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”Two is company, three is a crowd.”

Conventional wisdom also suggests staying
away from more than two-body systems.

”Running, running on tracks
With feet on the ground

It will only slow me down
And which way the wind blows

I run like a man ready to go anywhere.

[...]

Sometimes I spin around for days
Skip and chase and say
Forget about tomorrow

Until I realize
This valid and logic motion

Is what keeps me from moving
Keeps you from leaving

And what keeps us from leaving
I don’t know, I understand.”

Melody of certain three, Blonde Redhead.

The first part is more about me,
the second part more about hierarchical systems.

But it could be the opposite.
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Part I

Introduction & Fundamental
Theory





CHAPTER 1

Motivation and outline

Motivation

The quest for understanding the origin of our planet is as old as humankind, as it is a
milestone in understanding ourselves. The modern idea that planets form inside disc-
like structures orbiting stars was born in the 17th and 18th centuries by Swedenborg, and
then Kant (1755) and Laplace (1796). From that seminal idea, in the middle of the last
century, astrophysicists started modelling accretion discs, the precursors of planetary
systems, without having observations to compare with (Hoyle 1960). Indeed, the first
observations of these structures were taken by the Hubble Space Telescope only in the
Nineties (e.g. McCaughrean & O’Dell 1996, Fig. 1.1a). Starting in the sixties, astrophysi-
cists modelled stellar and planet formation with the simplest possible model. Collapsing
gas settling in a central protostar surrounded by a flat rotating disc-like structure formed
due to angular momentum conservation (now condensed in the ‘classical accretion disc
theory’, e.g. Frank et al. 2002, see Part I Chap. 4). This successful idea, rooted in phi-
losophy and galactic models, soon highlighted a whole bunch of missing crucial details,
starting the still ongoing hunt for a global and complete theory.

Only in the last 10 years, modern telescopes and facilities such as ALMA and SPHERE
have given us the sharp and detailed observations we are nowadays used to (like the
ones in Fig. 1.1b from Andrews et al. 2018). Also, we have now access to a vast amount
of information about stellar system statistics. This data taught us that, among the many
peculiarities of our own Solar System compared to other planetary systems, the most
common condition for a star is to belong to a multiple stellar system, rather than to live
in isolation (e.g. Duchêne & Kraus 2013; Offner et al. 2022, Part I Chap. 3).

Hints that systems with more than one star could be common in the universe were
there well before the observational evidence. Seminal work by Larson (1972) suggested
that most, if not all, stars formed inside a multiple stellar system. Thus, scientists soon
started working on modelling the interaction between accretion discs and binary sys-
tems (e.g. Lin & Pringle 1976; Papaloizou & Pringle 1977, Part I Chap. 4.2). These crucial
works greatly advanced the theory of disc evolution and allowed us to interpret features
in observations.

Multiplicity, other than being useful, is unavoidable. First, we know from evolved
stellar population surveys that multiple stellar systems are common, even if not the ma-
jority below the solar mass. However, even accounting only for field population statis-
tics, most stars live in multiple stellar systems. But, we know that the number of multiple
stellar systems tends to decrease with time, and we do observe a higher occurrence of
multiple stellar systems in younger populations (Tobin et al. 2022). The younger the sys-
tem, the harder it is to observe — due to the surrounding environment which becomes
progressively thicker. On the other hand, numerical simulations of collapsing molecular

3



4

(a)

(b)

Figure 1.1: Left panel: HST Orion nebula image (McCaughrean & O’Dell 1996). Right
panel: DSHARP survey of high-resolution dust images of 20 nearby protoplanetary
disks observed with ALMA (Andrews et al. 2018).
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clouds are extremely relevant and useful to track the early phases of evolution in the stel-
lar formation process (Bate et al. 2002; Krumholz et al. 2012; Bate 2018, 2019; Mathew &
Federrath 2021; Mathew et al. 2023; Lebreuilly et al. 2023). The current goal is to reduce
the age of the populations for which we have reliable and complete surveys in order to
consistently compare them with the most recent numerical predictions. Both numeri-
cal simulations and observations are converging towards the following facts: i) most of
the stars are born in multiple stellar systems; ii) discs are born and get destroyed within
these systems; and iii) planet formation processes (which are believed to act nearly at the
same time as stellar formation processes) are deeply affected by stellar multiplicity. Tak-
ing its effects into account is not just a theoretical exercise or an effort to study atypical
configurations, but rather the way in which we can really understand what is actually
happening in realistic star-forming environments.

With the advent of modern instruments allowing the observation of snapshots of the
ongoing planet and stellar formation process, scientists were forced to deal with these
additional complexities found in nature. Remarkably, there is little trace of the (classical)
smooth flat homogeneous axisymmetric disc-like structure orbiting a single protostar.
Discs show substructures, they present asymmetric features, they are not smooth but
full of gaps and bumps, they are not planar but often distorted and broken. And, finally,
a lot of them are orbiting within or around multiple stellar systems. It is even possible
that all of them were once part of a system made of several young stars.

To have a grasp of the diversity of the protoplanetary discs zoo, Figure 1.1b shows a
survey of protoplanetary discs known as the Disk Substructures at High Angular Res-
olution Project (DSHARP Andrews et al. 2018). This set of ALMA observations collects
high-resolution dust images of 20 nearby protoplanetary disks and showcases the va-
riety of features they contain. A satisfactory and natural way to explain many of these
features is the presence of more than one body in the system. Namely, it could be a planet
carving gaps in the disc or a (often undetected) stellar companion inside or outside the
disc, distorting and tilting it.

I am going to give some examples of observation of specific multiple stellar systems
to showcase the early stages of stellar evolution in these configurations (a broader discus-
sion about observations of discs within multiple stellar systems can be found in Zurlo
et al. 2023). By focusing on single sources, the intricacies due to the presence of addi-
tional bodies are stunning. The young stellar system GG Tauri A stands as a crucial focal
point in the investigation of stellar and planetary formation processes. This system is
located within the Taurus-Auriga star-forming region, approximately 145 parsecs from
Earth (Galli et al. 2019). GG Tauri A consists of a hierarchical triple system surrounded
by a circumtriple accretion disc with unresolved material in the disc central cavity. More-
over, the system is orbited by a binary, GG Tauri B, which makes GG Tauri a quintuple
hierarchical system (Köhler 2011a; Cazzoletti et al. 2017; Aly et al. 2018; Keppler et al.
2020). Having both gas and dust observations, the protoplanetary disk surrounding GG
Tauri A presents an exceptional opportunity to delve into the mechanisms underlying
planetesimal assembly and planetary system formation in multiple stellar systems. Fig-
ure 1.2 shows SPHERE and ALMA images of dust and gas components (Keppler et al.
2020; Phuong et al. 2020). From these observations, it is evident the presence of a central
cavity carved by the triple stellar system, along with the material inside it supplied by
the accretion streams launched from the edge of the cavity.

The young protostellar system GW Orionis (Kraus et al. 2020; Bi et al. 2020; Small-
wood et al. 2021) emerges as another prime example of a forming multiple stellar sys-
tem. Situated in the well-studied Orion Molecular Cloud complex, GW Orionis capti-
vates researchers with its dynamic and complex configuration. This protostellar system
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Figure 1.2: (a): SPHERE polarised intensity image of GG Tau A, from Keppler et al.
(2020). (b): ALMA continuum image at 0.9 mm, from Phuong et al. (2020)

comprises three stars, with discs orbiting different hierarchical levels. Particularly, the
circumtriple disc presents gaps and it is broken into three rings which are misaligned to
each other. Figure 1.3 shows dust observation taken with ALMA along with a sketch of
the system configuration with its three rings and the inner disc orbiting the stars of this
triple system.

The last example I want to mention is the protostellar system HD 98800 (Kennedy
et al. 2012; Zúñiga-Fernández et al. 2021). This system is a well-known hierarchical
quadruple stellar system 44.9 parsecs from Earth, in the TW Hydrae Association. It con-
sists of two pairs of binaries orbiting each other. The most peculiar characteristic of this
system is that one of its two binaries hosts the first observed polar accretion disc, which
is nearly perpendicular to the central binary orbit. Figure 1.4 shows dust observation
from ALMA of the disc orbiting HD 98800B along with the orbits of the inner binary and
the outer orbit traced by the centre of mass of HD 98800A binary.

Such systems offer a unique laboratory for studying the intricate interplay of gravita-
tional forces and accretion phenomena that govern the formation of stars and planetary
bodies. Investigating these stellar configurations not only contributes to our understand-
ing of the specific evolutionary trajectory of these systems but also provides broader in-
sights into the processes shaping stellar and planet populations during their early stages.

Ultimately, this vivid and complex display of order within chaos, showcasing a wide
variety of forms, arises from the laws of physics. All these irregularities, imperfections,
rough textures, and chaotic elements are not just unfortunate side effects; rather, they
are an integral part of the process of star and planet formation. This aspect is a crucial
component of the process and provides a valuable chance to gain a more profound un-
derstanding of how things have developed to reach their current state. According to
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Figure 1.3: Observations and model for the GW Ori system. On the top line: 1.3mm
thermal dust continuum emission observed with ALMA. On the bottom line: illustration
of the 3-dimensional orientation of the disk (left) and stellar (right) components. R1, R2
and R3 label the three dusty rings. Images from Kraus et al. (2020)

Figure 1.4: ALMA 1.3 millimetre continuum image of the HD 98800 dust disc. White
lines show the inner binary’s orbits and the outer binary’s path. Image from Kennedy
et al. (2012)
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Occam’s razor, these additional complexities could not be a strange avoidable ingredi-
ent for stepping from the initial conditions to the configurations we observe. Complexity
has to be one key ingredient, otherwise, it would not be there. This is how the role of
multiple stellar systems in stellar and planet formation theory is to be approached. Stel-
lar multiplicity does not constitute an undesirable complexity in our theories, but rather
allows us to look into the gears of astrophysical processes.

In the same way scientist initially simplified their models assuming discs orbiting
single stars, nowadays we simplify the interaction between accretion discs and multiple
stellar systems assuming them to behave like the simplest of them, a binary. An isolated
binary orbit is well described by analytical solutions, it is predictable and immutable
(e.g. Murray & Dermott 1999, Part I Sec. 2.1). We can more easily investigate how the
binary impact disc evolution and vice-versa. However, reality is certainly more complex
than this simplified view. A good portion of multiple stellar systems studied as bina-
ries (like GG Tau and HD 98800, to name two already presented previously) are made
of more than two stars. Therefore, modern astrophysicists are currently expanding this
theoretical framework to include systems with more than two stars. While these systems
resemble pure binary systems over shorter timescales, they exhibit distinct behaviours
and uniquely impact their surrounding environment. Indeed, once we introduce an ad-
ditional companion to a binary we have no analytical solutions for the system motion
and we have to deal with the chaotic nature of N-body systems (e.g. Valtonen & Kart-
tunen 2006, Part I Chap. 2). The presence of more than two stars implies the possibility
of misalignment, orbits are not immutable anymore even if isolated, they can result in
chaotic motion and more complex evolution. However, we are now aware that stellar
multiplicity is a key ingredient to understand disc and planet evolution. This constitutes
the main objective of my thesis.

Thesis outline

During my PhD, I generalised physical processes studied in the context of binary sys-
tems to systems with more than two stars. The aim of my research is, at the same time,
to explain what we observe in stellar and planetary populations and to exploit the addi-
tional degrees of freedom of multiple stellar systems. This allowed me to put constraints
on the properties of the environment in which stars form and also to study their expected
evolution in detail. The thesis is organised as follows:

• Part I introduces the fundamental concepts on which my work is rooted. I present
multiple stellar system dynamics both for binaries and for systems with more than
two stars (mainly taking hierarchical triple systems as the reference). Binary sys-
tems help me introduce properties and definitions useful for multiple stellar sys-
tems in general. Then, I discuss what are the consequences of adding a third body
to the system and how we can deal with the chaotic behaviour of such config-
urations. In this, I also discuss multiple stellar systems statistics, to underline
what was already stated previously: multiple stellar systems are the common play-
ground for young stars and planets. Finally, I present the hydrodynamics of accre-
tion discs, starting from discs orbiting single stars and, then, generalising concepts
to discs interacting with more than one star and introducing additional considera-
tions about phenomena typical of multiple stellar systems with discs.
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• With the foundations laid down, I step into presenting the works I carried out dur-
ing my PhD. Part II presents my investigation on accretion rates in hierarchical
triple systems with discs based on the paper Ceppi et al. (2022). In the hunt for
extrasolar planets, astronomers look for tiny deviations in different kinds of stel-
lar system emissions to spot formed massive bodies orbiting the stars. In the last
20 years, the observed planet population has risen up to more than 5000 observed
exoplanets. This statistic acts both as a test and as a guide for planet formation
theories. Indeed, on the one hand, theory must be able to justify the observed pop-
ulation in terms of mass, composition and configuration (both the planetary archi-
tecture and the configuration of the hosting system). On the other hand, once we
correct surveys for detection biases we find clues on which planets are more likely
to form and where. Given that multiple stellar systems are very common, partic-
ularly during the planet formation epoch, such surveys guide our understanding
of which conditions are favourable to planet formation in complex stellar system
configurations. Going backwards, a planet formed in a multiple stellar system has
to form on a stable orbit1. Otherwise, it will be soon ejected from the system. Even
before, regions in which we observe planets must have had enough material for
them to form. In multiple stellar systems, this could be a limiting factor. Indeed,
once the system and its discs have formed, inner discs in the system see their dust
quickly drift away depleting them from material needed for planet formation. This
means discs have to both be able to form and they need to be replenished of gas and
dust from the surrounding environment. One interesting aspect of this problem is
the so-called differential accretion dynamics in multiple stellar systems, that is how
mass from an accretion disc distributes over the star of a multiple stellar system. In
the context of binaries, material in the circum-binary disc accretes towards the bi-
nary and accretes on one of the two binary stars. The way material distributes over
the stars depends on both the binary orbit and disc properties. Broadly speaking,
the lightest star of the binary is generally favoured slowly leading binary systems
towards mass equalisation. On top of modifying stellar masses, this process dic-
tates also where material needed for building planets is more abundant and, thus,
where planets are more likely to form. In Ceppi et al. (2022) I investigated this
process, generalising it to systems with more than two stars, with an analytical ap-
proach tested against state-of-the-art numerical simulations. This work presents
the deviations of hierarchical stellar system differential accretion processes from
the binary configuration, which was the only one studied in the literature. In addi-
tion, it discusses the expected impact of this process on populations of hierarchical
stellar systems.

• Part III presents the investigation I carried out on the process of polar alignment
in hierarchical systems with more than two stars. As previously discussed, the
study of multiple stellar systems constitutes a precious opportunity for develop-
ing a deeper understanding of stellar and planet formation. Indeed, compared
to single stellar systems, they offer us a wider set of processes and parameters to
investigate. Surveys of multiple stellar system parameters, like surveys of exoplan-
ets, are valuable to gain insight into the physical processes shaping the population.
One of these interesting parameter surveys is the distribution of the angle between
a circum-multiple disc plane and the orbit of the system inside the disc cavity (so-
called mutual inclination). Indeed, the mutual inclination distribution encodes in-
formation both on the formation history of the stellar and disc population (i.e. how

1Moreover, stable orbits in the presence of surrounding disc gas could be unstable once the disc disappears.
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it was distributed at the onset of stellar formation) and on its evolution, which de-
pends on crucial parameters in the disc physics such as the amount of viscosity
driving disc evolution. The process of polar alignment in discs within multiple stel-
lar systems, which drives a disc to become orthogonal with respect to the (inner)
stellar orbital plane, is of particular interest. This process is invoked to explain
the small population of perpendicular discs we observe, which otherwise should
have no reason to form and remain stable. Usually, mutual inclination surveys are
interpreted ignoring crucial differences between binaries and systems with more
than two stars. However, in surveys of mutual angle, a predominant fraction of
non-coplanar discs are orbiting in systems with more than two stars. In the paper
Ceppi et al. (2023), I found that binary criteria for polar alignment are necessary
but not sufficient when two stars are at play. In particular, the additional analytical
criterion I introduced suggests a new interpretation of mutual inclination surveys
which was not taken into account before.

• Part IV discusses the result I obtained in the paper Ceppi et al. (2024), where I
developed a simple statistical model to retrieve the initial mutual angle and eccen-
tricity distributions in a multiple stellar system population. This estimate is done
from the mean properties of the observed polar disc population only. Surveys of
mutual angles can inform us about the distribution of multiple stellar systems and
disc properties at the onset of stellar formation and, possibly, about the molecular
cloud properties in which stars are forming. Indeed, while most of the discs in
multiple stellar systems slowly dissipate their mutual angle with time, the popula-
tion of polar discs quickly settle into a polar configuration as long as the conditions
for polar alignment are met. Thanks to the sharp and faster evolutionary track of
polar discs we can link the statistical properties of the polar population in more
evolved stages to the conditions of the population in which these configurations
formed at the onset of stellar formation processes. Such distributions are hard to
measure because newly formed systems are still embedded in their natal clouds.
However, via the model I developed, it is possible to measure them. Once these
primordial distributions are constrained, numerical simulations can retrieve their
dependency on molecular cloud properties. Indeed, such distributions have to re-
sult from the condition in which stellar formation occurs in general (e.g. level of
turbulence, strength of magnetic fields). Thus, a precise measure of such distribu-
tion along with numerical investigations of the physics producing them will allow
us to put constraints on the condition in which stars and planets form, both in
single and multiple stellar systems.

• In Part V I conclude this thesis by giving my perspective and discussing the sig-
nificance of my results in the context of the dynamics of accretion discs in multiple
stellar systems. Last, I suggest future developments in the field of astrophysics
related to the research topics I covered in this thesis.



CHAPTER 2

Binary and triple systems celestial mechanics

I introduce the mechanics of the two-body gravitational problem, in order to obtain re-
lations and concepts that will be useful in the rest of the thesis. In Section 2.1 I show
that the two-body problem is integrable and I discuss the geometry of the orbit (detailed
demonstration in Valtonen & Karttunen (2006), Chapter 3). In Section 2.2 hierarchical
triple systems are discussed, along with the problem of chaos and orbital stability and
the evolution of stable hierarchical configurations. Finally, in Section 2.3 I present the
way in which I implemented the setup of generic hierarchical systems for hydrodynam-
ical simulations of accretion discs orbiting systems with more than two stars in the code
PHANTOM.

2.1 Binary celestial mechanics

The two-body gravitational problem pertains to the study of a system composed of two
point-like massive bodies that interact through the force of gravity. In this context, we
denote the two masses as m1 (heavier body) and m2 (lighter body), and their respective
positions as r1 and r2. The vector r represents the relative position of m2 with respect to
m1, and r is the magnitude of this vector. The gravitational interaction between these
two bodies is described by the following force equations:

F1 = Gm1m2

r3
r (2.1)

and
F2 = −Gm1m2

r3
r, (2.2)

where, G represents the universal gravitational constant.
From Newton’s second law, we can write the following equation of motion:

r̈ = r̈2 − r̈1 = −GM
r3

r, (2.3)

where M = m1 +m2. Notably, this equation can be rewritten as:

µr̈ + GµM r
r3

= 0, (2.4)

Here, µ = m1m2

M is known as the ”reduced mass.” The vector r in Equation (2.4) charac-
terises the motion of a point particle with mass µ in a gravitational force field generated
by a mass M fixed at r = 0. At any given time, the position and velocity of µ are rep-
resented by r and ṙ, which correspond to the relative position and velocity of m2 with

11



12 2.1 Binary celestial mechanics

respect to m1. Thus, the relative position and velocity between the two stars evolve as
the position and velocity of a star of mass µ orbiting a star of massM , fixed in the origin.

Additionally, it is important to note that the total energy and angular momentum
of the reduced system are the same as those of the original system, even if the reduced
system is not inertial.

To solve the two-body problem equation of motion, we require 12 integration con-
stants. The conservation of total energy and angular momentum is a consequence of
the system’s isolation, i.e., the absence of external forces and torques, as well as the
conservative nature of gravitational forces. The conservation of angular momentum im-
plies that the orbit of the system lies in a fixed plane, referred to as the orbital plane.
This plane is perpendicular to the angular momentum and passes through the center
of mass. Furthermore, it can be demonstrated that the center of mass of the system
undergoes uniform rectilinear motion, allowing us to determine the first 6 integration
constants, namely the position and velocity of the center of mass.

In the frame of reference of the heavier body m1, we can express the total angular
momentum per unit mass, h, as:

h = r × ṙ. (2.5)

Since this vector is constant, we obtain three additional integration constants.
Two more integration constants can be found by computing the time derivative of

the vector product h × ṙ. In fact:

d

dt
(h × ṙ) = h × r̈ =

= −(r × ṙ)× GMr
r3

=

= −GM
r3

((r · r)ṙ − (r · ṙ)r) =

= −GM
(

ṙ
r
− ṙr
r2

)
=

=
d

dt

(
−GMr

r

)
,

(2.6)

and thus:
d

dt

(
h × ṙ +

GMr
r

)
= 0. (2.7)

When integrated over time, this gives:

A = −
(

h × ṙ +
GMr
r

)
= GMe (2.8)

where A is a constant vector known as Lenz vector and e, constant as well, is a vector
called the ”eccentricity vector”, which interpretation is discussed later in the section.

Given that h and e are not mutually independent (it can be shown that h · e = 0),
the conservation of the eccentricity vector yields only two more independent integration
constants. With 11 integration constants in hand, we can determine the orientation and
shape of the orbit, but not the position of the stars at a given time.

To determine the position ofm2 at a specific time, we need one additional integration
constant. For practical reasons, we define a time τ at which the secondary is at a reference
position r0.
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The total energy of the system per unit mass is given by:

E =
1

2
ṙ2 − Gm1m2

r
. (2.9)

While E is conserved, it can also be expressed in terms of h and e. Thus, it doesn’t pro-
vide additional integration constants. Indeed, taking the scalar product of the definition
of e in (2.8):

GM
( r
r
+ e
)
= ṙ × h, (2.10)

and using the fact that ṙ and h are mutually perpendicular, we obtain:

G2M2
(
1 + 2

r · e
r

+ |e|2
)
= ṙ2h2. (2.11)

By rewriting r · e with the definition of e in (2.8):

r · e =
h2

GM
− r, (2.12)

and rewriting ṙ2 with the definition of E in (2.9), we can deduce from (2.11):

E =
GM
2h2

(|e|2 − 1). (2.13)

The geometry of the orbit can be obtained from (2.12), writing r · e = r|e| cosϕ, where
the angle ϕ is called the ”true anomaly,” resulting in:

r =
h2/(GM)

1 + |e| cosϕ
. (2.14)

Equation (2.14) can be expressed in the form:

r =
p

1 + e cos(ϕ)
. (2.15)

This is the general equation of a conic in polar coordinates, where e is the ”eccentricity”,
p is the ”semilatus rectum”, and ϕ is the angle between the direction of r and a reference
fixed direction.

The comparison between (2.14) and (2.15) clarifies why we refer to e as the ”eccen-
tricity” vector. Its absolute value corresponds to the eccentricity of the orbit. Moreover,
ϕ in (2.14) represents the angle between r and e. We observe that r is minimum when
ϕ = 0. Consequently, e points in the direction of the ”pericenter”, which is the point of
the orbit where m1 and m2 reach their shortest relative distance.

Equation (2.13) demonstrates that in a bound orbit, where the total energy must be
negative, the eccentricity must be strictly less than 1. Therefore, a bound two-body sys-
tem follows an elliptical orbit, which is a specific conic curve. The semilatus rectum of an
ellipse is defined as p = a(1− e2), where a represents the semi-major axis of the ellipse.
In addition, for a given orbital angular momentum, the orbit with the lowest energy is
the circular one.

From the same comparison, we can derive that p = h2/(GM), and consequently:

a(1− e2) = h2/(GM). (2.16)
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Substituting h2 in the previous, using (2.13), gives us

a = −GM
2E

. (2.17)

The previous equation reveals that the total energy of the orbit is entirely defined by its
semi-major axis, and vice versa.

Using (2.17) and (2.16), we can express the eccentricity as:

e2 = 1− h2

GMa
. (2.18)

The previous equation highlights that for fixed energy (or a fixed semi-major axis), the
total angular momentum of the orbit is entirely determined by its eccentricity, and vice
versa.

