for example [195]).

We can now substitute Π(k, iωn− iωm) into equation (34).
We assume a frequency independent and isotropic s-wave gap
(henceforth denoted by ∆) and perform the momentum and
Matsubara summations. The equation determining Tc (setting
∆= 0) then becomes [13]

1=−λ

[
ψ
(

1
2 +

η ′−iκ
2πTc

)
2(η ′ − iκ)2

+
ψ
(

1
2 +

η ′+iκ
2πTc

)
2(η ′ + iκ)2

+
κ2 − η ′2

(κ2 + η ′2)
2ψ

(
1
2

)
− π2η ′

4πTc (η ′2 +κ2)

]
, (52)

where η ′ ≡ 2η and ψ(x) is the digamma function. The
equation (52) can be solved numerically to study the effect
of η on Tc. As will be further elucidated below, Tc follows a
non-monotonic behavior with η where the optimal value is set
by the stiffness κ. A potentially interesting limiting case is that
of κ→ 0, in which case the gap equation reduces to

1=
λ(η− i M̄)

−1

2i M̄

[
ψ

(
1
2
+

η

2πTc
− i

M̄
2πTc

)
−ψ

(
1
2

)]
+ c.c, (53)

where M̄≡
√
M2 − η2. As we will see below, in this limit, Tc

monotonically decreases with η.

4.5. Optical soft mode instabilities and structural transitions

Soft phonon modes appear near structural transitions in
which a higher-symmetry crystal structure transforms into a
lower-symmetry one [197]. Typical examples of this sort are
ferroelectric and ferroelastic transitions [198, 199]. Here, we
address the question of how the appearance of soft mode
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Figure 10. The dynamics of the critical modes from equation (56)
as a function of n− nc. Here, Γ = 1. From white color to black
color we change the control parameter from n= 0 to n= nc as the
red arrows indicate.

instabilities in a metallic state might affect the critical temper-
ature of a near superconducting transition. For simplicity, we
will focus on the usage of BCS theory and on the situation in
which the soft mode is a optical excitation whose dynamics is
described by equation (26). Solving equation (26), we obtain
the simple dispersion relation:

ω =±
√
ω2
0 −

Γ

4
− i

2
Γ (54)

from which we can identify the real part as the renormalized
energy and the imaginary part as the inverse lifetime τ−1.
In the limit of Γ→ 0, the relation above coincides with the
Einstein approximation ω = ω0. In order to continue, and as
we will see later to make contact with realistic materials, we
assume a soft mode instability in which the energy of the soft
mode is well described (at least close enough to the critical
point) by the mean-field Curie–Weiss law:

ω2
0 ∼ |n− nc|, (55)

with n an external parameter driving the instability [200]. By
doing so, the dynamics of the low-energy critical modes is
defined by the following dispersion relations:

ω =
1
2

(
±
√
4|n− nc| −Γ2 − iΓ

)
. (56)

As evident from equation (56), and as shown in figure 10,
at the critical point one of the two modes becomes strongly
overdamped, ω =−iΓ, while the other approaches the origin
of the complex plane,ω= 0, moving along the imaginary axes.
This second mode is the mode responsible for the instability
at n= nc.

Figure 11. The critical temperature as a function of n− nc for
v2 = µ= 1 and increasing the linewidth Γ from black to light blue.
Reprinted (figure) with permission from [201], Copyright (2022) by
the American Physical Society.

Using the framework described in the previous section, we
can then compute the critical temperature Tc as a function
of the distance from the critical point, n− nc (see [201] for
details). The critical temperature displays a dome shaped beha-
vior centered at the critical point which is shown in figure 11
for different values of the damping parameterΓ. A larger value
of Γ corresponds to a more pronounced maximum at n= nc.
In summary, this simple model predicts the appearance of a
dome shaped critical temperature Tc which is maximized at
the location of the critical point [201]. Such a result provides a
viable explanation (see [202] for a different explanation based
on the concept of quantum criticality) for the superconducting
dome experimentally observed in various ferroelectric mater-
ials such as SrTiO3 [203] (see section 5.4).

4.6. Kohn-like soft phonon instabilities

Phonon softening is a general phenomenon in condensed mat-
ter physics which is not restricted to structural phase trans-
itions. A particularly interesting scenario is that associated
with the formation of charge order in metallic states, in which
softening emerges in the form of ‘Kohn anomaly’ [204].
Charge correlations soften the energy of the acoustic phon-
ons whose dispersion presents a pronounced dip at a finite
value of the wave-vector. The frequency might be even go
to zero at a specific critical point, which signals the onset
of charge density waves (CDWs) formation, as rationalized
in 1D by the so-called Peierls instability [205]. This type of
softening is profoundly different from the one described in the
previous section as it is localized in a small region of finite
wave-vector and does not appear at k= 0. More in general,
Kohn-like instabilities, defined as a localized decrease of the
energy of acoustic phonons in a finite and small interval of
wave-vectors, appear not only in association to CDW form-
ation. They appear more generally whenever important nest-
ing is exhibited by the Fermi surface, such as in NbC1−xNx

andNbN rocksalt structures [206]. Intriguingly, similar soften-
ing mechanisms have been also reported in the acoustic
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dispersion relations of specific amorphous systems known as
‘strain-glasses’ [207].

Here, wewant to assess the effects of Kohn-like instabilities
in the metallic state of a superconducting material. The discus-
sion in this subsection follows [187]. Despite the main interest
of this analysis is the question of coexistence and/or competi-
tion between CDW and superconductivity, we will leave the
model as generic as possible in order to account for other
possibilities not related to CDW. Moreover, for brevity, we
will consider only the case of acoustic phonons, although the
same qualitative behaviors hold for optical phonons as well.
For more details and for the case of optical modes we refer
to [187].

As a phenomenological description of phonon softening,
we consider the standard dispersion relation for acoustic phon-
ons extracted from the denominator of the mediator Green’s
function in equation (17) with

Ω(k) = p(k)

(
vk− v

2kVH
k2
)
, Γ(k) = Dk2 . (57)

In the equation above, kVH is the wave-vector corresponding to
the end of the Brillouin zone, the Van-Hove wave-vector. Most
importantly, the softening of the dispersion is parameterized
by the function p(k) which is chosen as

p(k) = 1− ζ exp

[
−
(
k/kVH −α

β

)2
]
. (58)

The softening dip is assumed to be of Gaussian shape. The
parameter ζ determines the depth of the softening, α controls
the wave-vector at which the dip appears and β its width. After
assuming this dispersion, we can use the Eliashberg theory for
damped bosonic mediators outlined in section 4.3 to compute
the various superconducting properties.

In figure 12, we show the results as a function of the depth
of the softening dip ζ. Upon increasing the depth of the soften-
ing region, the value of the Eliashberg electron–phonon coup-
ling λ grows monotonically and it can be strongly enhanced.
Nevertheless, this enhancement of the electron–phonon coup-
ling is not always reflected in an increase of the supercon-
ducting temperature. On the contrary, a non-monotonic beha-
vior is observed in the critical temperature, which first grows
with softening roughly linearly, but then decreases quickly
after a critical value ζc. Intuitively, this non-monotonic trend is
explained by the competition of the different factors appearing
in the Allen–Dynes formula, equation (48). More precisely,
despite the fact that the electron–phonon coupling λ grows
with softening, the logarithmic average frequency ωlog (49)
decreases with it. As a consequence, a maximum value of Tc
appears at ζ = ζc. From a different perspective, the appearance
of a maximum is compatible with the concept of ‘optimal fre-
quency’ developed by Bergmann and collaborators [208]. In a
nutshell, the idea is that a weight transfer in the Eliashberg
function α2F(ω), which in our case is induced by soften-
ing, is beneficial to superconductivity only when it is near
the ‘optimal frequency’, defined as the location in which the

functional derivative δTc
δα2F(ω) is maximal. The optimal condi-

tion coincides with the maximum in Tc at ζc.
The value of ζc and the maximum increase in the critical

temperature, Tc(ζc)/Tc(0), are strongly sensitive to the para-
meters of the model. Nevertheless, some general conclusions
can be reached. In particular, in a weakly-coupled supercon-
ductor, the increase of Tc due to softening can, in general,
be very large (over one order of magnitude in Tc) but at the
same time it requires a substantial degree of softening, i.e. a
relatively large value of ζ (see example in the bottom panel
of figure 12). On the contrary, for strongly-coupled systems,
the increase of Tc is more limited but the degree of soften-
ing needed to reach it is also smaller (see the central panel
of figure 12). A more complete case study about the effects of
Kohn-like softening on Tc, including the case of optical modes,
can be found in [187].

5. Applications to emerging quantum materials

5.1. Cuprates

It may not have been a sheer coincidence that the major break-
through in high-Tc superconductivity, i.e. the Nobel-prize win-
ning discovery of the cuprate rare-earth oxides by Bednorz
and Müller in 1986 [4], came in that same Zurich IBM lab
after more than 15 years of studying the dielectric properties
and soft-mode transitions in strontium titanate. Bednorz and
Müller’s original intuition was that certain oxides could host
Jahn–Teller type composites made of an electron plus a local
lattice distortion that could travel as whole through the lat-
tice, thus leading to a very strong electron–phonon coupling.
While lattice distortion and strong electron–phonon coupling
have certainly been recognized to be important factors for the
high Tc of the cuprates, other non-trivial (e.g. magnetic) phe-
nomena have since also been observed, which also appear to
strongly affect the Tc.

Importantly, in a series of papers by Liarokapis, Kaldis
and co-workers, Raman spectroscopy studies of the Cu-
bonded oxygen atoms and associated Raman-active modes,
highlighted a number of striking phonon-softening instabil-
ities. The in-plane (Ag) oxygen vibrations in YBa2Cu3Ox

were shown in [6] to suffer a major softening right at
the optimal doping x≈ 6.92 that corresponds to the highest
Tc. Concomitantly, a displacive structural phase transition
involving the Cu2O planes (basically a dimpling of the planes)
was demonstrated in [7] to also occur at a value of oxygen dop-
ing very close to the optimal one for Tc.

Recent experiments where the cuprate superconductor
La2−xBaxCuO4 (LBCO) at 1

8 doping was irradiated with pro-
tons [209] observed a (radiation) disorder induced enhance-
ment of Tc despite the proximate CDW ordering temper-
ature being unaffected by irradiation. The measurements
found up to a 50% increase in Tc with the dosage of
radiation. Above a critical value of the dosage, Tc was
gradually suppressed until superconductivity was destroyed.
To understand these observations, scenarios involving the
competition between CDW and superconductivity seem
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Figure 12. The effects of Kohn-like softening in the acoustic
dispersion on the superconducting properties. (Top) the dispersion
relation of the bosonic mediator for different values of the softening
depth ζ and the corresponding behavior of the Eliashberg coupling
λ. λ0 stands for λ(ζ = 0). (Center and Bottom) the critical
temperature Tc as a function of smaller and large softening depth ζ
respectively. The vertical dashed line indicates the location of the
optimal condition ζ = ζc. Reproduced from [187]. © IOP
Publishing Ltd. All rights reserved.

promising at first sight, especially given their proximity in the
phase diagram. However, given that the CDW transition tem-
perature seems unaffected by irradiation, it is unlikely that
a mechanism involving the competition between two mean
field phases [210] is at play. It is also unclear how scalar dis-
order affects two mean field phases in an asymmetric fashion
without any parameter dependence, except under special cir-
cumstances [210, 211] which may not hold for LBCO. Hence,
to explain the non-monotonic Tc dependence in LBCO as a
function of irradiation, a mechanism that does not involve any
competition between CDW and superconductivity is a poten-
tial candidate.

Setty [13] made the case for enhanced Tc due to glassy
dissipation in spin fluctuation mediator. The SG phase has
been observed in proximity to superconductivity in the
cuprate [133–139, 143, 144, 189, 190] and iron superconduct-
ors [132, 140–142, 145, 146]. It is thus reasonable to include
the effects of the SG phase on the superconducting pairing.
Further there is plenty of direct experimental data [132, 134,
136, 137, 139, 140, 143, 145, 190] supporting a dissipative
nature of the spin fluctuations mediating Cooper pairing. See
[13] for a brief review of these experiments and their relev-
ance to superconductivity in LBCO. From these discussions,
the premise of a SG induced dissipative pairing mediator in
LBCO has firm experimental support. We now follow [13]
which argues that a non-local dissipative mediator can explain
the proton irradiation experiments in [209] despite the fact that
the proximate CDW transition is unaffected by disorder.