In celestial mechanics, the information about the geometry of a binary system orbit
is condensed into six parameters called orbital elements (also called Campbell elements)
and sketched in Fig. 2.1:

• the eccentricity e;

• the semimajor axis a;

• the inclination I ;

• the longitude of the ascending node Ω;

• the argument of periapsis ω;

• the true anomaly f ;

We already encountered e and a. Together, they fix the shape and size of the elliptic
orbit. Given a frame of reference (X,Y, Z), the inclination and longitude of the ascending
node fix the orbital plane (x, y, z) onto which the orbit lies. I is the angle between the
z and the Z axes. Ω is the angle between a reference direction and the line of nodes (i.e.
the intersection between the orbital plane and a reference plane). Finally, ω is the angle
between the pericenter direction and the line of nodes and sets the orientation of the
ellipse on the plane of the orbit, while f defines the position of the two bodies at a
given epoch. These elements, together with the two systems’ masses, fully define the
configuration of the system at each epoch.

2.2 Triple celestial mechanics

The general three-body problem is known for lacking a closed-form solution. Even if
Sundman in 1912 published an analytical solution to the problem as a power series, the
convergence is so slow it is less efficient than direct numerical integration. In general,
contrary to the two-body problem, three-body motion is not periodic and the dynamic
is chaotic (meaning that infinitesimally close initial conditions soon undergo drastically
different evolution paths). In Section 2.2.1 we briefly present the problem of chaos and
how to deal with it. However, in astrophysics, we are mostly interested in solutions to
the problem that show long-lasting stability. Luckily, there are specific configurations
which show periodic motion (see some examples in Fig. 2.2) and a class of them in par-
ticular is stable over small perturbations: the hierarchical configurations. We discuss
hierarchical triple systems in Section 2.2.2 and how I implemented their setup in the
hydrodynamical code PHANTOM in Section 2.3.
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Figure 2.1: (x, y, z) orbital plane coordinate system and (X,Y, Z) reference plane coor-
dinate system with the two-body elliptic orbit and the geometrical meaning of Eulerian
angles. Figure from Murray & Dermott (1999)

2.2.1 Chaos and triple systems stability

Chaos is a well-studied feature within the 3-body problem. Each point in the system
phase space can be mapped to a unique orbit, but the orbits in the neighbourhood of this
point are in general very different from the original orbit, and there’s no closed-form
analytical solution for the general problem.

Given the lack of a useful analytical theory that can describe 3-body orbits, a statis-
tical approach is useful in order to study the stability of a triple system given its initial
condition.

The moment of inertia of a three-body system computed in its center of mass is

I = m1r
2
1 +m2r

2
2 +m3r

2
3, (2.19)

where mi are the three masses of the triple and ri = |ri| are their distances from the
center of mass. Differentiating twice the moment of inertia with respect to time leads to
the Lagrange-Jacoby identity

1

2
Ï = 2T + V = 2E − V, (2.20)

where T and V are the kinetic and potential energy, and E = T + V is the total energy.
The moment of inertia measures the compactness of the three-body system. When Ï > 0,
the expansion is accelerating, and this leads to the escape of one body. However, when
⟨Ï⟩ ≈ 0 the system is bounded within a fixed volume. From numerical orbit calculations
the potential energy V is known to fluctuate a lot, and since E is a constant, Ï must
fluctuate around zero as well.
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Figure 2.2: 20 different examples of periodic solutions to the three body problem. From
Wikipedia, here is the animated version of this image.

Thus, equation (2.20) along with numerical orbit calculations show that the dynamic
of the system consists in a repetition of compact configurations followed by ejections.
This does not prove that escape unavoidably occurs, but when the possibility of escape
is offered often enough, the ejection of one of the bodies in the system becomes likely
(Valtonen & Karttunen 2006).

The study of the stability of a triple configuration consists of first determining the
perturbation of the binary orbital parameters in the presence of a third body, setting a
threshold to define the disruption of the system (based for example on a threshold in
the energy exchange between the bodies). Secondly one has to exploit this relation over
many orbits and define a stability limit to guarantee long-lasting stability (Valtonen et al.
2006). This stability threshold usually results in conditions for the minimum stable ratio
between the semi-major axis of the binary and of the third body as a function of the other
orbital elements and stellar masses.

Different studies resulted in different expressions for the semi-major axes ratio (e.g.
Eggleton & Kiseleva 1995; Mardling & Aarseth 2001), with slightly different dependen-
cies on masses and orbital elements. This is due to the different definitions of stability
thresholds used. Moreover, as previously said, the phase space of a triple system is
extremely complicated and it is possible to find examples that contradict each of these
relations, and the definitive check for stability is the actual orbit integration, especially

https://en.wikipedia.org/wiki/Three-body_problem
https://upload.wikimedia.org/wikipedia/commons/5/5a/5_4_800_36_downscaled.gif
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Figure 2.3: Hierarchical triple system sketch (not to scale). Light blue refers to the outer
orbit, dark blue to the inner one. Dashed curves, crosses and arrows are the orbit, center
of mass and eccentricity vector of the hierarchical level considered.

in the vicinity of the stability limit (Mikkola 2008).
Given the chaotic nature of multiple stellar system evolution, modern machine learn-

ing techniques are starting to be used in order to predict the stability of a system. Re-
cently, Vynatheya et al. (2022) presented a machine learning application aiming at classi-
fying hierarchical triple systems as stable or unstable based on their osculating elements.
By training machine learning algorithms on simulated three-body system trajectories,
the model is able to learn non-linear interactions and predict the long-term system evo-
lution, outmatching criteria obtained with a perturbative approach.

As pointed out in Valtonen & Karttunen (2006) and in Mikkola (2008), the distribu-
tion of lifetime in the phase space is chaotic but not random. There are islands of stability
where neighbour orbits have lifetimes similar to each other. These islands form struc-
tures, that in turn show in turn substructures, in a fractal behaviour.

These islands of weak chaos are found also at two extremes of the three-body be-
haviour: rapid encounters and hierarchical systems. The former are configurations with
zero lifetime, in which a third body in a hyperbolic orbit approaches a binary perturb-
ing it and leaves the system on a new hyperbolic orbit. The latter are the vast majority
of the stable configuration for an N-body gravitational system and are also organised
in a fractal structure. Indeed, in a hierarchical system, we have hierarchy levels that
split in hierarchical systems themselves, as represented in figure 2.6 for the hierarchical
quintuple stellar system GG Tauri.

2.2.2 Hierarchical configuration

The structures of observed triples tend to be hierarchical, as different configurations have
a shorter life-time. A hierarchical triple (hereafter HT) system, shown in Fig. 2.3, consists
of a binary (ma and mb) and a distant star (mc) that orbits the center of mass of the inner
binary.

If the third body is sufficiently distant, an analytical perturbative approach is possible
in order to compute the evolution of the system. In that case, a first approximation of
the inner and the outer orbit is the exact two-body orbit.

A system is considered hierarchical if there is no energy exchange between the two
orbits and thus the inner and outer semi-major axes remain constant. However, angu-
lar momentum exchange between the inner and the outer orbit is allowed and leads to
periodic oscillations in their eccentricities. In a non-coplanar configuration, Kozai-Lidov
cycles are possible (Kozai 1962; Lidov 1962, see Naoz (2016) for a recent review), in which
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the conservation of the angular momentum makes the eccentricity and the mutual incli-
nation of the orbits to oscillate on a period larger than the orbital periods.

At each instant, we can neglect the perturbations due to the triple nature of the sys-
tem and compute the orbital elements of the elliptical orbits that the three bodies would
follow. These elements are called osculating elements. The set regarding the inner binary
describes the orbit that the inner bodies would follow if the third body would instanta-
neously disappear. The set referring to the third body describes the orbit that it would
follow if the inner binary was reduced to a single body with the total mass of the binary
and in its center of mass.

In the case of a hierarchical triple system, we can thus describe the instantaneous
state of the system with 10 elements: the binary mass ratio q = m2/m1, the triple mass
ratio Q = m3/(m1 +m2), the semi-major axes ratio, the two eccentricities, the two initial
anomalies and the three Eulerian angles to orient the orbits in respect to each other.

When a clearly defined binary and a distant third body can be identified, as in the
hierarchical triple case, it is useful to describe the system in the Jacobi system of coordi-
nates. We call the position of the center of mass of the binary rB. Calling r1 and r2 the
position of the primary and of the secondary of the inner binary respectively, we define
the relative position vector of the binary as r = r2 − r1. Moreover we call R3 the position
of the third body from the center of mass of the binary. m1, m2 and m3 are the primary
and secondary mass of the inner binary, and the third body mass, respectively. These
quantities are represented in Fig. 2.4.

Figure 2.4: Jacobi coordinates: m1 and m2 form the inner binary and m3 is the distant
third body.

We can express R3 as

R3 =
m1

m1 +m2
r31 +

m2

m1 +m2
r32 =

=

(
m1

m1 +m2
+

m2

m1 +m2

)
R3 +

(
m1m2

(m1 +m2)
2 − m1m2

(m1 +m2)2

)
r,

(2.21)

where r31 and r32 are the distances of the third body from the primary and the secondary
respectively. Note that we can write

r31 = R3 +
m2

m1 +m2
r, (2.22)
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and
r32 = R3 −

m1

m1 +m2
r. (2.23)

From Newton’s second law we can write

r̈1 = −G
(
m2

r12
r312

+m3
r13
r313

)
(2.24)

and

r̈2 = −G
(
m3

r23
r323

+m1
r21
r321

)
, (2.25)

and subtracting the previous two equations we obtain

r̈ = −G
[
(m1 +m2)

r
r3

+m3

(
r31
r331

− r32
r332

)]
. (2.26)

The same can be done in equation (2.21) for the third body:

R̈3 =
m1

m1 +m2
r̈31 +

m2

m1 +m2
r̈32 =

= −GM
(

m1

m1 +m2

r31
r331

+
m2

m1 +m2

r32
r332

)
.

(2.27)

Note that if r << R3, then r31 ≈ r32 ≈ R3. Then equations (2.26) and (2.27) reduce to,
respectively,

r̈ = −G(m1 +m2)
r
r3
, (2.28)

and

R̈3 = −GM R3

R3
3

, (2.29)

that are two-body equations of motion, which solutions are Keplerian orbits. This ap-
proximation hides the perturbation that makes the osculating elements of the inner and
outer orbits to vary over time, as discussed in section 2.2.3.

The approach described in section 2.2.1 in order to predict the stability of a triple
system checks that its semi-major axes ratio respects a certain condition. In a hierarchical
triple system the semi-major axes of the two orbits are constant and thus an initially
stable system will always maintain long-lasting stability. The stability criterion adopted
in this thesis is the criterion of Mardling & Aarseth (2001), as it requires that two orbits
initially differing by a fixed amount in orbital elements should remain close to each other
after 100 orbits. This condition can be expressed as follows:

Po

Pi
> 4.7(1− eo)

−1.8(1 + eo)
0.6(1 + qo)

0.1, (2.30)

where Po and Pi are the period of the outer and inner orbit respectively, and eo and qo
are the eccentricity and the mass ratio of the outer orbit.

Note that this criterion is conservative because it is based on the concept of chaos,
and chaotic behaviour does not automatically imply instability. Again, the ultimate way
to check for stability is to integrate the orbit explicitly.
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2.2.3 Secular evolution in coplanar triples

In the two-body problem the orbital elements a, e, i, ω, Ω, and τ are constant and are
uniquely determined from the position and velocity of the two masses. In the presence
of a perturbation, it remains possible to compute from the instantaneous positions and
velocities the so-called osculating elements of the orbits, but these are not constant any-
more.

Even if a complete analytical solution is not available for systems with more than
two stars, we can study a hierarchical triple system as a perturbed two-body problem
and see how its osculating elements evolve with time.

This section aims to show how to analytically compute the precession rate of a copla-
nar hierarchical triple. We want to calculate the variation over time of the argument of
the pericenter of the inner and outer orbits.

The introduction of a perturbing function is the first step to study of the general
nonintegrable problem of the motion of a third body under the gravitational effects of
the two other bodies. This perturbing function modifies the two body potential and
allows us to derive the evolution over time of the osculating elements of the two orbits
within the triple system.

The potential energy of the system is

V = −Gm1m2

r
− Gm1m3

r13
− Gm2m3

r23
. (2.31)

We can expand the r−1
j3 in the previous expression with Legendre polynomials. In

general we have
1

|r − r′|
=

1

r

∞∑
n=0

(
r′

r

)n

Pn(cosψ). (2.32)

Where ψ is the angle between r and r′. In order to expand r−1
32 or r−1

31 we use respectively

r → R3, (2.33)

r′ → m1

m1 +m2
r or r′ → − m2

m1 +m2
r, (2.34)

t→ m1

m1 +m2

r

R3
or t→ − m2

m1 +m2

r

R3
. (2.35)

Note that for a hierarchical triple r/R3 is typically a small factor.
We can expand to the second order, obtaining

V = −Gm1m2

r
− Gm1m3

R3

2∑
n=0

(
− m2

m1 +m2

)n(
r

R3

)n

Pn (cosψ)

− Gm2m3

R3

2∑
n=0

(
m1

m1 +m2

)n(
r

R3

)n

Pn (cosψ) =

= −Gm1m2

r
− Gm3

R3

[
(m1 +m2) +

(
− m1m2

m1 +m2
+

m1m2

m1 +m2

)
r

R3
cosψ

+

(
m1m

2
2

(m1 +m2)2
+

m2
1m2

(m1 +m2)2

)(
r

R3

)2
1

2

(
3 cos2 ψ − 1

)]
=
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=− Gm1m2

r
− Gm3(m1 +m2)

R3

− G
2

m1m2m3

(m1 +m2)R3

(
r

R3

)2 (
3 cos2 ψ − 1

)
.

(2.36)

In the last equation the first two terms are the potential of two-body problem for the
inner and the outer orbit. The last term, that is

R = −G
2

m1m2m3

(m1 +m2)R3

(
r

R3

)2 (
3 cos2 ψ − 1

)
, (2.37)

is the first order expression of the perturbing function of the system.
Let us now derive the evolution of the osculating elements of the triple produced by

the perturbation R. It is way simpler to approach the problem with the Hamiltonian
formalism. As we want to study the evolution of the orbital elements it would be useful
to make use of the orbital elements a, e, i, ω, Ω, and τ . However, these do not constitute
a conjugate set variables. Thanks to newly defined functions it is possible to obtain a
conjugate set. Here, we will use the Delaunay’s elements defined by

l = M̄, g = ω, h = Ω (2.38)

L = µ
√
GMa, G = µ

√
GMa (1− e2), (2.39)

and
H = µ

√
GMa (1− e2) cos I (2.40)

where M̄ is the mean anomaly, M is the total mass of the binary and µ it the reduced
mass. The two-body Hamiltonian with these coordinates is

H = −G2M2µ3

2L2
, (2.41)

from which we can infer the constancy of five quantities: g, h, L,G andH as expected for
a two body problem. Indeed, g and h equal the argumenta of pericenter and longitude
of ascending node respectively, that we know already to be constant, L depends on a
and the mass of the system, which are constant as well, and G and H are respectively
the total angular momentum and its vertical component, both conserved.

Being Delaunay’s elements a conjugate set of variables they satisfy the following
Hamilton equations:

dLj

dt
= −∂H

∂lj
,

dlj
dt

=
∂H
∂Lj

(2.42)

dHj

dt
= − ∂H

∂hj
,

dhj
dt

=
∂H
∂Hj

(2.43)

dGj

dt
= −∂H

∂gj
(2.44)

dgj
dt

=
∂H
∂Gj

(2.45)

where j = 1, 2 for the inner and the outer orbit respectively.
When we deal with hierarchical triple systems we have two well defined Keplerian

orbits. The Hamiltonian of the system can be decomposed into two Keplerian Hamilto-
nians and a coupling term expressed as a power series in α = a1/a2 (as in Naoz et al.



22 2.2 Triple celestial mechanics

(2013)). We can express it in Delaunay’s elements, stopping the summation at second
order in α. In order to do so we express the total Hamiltonian as the sum of the Hamil-
tonian of the two body problem of the inner and outer orbit (like in Eq. (2.41)), and the
perturbing function R in (2.37), also expressed in Delaunay’s elements:

H = −G2M2
1µ

3
1

2L2
1

− G2M2
2µ

3
2

2L2
2

− 8β

(
L4
1

L6
2

)(
r

a1

)2(
a2
R3

)3

(3 cos2 ψ − 1), (2.46)

where

β =
G2

16

(m1 +m2)
7m7

3

(m1m2)3(m1 +m2 +m3)3
. (2.47)

We are interested in the long-term dynamics of the triple system, so we want to elim-
inate from the Hamiltonian in (2.46) all the short-period terms that depend on l1 and l2.
This can be done both by a coordinate transformation as in Naoz et al. (2013) or actually
averaging over the inner and outer orbital period as done in Murray & Dermott (1999).
The result is the quadrupole-level Hamiltonian

H2 = C
[(
2 + 3e21

)
(3 cos2 itot − 1) + 15e21 sin

2 itot cos(2g1)
]
, (2.48)

where

C = β
L4
1

L3
2G

3
2

, (2.49)

and itot is the relative inclination of the orbits. We specify (2.48) for a coplanar configu-
ration, obtaining

H2,copl = 2C
(
2 + 3e21

)
. (2.50)

At this point the only missing bit is to compute the derivatives in (2.45) for j = 1, 2,
resulting into

ω̇1 =
∂H2,copl

∂G1
= 12

C

L1

√
1− e21, (2.51)

ω̇2 =
∂H2,copl

∂G2
= 12

C

G2

(
1 +

3

2
e21

)
. (2.52)

These are the precession rates of the inner and outer orbit in a coplanar hierarchical
triple and we will use these relations in Part III. Similar procedures result in the secular
evolution of different osculating elements.

2.2.4 Secular evolution in misaligned configuration

An additional interesting illustration of the secular evolution of osculating orbital ele-
ments occurs within tilted hierarchical triple systems. Besides being interesting on their
own, these results prepare the ground for a discussion of tilt evolution in circum-binary
discs. We will, thus, stress here the qualitative dynamics of tilted hierarchical triples
(mainly based on works by Naoz et al. (2013) and Aly et al. (2015)) and we will extend
this to accretion discs in Section 4.2.3.

Let’s consider a system made of a binary orbited by a third body and analyse the
effect of the binary gravitational potential truncated at the quadrupole order (similarly
to what we did in more details in Section 2.2.3). Let the binary mass be M = ma +mb,
with ma the primary mass and mb the secondary mass, and a its semi-major axis. We
define the binary mass ratio as q = mb/ma. The monopole order of the gravitational
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potential represents a single star of mass M in the center of mass of the binary, resulting
in a Keplerian motion for the third body mc. The quadrupole order is the lowest order
deviation from a single central star.

As in Section 2.2.2, we define r = r1 − r2 the binary separation and we write the
specific angular momentum h in the center of mass frame of reference:

h =
µ

M
r × ṙ, (2.53)

where µ = mamb/M is the binary reduced mass.
From Equation (2.8), we derive the eccentricity vector of the binary:

e =
ṙ × h
GM

− r
r
, (2.54)

with G the gravitational constant (check section 2.1 for the geometrical interpretation
of e). We recall that h and e are both conserved for a binary orbit. The eccentricity
vector e lies along the semi-major axis pointing towards the pericenter. Consequently, it
is perpendicular to h. The magnitude of the eccentricity vector and angular momentum
are linked by (2.18).

The third body of mass mc follows a circular orbit, characterised by its radius R and
its angular momentum l, which is perpendicular to the third body orbital plane and its
magnitude is l =

√
G(M +mc)R. The tilt angle of the third body orbit with respect to

the binary orbit is β = arccos l̂ · ĥ, where l̂ and ĥ are versors pointing in the direction
of l and h, respectively. It can be shown that, at the quadrupole order, only angular
momentum is exchanged between the binary and the third body orbit, while energy is
separately conserved.

The quadrupole interaction energy between the binary and the third body, obtained
with a double average over the binary and the third body orbits is (Naoz et al. 2013; Aly
et al. 2015):

⟨Equad⟩ = −mcω
2a2q

8(1 + q)2

[
6e2 − 1 + 3(1− e2)(̂l · ĥ)2 − 15e2(̂l · ê)2

]
, (2.55)

where ω =
√
G(M +mc)/R3 is the frequency of the third body orbit and e = |e|.

Let us call Θ the binary quadrupole torque onto the third body average over the two
orbits. It can be shown that

Θ =
3ωq

4(1 + q)2
a2

r2

[
5e2(̂l · ê)ê − (1− e2)(̂l · ĥ)ĥ

]
. (2.56)

Thus, we can express the evolution of the third body angular momentum as:

l̇ = Θ× l. (2.57)

In addition, since from Equations (2.55) and (2.56) we notice that Θ ∝ ∂ ⟨Equad⟩ /∂ l̂,
also the following relation holds:

d̂l
dt

· ∂ ⟨Equad⟩
∂ l̂

= 0 (2.58)

In the limit of mc ≪ M and avoiding extreme binary eccentricities, the binary ori-
entation and eccentricity are constant. Under these assumptions, Equation (2.58) shows
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that the third body angular momentum direction variation always lies along constant
energy curves and Equation (2.57) implies l · l̂ = 0. Consequently, the third body angular
momentum is simply precessing along constant energy curves.

Isolated extrema points of ⟨Equad⟩ are stable, non-precessing third-body orbit con-
figurations. In particular, from the expression of ⟨Equad⟩ in Eq. (2.55), we have isolated
minima in l̂ = ±ĥ and isolated maxima in l̂ = ±ê (except for e = 0, where we loose the
l̂ · ê term).

The two minima correspond to coplanar configurations (β = 0), rotating or counter-
rotating with the binary orbits. In such configurations, the third-body orbit lies on the
same plane as the inner binary orbit. In circular binaries, these are the only accessible
non-precessing orientations. Different orientations of the third body angular momentum
have as solutions an orbit precessing around the binary angular momentum direction ĥ
(with sense depending on the sign of β).

For an eccentric binary, we also have the two maxima points. They correspond to
perpendicular orbits with β = π/2 (with opposite rotation senses) orbiting around the
eccentricity vector direction. In such configurations, the third-body orbit lies on a plane
perpendicular to the binary orbit. As for orbits near the two minimum points, deviations
from the perpendicular orientation of the third body angular momentum result in third
body orbits precessing around the eccentricity vector direction ê.

There are two additional polar configurations in which l̂ = ±k̂, with k̂ = ĥ× ê. These
two additional solutions are unstable and small deviations from them make the orbit fall
into one of the four stable solutions. The energy of these two solutions is

⟨Equad⟩unstable = − mω2a2q

8(1 + q)2
[
6e2 − 1

]
, (2.59)

since l̂ · ê and l̂ · ĥ are both null if l̂ = k̂. For 0 < e < 1, the regions of precession around ĥ
and around ê are separated by the energy curves with ⟨Equad⟩ = ⟨Equad⟩unstable. Orbits
with energy above this threshold precess around the binary angular momentum, while
below this energy they precess around the binary eccentricity vector. Thus, the condition
for a third body to precess around the eccentricity vector of an eccentric binary is:

(1− e2)(̂l · ĥ)2 − 5e2(̂l · ê)2 < 0. (2.60)

Which can be written in terms of orbital elements of the third body orbit (Zanazzi & Lai
2018):

(1− e2) cos2 β − 5e2 sin2 β sin2 ϕ < 0, (2.61)

where the longitude of ascending node ϕ is referred to the direction of the binary eccen-
tricity vector ê (see Sec. 2.1 for a discussion about binary orbital elements). The previous
condition results in a critical tilt above which we have polar orbits given by1 (Cuello &
Giuppone 2019):

βcrit(eb, ϕ) = arcsin

√
1− e2b

1− 5e2b cosϕ
2 + 4e2b

. (2.62)

The two different regimes are well summarised by the plot in Fig. 2.5 from Martin &
Lubow (2017). The curves in the right panel of Fig. 2.5 trace test particle circular orbits

1for a counterrotating orbit βcrit(eb, ϕ) = π − arcsin

√
1−e2

b

1−5e2
b
cosϕ2+4e2

b
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Figure 2.5: Oscillations of mutual inclination i and longitude of the ascending node ϕ
for a body orbiting a binary system. On the left panel, different curves are the evolution
with time (in units of the inner binary period) of i and ϕ for different semimajor axis
systems (wider outer orbits lead to longer oscillation periods). On the right panel, orbits
of misaligned triple stellar systems the same semimajor axes but different inclinations.
Green and blue curves are prograde and retrograde circulating orbits (inclination below
the critical angle for polar alignment). Red and purple curves are prograde and retro-
grade librating orbits (inclination above critical angle). Figure from Martin & Lubow
(2017).

orbiting the same eccentric binary in the i cosϕ−i sinϕ phase space. Each particle has the
same separation from the binary center of mass but different initial inclinations. Particles
that start along the green and blue curves evolve following those curves. The center of
these curves is i = 0, thus particles are precessing around the binary angular momentum.
Along such orbits, i is constant and ϕ is spanning 360◦. Above the critical angle for polar
alignment particles start following red (purple) curves for prograde (retrograde) polar
orbits. Prograde particles are precessing around the eccentricity vector e and the center
of prograde curves is i = 90◦ and ϕ = 90◦. Retrograde particles are precessing around
−e and the center of prograde curves is i = 90◦ and ϕ = −90◦. Along such orbits,
the inclination and longitude of the ascending node are bound in intervals inside which
they oscillate. The left panel shows the evolution of i and ϕ for two polar particles
with different semi-major axes. There it is clear that the inclination and the longitude
of the ascending node are oscillating around 90◦, hence the orbit is librating rather than
processing. Tilting the third-body orbit even more, we go back to the precession regime
for retrograde orbits (blue curves).

2.3 Simulating multiple stellar systems with the code PHANTOM

In this section, I present how I implemented the setup for generic hierarchical systems in
the hydrodynamical code PHANTOM. PHANTOM is a Smoothed Particle Hydrodynam-
ics code designed for astrophysical applications, details on the SPH method and on its
implementation in PHANTOM can be found in the Appendix in Chap. B.

In order to simulate generic hierarchical stellar system configurations in the work I
carried out during my PhD (Ceppi et al. 2022, 2023, Toci et al., under review; Alaguero et
al., to be submitted), I implemented in PHANTOM the possibility to run hydrodynamical
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Figure 2.6: Schematical representations of the steps the algorithm takes to build a GG
Tauri-like hierarchical quintuple stellar systems. Red labels represent stars in the system,
other colours represent hierarchical levels with their associated orbit. Bottom sketch:
discs can orbit single stars or hierarchical levels.

simulations of hierarchical multiple stellar systems with accretion discs orbiting their
hierarchical levels. Even if I applied this setup for accretion disc physics, the N-body
part of this algorithm is not limited to accretion disc physics application and it is already
used in hydrodynamical simulations in different fields of astrophysics like in the study
of AGB outflows (e.g. Malfait et al, to be submitted).

The orbital arrangements of observed multiple stellar systems tend to be hierarchical,
as different configurations are unstable and have shorter life-times. In the case of a hier-
archical system, the first approximation for each hierarchical level is the exact two-body
orbit. Indeed, for each hierarchical level at each instant, we can neglect the perturba-
tions due to the presence of additional bodies and compute the orbital elements of the
elliptical orbits that the bodies’ center of mass belonging to that hierarchical level would
follow. These elements are called osculating elements. For example, in the case of a
hierarchical triple, the set regarding the inner binary describes the orbit that the inner
bodies would follow if the third body instantaneously disappeared. The set referring to
the third body describes the orbit that it would follow if the inner binary was reduced to
a single body with the total mass of the binary in its center of mass.

The first piece of information needed is the hierarchy structure of the system. This
information can be nicely encoded in a string format, following the convention used
by Reipurth et al. (2014). In the proposed nomenclature, binary graphs are used to de-
scribe hierarchical systems (see Fig. 2.6). The position of each sub-system in the graph is
coded with a level label. The outermost pair is at the first hierarchical level in the graph
(level ’1’, for the quintuple stellar system GG Tauri it represents the orbit followed by
the centers of mass of GG Tauri A and GG Tauri B). This level can be decomposed into
its two binary components (in GG Tauri, the two subsystems GG Tauri A and GG Tauri
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B orbits). To label the more massive subsystem, we added a ’1’ to the parent level label,
resulting in ’11’. While, the lighter is associated with the label ’12’. This top-down nota-
tion can continue to the deepest levels of the system. At the end of the process, each star
has an associated label and each hierarchical level has a label as well. In a hierarchical
triple system with a third body heavier than the inner binary, the third body label is ’11’,
the inner binary primary star is labelled ’121’, the secondary ’122’ and ’12’ represent the
inner binary hierarchical level as a whole.

Having the codenames associated with each star of the system allows the code to
retrieve the hierarchical position of each star. Figure 2.6 shows how the string ’121, 122,
111, 1121, 1122’ encodes the structure of the protostellar system GG Tauri.

The basic process needed for iteratively produce the desired system is the splitting
of a sink particle (which are used to represent stars in PHANTOM, see Bate et al. 1995)
in a pair of gravitationally bounded sink particles. The initial sink is substituted with a
binary of the same mass as the substituted sink. The center of mass of the inner binary
follows the orbit of the substituted sink.

Starting from a single sink, we obtain a binary system. Splitting one of the two binary
sinks, we obtain a hierarchical triple system and so on. For example, the process of
building the GG Tauri stellar system, sketched in Fig. 2.6, is to split a single sink to
form the binary made by GG Tauri A and GG Tauri B, then split both binary stars to
obtain GG Tauri Aa-Ab and GG Tauri Ba-Bb, and lastly split GG Tauri Bb to obtain GG
Tauri Bb1-Bb2. For each split, the information needed are the hierarchical level orbit
osculating elements. After the initial setup, the N-body dynamics of the system is solved
as described in Section 2.8.5 in Price et al. (2018b).

At each splitting, the initial position and velocity of the two binary bodies are com-
puted by means of the Thiele-Innes elements (Binnendijk 1960). Thiele-Innes elements
are computed in terms of the Campbell elements through the following relations:

P =(cosω cosΩ− sinω cos i sinΩ,

cosω sinΩ + sinω cos i cosΩ,

sinω sin i) ,

(2.63)

Q =(− sinω cosΩ− cosω cos i sinΩ,

− sinω sinΩ + cosω cos i cosΩ,

cosω sin i) ,

(2.64)

A = cosE − e , (2.65)

B =
√
1− e2 sinE , (2.66)

where ω, Ω, i, a and e are the argument of the pericenter, the argument of the ascend-
ing node, the inclination, the semi-major axis and the eccentricity of the binary orbit,
respectively, and E is the eccentric anomaly. With Eq. (2.63)-(2.66) we can compute the
rectangular coordinates and velocities of a given initial condition as:

(x, y, z) = a(AP+BQ), (2.67)

(vx, vy, vz) = −aĖ(sinEP−
√
1− e2 cosEQ), (2.68)

where Ė is the time derivative of the eccentric anomaly. The eccentric anomaly E and its
derivative Ė are computed from the true anomaly of the orbit.



28 2.3 Simulating multiple stellar systems with the code PHANTOM

Note that we can use the code associated with each subsystem to set useful infor-
mation about the subsystem orbit and the surrounding environment. Again, taking GG
Tauri as an example, the hierarchical triple system GG Tauri A is made by the stars ’111’,
’1121’ and ’1122’. GG Tauri A is identified by code ’11’, which is the prefix of each star
belonging to GG Tauri A. After the splitting process, GG Tauri A is not a sink particle
anymore, however, we can associate to code ’11’ all the properties of the GG Tauri A sub-
system (such as center of mass position and velocity and system mass). Thus, after the
sink-splitting step, each star or subsystem in the hierarchical system can be surrounded
by an accretion disc orbiting the subsystem center of mass. Indeed, for each star and
subsystem, we have code associated with the property needed to put the disc in orbit.



CHAPTER 3

Stellar multiplicity

The large parameter space in which multiple stellar systems live produces a wide set of
different configurations. When looking at individual multiple stellar systems, the key in-
gredients driving the evolution are not always the same. Some configurations are prone
to strong dynamical evolution, while others are less chaotic. Some strongly influence
the surrounding environment, while others are too wide to affect it. This variety is sup-
ported also by the different formation mechanisms that possibly form multiple stellar
systems inside molecular clouds. A way to build a general picture of multiple stellar sys-
tem formation is to look at statistical properties of multiple stellar system populations.
In this chapter, I present what we know about the occurrence of multiple stellar systems
in stellar populations (Sec. 3.1), the distribution of relevant parameters in forming multi-
ple stellar systems (namely, eccentricity and the angle they form with their surrounding
disc plane in Sec. 3.2-3.3), the different mechanisms in which they form (Sec. 3.4) and
how the characteristics of the surrounding environment may affect their properties (Sec.
3.5).

3.1 Observed stellar multiplicity

We can describe the level of multiplicity of a multiple stellar system population by defin-
ing the multiplicity fraction as:

MF =
B + T +Q+ ...

S +B + T +Q+ ...
, (3.1)

where S, B, T , Q and so on are the number of single, binary, triple, quadruple stellar
systems and so on in the population, respectively.

As we discuss in the following chapters, binaries and systems with more than two
stars behave qualitatively in different ways. Thus, we can also compute the fraction
of systems with more than two stars in the population by defining the triple/high-order
fraction as:

THF =
T +Q+ ...

S +B + T +Q+ ...
. (3.2)

In the following sections, measurements of these fractions in stellar populations with
different ages are presented. For the field stellar population, statistics are detailed enough
to be broken in system mass and size subclasses. Nevertheless, the general picture sug-
gests that multiplicity increases with primary mass (i.e. more massive systems are more
frequently multiple stellar systems) and reduces with age. Indeed, Class 0 populations
present about two times more multiple stellar systems than Class I, which in turn has a

29
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Figure 3.1: Multiplicity fraction and triple/high-order fraction for different primary
mass classes in field multiple stellar systems, defined in (3.1) and (3.2), respectively. Mul-
tiple stellar systems are common, and half of the stellar systems are multiple from solar
mass primaries on. Systems with more than two stars are a significant fraction of multi-
ple systems, especially in A, B and O classes. Data are collected from different surveys
by Offner et al. (2022).

higher fraction than main sequence populations. However, these results are more solid
for intermediate separations (100-1000 au), while a detailed analysis of separation ranges
suggests that this is not true for close binary systems, which probably form also thanks
to the system evolution and for wide binaries which are more prone to be disrupted.

3.1.1 Multiplicity as a function of the mass in evolved stellar populations

In Figure 3.1 we report measured and bias-corrected multiplicity fraction (MF) and triple/
high-order fraction (THF) versus primary mass from different surveys of field stellar
systems (i.e., Fontanive et al. 2018; Burgasser 2007; Close et al. 2003; Allen et al. 2007;
Winters et al. 2019; El-Badry et al. 2019; Raghavan et al. 2010; Tokovinin 2014; De Rosa
et al. 2014; Murphy et al. 2018; Moe & Kratter 2018; Moe & Di Stefano 2017; Sana et al.
2012, 2014), collected by Offner et al. (2022). Let’s summarize the relationship between
the multiplicity of stellar systems and the mass of the primary star in detail.

In the brown dwarf regime, completeness correction is challenging, but surveys con-
firm an increasing multiplicity fraction with mass. In this regime, the multiplicity frac-
tion is approximately 8% for early-Y/late-T dwarfs, rising to around 20% for early-T/L
dwarfs (Close et al. 2003; Allen et al. 2007; Burgasser 2007; Fontanive et al. 2018). The
THF in this mass range is below 3%.

Moving to M-dwarf primaries, Winters et al. (2019) provided a comprehensive as-
sessment of multiplicity statistics within a 25-pc volume-limited sample. Taking the
more complete 20-pc subset of the survey, Offner et al. (2022) split the sample into three
mass intervals and observed an increase in the multiplicity fraction and triple fraction
with primary mass within the M-dwarf regime, from approximately 20% to 30% and
from 2% to 6%, respectively.
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Moving further, about half of FGK primaries, which corresponds to the Sun-like
regime, have a companion, and around 13% of systems in this category are triple or
higher-order systems (Raghavan et al. 2010; Tokovinin 2014).

Expanding our considerations to heavier primaries, surveys of A-stars reveal a bi-
nary frequency that increases to approximately 68% (Moe & Kratter 2021). B-stars ex-
hibit multiplicity fractions that continue to rise with primary mass, reaching up to 93%,
while nearly the entire population of O-stars has companions (Moe & Di Stefano 2017).
Concurrently, the triple and higher-order fraction increases to 25%, 57%, and 68%, re-
spectively.

3.1.2 Multiplicity as a function of the mass in young stellar objects

In order to have insights into the evolution of the multiplicity of a stellar population with
time, we report findings about multiplicity fractions for forming stellar systems.

Spectroscopic surveys of Class II/III T Tauri stars unveiled a fraction of close binary
systems that aligns with their counterparts in the main sequence field, as supported by
studies such as Mathieu (1994); Melo (2003); Elliott et al. (2014); Prato (2007); Kounkel
et al. (2019). These observations emphasise that the characteristics of main sequence
close binary systems, including their primary mass dependence and separation distri-
bution, are primarily established during the T Tauri stage.

On the other hand, adaptive optics and speckle imaging surveys of T Tauri stars in
star-forming regions such as Taurus, Chamaeleon, Ophiuchus, and Scorpius reveal an
excess of companions within the separation range of 10 to 200 AU. These findings are
corroborated by studies conducted by Ghez et al. (1993); Reipurth & Zinnecker (1993);
Leinert et al. (1993); Ghez et al. (1997); Kraus et al. (2011); Tokovinin & Briceño (2020).

However, when we extend our focus to wider separations, within the range of 100 to
10,000 au, the binary fraction becomes sensitive to the stellar density of the surrounding
environment. The densely populated Orion Nebula Cluster demonstrates a deficit of
wide companions (Scally et al. 1999; Köhler et al. 2006; Reipurth et al. 2007; Duchêne
et al. 2018; Jerabkova et al. 2019). Environments with intermediate density, such as Upper
Scorpius and the Orion OB1 association, exhibit binary fractions consistent with those
found in the field (Brandner et al. 1996; Kraus et al. 2008; Kounkel et al. 2016; Tokovinin
& Briceño 2020; Tokovinin et al. 2020). Conversely, low-density star-forming regions like
Taurus and Chamaeleon exhibit a slight surplus of wide companions (Ghez et al. 1993;
Reipurth & Zinnecker 1993; Leinert et al. 1993; Ghez et al. 1997; Köhler & Leinert 1998;
Connelley et al. 2008; Kraus et al. 2011; Joncour et al. 2017). These findings collectively
indicate that the majority of wide binary systems face dynamic disruption in extremely
dense regions, and the field population comprises a mixture of individuals from low,
intermediate, and high-density environments.

Interestingly, within the same star-forming region, there is tentative evidence for the
opposite trend between the wide binary fraction and the surrounding stellar density.
Across separations ranging from 100 to 1,000 au, Kounkel et al. (2016) observed that
young stars in sub-regions with higher spatial stellar density displayed a slightly higher
wide binary fraction. Recent ALMA observations of Class 0/I protostars in Orion, as
reported by Tobin et al. (2022), appear to confirm this result.

Moving to more massive systems, various high-resolution imaging surveys have pro-
vided insights into the binary properties of Herbig Ae/Be stars and massive Young Stel-
lar Objects. While, as inferred from spectroscopic data, the close binary fraction for these
stars typically falls within the range of 10% to 30% (Corporon & Lagrange 1999; Apai
et al. 2007; Sana et al. 2017), notably lower than what is observed for main sequence stars
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in the field. The wide binary fraction for Herbig Ae/Be stars and massive YSOs typically
ranges from 30% to 60% (Kouwenhoven et al. 2005; Baines et al. 2006; Wheelwright et al.
2010; GRAVITY Collaboration et al. 2018; Pomohaci et al. 2019), in agreement with their
counterparts in the field.

One possible explanation for the lack of close binary systems in this context is that the
close binary population of field stars within this mass range may result from the hard-
ening of intermediate separation systems. This hardening process occurs over a Myr
timescale, which implies that 1 Myr old stellar systems may exhibit a lack of close com-
panions (Ramı́rez-Tannus et al. 2021). Alternatively, it is suggested that Herbig Ae/Be
stars and massive Young Stellar Objects with close companions might have shorter disc
lifetimes compared to those in wider orbital configurations. As a result, young massive
stars with discs tend to have fewer close companions, given the same age.

Given the abundance of companions surrounding Young Stellar Objects compared
to field stars, it’s clear that the majority of stellar systems originate as multiple systems.
However, over time, subsequent dynamical processes tend to decrease the overall multi-
plicity fraction, especially for low-mass and wider binary systems that have lower bind-
ing energies (Kroupa 1995).

By taking into account the Initial Mass Function of primary stars in our analysis, only
35% of newly formed main sequence stellar systems are multiple systems (Kroupa et al.
2013; Offner et al. 2022). Nevertheless, it’s worth noting that a significant fraction of main
sequence stars are part of multiple systems when considering that multiples involve two
or more stars. For example, in the M-Dwarfes class, 49% of stars are single, 28% are
part of binary systems, and 7% are components of triples and higher-order multiples.
Accounting for the Initial Mass Function, we conclude that 58% of main sequence stars
belong to multiple stellar systems. This fraction raises significantly increasing the stellar
mass and reducing the population age.

3.1.3 Protostellar Multiplicity Statistics

Thanks to instruments like ALMA and VLA, uniform and unbiased surveys of mul-
tiplicity in nearby star-forming regions are now achievable, pushing the limit of our
knowledge of multiplicity statistics even closer to the formation epoch. In particular, ob-
servations of Perseus, Ophiuchus and Orion regions have been collected with uniform
sensitivities and resolutions (Tobin et al. 2016; Encalada et al. 2021; Tobin et al. 2020,
2022).

The overall protostellar population (Class 0, Class I and Flat Spectrum) in Orion and
Perseus have a multiplicity frequency of 30%±3% and 36%±6%, respectively. Focusing
on Class 0 protostars, the measured multiplicity frequency is 38%± 5% and 47%± 9% in
Orion and Perseus, respectively. These surveys have a comparable minimum separation
set by the angular resolution, and the results are consistent despite different environ-
mental conditions.Moving to Class I protostars, the measured multiplicity frequency in
Orion and Perseus are 23%± 4% and 27%± 9%, respectively. Compared to Class 0 pro-
tostars, the multiplicity frequency nearly halved. The decrease of multiple stellar sys-
tems, compared to Class 0, is significant with more than 3σ. Last, in Orion, where data
about Flat Spectrum protostars are independently available, Flat Spectrum protostars
have multiplicity frequency comparable to Class I.
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Figure 3.2: The parameter α of eccentricity distribution fitted on different binary semi-
major axis classes. While binaries with about 100 au semi-major axis (the ones usually
hosting circumbinary discs) show a uniform eccentricity distribution, wider binaries are
more and more skewed towards eccentric orbits. Figure from Hwang et al. (2022).

3.2 Eccentricity distribution

Eccentricity, a fundamental orbital parameter in the study of orbital dynamics, offers
critical insights into the mechanisms governing binary formation (Duquennoy & Mayor
1991; Duchêne & Kraus 2013). Additionally, the eccentricity distribution within stellar
populations serves as a fossil record of their early dynamical evolution. Indeed, partic-
ularly for wide binary systems, the timescale for external gravitational interactions to
become dynamically significant exceeds the age of the universe (Heggie 1975; Weinberg
et al. 1987).

Under the sole influence of gravitational interaction, the eccentricity distribution
reaches a stable state. After multiple N-body scatterings, once the population has dy-
namically relaxed, we expect the eccentricity distribution, denoted as P (e), to follow
a ”thermal” distribution, characterised by P (e) = 2e (Jeans 1919; Ambartsumian 1937;
Heggie 1975).

Studies such as those conducted by Raghavan et al. (2010) and Duchêne & Kraus
(2013) have explored the eccentricity distribution in relatively small binary systems with
separations up to hundreds of astronomical units (AU). In these semi-major axis regimes,
they generally observed distributions consistent with a random distribution, regardless
of the system’s mass.

For wider binary systems, Tokovinin (2020) found that binaries with separations in
the range of greater than 103 au exhibit an eccentricity distribution that closely aligns
with the thermal distribution. However, those with separations of less than 200 au tend
to have less eccentric orbits. Furthermore, the eccentricity distribution becomes ”su-
perthermal” for systems with separations exceeding 104 AU.

Recently, Hwang et al. (2022) expanded on these findings by measuring the eccentric-
ity distribution across a broad range of semi-major axes using high-precision astrometric
data from Gaia. In line with previous works, they modelled the eccentricity distribution
as P (e) ∝ eα and measured the α exponent. Their study confirmed previous research
while extending the range of semi-major axes to around 104.25 AU. Figure 3.2 shows
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the alpha parameter versus the system dimension. They found that for smaller sys-
tems, below 100 AU, the eccentricity distribution is ”sub-thermal” and approximately
flat (α = 0). Around 500 AU, the distribution transitions to thermal behaviour, char-
acterised by P (e) ∝ e (α = 1). For even wider systems, the eccentricity distribution
becomes ”superthermal” with α > 1. Below a period of 8 days, binaries undergo tidal
circularisation, significantly reducing their average eccentricity.

3.3 Accretion disc misalignment distribution

The mutual inclination, denoted as β, between the orbital planes of binary systems and
their circumbinary discs holds significant implications for our understanding of disc
evolution and star formation. In general, we attribute the orientation of discs to the
direction of the angular momentum vector of the material accreting from interstellar
matter organized in filaments onto the disc (McKee & Ostriker 2007; André et al. 2010;
Ward-Thompson et al. 2010). The orientation of this vector may evolve over time due to
factors such as the relative motion between the system’s center of mass and the filament,
turbulence or gravitational effects from nearby objects.

On the other hand, large-scale interstellar magnetic fields may play a role in main-
taining the stability and direction of filaments for extended periods (Galli et al. 2006;
Wang et al. 2011; Hennebelle 2013). While the magnetic fields impact on the process of
star formation could be significant (Shu et al. 1987), their influence at scales less than
1000 au is still a matter of debate (Zhang et al. 2014). Additionally, their role during
star formation might be complex and contingent on the system’s age (Targon et al. 2011;
Chapman et al. 2013).

Determining the mutual inclination between an observed circumbinary disc and the
binary’s orbit can be challenging. It necessitates knowledge of the binary’s orbital pa-
rameters, as well as precise observations of the circumbinary disc to establish its incli-
nation and the longitude of the ascending node. Given these challenges, the number of
protostellar systems for which the mutual inclination between the accretion disc and the
orbital plane is constrained remains limited.

Figure 3.3: Measured mutual inclination distribution against orbital period P , semi-
major axis a and orbital eccentricity e. The distribution of mutual inclination is shaped by
the viscous evolution of discs towards coplanar and polar configurations (see Sec. 4.2.3.1
and 4.2.3.2). Figure from Czekala et al. (2019)
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A recent effort by Czekala et al. (2019) compiled mutual inclinations of gaseous and
debris discs from the literature, shedding light on this aspect of stellar systems. The
gaseous discs in the surveys are the following. HD 98800B is a near equal-mass binary
with a circumbinary disc in a polar orbit, with β = 88.4◦ ± 2◦ as measured by Kennedy
et al. (2012). Czekala et al. (2019) measured a slightly different but compatible β = 92◦ ±
3◦. Both measurements agree with the disc being polar. The mutual inclination of the
disc around HD 142527 B was initially reported as β = 35◦± 5◦ (Biller et al. 2012; Lacour
et al. 2016; Boehler et al. 2017; Price et al. 2018a; Claudi et al. 2019), but improved orbital
parameters suggest β = 46◦ ± 2◦ or β = 76◦ ± 3◦, depending on the value used for the
longitude of the ascending node Balmer et al. (2022). For V892 Tau, recent data suggests
β = 5◦±4◦ based on orbital parameters provided by Long et al. (2021). In addition, using
precise measurements and a hierarchical Bayesian model, Czekala et al. (2019) inferred
mutual inclination angles for circumbinary discs in V4046 Sgr, AK Sco, DQ Tau, and UZ
Tau E, yielding angles of < 2.3◦, < 2.7◦, < 2.7◦, and < 2.7◦, respectively. Figure 3.3 from
Czekala et al. (2019) collects all these discs as orange points, along with known debris
discs (in green) and planets in binary systems (in blue).

From this dataset, a pattern emerges: binary systems with orbital periods shorter
than 10 days tend to exhibit circular orbits. This phenomenon is likely a result of dissi-
pative forces causing the orbits to circularise. Furthermore, short-period binaries typi-
cally maintain a coplanar configuration with their surrounding circumbinary discs as a
consequence.

Conversely, for circumbinary discs in orbit around long-period, eccentric binaries,
the situation is more diverse. These systems can display a wide range of mutual incli-
nations, with some reaching up to 90◦. However, it’s essential to note that while such
variety exists, the majority of circumbinary discs still maintain a coplanar orientation
with their host binary system. This tendency is particularly pronounced for discs orbit-
ing pure binary systems, as discussed in Part III of this thesis.