According to this proposal, disorder acts as an external tun-
ing knob of the parameter η; hence, increased irradiation leads
to larger dissipation in the pairing mediator. Then, for weak
dissipation, Tc rises and above a critical value of η it gradu-
ally falls. To see this, the local (κ= 0) and non-local (κ ̸= 0)
gap equations (53) and (52) can be solved for Tc as a func-
tion of the dissipation parameter η. Figure 13 shows a plot
of the solutions. For the case of a local mediator, the Tc falls
monotonically with dissipation. On the other hand, when the
mediator is non-local, Tc is non-monotonic with dissipation
parameter and reaches an optimal value at an η value set by
the stiffness. This can be understood from the energy integral
leading to equation (52) above. For a non-local mediator, this
integral forces the gap equation to acquire dissipative contri-
butions that both increase and decrease the effective coupling
constant. Note that weakly dissipative bosonic modes at differ-
ent energy scales act coherently to enhance Tc but eventually
destroy superconductivity when dissipation dominates all the
other energy scales. Consequently, a non-monotonic behavior
in Tc follows. Thus the SG dissipative mechanism described
above is a way to raise Tc that does not rely on ‘tug-of-war’ -
like scenarios between two competing phases. Further analysis
of the superconducting gap and specific heat as a function of
the dissipation parameter can be found in [13].

5.2. Hydrides

Many recent studies have pointed to the possibility of
achieving room-temperature superconductivity in the hydride
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Figure 13. (Top) Superconducting critical temperature Tc
(normalized to the case of zero dissipation and bosonic mass) as a
function of the dissipation parameter η for different masses M for a
local mediator (κ= 0). (Bottom) For a non-local mediator (κ ̸= 0):
plot of the dimensionless T̄c = Tc/κ as a function of η̄ ′ = η ′/κ for
different dimensionless coupling strengths λ̄= λ/κ2 and M= 0.
The Tc peak is determined by κ, the energy scale arising from the
bosonic spatial stiffness/velocity.

compounds at high pressure [16], following on Ashcroft’s
early intuition for metallic hydrogen [212]. Recent exper-
imental evidence points at superconductive behavior in
nitrogen-doped lutetium hydride thin films at pressures as low
as 10 kbar [213].

While it is clear that phonon dispersion curves are strongly
renormalized (i.e. lowered in energy) by anharmonicity in the
hydrides [174, 175, 214], a clear picture about the effect of
the ubiquitous large anharmonicity on the superconductivity
of these systems is missing. In particular, systematic studies
of the anharmonic phonon linewidths and the effect thereof on
the Cooper pairing are currently lacking. Since these systems
exhibit high-T superconductivity at high pressures, the inter-
play between lattice dynamics under pressure, and anharmon-
icity, which leads to the resulting electron–phonon coupling,
is expected to be non-trivial. In particular, the effects of pres-
sure are twofold, on one hand there exists a critical pressure
to stabilize the superconducting lattice structure [215–217],
while on the other hand there are (hitherto much less explored)
effects of pressure-mediated phonon dynamics on the pairing
mechanism [55, 218].

Recent progress [219] has identified the phononEumode as
the one mainly responsible for the pairing in atomic hydrogen

Figure 14. Superconducting critical temperature Tc and electron–
phonon coupling constant λ as a function of pressure computed with
and without the anharmonic corrections for the P63/mmc phase of
ScH6. Reprinted (figure) with permission from [220], Copyright
(2021) by the American Physical Society.

at high pressure. The effect of phonon anharmonicity on the
superconducting critical temperature Tc has, instead, remained
poorly understood. The anharmonic extension of BCS the-
ory to include the effect of anharmonic damping on the pair-
ing mechanism [11], has shown that anharmonicity can either
enhance the Tc or lower it, depending on the extent of phonon
damping (moderate or very large, respectively), for the case
of optical phonons, whereas for acoustic phonons the effect is
always to cause a depression of the Tc.

This theory [11] thus might explain why the Tc is much
lowered by huge anharmonicity of the low-lying optical phon-
ons in aluminum [220, 221], palladium [174, 175], and plat-
inum hydrides [175].

Conversely, an enhancement of the superconducting Tc,
in a regime of moderate anharmonicity, may be responsible
for the observed enhancement of Tc due to anharmonicity
in the high-pressure P63/mmc phase of ScH6 as reported in
[220], see figure 14. Importantly, in the current literature, e.g.
[220], the effects of anharmonicity are mostly considered at
the level of the renormalization of the bare energy. So far,
the effects of the anharmonic linewidth has been largely over-
looked (see nevertheless [222] for a recent discussion about
it). In future studies, it could be useful to carry more system-
atic studies of the effect of phonon anharmonicity on the Tc by
more closely combining theoretical concepts [11], and atom-
istic computations [223].

5.3. The case of TlInTe2

The discussion in this subsection closely follows [218].
TlInTe2 undergoes a superconducting transition at a pres-
sure of 5.7 GPa with a Tc ≃ 4K [55]. The Tc behaves
non-monotonically with further increasing the pressure—it
decreases initially and climbs again with the minimum value
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of Tc occurring at 10 GPa. Concurrently, ab initio electronic
structure calculations found a Lifshitz transition induced
change in Fermi surface topology between 6.5 and 9GPa and
the formation of enlarged electron pockets at the Fermi level.
Additionally, x-ray diffraction and Raman scattering measure-
ments performed at high pressure found that the Ag phonon
mode begins to soften [55]. Naively, the V-shaped Tc beha-
vior may be attributable to a combination of softening of the
Ag phonon mode and variations in the electronic DOS with
pressure. However, the Tc appears to get reduced exactly in
the regime where there is an increase in DOS from the elec-
tron pocket due to the Lifshitz transition. Moreover, the sup-
pression of Tc with increasing phonon frequency involves the
Bergmann–Rainer criterion which would, in turn, require a
second dip in Tc. This feature is, however, absent in the exper-
imental observations. Hence, we can rule out a dominant role
of electronic DOS or phonon frequency shifts in understand-
ing the observed Tc dependence.

Here, we consider the role of both phonon frequency and
linewidth in determining Tc as a function of pressure in
TlInTe2. Raman scattering linewidths extracted as a function
of pressure indicate that anharmonicity in this material is in
an optimal range—weak enough so that the phonons remain
coherent, but strong enough so as to have significant effects
on the superconducting properties. In particular, as we will see
below, Tc correlates positively with the ratio of the linewidth to
the peak frequency, Γ/ω0. The possibility of excluding other
electronic DOS and phonon frequency-shift effects on the pair-
ing renders TlInTe2 an ideal playground to test the role of
anharmonic boson damping. At this juncture, the properties of
the normal state, strength of specific electron–phonon coup-
lings, pairing symmetry etc are not completely determined in
TlInTe2. But the formalism and conclusions presented below
are general enough so that the above uncertainties can be
accommodated as more experimental data becomes available.

We begin by studying how the optical phonons of a crys-
tal lattice are affected by external pressure. Predominantly,
pressure acts to induce a volume contraction (negative volume
change) in the material. We can relate change in volume to a
change in phonon frequency through the Grüneisen parameter,
γ =−d lnω ′/ d lnV, via the relation [224]:

ω ′ (V)
ω ′
P=0

=

(
V
V0

)−γ

. (59)

Here the optical phonon energy at zero ambient pressure is
denoted by ω ′

P=0 and the relations above apply to individual
phonon modes with frequency ω ′. The change in pressure can
be written in terms of the volume change, as described by the
Birch–Murnaghan equation of state [225] (see also section 2.4
above). The equation provides an expression for the pressure
P(V) and is derived based on nonlinear elasticity theory. We
then replace V with ω ′ in (59) to obtain a relationship between
applied pressure and optical phonon frequency ω ′ [224]
given by

P(X) =
3
2
b0

(
X7 −X5

) [
1+ η

(
1−X2

)]
, (60)

where we have defined X≡ (ω ′/ω ′
P=0)

1/3γ . Next, we invert
the above equation (60) and obtain ω ′ as a function of P. We
see that ω ′ is a function that monotonically increases with
P in the regime of interest, and is modulated by anharmon-
icity through γ. We have also defined b0 = B0/γ0 where B0

the bulk modulus and η = (3/4)(4−B ′
0) with B

′
0 = dB0/dP.

The frequency ω ′ refers to the real part of the phonon dis-
persion (including the renormalization shift from anharmon-
icity [226]). The imaginary part of the dispersion relation
is related to the phonon damping coefficient Γ (the inverse
phonon lifetime). These quantities are given by the following
relations (see for example equations (23)–(27) in [226])

ω2 = ω2
0 − iωΓ + O

(
q2
)
, (61)

ω ′ ≡ Re(ω) =
1
2

√
4ω2

0 − Γ2 +O
(
q2
)
, (62)

Γ

2
≡ Im(ω) +O

(
q2
)
. (63)

The phonon linewidth Γ can, in principle, be evaluated from
quantitative microscopics using the Self-Consistent Phonon
(SCP) methodology [177, 226] for specific systems [178].
Here we rather focus on generic qualitative trends in terms of
the effect of Γ on the pairing and on Tc.

As a concrete application of this model, we consider the
case of TlInTe2 using the data reported in [55]. We fit the
bare frequency ω0 and the linewidth Γ of the optical mode
Ag, which is the dominant one in the electron pairing, as a
function of the pressure P. The results for the linewidth are
shown in the top panel of figure 16. We then use these func-
tions as an input into the theoretical gap-equation framework
and predict the corresponding Tc. First, we use the fitting for
the energy ω0(P) together with the Klemens expression for
the linewidth Γ = αω5

0 , with α a phenomenological parameter.
The results for different values ofα are shown in figure 15. The
critical temperature Tc decreases monotonically with the pres-
sure. An approximately linearly decaying trend of Tc with P
has been recently observed in the strongly anharmonic AlH3

high-pressure hydride [220] as well as in the SC-I phase of
CeH10 in [227]. In more standard systems, a linear decay of
Tc with increasing P has been reported in the literature for
simple (e.g. elemental) superconductors [228–230]. In order
to improve the results, we also used the fitted linewidth from
the experimental data, available in [55] for TlInTe2. The pre-
dicted critical temperature is compared with the experimental
data in the bottom panel of figure 16. The agreement, at least at
qualitative level, is good. In particular, the theoretical predic-
tion shows a minimum in the critical temperature at a pressure
which roughly corresponds to the position of the minimum in
Γ/ω0. This is rationalized, within the theoretical framework,
by noticing that in the so-called coherent (moderate-damping)
regime, where Γ/ω0 ≪ 1, the behavior of Tc positively correl-
ates with the ratio Γ/ω0. Similar considerations also appear to
hold for the Osmium based pyrochlore superconductors where
Tc shows an optimum value as a function of anharmonicity
parameters [231, 232].
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Figure 15. The normalized superconducting transition temperature
as a function of pressure for various Klemens damping parameters
Γ = αω5

0 where ω0 is the energy of the optical mode at zero
wavevector. Here, α increases from 0.1 to 1.0 for red to purple
curves. Reprinted (figure) with permission from [233], Copyright
(2022) by the American Physical Society.

5.4. SrTiO3 and BaTiO3

The discussions in this subsection follow from [201].
Superconductivity in the quantum paraelectric semiconductor
SrTiO3 has recently attracted much attention in view of dif-
ferent experimental protocols that have been discovered in
order to promote superconductivity, often via a supercon-
ducting ‘dome’, in the vicinity of the ferroelectric instabil-
ity. These methods include doping in terms of carrier concen-
tration, isotopic doping, mechanical strain, and dislocations.
Since the pioneering experimental work of Müller and co-
workers [234], this material has been classified as a quantum
paraelectric, in the sense that although a ferroelectric instabil-
ity appears to be approached upon lowering the temperature
below about 30K, eventually the TO mode energy remains
finite and real, and no condensation of the TO mode into the
ferroelectric phase occurs (hence no real soft mode instabil-
ity occurs). The common explanation for this phenomenon
is that large quantum fluctuations of the lattice (in partic-
ular, zero-point motions of the oxygen atoms) prevent the
mode condensation and the corresponding ‘freezing’ of atomic
position into polar order. Hence the ferroelectric transition
is de facto suppressed and the expected Curie–Weiss beha-
vior of the dielectric constant is instead replaced by a low-
T plateau [234], hence the quantum paraelectric phase at
T < 4K.Mechanical strain has been shown to be amost effect-
ive way of re-establishing ferroelectricity in SrTiO3, to the
point that even ferroelectricity at room temperature and above
has been demonstrated for SrTiO3 material under strain.