3.4 Multiple stellar system formation mechanisms

A multiple stellar system is the result of two or more episodes of gravitational collapse
and the subsequent gravitational bounding of the formed protostars. Two protostars can
bond at different stages of their evolution. However, the hierarchical fragmentation of a
molecular cloud itself is not able to form multiple stellar systems (Shu 1977; Larson 1972;
Toci et al. 2018). Thus, different mechanisms must be responsible for their formation.
Indeed, on top of gravity and pressure, turbulence and magnetic fields are involved in
order to break the spherical asymmetry of a pure gravitational collapse.

In the following, we summarise different viable formation mechanisms for the for-
mation of multiple stellar systems following the work done by Offner et al. (2022). It is
important to stress from the beginning that each of these mechanisms leaves different
imprints in the population of systems formed. Whether it is, for example, the spatial
scale or the stellar masses, the distribution of properties of the whole multiple stellar
systems population is the combination of subpopulations formed via different forma-
tion ways.

3.4.1 Core and filament fragmentation

Giant molecular clouds show substructures like filaments and cores on a scale of hun-
dreds of AU. These overdensities suggest that a possible way of formation for multiple
stellar systems is multiple gravitational collapses inside such overdensities. Indeed, the
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Figure 3.4: Different mechanisms for multiple stellar system formation. On the top row
there is a sketch of the mechanism, on the central row there are observations of sys-
tems likely formed though it (Pineda et al. 2015; Kirk et al. 2017; Reynolds et al. 2021;
Rodriguez et al. 2018) and on the bottom row there are numerical simulations reproduc-
ing similar multiple stellar systems (Guszejnov et al. 2021; Offner et al. 2016; Bate 2018;
Muñoz et al. 2015). Figure form Offner et al. (2022)
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presence of velocity and density gradients produced by rotation on turbulence promotes
the fragmentation of the parent core, leading to the formation of bounded protostars
(Larson 1972). At the same time, the turbulent nature of the environment provides sim-
ilar inhomogeneities in velocity and density fields which can lead to the formation of
multiple systems as well. Properties of the turbulence, such as its power spectrum, reg-
ulate the resulting distribution of masses and system sizes (Lee et al. 2020; Guszejnov &
Hopkins 2015).

Gravitational collapse by itself is a scale-free mechanism, thus additional physics has
to put a lower limit to the minimum spatial scale of systems forming via this mechanism.
Likely, angular momentum, magnetic fields and tidal forces can provide such lower limit
scale, all resulting in a minimum scale of about 102 au (Guszejnov et al. 2017; Haugbølle
et al. 2018; Lee & Hennebelle 2018). At the same time, above 0.1 pc it is unlikely that
forming protostar can bound. Thus, that is the upper limit for the scale of systems form-
ing via gravitational collapse inside cores and filaments. Additionally, multiple systems
formed like this have to consist of stars of similar age. Indeed, these processes are possi-
ble with big reservoirs of gas, which are available only at the onset of the cloud collapse.
Numerical simulations and the study of the evolution of perturbations during the col-
lapse suggest that only systems of two or three stars can form. Moreover, given the
vast amount of gas available for accretion it is unlikely to form low-mass companions
(M ≤ 0.08 Solar masses, Fisher 2004).

3.4.2 Disc fragmentation

Gravitational fragmentation can also occur inside an already formed accretion disc. When
gravity overcomes the support provided by thermal pressure, a portion of the disc can
collapse and form independent objects gravitationally bound to the object the disc is or-
biting around. This can lead to the formation of binaries and multiple stellar systems
with more than two stars (e.g. if the disc is orbiting a binary). Discs prone to frag-
mentation are either massive (Adams et al. 1989; Shu et al. 1990; Bonnell 1994) or they
radiate away heat very efficiently (on a timescale about the orbital timescale Gammie
2001). The most typical situation in which a disc fragments is when material is accreting
on the outer part of the disc. At 100s of au, the disc temperature is mainly set by the
radiation of the central stars. While mass accumulates on the disc outer region (i.e. the
infalling rate is higher than the accretion rate through the disc), the temperature does not
increase. Eventually, the surface density will be high enough to overcome the pressure
support (Kratter & Lodato 2016). These conditions (massive discs and infall) are likely
met during the Class 0 phase, when discs are deeply embedded in cloud material. Given
the vast amount of mass available, this process rarely results in low mass ratio binaries.
Indeed, the rapid infall of surrounding mass onto the collapsing object usually leads to
the formation of stellar mass companions. In addition, the subsequent accretion from
the disc likely favours the newly born object in the disc, raising its mass even more at
the expense of the central object (Bate & Bonnell 1997; Young & Clarke 2015, and see
Sec. 4.2.4).

3.4.3 Capture, dynamical evolution and migration

Processes presented in previous sections are not able to account for configurations such
as close binaries with semi-major axes of the order of the AU due to the typical size of
hydrostatic cores, which are expected to collapse in single stars (Larson 1969). Such con-
figurations can only be achieved with subsequent orbital evolution and/or the capture of
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external bodies. Indeed, the fragmentation of clouds and discs forms single stars at large
distances. Even if, at the beginning, these bodies are gravitationally bound, their or-
bits can be unstable as discussed in Sec. 2.2. Without external interaction, these systems
would usually break, ejecting lighter bodies. However, the surrounding environment
(gas cloud in core collapse or the disc material in disc collapse) can dump the orbits and
drive systems towards stability as routinely seen in numerical hydrodynamical simula-
tions (Ostriker 1994; Bate 2012; Muñoz & Lai 2015; Cournoyer-Cloutier et al. 2021). In
the absence of external material, unbound objects in high stellar density region can af-
fect systems’ orbit as well. Repeated N-body scatterings tend to soften soft binaries and
harden hard binaries (Heggie 1975) and to increase the average eccentricity of the pop-
ulation (Weinberg et al. 1987, and Sec. 3.2). In addition, interaction with external bodies
leads to the formation of new binaries by exchanging partners in the systems and ejec-
tion of formerly bound companions, usually shrinking the orbits due to the lost energy
and angular momentum in the ejections (Valtonen & Karttunen 2006; Kratter 2011).

An even more dramatic orbital evolution after the multiple stellar system formation
is due to migration. Surveys of young stellar objects and numerical simulations suggest
that multiple stellar systems form very early on, before the natal cloud disperses. Sur-
rounding gas, both bound to the system or in the surroundings, can shrink the system
size. The former case is more significant in widely separated bound binaries. There, gas
cloud mediates the torque needed to shrink the semi-major axis, along with accretion
onto the stars (Bate & Bonnell 1997; Ostriker et al. 1999; Stahler 2010). The latter case
is more significant in binaries sharing the same circum-binary disc. Seminal work by
Lubow & Artymowicz (1996) found inward migration due to the torque between the
binary and the surrounding disc. Recently, more complete numerical simulations ac-
counting also for the torque generated by circumstellar disc and accretion showed that
outward migration can happen in specific regions of the disc and binary parameter space
(Satsuka et al. 2017; Muñoz et al. 2019).

Secular evolution, discussed in Sections 2.2.3 and 2.2.4, can also lead to very close
binary systems. Particularly, the dissipation of Kozai-Lidov cycles (Lidov 1962; Kozai
1962) can lead to binary periods of less than 10 days. This secular evolution, typical of
misaligned triple stellar systems, consists in a periodic exchange of angular momentum
between different hierarchical levels which makes the eccentricity and the mutual incli-
nation of orbits to oscillate with time. When very high eccentricities are generated, the
pericenter of the smaller orbits is pushed to separations close enough for tidal interaction
to circularise the orbit dumping the oscillation and shrinking the system (Dabringhausen
et al. 2022). This process well matches the observational fact that closest binaries are of-
ten found in high-order multiple stellar systems (Tokovinin et al. 2006). However, this
mechanism is limited to misaligned triples. Coplanar very close binaries still need gas
dissipation to be driven to close separation (Moe & Kratter 2018).

3.5 Impact of environment on multiplicity

Today advanced numerical techniques allow the numerical integration of the collapse
of massive molecular clouds over large dynamic ranges and including several physical
processes. Such calculations provide insights into the relationship between multiplicity,
environmental properties and physical processes. Indeed, contrary to the stellar initial
mass function, which is insensitive to environment properties (Offner & Arce 2014), mul-
tiplicity is affected by the environment in which multiple stellar systems are forming.

As we already stated in the previous sections, a possible channel of formation for
multiple stellar systems is the fragmentation of discs. Cold discs are more prone to col-
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lapse as the pressure support is lower. The presence of radiative heating from protostars
affects this channel of formation. Indeed, even low-mass stars influence gas within hun-
dreds of au, heating it and reducing fragmentation. This mainly affects the formation of
brown dwarfs (Offner et al. 2009; Bate 2012). The suppression of fragmentation due to
radiation is present also at the molecular cloud level. However, there, protostars form
further apart and the influence of radiation is lower (Guszejnov et al. 2017).

Protostellar outflows launched by accreting protostars inject energy and momentum
in the cloud environment, reducing the overall star formation efficiency (Bally 2016). Ad-
ditionally, numerical simulations suggest that the presence of protostellar outflows can
explain differences between stellar initial mass function and core mass function (Offner
& Chaban 2017; Guszejnov et al. 2021; Mathew & Federrath 2021). However, numerical
simulations with and without protostellar outflows do not show significant differences
in multiplicity fraction.

Another possible way of contrasting the gravitational collapse of gas is through mag-
netic field. Indeed, the presence of magnetic fields provides additional pressure support
along with the thermal one. This results in a lower fragmentation rate and higher stel-
lar masses (Padoan et al. 2014; Guszejnov et al. 2021). Numerical simulations suggest
that strong magnetic fields favour multiple stellar system formation (Cunningham et al.
2018; Lee et al. 2019). This can be due to the fact that magnetic fields introduce asym-
metries, preventing spherical collapse and promoting turbulent fragmentation of cores
(Offner et al. 2016). Also, in numerical simulations less high-order multiple stellar sys-
tems form, which usually end up ejecting stars and, consequently, raising the single star
population.

When it comes to its impact on multiple stellar system formation, turbulence is a less
investigated property of molecular clouds. Turbulence does affect the gas distribution
and star formation rate (Padoan et al. 2014; Federrath 2015) while leaving stellar initial
mass function unaffected (Offner & Arce 2014; Guszejnov et al. 2021). Guszejnov et al.
(2017) proposed an approximated semi-analytical model of turbulence accounting only
for gravity (i.e. ignoring additional effects such as magnetic field) finding agreement
with mass ratio and multiplicity distributions as a function of the stellar mass, while
failing at reproducing separation distributions.

Metallicity also affects the cooling of gas in the cloud and discs. Indeed, in optically
thin gas (typical of star forming cores), a lower metallicity reduces cooling via metal
lines. Conversely, in optically thick discs, a lower metallicity can promote cooling by
lowering the gas opacity. The impact of metallicity in molecular cloud collapse simula-
tions is investigated by (Bate 2019), that runs four simulations with different metallicity
from 0.01 to 3 solar metallicity. Again, the stellar initial mass function resulted to be inde-
pendent of metallicity. However, calculations with lower metallicity fragmented more
both in cores and filaments, and in accretion discs because of the thickness of the gas.
Even if there is an increasing trend for multiplicity fraction with decreasing metallicity,
values measured in (Bate 2019) with different metallicities are all compatible at 1σ.





CHAPTER 4

Accretion discs

In this chapter, we explore accretion discs’ fluid dynamics, thermodynamics, and the
nature of viscosity. We examine the governing equations related to mass, momentum,
and energy conservation within these systems. Furthermore, we discuss the implications
of turbulence and angular momentum transport.

According to modern theories, stars form as the result of the turbulent collapse and
fragmentation of molecular cloud cores inside giant molecular clouds. This, in turn, re-
sults in the formation of single and multiple systems. When the seed of a star - called
protostar - is formed inside a core, gas is accreted onto this central object. Due to angu-
lar momentum conservation, an accretion disc surrounding the protostar forms. In these
discs, by means of dissipative processes modelled as a viscous torque, the angular mo-
mentum is carried at large radii and gas can accrete onto the stars. I present the ’classical
disc theory’ (e.g. Frank et al. 2002) for circumsingle discs in Sec. 4.1.

When a disc orbits around a binary system, the tidal interaction between the two stars
and the disc allows angular momentum exchange. This can result in gap and cavity
formation in the disc, whose detailed structure depends on the binary parameters. In
order to bridge the gap cleared by the binary and to allow accretion, stars drag accretion
streamers from the inner edge of the disc. I discuss the angular momentum exchanges
between binaries and circumbinary discs, along with their equilibrium configurations
and how mass accretes onto the binary stars in Sec. 4.2.

4.1 Circumsingle discs

Fluid dynamics equations govern the evolution of a gaseous accretion disc:

∂ρ

∂t
+ (v · ∇)ρ = −ρ∇ · v; (4.1)

∂v
∂t

+ (v · ∇)v = −∇p
ρ

−∇Φ+
∇ · σ
ρ

; (4.2)

∂u

∂t
+ (v · ∇)u = −p

ρ
∇ · v − L. (4.3)

Equation (4.1) represents mass conservation, where ρ is the mass density of the fluid
and v is the velocity field of the fluid.

Equation (4.2) represents the conservation of angular momentum, where p is the fluid
pressure, Φ is the gravitational potential and σ is the viscous stress tensor. The third
term on the right-hand side of equation (4.2) accounts for the acceleration due to viscous

41



42 4.1 Circumsingle discs

forces acting on the fluid. In Cartesian coordinates, the stress tensor σij has the following
form:

σij = η

[
∂vi
∂xj

+
∂vj
∂xi

− 2

3
(∇ · v)δij

]
+ ζ(∇ · v)δij . (4.4)

In the stress tensor, the η term has zero trace and, consequently, it vanishes for uni-
form compression. Thus, it corresponds to shear viscosity. The ζ term acts in the pres-
ence of compression and it represents bulk viscosity.

Finally, equation (4.3) is the energy conservation, where u is the specific internal en-
ergy and L is the specific heat flux.

Classical accretion disc theory assumes:

• Azimuthal symmetry: gradients in ϕ direction are null;

• Thin disc: at a given radius R the geometrical height of the disc H is much smaller
than R (H/R≪ 1);

• Negligible disc self-gravity: the impact of disc gravity on itself has negligible im-
pact on disc dynamics, thus the gravitational potential Φ can be approximated as
the stellar gravitational potential;

• Negligible bulk viscosity: the primary contribution to viscous forces comes from
the shearing term, the bulk viscosity is neglected.

The natural frame of reference given the system geometry is a cylindrical coordi-
nate system, centred on the central protostar and with the z-axis perpendicular to the
disc. Given the assumption of a thin, light and axisymmetric disc, equations become
dependent only on the radial coordinate R and time t, with no dependency on z and ϕ
coordinates. As H/R ≪ 1, fluid properties can be integrated in the direction perpendic-
ular to the disc, allowing us to consider quantities per unit surface instead of per unit
volume. This effectively reduces the system to a two-dimensional geometry.

By integrating the continuity equation (4.1) over the z direction, we obtain the conti-
nuity equation for the surface density Σ

∂Σ

∂t
= − 1

R

∂

∂R
(RΣvR) , (4.5)

where vR represents the radial component of the velocity of the gas and Σ(R, t) is defined
as:

Σ(R, t) =

∫ +∞

−∞
ρ(R, z, t)dz. (4.6)

Regarding momentum conservation in equation (4.2), in a circular shearing flow the
only non-vanishing component of the stress tensor σ is in the Rϕ direction, expressed
as:

σRϕ = ηRΩ′, (4.7)

where Ω′ = ∂Ω/∂R represents the radial derivative of the gas angular velocity.
In the following sections, we project the Navier-Stokes equation onto the three cylin-

drical coordinate directions for additional insights on accretion disc physics.
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4.1.1 Vertical equilibrium

In our model, we assume that velocities in the z direction are negligible and viscous
forces only have components in the Rϕ direction. Thus, the projection of the Navier-
Stokes equation (4.2) along z direction results in the following expression:

1

ρ

∂p

∂z
= −∂Φ

∂z
. (4.8)

This equation is called the vertical hydrostatic equilibrium condition. It represents the
balancing between the vertical component of the gravitational force and the vertical pres-
sure gradient.

Assuming a barotropic equation of state, we can express the vertical pressure gradi-
ent as:

∂p

∂z
=
∂p

∂ρ

∂ρ

∂z
= c2s

∂ρ

∂z
, (4.9)

where c2s = ∂p/∂ρ represents the square of the sound speed in the gas.

Figure 4.1: Geometry involved in the computation of the disc vertical structure.

The assumptions of negligible disc self gravity and of thin disc approximation enable
us to simplify the expression for the vertical gravitational force as:

∂Φ

∂z
=

GM∗

r2
sin(θ) ≈ GM∗

r2
z

r
≈ GM∗

R3
z = Ω2

Kz. (4.10)

Here, M∗ represents the mass of the central protostar, θ is the angle between the position
vector and the disc plane (as illustrated in Figure 4.1) and ΩK(R) =

√
GM∗/R3 is the

Keplerian angular velocity, that is the angular velocity of a body in a circular orbit of
radius R.

With these assumptions and assuming a vertically isothermal disc (no vertical tem-
perature gradients), the condition of hydrostatic equilibrium can be rewritten as

c2s
∂ρ

∂z
= −ρΩ2

kz. (4.11)
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Integration of this equation in the z direction provides us with the vertical mass distri-
bution, which takes the form of a Gaussian distribution:

ρ = ρ0e
−z2/2H2

, (4.12)

where ρ0 is the density at z = 0 and H = cs/Ωk. We define the thickness of the disc as
H , that is the length scale of the vertical Gaussian distribution in (4.12).

Using the definition of H and the thin disc condition, we can derive the relationship

H

R
=

c2s
v2K

≪ 1, (4.13)

that implies cs ≪ vK, with vk the Keplerian linear velocity. This means that the orbital
velocity of the gas has to be highly supersonic. Furthermore, we can assume from ob-
servation that accretion processes occur on a longer timescale than dynamical processes.
Consequently, we have the following ordering for the velocities in the disc:

vR ≪ cs ≪ vϕ. (4.14)

4.1.2 Radial equilibrium

We now consider the radial projection of the Navier-Stokes equation (4.2). On the left-
hand side, the advection term reduces to

(v · ∇)v|R = −vϕ
R
, (4.15)

and, due to the condition in equation (4.14), we can neglect the time derivative of the
velocity radial component.

On the right-hand side, we have contributions from the pressure and gravitational
potential radial gradient, but again no contribution from the viscosity stress tensor.
Therefore, we arrive at the following equation:

vϕ
R

=
1

ρ

∂p

∂R
+
∂Φ

∂R
. (4.16)

Assuming a barotropic equation of state, we can express the pressure gradient as:

1

ρ

∂p

∂R
=
c2s
ρ

∂ρ

∂R
=
c2s
R

∂ ln ρ

∂ lnR
. (4.17)

Multiplying equation (4.16) by R, using equation (4.17) and recalling that

∂Φ

∂R
=

GM∗

R2
=
v2K
R
, (4.18)

we can express equation (4.16) as:

v2ϕ = v2K

(
1 +

c2s
v2K

∂ ln ρ

∂ lnR

)
. (4.19)

This equation reveals that, at first order, the orbital velocity of the gas is Keplerian,
and thus equation (4.16) is the centrifugal balance condition. However, there is a second
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order correction term in H/R due to the radial pressure gradient that contributes to the
centripetal force. This second-order term is negative, because we expect that the radial
derivative of ρ to be negative, and it implies a sub-Keplerian orbital velocity for the gas
component of the disc. For thin discs this correction is negligible and the disc can usually
be considered to follow circular Keplerian orbits.

Interestingly, equation (4.19) implies that there exists a relative azimuthal velocity
between the gas and massive bodies in the disc, as massive objects are not affected by
pressure gradients. This difference in velocity has important consequences for the vis-
cous interaction between gas and dust within the disc.

4.1.3 Azimuthal equilibrium

In the azimuthal direction ϕ of the Navier-Stokes equation, where pressure and gravity
have no components, the only force in action is shear viscosity between adjacent rings. In
our equations, we generally express viscosity through the kinematic viscosity coefficient
ν̂ = η/ρ. When we express our equations per unit surface we take into account ν̂ as its
vertical average weighted on the density ρ, that is

ν =
1

Σ

∫ +∞

−∞
ν̂ρdz =

1

Σ

∫ +∞

−∞
ηdz (4.20)

The Navier-Stokes equation (4.2) along the ϕ direction reads as

Σ

(
∂vϕ
∂t

+
vϕvR
2R

)
=

1

R2

∂

∂R

(
R3ΣνΩ′) . (4.21)

Multiplying the previous equation by R and using the surface density continuity equa-
tion (4.5) yelds

∂

∂t
(ΣRvϕ) +

1

R

∂

∂R
(RvϕΣRvR) =

1

R

∂

∂R
(R3νΣΩ′). (4.22)

Equation (4.22) represents a continuity equation for the superficial angular momen-
tum density L = ΣRvϕ. The difference between the advected angular momentum and
the time derivative of L corresponds to the angular momentum variation caused by the
torque due to the shear viscosity. Equation (4.22) also illustrates that thanks to viscos-
ity, the angular momentum is carried throughout the disc, with each ring losing angular
momentum from its inner and outer boundaries. If ν = 0 there is no torque, thus no
angular momentum transport.

From equation (4.22) we can derive the torque exerted by an external ring onto an
internal one at radius R:

G(R) = 2πνΣR3Ω′. (4.23)

The torque G(R) acting on the internal ring is negative, implying that angular momen-
tum is transferred from internal to external radii. This torque vanishes for rigid rotation,
as expected.

Assuming that the gas orbital velocity is nearly Keplerian, we can compute the radial
velocity of the gas by combining equations (4.5) and (4.22), resulting in

vR =
3

R1/2Σ

∂(R1/2νΣ)

∂R
. (4.24)
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Substituting the previous equation in equation (4.22) we obtain an equation for the
time evolution of the surface density Σ of the disc, that is

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
R1/2νΣ

)]
. (4.25)

Two interesting points can be derived from this equation. Firstly, we see that with no
viscosity (i.e. ν = 0) there is no disc evolution. Secondly, equation (4.25) has the form of
a diffusion equation with a diffusion time scale

tν =
R2

ν
. (4.26)

Its value has significant implications for the timescales of disc evolution and the effi-
ciency of angular momentum transport within these systems.

4.1.4 Steady state accretion rate

In a stationary condition, each derivative with respect to time is null. We can exploit this
in Eq. (4.5) and (4.22), which are the vertically integrated continuity equations for mass
surface density and angular momentum surface density, respectively. By integrating
them over the azimuthal direction (i.e. multiplying by 2π, given the azimuthal symme-
try) we obtain

1

R

∂

∂R
(2πvRΣR) = 0 (4.27)

and
1

R

∂

∂R
(2πvRΣR

2Ω) =
1

R

∂

∂R
(2πνΣR3Ω′). (4.28)

To solve these equations, we need to define two constants: the mass and the angular
momentum flux. The mass flux is the mass accretion rate onto the central star, which is
Ṁ = −2πRΣvR. The angular momentum flux can be written as J̇ = 2πΣvRR

3Ω. Under
the so called ”no torque condition”, we can assume there is a radius Rin near the star at
which ∂Ω/∂R = 0 and the viscous torque vanishes. This radius has to exist, given that
near the star the angular velocity of the disc has to drop to connect to the stellar rotation
velocity which has to be smaller than ΩK for stability reasons. Thus,

J̇ = J̇
∣∣∣
R=Rin

= 2πΣvRR
3
inΩ(Rin) = −ṀR2

inΩin. (4.29)

From Eq. (4.28) we see also that

J̇ = ṀΩR2 − 2πνΣR3Ω′, (4.30)

where the first term of the right hand side is an advection term while the second term is
a torque. Given Eq. (4.29), we obtain the following relationship:

νΣ =
Ṁ

3π

(
1−

√
Rin

R

)−1

, (4.31)

which, far from the central star (where R≫ Rin) becomes

Ṁ = 3πνΣ. (4.32)

Given that we are in a stationary situation, Ṁ is constant and thus, also νΣ is a con-
stant. Interestingly, this equation relates crucial disc properties, like viscosity, with the
accretion rate.
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4.1.5 Viscosity and α prescription

Viscosity is a crucial component of our disc model as it plays a fundamental role in
driving angular momentum transport and energy dissipation, ultimately governing the
evolution of accretion discs and the mass accretion onto the central protostar. Addi-
tionally, the transport and dissipation of energy set the temperature profile of the disc,
influencing its emission properties.