Also, electron doping and oxygen doping have proved to
be effective ways of inducing the ferroelectric instability and
thus stabilize the ferroelectric phase. Themechanism bywhich

Figure 16. (Top) Phonon linewidth (black symbols) extracted from
experimental data [55] versus optimal phenomenological fit (red
solid line). (Bottom) Comparison between the theoretically obtained
calculations for the critical temperature (red solid line) and
experimental data (black symbols). The dashed black line is an
interpolation of the experimental data as a visual guide. For details
about the parameters and the numerical procedure see [233].
Reprinted (figure) with permission from [233], Copyright (2022) by
the American Physical Society.

superconductivity occurs in this material has been thought
for a long time to be puzzling because SrTiO3 behaves as a
superconductor even at very low carrier doping levels. Early
evidence however has been collected pointing to the fact that
it is indeed the soft transverse optical (TO) phonons which
mediate the electron pairing [235] in doped SrTiO3, a mech-
anism recently confirmed [236]. More recently DFT calcula-
tions have demonstrated that indeed the maximum of the dome
observed in the superconducting Tc in SrTiO3 does coincide
with the TO mode energy crossing zero, i.e. with the ferro-
electric criticality [202]. This has become widely known as
the ‘quantum criticality’ paradigm for superconductivity in
SrTiO3, in view of the fact that large lattice fluctuations upon
approaching the ferroelectric transition are thought to promote
the Cooper pairing, and these fluctuations at such low temper-
atures are quantum, since the oxygens motion is of zero-point
type.

In reality, however, these are just large atomic fluctuations
about the equilibrium positions in the lattice, and quantum
or not, they are always associated with large anharmonicity,
simply because atoms displaced far away from the harmonic
bonding minimum locally experience a large anharmonic
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potential, thus leading to huge values of the cubic derivative of
the potential V ′ ′ ′(a) in (11), and hence to large values of the
Grüneisen parameter. This is indeed what happens, and giant
values of Grüneisen parameter γ have been indeed observed
both numerically and experimentally [237]. This picture of
giant anharmonicity assisting superconductivity even at low
carrier concentrations in SrTiO3 is further corroborated by
recent anharmonic phonon calculations [238].

Finally, a similar dome in the superconducting Tc with a
maximum coinciding with the ferroelectric transition at which
the TO mode goes to zero has been observed in the stand-
ard ferroelectric compound BaTiO3. Also in this case very
large anharmonicity of the TOphononwhich explodes towards
the ferroelectric transition, accompanies the superconducting
dome. The fact that a very similar phenomenology is shared
by quantum paraelectric SrTiO3 and standard ferroelectric
BaTiO3 thus strongly suggests that the so-called quantum crit-
icality may not be the peculiarity behind the superconducting
properties of SrTiO3, and points rather a unifying common
mechanism.

A recent proposal is that anharmonicity in SrTiO3 leads
to an even stronger pairing tendency, according to the anhar-
monic damping enhancement of Tc mechanism proposed in
[11, 201] (see section 4.5 for details), which therefore explains
the surprising fact that superconductivity in SrTiO3 occurs at
very low electron doping. Cfr figure 11 in section 4.5 where the
experimentally observed dome in Tc is reproduced in model
calculations that fully take into account the increase in the
phonon anharmonic linewidth upon approaching the ferroelec-
tric transition on both sides [201]. But the general mechanism,
by which superconductivity is enhanced by phonon damping
is the same which is operative in standard (non-quantum) fer-
roelectrics such as BaTiO3.

6. Outlook and conclusions

6.1. Open issues

Several questions regarding the broader implications of
bosonic damping effects on superconductivity remain pertin-
ent. These questions range from material specific aspects that
require a generic design principle of superconducting materi-
als where boson anharmonic decoherence is a key player, to
more fundamental aspects that may require new theoretical
frameworks to deal with the role of dissipation on the super-
conducting ground state.

In regards to the former, there is an immediate need to integ-
rate first principles evaluation of phonon/bosonic linewidths
into routines (such as Electron–PhononWannier (EPW) [223])
that evaluate material-specific superconducting properties.
This could help make predictions about the role of bosonic
anharmonic decay on Eliashberg functions, superconduct-
ing coupling constants, and critical temperatures. Moreover,
studying the role of multiple phononic branches and symmetry
allowed dissimilarities in their anharmonicities can help make
a clearer connection to real material systems. It is our hope
that this review puts together various relatively disconnected
theoretical, numerical and experimental works on the topic of

anharmonic decoherence and superconductivity, and motiv-
ates future numerical work in this direction.

On the formalism side, there are several open questions
that remain unanswered. The simplest extension to the results
presented would incorporate the full electronic and bosonic
self-energies, including anharmonic decoherence effects, into
the Eliashberg formalism [239]. This would give a better
understanding on the robustness of the conventional BCS
results when retardation effects are taken into consideration.
Moreover, in the presence of a lattice, discrete spatial sym-
metries constrain the momentum dependence of higher order
anharmonic terms in the Hamiltonian. The role of these sym-
metries and its interplay with decoherence and supercon-
ductivity is an interesting question worth exploring. Further,
whether anharmonic damping can be a primary driver of super-
conductivity instead of playing a catalyst is also unclear.
Going beyond infinitesimal weak coupling effects is another
promising avenue. This includes role of anharmonic damping
on BCS-BEC (Bose–Einstein Condensation) crossover phys-
ics [240] and strong coupling superconductivity. Additionally,
at intermediate coupling scales and anisotropic interactions,
the superconducting ground state is modulated [241, 242]; the
role of anharmonicity on such ground states could have con-
sequences on their stability. A more ambitious goal would
be to include electron–electron correlation effects and under-
stand their co-action with anharmonicity and superconductiv-
ity. While this might seem like a difficult endeavor, recent pro-
gress has been made [243–245] in obtaining exact solutions to
the pairing problem in the presence of long range interactions.
Therefore, gaining an intuitive understanding of the cooper-
ation between anharmonic damping, strong correlations and
superconductivity is a realistic possibility.