However, we have yet to address the nature of the viscosity invoked to describe ac-
cretion disc evolution. This is a critical issue because not knowing the nature of viscosity
impedes our ability to study its magnitude and the timescales of phenomena associated
with it.

To shed light on this issue, let’s consider a scenario where the only source of viscosity
in the disc is collisional viscosity, the primary source of viscosity in terrestrial fluids.
Collisional viscosity arises from the exchange of fluid particles between fluid elements
due to their random motion. Different fluid elements possess different mean velocities,
leading to energy and angular momentum exchange.

The magnitude of collisional viscosity, denoted as νcoll, should be of the order of the
product of the typical velocity of fluid particles (≈ cs) with their mean free path λ. In
mathematical terms:

λ =
1

nσcoll
=

µmp

ρσcoll
≈ µmp

Σσcol
H, (4.33)

where n = µmp/ρ, with µmp representing the mean molecular mass and ρ ≈ Σ/H .
We can define the viscous timescale as tν = R2/νcoll as done in equation (4.26), with

νcoll = λcs, and by comparing it with the dynamical timescale tdyn = Ω−1, we obtain

tν
tdyn

= Ω
R2

νcoll
=

(
Σσcoll
µmp

)(
H

R

)−2

. (4.34)

If we assume that the collisional cross section is of the order of the size of a molecule
of H2, we have σcoll ≈ 10−16 cm2. Moreover, being the gas mainly composed of H2

molecules, we have µ ≈ 2. In a disc of mass Md = 0.005 solar masses, disc thickness
H/R ≈ 0.1 and a radius of Rout = 50 AU, we have Σ ≈ Md/R

2
out ≈ 10 g/cm

2. Using
equation (4.34) with mp ≈ 10−24 g we obtain

tν
tdyn

≈ 1011. (4.35)

The dynamical timescale of a disc is at least of the order of a year. Thus, this estimate
tells us that disc evolution driven solely by collisional viscosity has a timescale longer
that the age of the universe. This clearly demontrates that the fluid within the disc is not
collisional, despite the observed viscous behaviour of discs.

This points to the idea that the nature of disc viscosity cannot be attributed to micro-
scopic interaction between fluid elements. At the same time it gives us a clue of what the
nature of this viscosity could be. Indeed, equation (4.34) expresses the Reynolds num-
ber of the disc, that measures the tendency of a fluid to be turbulent. A high Reynolds
number means that the fluid in an accretion disc is prone to be turbulent and this opens
new ways for fluid elements to interact over larger distances compared to the mean free
path. These macroscopic interactions between fluid elements can act as a viscosity source
greater than the collisional one by several orders of magnitude.

Balbus & Hawley (1998) showed the conditions under which turbulence behaves as
an effective viscosity term described by the stress tensor in the Navier-Stokes equation.
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Turbulence, in the presence of correlations between the radial and azimuthal compo-
nents of fluctuating fields (e.g., velocity, magnetic field, or gravitational field), can ex-
tract angular momentum and energy from the mean field and transport them through
fluctuations.

We thus have two primary ways to evaluate the viscosity in an accretion disc. The
first approach involves observations: we observe accretion discs and we measure ν
through their properties. This is similar to what we have done in order to exclude col-
lisional viscosity as the source of viscosity in discs. The second approach is theoretical:
we identify an instability that can lead to turbulence and with numerical experiments we
measure the correlation between the azimuthal and radial components of its fluctuating
field.

While the nature of viscosity in protoplanetary discs remains largely unknown, Shakura
& Sunyaev (1973) introduced a useful parameterization to estimate its magnitude and
compare theoretical models with observations. In its simpler interpretation, this param-
eterization is based on dimensional analysis, expressing viscosity as the product of a
velocity scale (cs) and a length scale (H). Where cs is the speed of sound and H is the
thickness of the disc. The result is:

ν = αcsH. (4.36)

Firstly we notice that α ≤ 1. Indeed, the typical turbulent velocity cannot be grater than
cs, as perturbations would quickly dissipate through shocks. On the other hand, if we
suppose isotropic turbulence, the length scale is limited to the disc thickness H .

We stress the fact that with this prescription we have not gone any deeper in under-
standing what the nature of viscosity is, we have only condensed all our ignorance in
the α parameter.

From the previous example about collisional viscosity we see that the expected α
parameter is

αcoll =
νcoll
csH

≈ λ

H
=

µmp

Σσcoll
≈ 10−9. (4.37)

As previously mentioned, this is too small compared to the observed α parameter in pro-
toplanetary discs. Estimates based on recent high angular resolved surveys conducted
with the Atacama Large Millimeter/submillimeter Array (ALMA) found α to be of the
order of 5× 10−4 (Dullemond et al. 2018).

4.1.6 Temperature profile

To accrete on the central star, the material has to lose both angular momentum and grav-
itational energy. We saw in Sec. 4.1.3 how angular momentum is carried towards larger
radii via the viscous torque. As for gravitational energy, it has to be dissipated by dis-
sipative processes producing heat. Thus, in addition to external radiation, also inter-
nal processes heat up the disc. In the following we presents two regimes in which we
are able to compute the temperature profile fo the disc given the source providing the
heating. Such temperature profiles are useful in setting up the temperature profile of
accretion discs hydrodynamical simulations.

4.1.6.1 Active disc temperature profile

In Sec. 4.1.3 we derived the net torque over an annulus, i.e. ∂G/∂R, where G is the
torque applied by an annulus over the one adjacent to it. By multiplying the net torque
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by Ω we obtain the work done by viscous forces over a ring of width dR. We finally
divide by 2πR to obtain the work done per unit surface P , that is

P =
1

2πR
Ω
∂G

∂R
=

1

2πR

∂

∂R
(GΩ)− GΩ′

2πR
. (4.38)

The power per unit surface P has two contributions. The first, positive, represents the
transport of energy because, when integrated, it gives contribution only at boundaries.
The second, negative, is a proper dissipation term. Interestingly, viscosity, besides dif-
fusing angular momentum, also transports energy over the disc.

The dissipated energy per unit surface is, thus,

D(R) =
GΩ′

2πR
= νΣ(RΩ′)2. (4.39)

Which, assuming Keplerian rotation, reads:

D(R) =
9

4
νΣΩ2. (4.40)

By integrating the previous equation over the disc and assuming a stationary disc
(i.e. using Eq. (4.31) to express νΣ), we obtain the rate of energy dissipated by the disc:

Ldisc =

∫ Rout

Rin

D(R)2πRdR =

∫ Rout

Rin

3

2

GM
R2

(
1−

√
Rin

R

)
ṀdR =

1

2

GM
Rin

Ṁ, (4.41)

which basically is the gravitational energy to be dissipated for bringing mass from infin-
ity to Rin at a rate Ṁ .

Under the assumption that the source of disc heating is mainly the dissipated gravi-
tational energy, we can derive the temperature profile of such disc, called ”active disc”.

A surface element dissipation rate at radius R can be equated to the energy emitted
by a black body of temperature Ts, multiplied by two because the disc is emitting from
both surfaces:

2σSBT
2
s =

3

4π

GM
R3

Ṁ

(
1−

√
Rin

R

)
, (4.42)

where σSB is the Stefan-Boltzmann constant.
From previous equation we can derive the superficial temperature profile:

Ts =

[
3

8πσSB

GM
R3

Ṁ

(
1−

√
Rin

R

)]1/4
. (4.43)

For R≫ Rin the radial dependency of the surface temperature Ts is like

Ts ≈ T0

(
R

R0

)−3/4

. (4.44)

4.1.6.2 Passive disc temperature profile

Typically, the main source of heating in protoplanetary discs is external (e.g. the cen-
tral star) rather than internal heating. Indeed, the disc surface is exposed to the central
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star radiation because the disc geometry is generally flared, that is the aspect ratio H/R
increases with R. The general problem of radiative transfer in passive protoplanetary
discs is complicated and usually solved numerically. However, under the following as-
sumptions we can derive a radial temperature profile (Chiang & Goldreich 1997).

First, we assume the disc to be in local thermal equilibrium, i.e. radiation is absorbed
and emitted by the dust suspended in the disc at the same rate, even if on different
wavelengths. We also consider regions where R ≫ R∗ so that we are allowed to treat
the star as point-like. Given that the energy absorbed and emitted by a surface element
∆A of the disc is the same, we write

2

(
L∗

4πR2

)
α∆A = 2σSBT

4
s ∆A, (4.45)

where on the left hand side we have the rate of absorption of the stellar radiation (L∗),
with α the flaring angle of the disc so that, for small angles, α∆A is the projection of ∆A
perpendicular to the incident light direction. On the right hand side there is the radiation
emitted by the surface element at a temperature Ts. Writing L∗ = 4πR2

∗σSBT
4
∗ , we can

express the radial temperature profile as

T 4
s = α1/4

(
R∗

R

)1/2

T∗. (4.46)

4.2 Circumbinary discs

Systems with two or more stars are typically arranged in hierarchical configurations (see
section 2.2.2) and can in principle host discs around each star of the system and around
each hierarchical level. The existence and the dimensions of these discs depend mainly
on the mass ratio and orbital parameters of the hierarchical level to which they belong,
and on the availability of gas in the regions of interest.

In this section, we focus on phenomena occurring in the simplest multiple stellar
system: a binary. It makes sense to start from a binary configuration because we already
saw that binary orbits are the fundamental bricks of higher multiple systems, and we
expect that a hierarchical system leads to a small correction to the binary behaviour
described in this section on short timescales.

The presence of multiplicity in an accretion environment allows a tidal interaction
between the stellar system and the gas discs surrounding it. This interaction has been
firstly studied in the context of protoplanets embedded in circumstellar discs by Lynden-
Bell & Pringle (1974) and successively developed by Lin & Papaloizou (1979a), Lin &
Papaloizou (1979b) and Lin & Papaloizou (1986).

The tidal interaction between a disc of gas and a binary system allows the stellar and
the gaseous component to mutually exchange angular momentum through a tidal torque
that induce modifications to both the disc structure and the binary orbital parameters.
Goldreich & Tremaine (1980) were the first to show this backreaction on the multiple
system in the case of protoplanets.

This orbital parameters evolution surely affects the multiplicity of the population
destabilising systems with more than two stars. In Tokovinin (2008) the author shows
that the two main features not well reproduced by pure N-body stellar cluster evolution
are the eccentricities and the period ratios of multiple systems. These are the two pa-
rameters that influence stability the most in hierarchical systems. This suggests that the
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accretion processes and viscous interactions are important in the earliest phase of multi-
ple systems dynamical evolution. Indeed, the more accretion phenomena are efficient in
destabilising hierarchical systems the more old populations orbital parameters distribu-
tion has to be shifted towards more stable eccentricity and semi-major axis ranges.

4.2.1 Tidal torque and the impulse approximation

We start studying the interaction between a binary and an accretion disc through a useful
approximation, called “impulse approximation”. Our aim is to compute the angular
momentum exchange between the binary and the disc and we will follow the approach
of Lin & Papaloizou (1979a). We assume that the mass ratio of the binary q ≪ 1 and we
consider a disc coplanar with the orbital plane.

Assuming that q ≪ 1 allows us to consider the secondary star in Keplerian motion
around the primary, and to neglect the motion of the primary. In the impulse approxi-
mation, we ignore the hydrodynamics of the gas and we study the interaction between
the secondary star and a gas test particle that is orbiting in circular motion around the
primary star. The only hydrodynamical effect allowed is the viscous interaction that is
efficient enough to guarantee that the test particles after being deflected reach again a
circular Keplerian orbit before the next encounter. We assume also that the encounters
between the gas particle and the secondary are impulsive: the duration of the gravita-
tional interaction is short compared to the orbital period and the deflection is small. Even
with these simplifications, the impulse approximation leads to results in agreement with
more sophisticated models, as shown in Lin & Papaloizou (1979b).

Let us consider a secondary star of mass Ms orbiting the primary star of mass Mp

with a semimajor axis a, and a gas particle of mass µ orbiting the primary at radius
R = a + p, where p << a is the impact parameter of the encounter. In the frame of
reference of the secondary the gas flows at distance p from the secondary with a velocity
v = vgas − vs, where vgas and vs are the orbital velocity of the gas particle and of the
secondary respectively. Figure 4.2 represents the encounter.

Figure 4.2: Deflection of a gas particle orbit caused by the encounter with the secondary.

From classical mechanics results, it can be shown that the angle δ by which the gas
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particle is deflected during the encounter respects

cotan
δ

2
=

pv2

GMs
. (4.47)

This corresponds to the Rutherford scattering formula, as expected.
Given the impulsive nature of the interaction, we can consider the gravitational force

always acting perpendicular to the velocity of the gas particle. Thus, the module of the
velocity will be conserved and only the direction of the velocity will be affected. The
deflection cause the particle to gain a small radial velocity and to reduce the tangen-
tial velocity. Indeed, after the encounter the particle radial velocity is v sin δ and the
tangential velocity reduces to v cos δ. If we suppose that the particle’s orbital radius is
not modified by the encounter and we approximate R ≈ a, the encounter reduces the
specific angular momentum of the gas particle by an amount

∆jg = av(cos δ − 1) = − 2av

cotan2(δ/2)
, (4.48)

where in the last passage we exploited the relation cos δ − 1 ≈ −2 tan2(δ/2), that holds
for small δ. Using equations (4.47) we can finally write

∆jg = −2a(GMs)
2

p2v3
. (4.49)

It worth noting that if the gas particle orbits outside the secondary orbit, its relative ve-
locity v < 0 and thus ∆jg > 0. This means that in encounters gas outside the orbital
radius of the secondary gains angular momentum, while gas inside looses angular mo-
mentum. The secondary thus tends to repel the gas around it.

The gas particle goes into an encounter every

∆t =
2π

|ΩK(R)− ΩK(a)|
≈ 4π

3

a

Ωsp
sgn(p), (4.50)

where ΩK is the Keplerian angular velocity and Ωs = ΩK(a). The resulting torque ex-
erted by the secondary onto the gas per unit mass is

Λt,g =
∆jg
∆t

= −sgn(v)
3

2π

G2M2
s

pv3
Ωs. (4.51)

Using the fact that p≪ a we can write

v = (a+ p)ΩK(a+ p)− aΩK(a) ≈ −3

2
ΩK(a)p. (4.52)

Substituting the previous into equation (4.51) gives

Λt,g = −sgn(a−R)
4

9π
q2Ω2

sa
2

(
a

p

)4

. (4.53)

The previous equation express the specific torque exerted by the secondary onto the
gas, that is the angular momentum variation of the gas particle. We are interested also
in the transfer from the gas to the secondary. However, the gravitational force in this
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configuration is a central force and thus it conserves the total angular momentum. From
this it must be that ∆jg +∆js = 0, or in terms of torque, that

Λt,s = −Λt,g = sgn(a−R)
4

9π
q2Ω2

sa
2

(
a

p

)4

. (4.54)

The equation (4.54) holds only for p ≈ 0, around which we expanded ΩK(a + p).
However, Lin & Papaloizou (1979b) showed that (4.54) is valid also for p ̸= 0. This
allows us to integrate (4.54) over all the possible impact parameters in order to obtain
the total torque exerted by the disc on the secondary. Assuming azimuthal symmetry:

T =

∫ Rout

Rin

Λt,s(R)Σ(R)2πRdR =

=

∫ pmax

pmin

Λt,s(a+ p)Σ(a+ p)2π(a+ p)dp ≈

≈
∫ pmax

pmin

Λt,s(a)Σ(a)2πadp,

(4.55)

where we have to choose the integral boundary. For pmax we can extend the integration
to +∞ as there the integral vanishes. For pmin we can take it to be the radius rL of the
Roche Lobe of the secondary. Indeed, near the secondary gas starts orbiting around the
secondary and thus stops scattering and the angular momentum exchange vanishes. For
small values of the mass ratio q, the Roche Lobe reduces to rL = a(q/3)1/3.

With these boundaries the integral in (4.55) gives

T =
8

9
q2Ω2

sa
7Σ

∫ +∞

rL

dp

p4
=

8

9
qΩ2

sa
4Σ. (4.56)

We showed that the tidal interaction tends to push the gas away from the secondary.
This effect alone would open a gap in the disc at the secondary radius. However, in
section 4.1.3 we also showed the tendency of the gas to spread due to viscous interaction,
thus viscous discs tend to diffuse and refill the gap opened by tidal torques. Gaps form
depending on which of these processes dominates over the other.

We compare the magnitude of these two contrasting processes defining a time-scale
for the angular momentum transfer between the disc and the secondary τt, and compare
it with the viscous time scale

τν =
R2

ν
(4.57)

as defined in section 4.1.3. In order to do this, we divide an angular-momentum-scale
of the disc (πa2Σ · AΩs · a) by the tidal torque T computed in equation (4.56). The tidal
time-scale results:

τt =
πa4ΣΩs

T
=

9π

8

a4ΣΩs

qΩ2
sa

4Σ
=

9π

8qΩs
. (4.58)

We can define a gap-opening criterion imposing that τt < τν . Given the time-scales
in (4.57) and (4.58) this reduces to:

q >

(
ΩsR

2

ν

)−1

≡ Re. (4.59)

A secondary will be able to open a gap in the disc around the primary when the mass
ratio of the binary exceeds the local Reynolds number.
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4.2.2 Disc truncation

The process of gap formation described in the previous section is an example of how a
multiple stellar system shapes the discs that surround it. Typically the dimension of the
discs depends on the tidal interaction. For example, when the gap-opening criterion is
verified the secondary truncates the circumprimary disc, determining its inner radius.
The limitation of q ≪ 1 however restricts its application to mainly star-planet systems.

In general, tidal truncation can occur via two main mechanisms. The first one is
due to the exchange of angular momentum between the disc and the binary at certain
resonant locations (Lynden-Bell & Kalnajs 1972). The second one generally occurs for
circular orbits and is based on non-resonant phenomena that can occur at each radius
and not only at resonant ones.

4.2.2.1 Resonant interaction

In this section, we briefly discuss the general approach to the problem of predicting the
size of a resonantly truncated disc. For the detailed mathematical approach, we refer to
Artymowicz & Lubow (1994), where the authors determine the gap-opening criteria for
eccentric binaries with no restriction on mass ratios.

The general approach in order to study the interaction between a binary and the gas
consists in decomposing the perturbation of the gravitational potential due to the sec-
ondary in Fourier modes ϕm,l of the form exp[i(mθ− lΩbt)] where l is the time harmonic
number, m ≥ 0 is the azimuthal number and Ωb = (GM/a3)1/2 binary orbital frequency,
with M the total mass of the binary. The evolution and effects of perturbations induced
in the disc are then computed by means of the linearised hydrodynamic equations.

This approach shows that the exchange of angular momentum in these resonant in-
teractions can occur only at particular resonant locations in the disc. At these locations, a
frequency of the satellite perturbation matches a characteristic frequency within the disc
and the disc responds with the excitation of a density wave. These density waves carry
energy and angular momentum, which dissipate through shocks.

For each disc in the system (circumstellar or circumbinary) and for each harmonic
ϕm,l two types of resonances are possible. The first type is called corotation resonance
and occurs when

Ω(R) = Ωp =
l

m
Ωb, (4.60)

where Ω(R) is the angular velocity of the gas at radius R. The second type is called
Lindblad resonances, which are a set of resonances that appear when the gas orbital
velocity and the pattern speed differ by a submultiple of the epicyclic frequency κ. That
is when

Ω(R) = Ωp ± κ(R)

m
. (4.61)

If we neglect the small difference between the Keplerian angular velocity ΩK and the
orbital angular velocity of the gas due to pressure gradients, we can assume that

Ω2(R) = d
GM
R3

, (4.62)

where M = M1 +M2 is the mass of the binary and d = 1 in the circumbinary disc case,
d = M1/M in the case of circumprimary disc and d = M2/M in the case of circum-
secondary disc. With this approximation we can consider κ(R) = ΩK(R) and thus the
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resonant radii are given by

rCR =
(m
l

) 2
3

d
1
3 a, (4.63)

rLR =

(
m± 1

l

) 2
3

d
1
3 a, (4.64)

where the + sign corresponds to the outer Linblad resonances and the − sign corre-
sponds to the inner Linblad resonances.

4.2.2.2 Non resonant interaction

In usual circular binaries, when the reduced mass µ = (M1M2)/(M1+M2) > 0.1 the res-
onant radii in equations (4.63) and (4.64) are outside the Roche Lobes of the stars. When
this happens the discs cannot be resonantly truncated and two main non-resonant trun-
cation mechanisms can operate. The first one concerns the density perturbation of the
disc due to the binary motion and was first considered by Papaloizou & Pringle (1977).
In their article they study the density perturbation due to the secondary in absence of
dissipation and found that they are in phase with the secondary. When dissipation is
considered, however, it introduces a phase lag in the perturbation. This phase lag in-
troduces non axisymmetric components in the density perturbation that lead to a tidal
torque on the secondary, that results in an angular momentum exchange between the
disc and the binary. Papaloizou & Pringle (1977) compute analytically this tidal torque
and identify the truncation radius as the radius at which tidal torques dominate viscous
ones.

It is interesting that in this mechanism both torques depend on viscosity (in fact the
magnitude of the lag and thus of the tidal torque depends on how much viscous the disc
is) and in consequence, the truncation radius does not depend on viscosity, as it cancels
out in the comparison between the two torques. Note that this is the opposite of what
happens in resonant mechanisms and in the impulse approximation, where tidal torques
are independent of viscosity, and thus viscosity affects the disc size as ν does not cancel
out in the torques comparison.

The second mechanism of non resunant disc truncation was first considered by Paczyn-
ski (1977) and more recently by Pichardo et al. (2005), and is due to the orbit intersection
of test particles in the restricted three body problem. Test particle orbits are a very good
approximation of streamlines in accretion discs with very small pressure and viscos-
ity. In regions where test particles orbits intersect (an thus streamlines) high dissipative
shocks have to occur and thus there we could expect a depletion of gas.

Paczynski (1977) numerically finds, in the case of a binary with circular orbits and
small q, that orbits close to the Roche Lobe of a star in a binary always intersect each
others (as shown in Figure 4.3) and thus he predicts the last non-intersecting orbit to be
the outer radius of the circumstellar disc.

More recently Pichardo et al. (2005) relaxed the Paczynski (1977) assumption on cir-
cularity and mass ratio and numerically predicted the tidal truncation radius due to orbit
crossing for a number of eccentricity and mass ratio values. They fitted a power law in
both eccentricity e and mass ratio q for the truncation radius (i=1 for the primary and
i=2 for the secondary), obtaining

Ri = REgg,i · 0.733 · (1− e)1.20q0.07, (4.65)
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Figure 4.3: Test particle orbits for a circular binary and a mass ratio q = 0.2. Top panel:
orbits plotted up to the position of the last non-intersecting loop (that defines the cir-
cumstellar gaseous disc). Bottom panel: orbits plotted starting from the first intersecting
loop. (From Pichardo et al. (2005))

where REgg,i is the Eggleton’s estimate for the Roche Lobe average radius as in Eggleton
(1983):

REgg,i = a
0.49q

2/3
i

0.6q
2/3
i + ln

(
1 + q

1/3
i

) , (4.66)

where q1 = M1

M2
and q2 = M2

M1
.

4.2.3 Equlibrium configurations

Observations of protostellar circumbinary discs showed the existence of configurations
in which there is a misalignment between the binary orbital plane and the disc plane.
In Sec. 3.3 we presented the state-of-the-art knowledge about the distribution of such
misalignment, where we saw that disc misalignment spans from nearly coplanar discs
to discs perpendicular to the orbital plane (polar discs).

Misalignment could arise from different mechanisms, both at the onset of stellar for-
mation and in subsequent evolutionary stages. Giant molecular clouds, where stars and
discs form, are turbulent. Discs forming in a turbulent environment can be misaligned
with the central binary (Offner et al. 2010; Bate 2012). In case the disc surrounding a
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binary star formed after the binary formation process via accretion of surrounding ma-
terial, the accreting material is likely misaligned with the binary orbital plane leading to
the formation of a misaligned disc (Bate et al. 2010).

Given a misaligned disc, we can naively expect that dissipation will drive the disc to-
wards a configuration coplanar to the binary orbital plane. Indeed, that is the minimum
energy configuration for a given density distribution. This is indeed what happens in
the majority of the disc parameter space region and it is discussed in Sec. 4.2.3.1.

When the disc is orbiting an eccentric binary, however, it can align perpendicularly to
the binary orbital plane if the initial misalignment is sufficiently high. This mechanism,
called ’polar alignment’, results from the 3 body dynamics discussed in Sec. 2.2.4 and is
discussed in Sec. 4.2.3.2.