6.2. Summary

In this review, we have addressed the role of anharmonic deco-
herence/damping effects on superconducting pairing proper-
ties using minimal theoretical models. We have adopted a
mechanistic approach to describe the physics of how super-
conducting properties such as Eliashberg functions, coup-
ling strengths and transition temperatures are affected, and
applied these mechanisms to phenomenologically describe
experiments on a variety of emerging quantum materials. The
central theme of the review emphasizes the qualitative role
played by damping, and the use of simplifying assumptions,
rather than an elaborate implementation of atomistic first prin-
ciple simulations. However, our objective is to highlight these
simplemechanistic effects tomotivate further works that could
combine first principles evaluation of bosonic lineshapes with
superconductivity routines such as EPW for material specific
results. To this end, this review provided a basic introduc-
tion to phonon anharmonicity and various bosonic damping
mechanisms that may be relevant to superconductivity. We
then reviewed several experimental probes that can be used to
measure anharmonic damping effects in pairing mediators fol-
lowed by a brief interlude into existing literature that directly
calculates phonon linewidths from first principles. The bulk
of the remainder of the paper focused on minimal theories of
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superconductivity driven by damped bosons including phon-
ons and glassy spin fluctuations models, and how they can
be relevant to emerging quantum materials. As an outlook,
we presented several outstanding problems and natural exten-
sions of the current work that remain currently unaddressed.
While a complete picture that delineates the role of anharmon-
icity and damping effects on superconductivity remains elu-
sive, we believe that its fuller understanding holds the potential
for interesting fundamental physics, novel numerical imple-
mentations, and innovative design of quantum materials and
experimental realizations. In particular, we anticipate broad
implications of the anharmonic physics of superconductiv-
ity also in nanostructured devices [246, 247] and disordered
materials [248].
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Rev. B 84 214305
[58] Burkel E 2000 Rep. Prog. Phys. 63 171
[59] Krisch M and Sette F 2006 Light Scattering in Solid IX

(Springer) pp 317–70
[60] Baron A Q 2009 arXiv:0910.5764
[61] Shukla A et al 2003 Phys. Rev. Lett. 90 095506
[62] Baron A, Uchiyama H, Tanaka Y, Tsutsui S, Ishikawa D,

Lee S, Heid R, Bohnen K-P, Tajima S and Ishikawa T
2004 Phys. Rev. Lett. 92 197004

[63] d’Astuto M, Calandra M, Reich S, Shukla A, Lazzeri M,
Mauri F, Karpinski J, Zhigadlo N, Bossak A and Krisch M
2007 Phys. Rev. B 75 174508

[64] Novko D 2018 Phys. Rev. B 98 041112
[65] Novko D, Caruso F, Draxl C and Cappelluti E 2020 Phys.

Rev. Lett. 124 077001
[66] Uchiyama H, Baron A, Tsutsui S, Tanaka Y, Hu W-Z,

Yamamoto A, Tajima S and Endoh Y 2004 Phys. Rev. Lett.
92 197005

[67] Fukuda T, Mizuki J, Ikeuchi K, Yamada K, Baron A and
Tsutsui S 2005 Phys. Rev. B 71 060501

[68] Graf J, d’Astuto M, Jozwiak C, Garcia D, Saini N L,
Krisch M, Ikeuchi K, Baron A, Eisaki H and Lanzara A
2008 Phys. Rev. Lett. 100 227002

[69] Le Tacon M, Bosak A, Souliou S, Dellea G, Loew T, Heid R,
Bohnen K, Ghiringhelli G, Krisch M and Keimer B 2014
Nat. Phys. 10 52

[70] Fukuda T et al 2008 J. Phys. Soc. Japan 77 103715
[71] Kuroiwa S, Baron A, Muranaka T, Heid R, Bohnen K-P and

Akimitsu J 2008 Phys. Rev. B 77 140503
[72] Li H et al 2021 Phys. Rev. X 11 031050
[73] Vig S et al 2017 SciPost Phys. 3 026
[74] Ibach H and Mills D L 2013 Electron Energy Loss

Spectroscopy and Surface Vibrations (Academic)
[75] Phelps R, Akavoor P, Kesmodel L, Barr A, Markert J, Ma J,

Kelley R and Onellion M 1994 Phys. Rev. B 50 6526
[76] Mitrano M et al 2018 Proc. Natl Acad. Sci. 115 5392
[77] Huang E W, Limtragool K, Setty C, Husain A A, Mitrano M,

Abbamonte P and Phillips P W 2021 Phys. Rev. B
103 035121

[78] Setty C, Padhi B, Limtragool K, Abbamonte P, Husain A A,
Mitrano M and Phillips P W 2018 arXiv:1803.05439

[79] Sahadev N, Biswas D N, Srinivas K, Manfrinetti P,
Palenzona A and Maiti K 2012 AIP Conf. Proc.
1447 841–2

[80] Wang Z et al 2017 Nat. Phys. 13 799
[81] Zhang S et al 2016 Phys. Rev. B 94 081116
[82] Gilvarry J J 1957 J. Appl. Phys. 28 1253
[83] Gilvarry J J 1956 Phys. Rev. 102 331
[84] Gilvarry J J 1956 Phys. Rev. 102 325
[85] Grüneisen E 1912 Ann. Phys., Lpz. 344 257
[86] Wang R J, Wang W H, Li F Y, Wang L M, Zhang Y, Wen P

and Wang J F 2003 J. Phys.: Condens. Matter 15 603
[87] Douglas J F and Xu W-S 2021 Macromolecules 54 3247
[88] Gilvarry J J 1955 J. Chem. Phys. 23 1925
[89] Macdonald J R 1966 Rev. Mod. Phys. 38 669
[90] Anderson O L 1966 J. Phys. Chem. Solids 27 547
[91] Barker Jr R 1967 J. Appl. Phys. 38 4234
[92] Sharma B 1983 Polymer 24 314

[93] Anderson O L 2000 Geophys. J. Int. 143 279
[94] de la Roza A O, Luaña V and Flórez M 2016 An Introduction

to High-Pressure Science and Technology (CRC Press)
pp 25–72

[95] Waller I and Froman P 1952 Ark. Fys. 4
[96] Elliott R and Thorpe M 1967 Proc. Phys. Soc. 91 903
[97] Hudson B S 2006 Vib. Spectrosc. 42 25
[98] Axe J and Shirane G 1973 Phys. Rev. B 8 1965
[99] Cowley R and Woods A 1971 Can. J. Phys. 49 177

[100] Reichardt W et al 1994 J. Supercond. 7 399
[101] Chou H, Yamada K, Axe J, Shapiro S, Shirane G, Tanaka I,