4.2.3.1 Coplanar equilibrium

Let’s consider a binary with masses ma and mb and semi-major axis a. The second-order
gravitational potential Φ in cylindrical coordinates centered in the binary center of mass
averaged over the binary orbit has been computed by Facchini et al. (2013):

Φ(R, z) = −GM
R

− GMηa2

4R3
+

GMz2

2R3
+

9

8

GMηa2z2

R5
, (4.67)

where η = mamb/(ma +mb)
2 and M = ma +mb.

A misaligned test particle orbiting in this gravitational potential field undergoes
nodal precession. That is, the angular momentum vector of the particle precesses around
the binary angular momentum vector (see Sec. 2.2.4).

The precession frequency of the test particle is

Ωp(R) =
3

4

√
GMηa2

R7/2
. (4.68)

Given that Ωp depends on the radius, a disc of non-interacting particles would undergo
differential precession. If, however, we consider a gaseous disc, viscosity tends to keep
the disc together depending on the disc thickness and viscosity. In the typical protostel-
lar disc regime, discs are warm enough to efficiently communicate in the radial direction
through pressure-induced bending waves, allowing the disc to avoid warping. Thus, a
protostellar disc is generally able to hold itself together and it precesses as a solid body
(Papaloizou & Terquem 1995; Larwood & Papaloizou 1997; Lubow & Ogilvie 2000).

The disc precession frequency ωp can be computed by averaging Ωp over the angular
momentum surface density at radius R, that is L(R) = ΣR2Ω. Thus,

ωp =

∫ Rout

Rin
Ωp(R)L(R)2πRdR∫ Rout

Rin
L(R)2πRdR

. (4.69)

In addition, because of viscosity, the disc tends to align to the binary orbital plane,
with an alignment timescale that is of the order of the viscous time (Papaloizou & Terquem
1995; Larwood et al. 1996; Bate et al. 2000) eventually reaching the coplanar equilibrium
configuration. In particular, Bate et al. (2000) found that the timescale needed for dissi-
pation of the disc tilt can be expressed as

talignment ∝ ω−1
p α−1

(
H

R

)2
Ωout

ωp
, (4.70)

where α is the α-viscosity parameter discussed in Sec. 4.1.5, Ωout is the disc orbital
velocity at the disc outer edge and H/R is the disc aspect ratio.
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4.2.3.2 Polar equilibrium

A test particle orbiting an eccentric binary, under the conditions discussed in Sec. 2.2.4,
precesses around the binary eccentricity vector, which is a vector lying on the semi-major
axis and pointing towards the pericenter of the binary orbit (Farago & Laskar 2010). Aly
et al. (2015) and Martin & Lubow (2019) numerically showed that also accretion discs can
undergo polar alignment. In addition, Lubow & Martin (2018) studied the stability of the
polar configuration, analytically describing the process of polar alignment for viscous
accretion discs.

Lubow & Martin (2018) applied the same procedure used in Lubow & Ogilvie (2000),
but to a nearly polar disc. They found that, at the lowest order, the frequency of the disc
oscillation is given by

ω =
3
√
5

4
eb

√
1 + 4e2b

mamb

M2

〈( a
R

)7/2〉
Ωb, (4.71)

where the angular brackets represent an angular momentum weighted average. Here eb
is the binary eccentricity and Ωb is the binary frequency. Thus,

〈( a
R

)7/2〉
=

∫ Rout

Rin
ΣR3Ω(a/R)7/2dR∫ Rout

Rin
ΣR3ΩdR

. (4.72)

Given an initial tilt i0, the disc inclination evolves as

i(t) = i0

√
1 + 9e2b + (1− e2b cos 2ωt)

2(1 + 4e2b)
. (4.73)

In the presence of dissipation, tilt and nodal oscillations are dumped and the disc
eventually settles on a polar orbit. Lubow & Martin (2018) showed that, for a fixed disc
structure, small departures from the polar state decay on a timescale

tdecay ∝ (H/R)2Ωb

αω2
∝ (H/R)2M2

αe2b(1 + 4e2b)m
2
am

2
bΩb

. (4.74)

We can appreciate the process of polar alignment in the same way in which we de-
scribed polar orbits in the i sin(ϕ) − i cos(ϕ) plane for three body systems. In Fig. 4.4,
a circumbinary disc starts with an inclination i and longitude of ascending node ϕ suit-
able for polar alignment. Instead of oscillating in close orbits, as in the case without
dissipation, the curve on the right panel shrinks towards the equilibrium configuration
(i = π/2, ϕ = π/2). This is due to the dumping in the synchronous oscillations of i and ϕ
shown in the left panels of the figure.

4.2.4 Accretion dynamics

The mass of a protobinary (or higher multiplicity system) formed in the collapse of a
molecular cloud core is initially only a fraction of the total core mass. Indeed, the higher
angular momentum gas starts to orbit the stars forming an accretion disc, which slows
down the mass accretion onto the stars. Surveys of mass ratios of binary systems have
shown the tendency of binary populations to flatten their mass ratio distribution with
stellar age (De Rosa et al. 2014). This can be a result of the competition between the
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Figure 4.4: Evolution of disc tilt i and longitude of the ascending node ϕ in a disc under-
going nodal liberation. On the left panel i and ϕ are plotted against time. On the right
panel the disc evolution is plotted on the i sin(ϕ)− i cos(ϕ) plane. Figure from Martin &
Lubow (2019).

primary and the secondary in accreting mass from the circum-binary disc. In general,
numerical studies agree with the tendency for the secondary to accrete the majority of
the disc mass. This tendency to form high mass ratio binaries is found in cluster level
numerical simulation (e.g. Bate 2009) as well as in the study of isolated binary with dif-
ferent numerical techniques (e.g. three-dimensional Smoothed Particle Hydrodynamics
in Bate & Bonnell (1997) and Dotti et al. (2010), and two-dimensional grid codes in de
Val-Borro et al. (2011), Farris et al. (2014)).

This is in line with the shorter distance between the inner edge of the disc and the
secondary Roche Lobe, and with the lower relative velocity between the accreting gas
and the secondary.

In Young & Clarke (2015), the authors show that the general tendency of a binary to
raise its mass ratio depends also on gas temperature. They found that, independently
of the mass ratio, raising the temperature of the accreting gas raises the fraction of gas
accreting onto the primary. Gerosa et al. (2015) proposed a parametrisation of the com-
petitive accretion trend based on a set of simulations of black holes binaries in Farris
et al. (2014). The temperature parameter on which Young & Clarke (2015) studied the
variation of the competitive accretion is the sound speed normalised to the orbital speed
of the binary, that is

c = cs/

√
GM
a
, (4.75)

where G is the gravitational constant,M the mass of the binary and a its semi-major axis.
This parameter is also the aspect ratio of the disc at radius a.

The parametrisation in Gerosa et al. (2015) fits numerical trends of the ratio of the
accretion rate of the primary on the total accretion rate through the λ1 and λ2 = 1 − λ1
factors defined as

λi =
Ṁi

Ṁtot

, (4.76)

where Ṁ1 and Ṁ2 are the accretion rates of respectively the primary and the secondary,
and Ṁtot is the total accretion rate (i.e. Ṁtot = Ṁ1 + Ṁ2, note that the λi are not inde-



pendent as by definition λ1 + λ2 = 1). This parametrisation reads:

λP1 =
q

1 + q
, and

λP2 =
1

1 + q
,

(4.77)

where q is the binary mass ratio.
The λ factors measure how the mass accreted at a certain time is distributed between

the primary and the secondary. From their mean values, one can derive the tendency of
mass equalisation, that is how much the mass ratio varies from the initial value and if it
grows or it decreases.

When more than two stars are at play, also the interaction between the infalling gas
and inner hierarchical level binaries has to be taken into account. In Part II of this thesis
I investigate differential accretion in hierarchical triple systems (Ceppi et al. 2022).



Part II

Accretion rates in multiple stellar
systems





CHAPTER 5

Accretion rates in hierarchical triple systems with discs

This chapter is based on the paper ”Accretion rates in hierarchical triple systems with discs” by
Simone Ceppi, Nicolás Cuello, Giuseppe Lodato, Cathie Clarke, Claudia Toci, Daniel J. Price,
published on Monthly Notices of the Royal Astronomical Society, Volume 514, Issue 1, pp.906-
919, in July 2022.

Surveys of star forming regions indicate that multiple stellar systems are common
in young populations (Reipurth et al. 2014; Duchêne & Kraus 2013). Among Class 0
and Class I stars (younger than 1 Myr) the multiplicity fraction ranges between 40% and
70% (Connelley et al. 2008; Chen et al. 2013), while in evolved populations is around
20% (Duquennoy & Mayor 1991). In addition, molecular cloud simulations show that
protostars are likely to form as part of multiple stellar systems and that their surrounding
discs experience dramatic dynamical interactions with neighbour stars (Bate 2009, 2018).
Thus, multiple stellar systems with discs are expected to be common in star forming
regions. This is also confirmed by surveys of Class 0 systems, as in Tobin et al. (2016).

After the initial collapse of a molecular cloud core, the majority of the mass avail-
able to the forming stellar system is confined by angular momentum conservation in the
disc and slowly accretes onto the stars (Bonnell & Bate 1994). The tidal torque between
the central multiple system and the surrounding disc allows the exchange of angular
momentum between the disc and the stellar system (Lin & Papaloizou 1979b; Goldre-
ich & Tremaine 1980). The gravitational torque exerted by the multiple system on the
circum-multiple disc is thought to suppress the surface density in the surrounding of
the stars. Indeed, a high enough angular momentum exchange between the system and
the surrounding material is able to open a central cavity in the disc (Artymowicz &
Lubow 1996). However, thanks to the asymmetries of the gravitational potential and to
the three dimensional nature of the problem, accretion of gas onto the stars is not sup-
pressed. Indeed, the stars of the system pull streamers of gas from the inner edge of
the cavity. These streamers bridge the lower density region between the disc inner edge
and the stellar system allowing the gas to flow towards the stars (Artymowicz & Lubow
1996; Farris et al. 2014; Ragusa et al. 2016). There, inner accretion discs around the single
stars process the infalling gas that eventually is accreted.

An example is the well known GG Tauri A (Keppler et al. 2020; Phuong et al. 2020).
GG Tau A is a triple (Di Folco et al. 2014) stellar system surrounded by a circum-triple ac-
cretion disc. The stars carved a central cavity, where we observe streamers and filaments
of gas. Another multiple system that shows cavities and nested discs separated by low
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density regions is the GW Orionis triple stellar system (Kraus et al. 2020; Bi et al. 2020).
Other similar examples are the binary BHB 2007 (Alves et al. 2019), in which a complex
structure of filaments supply gas from the circum-binary disc to the circum-stellar discs
and L1448 IRS3B (Reynolds et al. 2021), that is really young multiple stellar system in
formation.

In general, systems with more than two stars are unstable and their evolution even-
tually leads to the ejection of one body of the system (Valtonen & Karttunen 2006). The
only stable configurations observed are made of nested binary orbits and are called hi-
erarchical configurations. For example, a hierarchical triple system is made of a binary
orbited at distance by a third body. In order to preserve the stability of the system, the
third body needs to orbit the binary at a distance of several time the binary semi-major
axis (see Mardling & Aarseth (2001) for a stability criterion).

How accreting mass from the circum-multiple disc distributes itself around the indi-
vidual stars plays a key role in the star formation scenario. Indeed, both the evolution of
the stellar system masses and the supply of gas around the stars to form inner discs (and
possibly inner planets) strongly depend on the competition between the stars in having
access to the gas stored in the disc. The study of these processes allows us also to link
the properties of the observed evolved population of binaries to their initial conditions
in which they initially born (Bate 2000). The fraction of mass accreted by each star of
the system depends on the system orbital parameters, in particular on the mass ratio ,
as shown by Farris et al. (2014). In addition, other less studied system parameters play a
role in the mass distribution among the system stars, for example the infalling gas tem-
perature (Young et al. 2015; Young & Clarke 2015) and the gas viscosity (Duffell et al.
2020).

This process, known as differential accretion, has been widely studied in binaries.
Different numerical (SPH and grid) methods show that the secondary star of the binary
should accrete most of the disc mass (e.g. in Bate & Bonnell 1997; Farris et al. 2014; Young
et al. 2015). This is due to the lower relative velocity between the secondary and the disc
material orbiting at the inner edge, and to the lower distance between the secondary
orbit and the inner edge of the disc. However, there are exceptions to this general be-
haviour when the system orbit is very eccentric. Indeed, in this case, Dunhill et al. (2015)
showed that discs around binaries with mass ratio lower than unity can temporary ac-
crete more mass onto the primary and Muñoz & Lai (2016) showed that unitary mass
ratio binaries can temporary break the symmetry expected in their accretion rates. Both
these exceptions are due to the precession of the eccentric cavity carved by the stellar
system.

As of today, however, little is known about differential accretion in hierarchical sys-
tems. In this chapter we investigate to which extent the accretion trends of binary sys-
tems remain valid for hierarchical triples. In doing so, we propose a model to describe
the deviations of the stellar accretion rates in triple systems. We also discuss the possi-
bility to reveal unresolved hierarchical triple systems from their accretion rates and the
difficulty in constraining the orbital parameters of the unresolved small binary.

The chapter is organised as follows: in Sec. 5.1 we describe the systems setup we
considered and their initial conditions. In Sec. 5.2 we present our results. We discuss the
results of the simulations sets in Sec. 5.3 and we give our conclusions in Sec. 5.4.

5.1 Hydrodynamical simulations

We performed gas simulations of coplanar multiple systems embedded in an outer copla-
nar accretion disc using the 3D Smoothed Particle Hydrodynamics code PHANTOM (Price
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Table 5.1: Hydrodynamical simulations sets. All binary orbits (wider and smaller) are
circular and coplanar with the disc. The semi-major axis of each wide orbit is awide =
10 au. All small binary have a unitary mass ratio qsmall = 1.

Set 1 asmall

awide
qwide split star

b2 - 0.2 -
b4 - 0.4 -
b65 - 0.65 -
ts2 0.1 0.2 secondary
ts4 0.1 0.4 secondary
ts65 0.1 0.65 secondary
tp2 0.1 0.2 primary
tp4 0.1 0.4 primary
tp65 0.1 0.65 primary
Set 2
ts2a15 0.15 0.2 secondary
ts2a05 0.05 0.2 secondary
ts4a18 0.18 0.4 secondary
ts4a15 0.15 0.4 secondary
ts4a05 0.05 0.4 secondary
ts65a20 0.2 0.65 secondary
ts65a15 0.15 0.65 secondary
ts65a05 0.05 0.65 secondary

Set 3
tp2a20 0.2 0.2 primary
tp2a05 0.05 0.2 primary
tp4a20 0.2 0.4 primary
tp4a05 0.05 0.4 primary
tp65a20 0.2 0.65 primary
tp65a05 0.05 0.65 primary
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Figure 5.1: Snapshots of three selected high resolution simulation of Set 1 showing the
gas density in logarithmic scale. Green dots are the sink particles. All the three simu-
lations have qwide = 0.65. On the first column there is the binary. The central column
shows the triple system obtained by splitting the secondary star of the binary (ts type).
On the right column is shown the triple obtained by splitting the primary star of the
binary (tp type). All snapshots are taken at 55 wide binary orbits.

et al. 2018b).
We perform three sets of simulations. Set 1 consists of nine simulations made of

three binary systems and six hierarchical triple systems. The three binaries have mass
ratio qwide =Ms/Mp = 0.2, 0.4 and 0.65 respectively, where Ms is the mass of the lighter
star and Mp the mass of the heavier one. Initially, the binaries are circular and have
a semi-major axis awide = 10 au. From each binary we derived two hierarchical triple
systems. The first kind of triples (labelled as ts) is built by splitting the secondary star of
the binary, while the second kind of triples (labelled tp) is built by splitting the primary.
In order to build the hierarchical triple systems, the binary stars are split into a circular
binary with the same total mass of the split star, with a semi-major axis asmall = 1 au and
a mass ratio qsmall = 11. This set of simulations aims at understanding the effect of the
mass ratio on the accretion trends. Table 5.1 contains the orbital configuration of each of
these systems, and Fig. 5.1 shows the gas surface density after 50 wide binary orbits for
each simulation.

The simulations of Set 2 are devoted to explore the dependency of the triple system
accretion rates on the small binary semi-major axis. In Set 2 we consider hierarchical
triple systems where we split the secondary star. We start from the ts2, ts4 and ts65
simulations from Set 1 and we vary the small binary semi-major axis as reported in
Table 5.1.

Finally, in Set 3 we focus on hierarchical triple systems where we split the primary
star. We start from the tp2, tp4 and tp65 simulations from Set 1 and we vary the small
binary semi-major axis as reported in Table 5.1.

The total stellar mass of each binary and triple system is 3 M⊙. Each system is
surrounded by the same coplanar gas disc that initially extends from Rin = 2 awide to
Rout = 10 awide with a mass equal to 0.03 M⊙. The disc is modelled using 106 SPH par-

1For more information about how we implemented in the PHANTOM code the possibility to simulate hier-
archical triple systems, see Section 2.3.
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ticles , resulting in a smoothing length about 0.1 times the disc scale height. The initial
gas surface density profile is

Σ(R) = Σin

(
R

Rin

)−p
(
1−

√
Rin

R

)
, (5.1)

with Σin = 69.4 g cm−2 and p = 1. We assume a locally isothermal equation of state
centered in the center of mass of the system. The sound speed profile follows

cs(R) = cs(Rin)

(
R

Rin

)−q

, (5.2)

with q = 0.25. This results in a disc aspect ratio given by

H

R
=
H0

R0

(
R

Rin

)(1/2−q)

. (5.3)

We set H0/R0 = 0.1 at R = awide, as in Farris et al. (2014) and Young & Clarke (2015).
Disc viscosity is implemented via the artificial viscosity method that is standard in

SPH (Lucy 1977; Gingold & Monaghan 1977), which can be related to the Shakura &
Sunyaev (1973) α-viscosity as found by Lodato & Price (2010). As differential accretion
depends on viscosity, we set αSS = 0.1, by setting αAV ≈ 9, to match the values chosen
by previous works, in particular by Farris et al. (2014) and Duffell et al. (2020).

Stars are simulated as sink particles (Price et al. 2018b; Bate et al. 1995). Sink particles
are particles that interact only via gravity with other sink particles and SPH particles.
They are evolved via a second-order Leapfrog integrator, as described in chapter 2.8.5 of
Price et al. (2018b). Sinks are allowed to accrete SPH particles and to store the accreted
particles angular momentum and mass. The accretion of a gas particle can occur when it
enters the accretion radius of a sink. To be accreted, the gas particle has to be gravitation-
ally bound to the sink and its angular momentum has to be sufficiently low. In order to
reliably resolve the accretion rates, the accretion radius of each sink is set to 0.1 au. This
radius is at most ∼ 0.04 times the wide binary secondary Roche lobe radius, depending
on the binary mass ratio (Eggleton 1983).

All our simulations were evolved for 100 wide binary orbits, that correspond to half
a viscous time-scale at the disc inner edge Rin ≈ 2awide, which can be expressed as
(Lynden-Bell & Pringle 1974; Hartmann et al. 1998):

tν ≈ 4

9

R2

ν

∣∣∣∣
Rin

, (5.4)

with ν = αHcs. We can write

ν = αH2Ω = α

(
H

R

)2

Ωwide

√
Ra3wide, (5.5)

where Ω is the Keplerian frequency and Ωwide is the binary orbital frequency. Using
Eq. (5.5) at R = Rin, the viscous time in unit of binary orbits is

tν |Rin
≈ 8

9
√
2π

1

α(H/R)2
2π

Ωwide
. (5.6)
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Figure 5.2: Moving averaged accretion rates and λ = (Ṁt,sec1 + Ṁt,sec2)/Ṁt,pri factors
measured in the ts triple simulations (Set 2). For each wide orbit mass ratio qwide, on the
upper panel are plotted the accretion rate of the secondary (green) and primary (blue)
star. On the lower panel are plotted the ratio between the accretion rates. The solid line
refers to the associated binary, from which the triples are generated. Each different line
style refer to different small binary semi-major axis. The secondary accretion rate for
triple system is the sum of the accretion rates of the small binary stars.
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Figure 5.3: Moving averaged accretion rates and λ = Ṁt,sec/(Ṁt,pri1 + Ṁt,pri2) factors
measured in the tp triple simulations (Set 3). For each wide orbit mass ratio qwide, on the
upper panel are plotted the accretion rate of the secondary (green) and primary (blue)
star. On the lower panel are plotted the ratio between the accretion rates. The solid line
refers to the associated binary, from which the triples are generated. Each different line
style refer to different small binary semi-major axis. The primary accretion rate for triple
system is the sum of the accretion rates of the small binary stars.
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With our choice of α and H/R the viscous time is approximately 200 binary orbits. We
discuss the tests we made on longer integration time in Appendix A.

The main observable to be measured in this work is the accretion rate of each star
during the simulation. The accretion rates of the simulations conducted in this work are
shown in the first row of Fig. 5.2 and Fig. 5.3. We are not interested in the absolute value
of the accretion rates but in their ratio. The ratio between the stellar accretion rates cancel
out the decreasing trend shown in Figs. 5.2 and 5.3 because the gas mass distributes with
the same proportion between stars, in agreement with what found in Muñoz et al. (2020).
In the second row of each mass ratio in Fig. 5.2 and Fig. 5.3 these ratios display a constant
trend with an initial transient phase shorter than 20 orbits, showing that differential
accretion quickly reaches a steady state.

The accretion rates measured in this work are reported for each orbit, as in Fig. 5.2
and Fig. 5.3. To compute the accretion rates in the n-th orbit we integrate the Ṁ(t) over
the orbital period P , thus

Ṁn =

∫ tn+P

tn

Ṁ(t)

P
dt, (5.7)

where tn is the initial time of the n-th orbit. We then averaged with a moving average
over 11 orbits (i.e. 4 orbits of the cavity inner edge), so that

⟨Ṁn⟩ =
∑n+10

n Ṁi

11
. (5.8)

The ratios between the stellar accretion rates with their errors (as in Fig. 5.4) are com-
puted discarding the initial transient orbits.

5.2 Numerical results

5.2.1 Binary systems differential accretion

The ratio between the stellar accretion rates is the key observable in the binary systems
differential accretion problem. Let us define this factor as:

λb =
Ṁb,sec

Ṁb,pri

, (5.9)

where Ṁb,sec and Ṁb,pri are the moving averaged accretion rates of the secondary and
primary star, respectively (defined in Eq. (5.8)). The λb ratio measures how evenly the
accreting mass distributes over the binary stars. If λb is larger than unity, this means
more material is being accreted by the secondary. We simulate three binary systems
(with qwide = 0.2, 0.4, 0.65, simulations b2, b4, b65) in order to consistently compare the
hierarchical triple simulations with their binary counterparts. Fig. 5.4 shows with green
dots the λ factors measured in our Set 1 of 3D SPH binary simulations.

The λb factor depends on the parameters of the system. In particular λb depends on
the mass ratio of the binary, as pointed out by Farris et al. (2014). In addition, λb depends
also on the infalling gas properties (Young et al. 2015; Young & Clarke 2015). For a given
mass ratio, warmer discs raise the primary accretion rate, pushing λb towards unity. This
is due to the fact that warmer gas streamers have a wider range of trajectories to reach
the primary star. In addition, warmer gas around the secondary star crosses the Roche
lobe more easily, reaching the primary Roche lobe. Last, Duffell et al. (2020) showed that
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λb depends also on gas viscosity. In particular, they found that for less viscous discs the
value of λb tends towards unity.

Recently two parametrisations for λb(q) were proposed. The first one in Kelley et al.
(2019) (hereafter K19 parametrisation), that updates the one proposed by Gerosa et al.
(2015) and is built by fitting the Farris et al. (2014) binary simulation set. The second
one in Duffell et al. (2020) (hereafter D20 parametrisation), who simulate binary accre-
tion discs slowly modifying the binary mass ratio during the simulation in order to span
λb(q) continuously. These works, based on different 2D grid numerical techniques, re-
sulted in two different parametrisations (see green curves in Fig. 5.4). In order to be able
to compare our binary simulations with the D20 and K19 parametrisations, we used
the same disc thickness and viscosity of previous works, even if higher than the typical
protostellar disc viscosity (Hartmann et al. 1998; Dullemond et al. 2018).

As shown in Fig. 5.4, our binary simulations are in fairly good agreement with the
parametrisations proposed in the literature. In particular, we found the same accre-
tions trends described by previous works. Indeed, the secondary star always accretes
most of the mass. Moreover, the higher the binary mass ratio, the lower the value of λb
(as expected). In addition, if we reduce the thickness of our disc, λb tends to the D20
parametrisation. The discrepancies can be due to the different numerical technique we
used. In particular, our simulations are 3D as opposed to the 2D ones by Duffell et al.
(2020) and Farris et al. (2014), and the disc height profile could vary between simulations
away from the inner cavity edge.

We fit our binary data points with the following one-parameter function:

λb = C +
1− C

qwide
, (5.10)

that accounts for the q−1
wide dependency found in previous studies (Gerosa et al. 2015;

Duffell et al. 2020) and that approaches unity when qwide approaches unity. Indeed, for
symmetry reasons we expect a unitary mass ratio binary to evenly accrete mass onto the
two binary stars. Our best fit for the C parameter results in C = 0.63. Contrary to K19
and D20 parametrisations, our formula is obtained from a set of 3D simulations and it is
shown in Fig. 5.4 (green solid curve).

5.2.2 Hierarchical triples differential accretion

For a quantitative comparison with the λb factor measured in binaries, we introduce
an analogous ratio for hierarchical triples: λt. If the small binary of the triple system
is lighter than the single body (i.e. in the ts type triples) we define λt as the ratio be-
tween the sum of the accretion rates of the small binary stars (Ṁt,sec1 + Ṁt,sec2) over the
accretion rate of the single star (Ṁt,pri):

λt =
Ṁt,sec1 + Ṁt,sec2

Ṁt,pri

. (5.11)

If instead the small binary is heavier than the single body (i.e. in the tp triple case) we
define λt as the ratio between the accretion rate of the single star (Ṁt,sec) over the sum
of the accretion rates of the small binary stars (Ṁt,pri1 + Ṁt,pri2):

λt =
Ṁt,sec

Ṁt,pri1 + Ṁt,pri2

. (5.12)
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Figure 5.4: Set 1 simulations λ = Ṁsec/Ṁpri values. Green dots are binary simulations.
Red dots are triples obtained by splitting the primary star of the binary. Blue dots are
triples obtained by splitting the secondary star. The solid green curve is the fit proposed
in this work in Eq. (5.10). Dotted and dashed green curves are the Duffell et al. (2020)
and Kelley et al. (2019) parametrisations, respectively.

In other words, the λt factor of a hierarchical triple system is defined considering the
system as a binary in which the small binary is treated as a single body, with an accretion
rate equal to the sum of the accretion rate of the small binary stars.

Accordingly, we define qwide (the mass ratio of the wide orbit) for the ts and the tp
triples case. In the former case we define

qwide =
Mt,sec1 +Mt,sec2

Mt,pri
, (5.13)

where Mt,sec1 and Mt,sec2 are the mass of the small binary primary and secondary re-
spectively, and Mt,pri is the mass of the single body. In the latter case we define

qwide =
Mt,sec

Mt,pri1 +Mt,pri2
, (5.14)

where Mt,pri1 and Mt,pri2 are the mass of the small binary primary and secondary re-
spectively, and Mt,sec is the mass of the single body. In Fig. 5.4 we show, for each qwide in
Set 1, the λt factors of the triple simulations, along with the λb factor of their associated
binaries.

The differential accretion in hierarchical triple is set by the combination between the
binary differential accretion and the effects induced by the presence of the small binary.
Thus, in order to isolate the contributions of the small binary to differential accretion we
compared each hierarchical triple simulations with their associated binary. In order to do
this, we associated to each binary system discussed in Sec. 5.2.1 (i.e. each b simulation)
two hierarchical triple systems, obtaining the nine simulations of Set 1 (see Tab. 5.1).
The two associated triples are built by substituting the primary or the secondary binary
star with a small binary, obtaining, respectively, the tp and ts triple simulations (refer
to Section 2.3 for the details on how we implemented this substitution in the PHANTOM
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code). The triple obtained by splitting the secondary star can be viewed as a massive
body orbited by a lighter binary (ts type). If instead the primary is split, the system
consists of a massive binary orbited by a third lighter body (tp type). The substituting
small binary is circular, has a mass ratio qsmall = 1 and has a semi-major axis asmall =
0.1 awide, where awide is the semi-major axis of the wide binary orbit. The mass of the
substituting small binary is equal to the substituted star. With this process we built up
the simulation Set 1, discussed in Sec. 5.1.

As shown in Fig. 5.4, in the parameter space region explored by this simulation set,
ts and tp simulations raise their small binary accretion rate with respect to their single
counterpart in the associated binary system. As a consequence, ts simulations raise their
λ value while tp simulations lower it. In addition, ts triples shift λ more than tp triples.
In Fig. 5.2 and Fig. 5.3 we report the accretion rates and λ factors of every simulation of
this work. The binary (solid curve) and the asmall = 1 au ts and tp simulations (dashed
curves) show how the accretion rates of the single stars contribute in shifting the λ fac-
tors. From the single accretion rates data, we see that the small binary always increases
its accretion rate while the tertiary star lowers it. However, the split affects the single
star only for lower mass ratios. Indeed, in the qwide = 0.65 case the accretion rate of the
single body does not change significantly. This implies that the total accretion rate of the
q = 0.65 triple systems is not conserved with respect to the binary case. Given that the
total accretion rate of the system is set by viscous accretion, it should not be different
for different stellar systems surrounded by the same disc. Thus, we conclude that the
qwide = 0.65 systems have not reached steady-state. However, we show in Appendix A
that 100 outer binary orbits are enough to measure λ factors in reliable manner.

5.2.3 Dependency on asmall and prescription for accretion rate deviations in triples

How much accretion rates deviate from the binary case depends on the orbital config-
uration of the hierarchical triple, in particular on its small binary mass Mb and on its
small binary semi-major axis asmall. Indeed, Figs. 5.5 and 5.6 show how much the triple
λt factor deviates from the associated binary λb factor as a function of asmall for Set 2 (ts
type triples, see Sec. 5.1) and Set 3 simulation (tp type triples, see Sec. 5.1), respectively.

The change in the accretion rate of a multiple system star is linked to a variation of
the net flux of mass in its Roche lobe. Indeed, in the steady state regime all the mass that
enters the Roche lobe is eventually accreted by the star(s) inside the lobe. This implies
that the mechanisms that modify the accretion rate of a body have to act on the scale
of its Roche lobe. Two physics phenomena can be invoked in order to describe these
deviations: the augmented geometrical cross-setion of the small binary and the angular
momentum exchange between the small binary and the surrounding gas.

On the one hand the small binary interacts with the surrounding gas through a geo-
metrical cross-setion that is proportional to the area of the small binary orbit A,

A ∝ a2small. (5.15)

Thus, we expect that the larger geometrical cross-setion of the small binary raises its ac-
cretion rate with respect to the corresponding single star in the associated binary system.

On the other hand, we expect the small binary torque onto the surrounding gas to ob-
struct the accretion of material onto the small binary stars. In the impulse approximation
(Lin & Papaloizou 1979b) we can estimate the torque exerted by the small binary onto
the surrounding gas. If we suppose the small binary mass ratio qsmall ≪ 1, the density
of tidal torque exerted by the small binary onto a fluid element at distance p from the
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Figure 5.5: λ = Ṁsec/Ṁpri factors for Set 2 triples. Different colours refer to different
mass ratio of the wide orbit qwide. asmall/awide = 0 points are the associated binary
simulations.

Figure 5.6: λ = Ṁsec/Ṁpri factors for Set 3 triples. Different colours refer to different
mass ratio of the wide orbit qwide. asmall/awide = 0 points are the associated binary
simulations.
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secondary star can be approximated by

τ = fq2smallΩ
2
smalla

2
small

(
asmall

p

)4

, (5.16)

where Ωsmall is the small binary frequency and f is a dimensionless normalisation factor.
Even if this approximation holds for low mass ratio binaries only, it gives us insights
about how the specific torque scales with the small binary properties. We can assume
that p is approximately equal to distance between the inner binary stars and the small
binary Roche lobe edge, thus p ∝ RRoche. Hence, writing explicitly the binary frequency
in Eq. (5.16) we obtain

τ ∝Mb
a3small

R4
Roche

, (5.17)

where Mb is the small binary mass.
Taking into account the torque scaling and the geometrical cross-setion, we propose

a parametrisation to describe the competition between these mechanisms in modify-
ing the accretion rate of the triple small binary with respect to the corresponding sin-
gle star in the associated binary system. With this prescription we also test the rel-
ative efficiency of different contributions to the deviations. Deviations are measured
by means of the accretion ratio between the accretion rate of the small binary in the
triple (Ṁt,sec = Ṁt,sec1+ Ṁt,sec2) over the accretion rate of the corresponding binary star
(Ṁb,sec). We then fit the accretion ratios with the following prescription:

Ṁt,sec

Ṁb,sec

= 1 + Γτ
(asmall/awide)

3

(RRoche/awide)
4 + ΓA

(
asmall

awide

)2

, (5.18)

where Γτ and ΓA are parameters to be fitted and relate to the torque and the geomet-
rical cross-setion, respectively. In Eq. (5.18) we assume the geometrical term to scale
with the small binary cross-setion (∝ a2small), and the torque term to scale as in Eq. (5.17)
(∝ a3small/R

4
Roche). We thus expect that for small semi-major axis the cross-setion con-

tribution to the accretion rate will dominate the accretion. Meanwhile, for wide semi-
major axis the torque term will be more relevant. In addition, we expect that the torque
parameter Γτ will be proportional to the small binary mass (as in Eq. (5.17)), while the
geometrical cross-setion will depend only on the geometry of the orbits and not on the
mass. However, the efficiency of each term depends on Γτ and ΓA.

5.2.3.1 Secondary split accretion ratios

In order to test the parametrisation for the accretion rate deviation due to the splitting,
we simulate a second set of hierarchical triples. The aim of this set is to explore different
regimes for the accretion ratio varying the semi-major axis of the small binary.

We started from the ts triples of Set 1 (with asmall = 1 au) and we simulated the
same ts hierarchical triple but with a semi-major axis of the small binary of asmall = 0.5
and 1.5 au. We also exploited the wider stable range of semi-major axis for high qwide

hierarchical triples (Mardling & Aarseth 2001) in order to simulate even wider small
binaries for qwide = 0.4 (for which we also simulate asmall = 1.8 au) and 0.65 systems
(with asmall = 2 au). The accretion rates of this simulation set (called Set 2, see Sec. 5.1)
are plotted in Fig. 5.2 and their average λt factors are reported in Fig. 5.5.

In order to apply the prescription in Eq. (5.18), we compute the ratio between the
accretion rate of the small binary (Ṁt,sec) over the accretion rate of the secondary star
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Figure 5.7: Set 2 deviations in the small binary accretion rate as a function of the small
binary semi-major axis. These simulations are obtained by splitting the secondary star
of the three binaries of Set 1. The dots are the ratios between the accretion rate of the
small binary (Ṁt,sec) and the accretion rate of the secondary star in the associated binary
system (Ṁb,sec). The curves are obtained by fitting the three parameters of our prescrip-
tion (Eq. (5.18)) for each mass ratio of the wide orbit (0.2, 0.4, 0.65 for red, black and blue
curves respectively). The dotted part of each curve denotes the semi-major axes range
for which the hierarchical triples are unstable.

in the associated binary system (Ṁb,sec). When the repulsing effect of the binary torque
contributes more than the geometrical cross-section to the accretion rate deviation, we
expect this accretion ratio to be less than one. On the contrary, when the cross-section
dominates, the ratio will be larger than one. Fig. 5.7 shows Ṁt,sec/Ṁb,sec varying the
small binary semi-major axis.

Widening the inner binary, each qwide data set in Fig. 5.7 follows a similar trend: a
steep raise for smaller small binary semi-major axes, followed by lower deviations for
larger small binary semi-major axes. Accretion ratios clearly depend on qwide, that in
turn depends on the small binary mass. Indeed, for a given small binary semi-major
axis, more massive small binaries systematically correspond to higher deviations in the
accretion rate. Thus, the extent of the deviation depends on the split star mass. In the
explored semi-major axes range, the accretion ratios are always higher than unity. Thus,
the geometrical cross-section contribution to the deviation is greater than the torque con-
tribution in each triple we considered.

In order to study how Γτ and ΓA depend on the small binary mass, we separately
fit the data point of each mass ratio (i.e. the blue, black and red points in Fig. 5.7) with
the prescription in Eq. (5.18). We thus obtain for each mass ratio the values of Γτ and
ΓA that best fit our data. These values are plotted in Fig. 5.8. The parameter Γτ scales
linearly with the small binary massMb, as expected from Eq. (5.17). Also ΓA depends on
the small binary mass, in contrast with what we expect from a purely geometric cross-
section. The dependency of ΓA on Mb can be due to a gravitational focusing effect.
Indeed, without gravitational focusing, gas with an impact parameter higher than asmall

skips the small binary geometric cross-section. On the contrary, in the gravitationally
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Figure 5.8: Best fit Γ parameters for our prescription (Eq. (5.18)) as a function of the
small binary mass. Mb and Mtot are the mass of the inner binary and of the system,
respectively.

focused limit, gas with an impact parameter higher than asmall can enter the cross-section
of the small binary. This is because the relative velocity between the gas and the binary is
lower than the escape velocity from it. In this limit, more massive binaries have a larger
effective cross-section, as noticed in the plot.

5.2.3.2 Primary split accretion ratios

We study how the accretion rate varies as a function of the orbital parameters of the triple
when splitting the primary star. Primary and secondary stars are expected to accrete gas
from the disc inner edge in different ways. On the one hand, the secondary has access
to the gas stored in the disc mainly by pulling streamers directly from the inner edge.
These streamers fill the secondary star Roche lobe (and to a lesser extent the cavity) with
gas, allowing gas to fall onto the secondary star. On the other hand, the primary star
pulls less massive streamers than the secondary, particularly for low mass ratios. Thus,
the primary provides less gas directly from the disc, resulting in lower accretion rates.
Another viable way for gas to reach the primary star is by means of the L1 point between
the Roche lobes of the two binary stars. The more gas crosses the L1 point towards the
primary, the higher its accretion rate at the expenses of the secondary star. As said,
in hotter discs the accretion rate of the two stars are more even also thanks to this gas
exchange (Young et al. 2015).

Raising the mass ratio qwide, these differences level out and the primary becomes
more and more independent from the secondary in filling its Roche lobe with gas. As a
result, the closer qwide is to unity, the more the primary and secondary star accrete mass
in a similar way. On the contrary, away from qwide = 1 we expect the primary to be in
a gas-poor environment, which prevents it from efficiently accreting mass. We expect
these differences to result in different differential accretion deviations when splitting the
primary star, rather than the secondary. Indeed, the split of the primary can either raise
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the mass that crosses L1 or raise the mass that falls onto the small binary from the inner
edge. Thus, we tested the primary split configurations in Set 3.

In Set 3, we simulate a set of tp hierarchical triples, based on the tp simulations of Set
1 (with asmall = 1 au), varying the small binary semi-major axis (asmall = 0.5, 2 au, see
Sec. 5.1). Fig. 5.3 shows the accretion rates of Set 3 simulations and Fig. 5.6 shows their
average λt factors.

The greater λ factor deviations are observed in the qwide = 0.2 systems (Fig. 5.6).
The deviations are due to an enhanced flow through the L1 point, indeed, as shown
in Fig. 5.3, the raise in the accretion rate of the small binary is at the expenses of the
accretion rate of the third body. Fig. 5.6 also shows that wider small binaries more easily
capture mass from the third body Roche lobe, further reducing their λ factor.

Hierarchical triples with qwide = 0.4 and 0.65 show smaller or no deviations due
to the splitting. Indeed, in Fig. 5.2 their λ factors reduce up to 0.9 times the binary λ
factor. Thus, for higher mass ratios of the outer orbit the small binary is less efficient in
stealing mass from the third body Roche lobe. In addition, and contrary to the qwide = 0.2
case, wider small binary semi-major axes affect the deviations in λ only modestly, as
the impact of the geometrical cross-section is limited by the availability of mass in the
surrounding of the small binary.

In light of this, the deviation observed in triples obtained by splitting the primary
star cannot be captured by the effects described in Eq. (5.18). In Fig. 5.9 we show the
ratios between the accretion rate of the small binary over the accretion rate of its single
counterpart in the associated binary system. Only for high qwide we recover the trend
observed in Fig. 5.7, as the small binary starts to accrete more similarly to the secondary
star of a binary, for which Eq. (5.18) holds.

It is important to notice that the accretion rate of primaries and tp triples small bina-
ries are not fully resolved (as discussed in Appendix A). Thus, the numerical results of
this section have to be treated with caution. These results are still relevant as we report
the relative deviations due to the splitting measured for different choices of orbital pa-
rameters and we never rely on the absolute values that we measure in our simulations.

5.3 Accretion in hierarchical triple systems

5.3.1 Deviations of triple differential accretion from the associated binary system

We have shown that hierarchical triples embedded in accretion discs have a peculiar
way to distribute disc mass between the stars of the system. The ground state of dif-
ferential accretion in hierarchical triples is based on the binary dynamics. Indeed, to a
first approximation the wide orbit of the hierarchical triple mimics a binary system and
it accretes mass in the same way, favouring the lighter body of the system. However, at
smaller scales the influence of the triple system small binary has to be taken into account.
The small binary-gas interaction changes the accretion rates of the three stars in relative
terms (changing the proportion in which mass distributes among the stars, as shown in
Fig. 5.4). Having a larger geometrical cross-setion, the small binary increases its accre-
tion rate. This geometrical mechanism competes with the tendency of the small binary
gravitational torque to repel the surrounding gas out of its Roche lobe. This competition
gives the peculiar shape of the deviations in the accretion rate of the small binary as a
function of its semi-major axis, as shown in Figs. 5.7 and 5.8.

This mechanism generally shifts the triple system λt factor in favour of the small
binary. However, how much λt deviates from the associated binary λb factor depends
also on the mass ratio of the triple system wide orbit (qwide). Indeed, lower mass ratios
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Figure 5.9: Set 3 deviations in the small binary accretion rate as a function of the small
binary semi-major axis. These simulation are obtained by splitting the primary star of
the three binaries of Set 1. The dots are the ratio between the accretion rate of the small
binary (Ṁt,pri = Ṁt,pri1 + Ṁt,pri2) and the accretion rate of the primary star in the asso-
ciated binary system (Ṁb,pri).

show higher deviations from the associated binary, both when the small binary is lighter
or heavier than the third body. Moreover, the triples obtained by splitting the secondary
star of a binary result in higher deviations, compared to triples obtained by splitting the
primary star (see Sec. 5.2.3.2).

5.3.2 Differential accretion in hierarchical triples

The main consequence of differential accretion in binary systems is a tendency to equalise
system masses. Indeed, as discussed in previous works (Farris et al. 2014; Kelley et al.
2019; Duffell et al. 2020), with enough mass at disposal the higher accretion rate of the
secondary star pushes the mass ratio of the system towards unity.

In this work we found that a hierarchical triple system in which the small binary is
lighter than the third body raises the wide binary mass ratio qwide more effectively than
its associated binary system. Indeed, in the parameter space explored, the hierarchical
triple λt factor (defined in Eq. (5.11)) is higher than the λb factor of its associated binary
(defined in Eq. (5.9)).

For a quantitative comparison, the qwide = 0.65 configuration (the one with the lowest
λt among Set 1) has a λt ≈ 1.3λb, when splitting the secondary star of the associated
binary. Even if we account only for the mass equalisation due to the triple mechanism
(i.e. if we consider λb = 1) we found that the small binary accretion rate is 1.3 times
higher than the primary one. The binary differential accretion mechanism alone allows
to obtain such a disequilibrium in the accretion rates only for qB lower than 0.35 or
0.75 for Kelley et al. (2019) and Duffell et al. (2020) parametrisations (respectively), as
shown in Fig. 5.4. For wider small binary semi-major axes or lower wide orbit mass
ratios, the triple differential accretion mechanism is even more efficient. In addition, the
disequilibrium between the stellar accretion rates in triples is at play even if qwide ≈ 1,
where binary differential accretion is turned off.
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We also remind that binary prescriptions strongly depend on the circum-binary gas
properties and we do not know how they behave in actual protostellar discs conditions.
On the contrary, we showed that the larger than unity λt/λb ratio is due to the increased
cross-setion of the small binary, which solely depends on the geometry of the orbits.
Thus, we expect this ratio to be independent of the disc conditions. This difference is
important because Duffell et al. (2020) showed that binary differential accretion is turned
off in low viscosity regimes, where they found λ ≈ 1 independently of the mass ratio.
If this result is confirmed, we expect binary differential accretion to be turned off for
low viscosity protostellar discs. But, if the larger than unity λt/λb ratio is preserved (as
we expect), the differential accretion in hierarchical triples constitutes the only viable
mechanism to equalise the stellar masses.

Assuming λb = 1, as in protostellar disc condition independently of q (Duffell et al.
2020) or as in more viscous discs around high q systems, we can explicitly study the
evolution of q with time in the binary and in the hierarchical triple case. Under the
approximation of a constant accretion rate (e.g. due to an infall that replenishes the
outer part of the disc) we obtain the following differential equation for q:

dq

dtacc
=

q + 1

λ(q) + 1
(λ(q)− q) , (5.19)

where tacc = (Ṁtot/Mtot)t is the time in unit of the mass doubling time of the sys-
tem, with Ṁtot and Mtot the total system accretion rate and mass respectively. Solving
Eq. (5.19) we obtain the times needed by a hierarchical triple and by a binary (τt and τb,
respectively) in order to reach a given wide orbit mass ratio qwide starting from the same
initial mass ratios q0. Fig. 5.10 shows τt/τb as a function of the final wide orbit mass
ratio qwide for three different initial mass ratio q0. We assume λ(qwide) = 1 for binaries
and λ(qwide) = 1.3 for triples, that is the triple λ factor we expect from the λt/λb ratio
measured in our simulations, as discussed in the previous paragraphs. The equalising
time for hierarchical triples (i.e. the time needed to reach λ(qwide) = 1) is nearly an order
of magnitude lower than the binary equalising time, in particular for high qwide systems.

A more subtle difference between the two mechanisms is the final equilibrium point
of the wide orbit mass ratio qwide. Indeed, from Eq. (5.19) we see that the equilibrium
point for qwide is at qwide = λ. Thus, because i) binary differential accretion prescriptions
tends to unity for increasing qwide and ii) symmetry reasons suggest that an equal mass
binary has λb = 1, binaries stall at mass ratio qwide = 1. Conversely, for a triple with a
small binary heavier than the single body, we expect a λt lower than unity due to the
raise in the small binary accretion rate. Thus, hierarchical triple systems stall at a mass
ratio qwide smaller than unity as well. The extent of this equilibrium shift depends on
the specific orbital parameters of the system, which are responsible of the the shift in
λt. This work suggests an equilibrium point for triple systems of qwide ≈ 0.9. Indeed,
λt/λb measured in our triple systems with small binary heavier than the single star is
approximately 0.9. Thus, we expect that around qwide = 1, where λb ≈ 1 as well, λt =
0.9.

5.3.3 Multiplicity signatures in differential accretion

In principle, with a perfect knowledge of binary differential accretion and of its depen-
dency on the binary mass ratio qwide, on the gas viscosity and temperature, we could be
able to infer from an observed λb in a binary system the presence of an unresolved small
binary. Indeed, in case of binary accretion rates not in line with the binary theory, we



Accretion rates in hierarchical triple systems with discs 81

Figure 5.10: Ratio of the times needed in order to reach a certain qwide by a triple (τt)
and by a binary (τb). Different curves refer to different initial mass ratios q0. Curves are
obtained by solving Eq. (5.19) with λ(qwide) = 1 for binaries and λ(qwide) = 1.3

for triples.

could invert the relation proposed in Eq. (5.18) in order to obtain the asmall of a possi-
ble unresolved small binary. However, up to now binary prescriptions do not take into
account dependencies other than qwide

2.
In addition, the disc conditions explored in this work (and in the main works on this

topic in the literature) are halfway between the compact object accretion discs (that are
thinner than the aspect ratio used) and protoplanetary discs (that are orders of magni-
tude less viscous), and thus do not represent either cases. Moreover, we limited our
investigation to: i) circular wide and small binary orbits, ii) to equal masses small bi-
naries and iii) to coplanar configurations. This allowed us to simplify the problem and
observe the specific signatures of the geometrical and torque effects described in this
work.