Yamane K and Kojima H 1990 Phys. Rev. B 42 4272
[102] Mittal R et al 2009 Phys. Rev. Lett. 102 217001
[103] Yamaura J-I et al 2019 Phys. Rev. B 99 220505
[104] Pintschovius L, Weber F, Reichardt W, Kreyssig A, Heid R,

Reznik D, Stockert O and Hradil K 2008 Pramana 71 687
[105] Weber F, Pintschovius L, Reichardt W, Heid R, Bohnen K-P,

Kreyssig A, Reznik D and Hradil K 2014 Phys. Rev. B
89 104503

[106] Yildirim T et al 2001 Phys. Rev. Lett. 87 037001
[107] Muranaka T, Yokoo T, Arai M, Margiolaki E, Brigatti K,

Prassides K, Petrenko O and Akimitsu J 2002 J. Phys. Soc.
Japan 71 338

[108] Cabrera N, Celli V and Manson R 1969 Phys. Rev. Lett.
22 346

[109] Manson R and Celli V 1971 Surf. Sci. 24 495
[110] Benedek G and Toennies J P 1994 Surf. Sci. 299 587
[111] Sklyadneva I Y, Benedek G, Chulkov E V, Echenique P M,

Heid R, Bohnen K-P and Toennies J 2011 Phys. Rev. Lett.
107 095502

[112] Benedek G, Bernasconi M, Bohnen K-P, Campi D,
Chulkov E V, Echenique P M, Heid R, Sklyadneva I Y and
Toennies J P 2014 Phys. Chem. Chem. Phys. 16 7159

[113] Benedek G, Manson J R, Miret-Artés S, Ruckhofer A,
Ernst W E, Tamtögl A and Toennies J P 2020 Condens.
Matter 5 79

[114] Anemone G et al 2021 npj 2D Mater. Appl. 5 25
[115] Gester M, Kleinhesselink D, Ruggerone P and Toennies J

1994 Phys. Rev. B 49 5777
[116] Zhu X, Santos L, Sankar R, Chikara S, Howard C, Chou F,

Chamon C and El-Batanouny M 2011 Phys. Rev. Lett.
107 186102

[117] Zhu X, Santos L, Howard C, Sankar R, Chou F, Chamon C
and El-Batanouny M 2012 Phys. Rev. Lett. 108 185501

[118] Stenull O, Kane C and Lubensky T 2016 Phys. Rev. Lett.
117 068001

[119] Liu Y, Chen X and Xu Y 2020 Adv. Funct. Mater. 30 1904784
[120] Di Miceli D, Setty C and Zaccone A 2022 arXiv:2203.03499
[121] Naidyuk Y G and Yanson I K 2005 Point-Contact

Spectroscopy vol 145 (Springer Science & Business
Media)

[122] Jansen A G M, Van Gelder A and Wyder P 1980 J. Phys. C:
Solid State Phys. 13 6073

[123] Naidyuk Y G and Yanson I K 2003 arXiv:physics/0312016
[physics.pop-ph]

[124] Lee W-C, Park W K, Arham H Z, Greene L H and Phillips P
2015 Proc. Natl Acad. Sci. 112 651

[125] Yanson I 1983 Sov. J. Low Temp. Phys. 9 343
[126] Kulik I 1992 Sov. J. Low Temp. 18 450
[127] Naidyuk Y G, Yanson I, Kvitnitskaya O, Lee S and Tajima S

2003 Phys. Rev. Lett. 90 197001
[128] Yanson I and Naidyuk Y G 2004 Low Temp. Phys. 30 261
[129] Samuely P, Szabo P, Kacmarcik J, Klein T and Jansen A

2003 Physica C 385 244
[130] Dahm T, Hinkov V, Borisenko S V, Kordyuk A A,

Zabolotnyy V B, Fink J, Büchner B, Scalapino D J,
Hanke W and Keimer B 2009 Nat. Phys. 5 217

[131] Bloembergen N, Purcell E M and Pound R V 1948 Phys. Rev.
73 679

24

https://doi.org/10.1146/annurev-conmatphys-031218-013413
https://doi.org/10.1146/annurev-conmatphys-031218-013413
https://doi.org/10.1038/nature14964
https://doi.org/10.1038/nature14964
https://doi.org/10.1103/PhysRevLett.126.117003
https://doi.org/10.1103/PhysRevLett.126.117003
https://doi.org/10.1021/acs.inorgchem.0c03795
https://doi.org/10.1021/acs.inorgchem.0c03795
https://doi.org/10.1103/PhysRevB.86.134107
https://doi.org/10.1103/PhysRevB.86.134107
https://doi.org/10.1103/PhysRevB.84.214305
https://doi.org/10.1103/PhysRevB.84.214305
https://doi.org/10.1088/0034-4885/63/2/203
https://doi.org/10.1088/0034-4885/63/2/203
https://arxiv.org/abs/0910.5764
https://doi.org/10.1103/PhysRevLett.90.095506
https://doi.org/10.1103/PhysRevLett.90.095506
https://doi.org/10.1103/PhysRevLett.92.197004
https://doi.org/10.1103/PhysRevLett.92.197004
https://doi.org/10.1103/PhysRevB.75.174508
https://doi.org/10.1103/PhysRevB.75.174508
https://doi.org/10.1103/PhysRevB.98.041112
https://doi.org/10.1103/PhysRevB.98.041112
https://doi.org/10.1103/PhysRevLett.124.077001
https://doi.org/10.1103/PhysRevLett.124.077001
https://doi.org/10.1103/PhysRevLett.92.197005
https://doi.org/10.1103/PhysRevLett.92.197005
https://doi.org/10.1103/PhysRevB.71.060501
https://doi.org/10.1103/PhysRevB.71.060501
https://doi.org/10.1103/PhysRevLett.100.227002
https://doi.org/10.1103/PhysRevLett.100.227002
https://doi.org/10.1038/nphys2805
https://doi.org/10.1038/nphys2805
https://doi.org/10.1143/JPSJ.77.103715
https://doi.org/10.1143/JPSJ.77.103715
https://doi.org/10.1103/PhysRevB.77.140503
https://doi.org/10.1103/PhysRevB.77.140503
https://doi.org/10.1103/PhysRevX.11.031050
https://doi.org/10.1103/PhysRevX.11.031050
https://doi.org/10.21468/SciPostPhys.3.4.026
https://doi.org/10.21468/SciPostPhys.3.4.026
https://doi.org/10.1103/PhysRevB.50.6526
https://doi.org/10.1103/PhysRevB.50.6526
https://doi.org/10.1073/pnas.1721495115
https://doi.org/10.1073/pnas.1721495115
https://doi.org/10.1103/PhysRevB.103.035121
https://doi.org/10.1103/PhysRevB.103.035121
https://arxiv.org/abs/1803.05439
https://doi.org/10.1063/1.4710265
https://doi.org/10.1063/1.4710265
https://doi.org/10.1038/nphys4107
https://doi.org/10.1038/nphys4107
https://doi.org/10.1103/PhysRevB.94.081116
https://doi.org/10.1103/PhysRevB.94.081116
https://doi.org/10.1063/1.1722628
https://doi.org/10.1063/1.1722628
https://doi.org/10.1103/PhysRev.102.331
https://doi.org/10.1103/PhysRev.102.331
https://doi.org/10.1103/PhysRev.102.325
https://doi.org/10.1103/PhysRev.102.325
https://doi.org/10.1002/andp.19123441202
https://doi.org/10.1002/andp.19123441202
https://doi.org/10.1088/0953-8984/15/3/324
https://doi.org/10.1088/0953-8984/15/3/324
https://doi.org/10.1021/acs.macromol.1c00075
https://doi.org/10.1021/acs.macromol.1c00075
https://doi.org/10.1063/1.1740606
https://doi.org/10.1063/1.1740606
https://doi.org/10.1103/RevModPhys.38.669
https://doi.org/10.1103/RevModPhys.38.669
https://doi.org/10.1016/0022-3697(66)90199-5
https://doi.org/10.1016/0022-3697(66)90199-5
https://doi.org/10.1063/1.1709110
https://doi.org/10.1063/1.1709110
https://doi.org/10.1016/0032-3861(83)90269-0
https://doi.org/10.1016/0032-3861(83)90269-0
https://doi.org/10.1046/j.1365-246X.2000.01266.x
https://doi.org/10.1046/j.1365-246X.2000.01266.x
https://doi.org/10.1088/0370-1328/91/4/318
https://doi.org/10.1088/0370-1328/91/4/318
https://doi.org/10.1016/j.vibspec.2006.04.014
https://doi.org/10.1016/j.vibspec.2006.04.014
https://doi.org/10.1103/PhysRevB.8.1965
https://doi.org/10.1103/PhysRevB.8.1965
https://doi.org/10.1139/p71-021
https://doi.org/10.1139/p71-021
https://doi.org/10.1007/BF00724577
https://doi.org/10.1007/BF00724577
https://doi.org/10.1103/PhysRevB.42.4272
https://doi.org/10.1103/PhysRevB.42.4272
https://doi.org/10.1103/PhysRevLett.102.217001
https://doi.org/10.1103/PhysRevLett.102.217001
https://doi.org/10.1103/PhysRevB.99.220505
https://doi.org/10.1103/PhysRevB.99.220505
https://doi.org/10.1007/s12043-008-0257-z
https://doi.org/10.1007/s12043-008-0257-z
https://doi.org/10.1103/PhysRevB.89.104503
https://doi.org/10.1103/PhysRevB.89.104503
https://doi.org/10.1103/PhysRevLett.87.037001
https://doi.org/10.1103/PhysRevLett.87.037001
https://doi.org/10.1143/JPSJS.71S.338
https://doi.org/10.1143/JPSJS.71S.338
https://doi.org/10.1103/PhysRevLett.22.346
https://doi.org/10.1103/PhysRevLett.22.346
https://doi.org/10.1016/0039-6028(71)90277-9
https://doi.org/10.1016/0039-6028(71)90277-9
https://doi.org/10.1016/0039-6028(94)90683-1
https://doi.org/10.1016/0039-6028(94)90683-1
https://doi.org/10.1103/PhysRevLett.107.095502
https://doi.org/10.1103/PhysRevLett.107.095502
https://doi.org/10.1039/c3cp54834a
https://doi.org/10.1039/c3cp54834a
https://doi.org/10.3390/condmat5040079
https://doi.org/10.3390/condmat5040079
https://doi.org/10.1038/s41699-021-00204-5
https://doi.org/10.1038/s41699-021-00204-5
https://doi.org/10.1103/PhysRevB.49.5777
https://doi.org/10.1103/PhysRevB.49.5777
https://doi.org/10.1103/PhysRevLett.107.186102
https://doi.org/10.1103/PhysRevLett.107.186102
https://doi.org/10.1103/PhysRevLett.108.185501
https://doi.org/10.1103/PhysRevLett.108.185501
https://doi.org/10.1103/PhysRevLett.117.068001
https://doi.org/10.1103/PhysRevLett.117.068001
https://doi.org/10.1002/adfm.201904784
https://doi.org/10.1002/adfm.201904784
https://arxiv.org/abs/2203.03499
https://doi.org/10.1088/0022-3719/13/33/009
https://doi.org/10.1088/0022-3719/13/33/009
http://arxiv.org/abs/physics/0312016
https://doi.org/10.1073/pnas.1422509112
https://doi.org/10.1073/pnas.1422509112
https://doi.org/10.1103/PhysRevLett.90.197001
https://doi.org/10.1103/PhysRevLett.90.197001
https://doi.org/10.1063/1.1704612
https://doi.org/10.1063/1.1704612
https://doi.org/10.1016/S0921-4534(02)02344-4
https://doi.org/10.1016/S0921-4534(02)02344-4
https://doi.org/10.1038/nphys1180
https://doi.org/10.1038/nphys1180
https://doi.org/10.1103/PhysRev.73.679
https://doi.org/10.1103/PhysRev.73.679


J. Phys.: Condens. Matter 36 (2024) 173002 Topical Review

[132] Dioguardi A et al 2013 Phys. Rev. Lett. 111 207201
[133] Imai T and Hirota K 2018 J. Phys. Soc. Japan 87 025004
[134] Hunt A, Singer P, Cederström A and Imai T 2001 Phys. Rev.

B 64 134525
[135] Baek S-H, Loew T, Hinkov V, Lin C, Keimer B, Büchner B

and Grafe H-J 2012 Phys. Rev. B 86 220504
[136] Wu T et al 2013 Phys. Rev. B 88 014511
[137] Julien M-H, Borsa F, Carretta P, Horvatić M, Berthier C and
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