We expect the mechanism proposed in this work to be at play in more complex con-
figurations as well. However, its efficiency will be surely affected. This is mainly due to
the dependency of both the accretion rate and the small binary torque on the orbital pa-
rameters of a given multiple system. In particular, the eccentricity and the mutual incli-
nations between the orbital planes and the discs are likely to play a major role since they
can induced tilt oscillations and precession, which would translate into phase-dependent
accretion rates along the orbit. A known example of a system where an highly eccentric
binary shows phase-modulated accretion rates is discussed in Dunhill et al. (2015), where
they show that for a limited amount of time it is possible for the primary to accrete more
mass than the secondary.

Given these limitations, the only remaining case that at the moment could highlight
an unresolved small binary in an accreting binary system is a system where a λ < 1 is
observed. In that case no binary configuration can reproduce this behaviour (except with
an high eccentricity) and the only explanation that can be addressed to solve the puzzle

2Although in Young & Clarke (2015) a trend related to temperature is suggested, further studies are needed
to constrain an effective parametrisation.



should be a massive unresolved small binary, whose geometrical cross-setion counter-
balances the tendency of binary differential accretion to favour the secondary single star.
However, in our simulations even such configurations hardly push under 1 the ratio
between the accretion rates, as can be seen in Fig. 5.3 and discussed in Sec. 5.2.3.2. Al-
though in principle this should be possible for mass ratios greater than the ones explored
in this work, the parameter space region where significant signatures of an hidden small
binary could appear remains small.

Thus, the goal to exploit the deviation of the observed λt in a triple system from the
λb expected in its associated binary system is complicated by these additional dependen-
cies and at the moment we cannot disentangle deviations due to different mechanisms,
that change λ without the need to invoke an higher multiplicity.

5.4 Conclusions

In this chapter we presented hydrodynamical simulations of discs in hierarchical triple
systems. We focus on the accretion process from the circum-triple disc onto the individ-
ual stars of the system. In particular, we studied how the presence of the small binary
affects the accretion rates of the individual stars.

We performed a set of simulations in order to span different hierarchical triple system
configurations using the SPH code PHANTOM. We proposed a semi-analytical prescrip-
tion (given by Eq. (5.18)) able to describe the data we obtained in our simulations.

Our main findings are the following:

1. Differential accretion in hierarchical triple systems can be explained by the inter-
play between two contrasting mechanisms: 1) the increased geometrical cross-
setion between gas and small binary, and 2) its angular momentum exchange with
it. These two mechanisms are superimposed on the binary differential accretion
process.

2. The small binary torque is too weak to counterbalance the increased accretion rate
of the small binary due to the larger cross-section, except for very wide small bi-
nary semi-major axes (asmall) that result in unstable hierarchical triples. Thus, in
the vast majority of the stable hierarchical triple parameters space the small binary
accretes more mass than if it would be a single star of the same mass. As a result,
if the hierarchical triple small binary is heavier than the third body, the standard
differential accretion scenario (whereby the secondary accretes more of the mass)
is hampered. Reciprocally, if the small binary is lighter than the third body, the
standard differential accretion scenario is enhanced.

3. Hierarchical triple systems with a small binary lighter than the single star equalise
their masses nearly an order of magnitude quicker than binary systems. Con-
versely, in triples with a small binary heavier than the single star mass equalisation
is slowed down. In contrast with binaries, the equilibrium mass ratio for triple sys-
tems is lower than 1.

In conclusion, the mass ratio in accreting hierarchical triple stellar systems evolves
differently compared to binaries. These differences, during the disc lifetime, are ex-
pected to produce characteristic mass ratio distributions, which could possibly be ob-
served through ongoing and future surveys. Further observational data will help to test
and further constrain the proposed accretion model for triple stellar systems. At any
rate, the orbital parameters and initial masses play a crucial role in determining the final
stellar mass ratios in high-order multiple stellar systems.



Part III

Polar alignment in multiple
stellar systems





CHAPTER 6

Precession and polar alignment of accretion discs in triple
(or multiple) stellar systems

This chapter is based on the paper ”Precession and polar alignment of accretion discs in triple
(or multiple) stellar systems” by Simone Ceppi, Cristiano Longarini, Giuseppe Lodato, Nicolás
Cuello, Stephen H. Lubow, published on Monthly Notices of the Royal Astronomical Society,
Volume 520, Issue 4, pp.5817-5827, in April 2023.

Star formation takes place in clustered environments, where pre-stellar objects dy-
namically interact with each other, forming the seeds of multiple stellar systems (Clarke
et al. 2000; Reipurth et al. 2014; Offner et al. 2022). Surveys of star forming environments
(McKee & Ostriker 2007), as well as numerical simulations (Bate 2009; Bate et al. 2010;
Bate 2018), show that stars form from a sequence of accretion episodes, for which the an-
gular momentum is randomly oriented. In such a scenario, at least some accretion discs
are expected to be misaligned to the stellar orbital plane. Recently, observations have
confirmed these theoretical predictions (Czekala et al. 2019). For example, the systems
GG Tau (Köhler 2011b; Aly et al. 2018; Keppler et al. 2020), KH 15D (Chiang & Murray-
Clay 2004; Lodato & Facchini 2013), HD142527 (Casassus et al. 2013; Price et al. 2018a)
and GW Ori (Kraus et al. 2020; Bi et al. 2020; Smallwood et al. 2021) exhibit high relative
misalignments.

The dynamics of misaligned circumbinary discs dynamics has been actively studied
during the last few decades, both theoretically (Papaloizou & Pringle 1983; Papaloizou &
Lin 1995; Ogilvie 1999; Bate et al. 2000; Nixon et al. 2012, 2013) and numerically (Facchini
et al. 2013; Aly & Lodato 2020). An inclined gas disc around a circular binary tends to
precess around the binary angular momentum vector. If the disc sound crossing time is
short enough (i.e. the inner part of the disc communicates its precession to the disc outer
edge efficiently, Papaloizou & Lin 1995) the disc rigidly precesses with a frequency given
by Bate et al. (2000) (see also Lodato & Facchini 2013). In addition, because of viscosity,
the disc tends to align to the binary orbital plane, with an alignment timescale that is
of the order of the viscous time (Papaloizou & Terquem 1995; Larwood et al. 1996; Bate
et al. 2000; Lubow & Ogilvie 2000) eventually reaching the coplanar equilibrium con-
figuration. Also, misalignment in circumbinary discs affects dust dynamics (Longarini
et al. 2021; Aly et al. 2021), creating substructures such as rings.

When the binary system is eccentric an additional stable configuration is possible.
Aly et al. (2015) and Martin & Lubow (2017) showed that a circumbinary disc around an
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Figure 6.1: Hierarchical triple system sketch (not to scale). Light blue refers to the outer
orbit, dark blue to the inner one. Dashed curves, crosses and arrows are the orbit, center
of mass and eccentricity vector of the hierarchical level considered.

eccentric binary tends to align its angular momentum vector to the eccentricity vector
of the stellar system, leading to a polar configuration. This mechanism happens if the
initial inclination is above a critical value, that is a decreasing function of the eccentricity.
Polar alignment is likely to occur for high initial inclination, high eccentricity (Martin &
Lubow 2018), cold and low mass discs (Martin & Lubow 2019).

Although we would expect to see several accretion discs in a polar configuration,
only a few have been observed up to now. One is the disc orbiting HD98800 B (Kennedy
et al. 2019). Also, 99 Her is a debris disk in a polar configuration (Kennedy et al. 2012)
that likely evolved from a gaseous accretion disc (Smallwood et al. 2020). In addition,
recently Kenworthy et al. (2022) showed that the light curve of an eclipse in V773 Tau
multiple stellar system can be explained with the presence of a highly inclined disc. In-
terestingly, HD98800 B (as well as V773) is not a pure binary system (for which the polar
alignment theory has been developed), but it resides inside a hierarchical quadruple
stellar system. A recent study by Martin et al. (2022) finds that the high multiplicity of
HD98800 does not prevent polar alignment of the circumbinary disc.

As in the case of HD98800, young multiple stellar systems often comprise more than
two stars arranged in hierarchical configurations (Duchêne & Kraus 2013; Moe & Di Ste-
fano 2017). A hierarchical configuration is made of nested binary orbits in which each
semi-major axis is much larger than the semi-major axes of its subsystems. This semi-
major axes hierarchy allows an analytic perturbative analysis of the orbital evolution
that results in a periodic exchange of angular momentum between the orbits. As a re-
sult, hierarchical systems show periodic oscillations in the orbital shape and orientation
(Naoz et al. 2013). Given this secular orbital evolution, the possibility of polar discs in
systems with more than two stars needs to be further investigated.

In this chapter, we study whether discs in hierarchical systems can align polarly or if
they fail to catch up with the secular evolution of the orbit. In section 6.1 we present the
analytical framework under which we derive an additional criterion for the possibility
of polar alignment of circumbinary discs in hierarchical systems. In Section 6.2 we nu-
merically test the analytical findings of Section 6.1. In Section 6.3 we discuss the results
of sections 6.1 and 6.2. We conclude in Section 6.4.
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6.1 Polar configuration stability in systems with more than two stars

6.1.1 Disc polar alignment in systems with more than two stars

We describe the orientation of a generic misaligned orbit around a central binary with
the tilt angle, β, and the longitude of the ascending node (relative to the eccentricity
vector direction), Ω. The β and Ω angles describe the direction of the specific orbital
angular momentum vector (l) relative to the central binary angular momentum (lb) and
eccentricity vector (eb). The frame of reference is defined by the instantaneous direction
of the binary angular momentum and eccentricity vector with axes eb, eb × lb and lb. We
define β and Ω via the following relation:

l = (sinΩ sinβ, cosΩ sinβ, cosβ). (6.1)

By virtue of this definition, β is the angle between the circumbinary orbit orbital plane
and the binary orbital plane, while Ω is the angle between the direction of the binary
eccentricity vector and the circumbinary orbit ascending node. Using these angles, we
can describe the orientation of the orbital plane of a third body around a binary, as well
as the orientation of a circumbinary accretion disc. In the latter case, β and Ω can be
functions of the disc radius R. In the following, we suppose the accretion disc to precess
as rigid body, with a tilt and longitude of the ascending node independent of R.

Analytical studies of the restricted three body problem in Farago & Laskar (2010)
showed that an inclined test particle orbiting an eccentric binary system undergoes two
alternative kinds of precession. In the first kind, the angular momentum vector of the
particle precesses around the angular momentum vector of the binary. For a circular
orbit binary, this kind of particle orbit, known as a circulating orbit, maintains a constant
angle between the particle orbital plane and the binary orbital plane (i.e. a constant tilt
β), while the longitude of the ascending node Ω spans 2π with a typical frequency, given
for example by Lodato & Facchini (2013) (see their eq. 12). For an eccentric orbit binary,
the tilt angle β and nodal precession rate vary in time by an amount that depends on the
binary eccentricity (Smallwood et al. 2019). In the second kind of precession, the angular
momentum of the particle precesses around the eccentricity vector of the binary. In this
case, which is a librating orbit, β oscillates around 90 degrees, while Ω oscillates around
a fixed value. The orbit of the test particle belongs to the first or the second kind of orbit
depending on the angles β and Ω, and on the eccentricity of the central binary eb. If the
tilt of the particle is larger than a critical angle βcrit(eb,Ω) the particle will precess around
the binary eccentricity vector, otherwise around the binary angular momentum vector.
For an orbit co-rotating with the central system, the critical angle for polar alignment is1

(Farago & Laskar 2010; Cuello & Giuppone 2019)

βcrit(eb,Ω) = arcsin

√
1− e2b

1− 5e2b cosΩ
2 + 4e2b

. (6.2)

A gaseous disc around an eccentric binary follows a similar evolution, except that,
due to viscous dissipation, the orbital plane of the disc decays towards one of the two
equilibrium configurations. Orbits precessing around the binary angular momentum
tend to become coplanar (aligned with the binary orbital plane), while orbits precessing
around the eccentricity vector decay towards a polar configuration (perpendicular to

1for a counterrotating orbit βcrit(eb,Ω) = π − arcsin

√
1−e2

b

1−5e2
b
cos Ω2+4e2

b
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the orbital plane). Disc polar alignment in circumbinary discs has been studied in many
previous works both analytically and numerically (e.g. Aly et al. 2015; Martin & Lubow
2019; Lubow & Martin 2018; Cuello & Giuppone 2019; Zanazzi & Lai 2018).

Numerical simulations of the collapse of a molecular cloud show that the stellar and
accretion disc formation process is very chaotic. In particular, we expect a randomly
distributed initial misalignment between the stellar systems orbital planes and the discs
orbiting them (Bate 2018). Also, from analytical investigations we expect no correlation
between the disc and the binary initial angular momentum (Toci et al. 2018). Misaligned
discs can result also from stellar flybys, which can generate an inclination up to 60◦

(Xiang-Gruess 2016; Cuello et al. 2023). Thus, even if the conditions for polar alignment
should be easily met, up to now we observed only one polarly aligned disc and it orbits
around the inner binary of a hierarchical quadruple system (i.e. HD 98800, Kennedy
et al. 2019; Zúñiga-Fernández et al. 2021). In addition, the vast majority of observed mis-
aligned discs (particularly highly misaligned ones, that could undergo polar alignment)
are found around systems with more than two stars (Czekala et al. 2019).

In general, stable stellar systems with more than two stars are arranged in nested
binary orbits in which each semi-major axis is much larger than the semi-major axes
of its subsystems. These configurations are called hierarchical and are the only ones
that guarantee long-lasting stability to the stellar system. For example, fig. 6.1 sketches
a triple system in a hierarchical configuration. Each hierarchical system level can be
approximated to zeroth order by a binary system. Doing so, we could study polar align-
ment of discs around systems with more than two stars with the formalism developed
by Lubow & Martin (2018). This crude approximation, however, completely neglects
the perturbative term introduced in the gravitational potential by the presence of more
than two stars. Taking into account this term means to reduce the hierarchical system
to a hierarchical triple system. The exchange of angular momentum between the hierar-
chical levels of the system triggers further dynamical mechanisms such as Kozai-Lidov
oscillations (von Zeipel 1910; Kozai 1962; Lidov 1962; Naoz 2016; Hamers 2021).

In a hierarchical triple system, we can analytically compute the evolution of the bi-
nary orbital parameters of both the inner and outer orbit. Due to their mutual torques,
we expect these osculating orbital elements to evolve with time on a secular timescale.
In particular, the eccentricity vector direction, along which highly inclined discs would
like to align their angular momentum, varies with time.

In coplanar hierarchical triple systems, we can analytically compute the precession
frequency of the outer and inner orbit eccentricity vector. At the same time, a nearly po-
lar aligned disc has a typical tilt oscillation frequency that is its nodal libration frequency
(Lubow & Martin 2018). In the triple case the secular evolution of the orbital parameters
shifts the polar orbit position with time, possibly undermining the stability of the polar
configuration. In particular, if the nodal libration frequency is not high enough, the disc
will not be able to track the evolving stable polar orbit, failing to remain polarly aligned.

In a hierarchical triple system we have two possible accretion discs orbiting a multi-
ple stellar system: the first one orbiting the inner binary of the triple and the second one
orbiting the outer orbit of the triple system. In the next sections we discuss the timescales
involved in the two cases and the stability of the polar orbit around both the outer (Sec.
6.1.2) and the inner (Sec. 6.1.3) orbit.

6.1.2 Polar alignment in the circum-triple disc

Let us consider a coplanar hierarchical triple as in the sketch of Fig. 6.1. The masses of
the inner binary stars are ma and mb, for the primary and the secondary respectively,
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Figure 6.2: Dependency of T2 (see sec. 6.1.2) on mass ratios, semi-major axes ratio, and
eccentricities. When T2 is smaller than unity (dash dotted red line) polar alignment is
possible, conversely for T2 > 1 it is not. On the left panel, T2 is plotted as a function of
the inner binary mass ratio q1 (fixing q2 to 0.5), while on the right one as a function of
the outer binary mass ratio q2 (fixing q1 to 0.5). The thicker lines refer to e2 = 0.5 and
e1 = 0. The dotted and dashed lines show how increasing e1 to 0.7 (fixing e2 = 0.5) and
lowering e2 to 0.2 (fixing e1 = 0) affect T2, respectively. Different colors refer to different
semi-major axes ratios.

while mc is the mass of the external third body. In addition, we define q1, e1, a1 and Ω1

(q2, e2, a2 and Ω2) the mass ratio, eccentricity, semi-major axis, and Keplerian frequency
of the inner (outer) orbit. To zeroth order, the outer orbit of the triple is equivalent to
the orbit of its associated binary, defined as the binary composed of mc and a single star
of mass ma + mb placed in the inner binary centre of mass. Thus, instantaneously, mc

orbits the centre of mass of the inner binary along the same orbit as the one the associated
binary would trace.

A nearly polar disc orbiting a pure binary undergoes nodal libration with the follow-
ing theoretical frequency (Lubow & Martin 2018):

ωpa =
3
√
5

4
eb

√
1 + 4e2b

M1M2

(M1 +M2)2

〈(ab
R

) 7
2

〉
Ωb, (6.3)

where eb is the binary orbit eccentricity, M1 and M2 are the binary masses, Ωb the binary
Keplerian frequency and angular bracket notes the average of the ratio between the bi-
nary semi-major axis ab and the disc radius R, weighted over the angular momentum of
the disc at radius R.

We apply Eq. (6.3) to the outer orbit case, as instantaneously it can be approximated
by its associated binary. As for the masses, M1 = mc and M2 = ma + mb. For the
eccentricity eb = e2 and for the orbital frequency Ωb = Ω2. We also compute the average
weighted over the angular momentum assuming a Keplerian velocity field and that the
disc extends fromRin toRout with a density profile Σ(R) ∝ R−1. By doing so, we obtain:
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where xo = Rout/Rin and q2 = mc/(ma +mb +mc) is the outer orbit mass ratio.
The librating behaviour happens due to the precession of the disc angular momen-

tum around the eccentricity vector of the triple outer orbit. However, the triple outer or-
bit eccentricity vector e2 precesses with time due to the perturbation of the inner binary.
The precession rate for the outer orbit can be analytically computed from the Hamilto-
nian of the stellar system with a perturbative approach (e.g. Murray & Dermott 2000;
Naoz et al. 2013):

ωe2 =
3

4
a2q1(1− q1)

1 + 3
2e

2
1

(1− e22)
2
Ω2 (6.5)

where a = a1/a2 is the ratio between the inner and the outer orbit semi-major axis and
q1 = mb/(ma +mb) is the inner orbit mass ratio. This means that a polarly aligned disc
around the outer orbit of a hierarchical triple system oscillates around a stable orbit that
precesses with time with a frequency ωe2 . Thus, in order for the disc to stay “attached”
to the moving eccentricity vector, the condition for libration should be unaffected by the
binary precession, meaning that ωpa,2 > ωe2 .

To check the stability of small oscillations around the precessing polar configuration,
we define the dimensionless quantity T2 = ωe2/ωpa,2: when T2 < 1, polar alignment
takes place; conversely, if T2 > 1, it does not. The value of T2 is
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where

F2(e1, e2) =
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The T2 factor scales quadratically with the semi-major axes ratio: thus, either widen-
ing the outer orbit or shrinking the inner one decreases T2 (which favours polar align-
ment). The torque between the inner and the outer orbit depends on a. Hence, the lower
the value of a, the lower the precession frequency (i.e. the slower the precession). In
addition, T2 depends on the inner and outer orbit eccentricities via the F2 term. This
term diverges both for e2 approaching unity and zero. In the former case, the precession
frequency of the outer orbit diverges, making polar alignment impossible. In the latter
case, the nodal libration frequency of a nearly polarly aligned disc reduces to zero. In-
deed, as the outer binary becomes more circular, the process of polar alignment becomes
less likely. A recent study by Lepp et al. (2023) examined the behavior of of circum-triple
test particles and found a similar criteria as given by T2. Their criteria differs from T2
mainly at small e2.

As for the mass ratios, polar alignment is difficult for high q1 and for q2 approaching
zero or unity. Indeed, higher values of q1 (i.e. nearly equal mass inner binaries) trans-
late into higher precession frequencies. Meanwhile, very high and very low q2 reduce
the outer binary to a single star concentrating the mass in the third body or in the inner
binary (respectively) thus reducing the torque on the disc to zero. Conversely, when q1
tends to zero, the inner binary perturbation becomes negligible — slowing the preces-
sion. This favours polar alignment.

Figure 6.2 shows how T2 depends on the system orbital parameters. In this plot we
assume Rin = 1.5 a2 (as expected in very inclined discs: Lubow et al. 2015; Miranda
& Lai 2015) and Rout = 30 a2, thus xo = 30/1.5. In the left panel, T2 is plotted as a
function of the inner binary mass ratio q1 (fixing q2 to 0.5, i.e. equal mass outer binary),
while on the right one as a function of the outer binary mass ratio q2 (fixing q1 to 0.5, i.e.
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Figure 6.3: T2 factor as defined in equation (6.6) as a function of the ratio between the
outer and the inner disc radii xo. We used the same parameters of the solid line in figure
6.2 with a semi-major axis ratio of 0.1. Different colors are different inner binary mass
ratios. The outer binary mass ratio is fixed to 0.5, the most favourable to polar alignment.

equal mass inner binary). The thicker lines refer to a configuration in which e2 = 0.5.
Such outer orbit eccentricity avoids extreme values that are expected to undermine (also)
the stability of the triple stellar system and it sets the easiest configuration for polar
alignment to occur, being e2 = 0.5 the minimum of F2. Moreover, for 0.2 < e2 < 0.8
the impact on F2 is of the order of 1. We also set e1 = 0 to favour polar alignment
as well. The dotted and dashed lines show how increasing e1 to 0.7 (fixing e2 to 0.5)
and lowering e2 to 0.2 (fixing e1 to zero) affect T2, respectively. The vast majority of
the parameter space does not allow for polar alignment, as the curves are always above
unity. The only exception is where the outer orbit is reduced to a two-body system, that
is when q1 tends to zero or for extremely small semi-major axis ratios a.

Last, the size of the disc also impacts the possibility of polar alignment. The more
extended the disc the higher T2, due to the lower nodal libration frequency of a radially
extended disc. Figure 6.3 shows the dependence of T2 on xo. The two curves refer to
two different inner binary mass ratios (the outer binary mass ratio is set to 0.5 the most
favourable to polar alignment). Provided xo is low enough (≲ 10), the circum-triple
accretion disc can become polar. Depending on the semi-major axis and mass ratios, if
the triple is not isolated and the disc is truncated from the outside, xo can drop under
that value, favouring the polar alignment of the disc.

6.1.3 Polar alignment in the inner circum-binary disc

The stability of the polar orbit for a disc orbiting the inner binary of a hierarchical triple
system is determined by the inner binary eccetricity vector precession rate. In addition,
Martin et al. (2022) showed that in this configuration also Kozai-Lidov oscillation of the
disc (due to the interaction with the outer third body) could prevent circum-inner binary
discs polar alignment. The disc Kozai-Lidov oscillation timescale can be computed by
the theory of rigid disks (Larwood et al. 1996; Lubow & Ogilvie 2001) as done in Martin
et al. (2014) (see their Eq. (4)). Using the same technique as in Equation (6.3), we obtain
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Figure 6.4: Ratio between the inner binary precession frequency and the disc Kozai-
Lidov oscillation frequency. We use the same disc parameters as in Fig. 6.5 (xout = 5/1.5
and Rin/a1 = 1.5). The ratio is always above unity (red dash-dotted line) except for
inner binary eccentricity near unity. Thus, in this configuration precession is always
faster than disc Kozai-Lidov oscillation.

the following frequency for the circum-inner disc Kozai-Lidov oscillation:
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Firstly, we compare the disc Kozai-Lidov oscillation timescale with the other relevant
ones. We compute the nodal libration frequency of a nearly polar orbit around the inner
binary of a hierarchical triple system (ωpa,1) and the precession frequency of the inner
binary eccentricity vector (ωe1 ), as we did for the outer orbit case in Section 6.1.2. We
obtain:
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and
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3
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Figure 6.4 shows the ratio between the precession frequency of the inner binary ec-
centricity vector (ωe1 ) and the disc Kozai-Lidov frequency of the circum-inner binary
disc (ωKL). This ratio solely depends on the eccentricity of the inner orbit e1 and on the
disc extent, as shown by Eqs. (6.8) and (6.10). In Figure 6.4 we use xout = 5/1.5 and
Rin/a1 = 1.5. With such parameters, apart from e1 ∼ 1, precession is always faster than
disc Kozai-Lidov oscillation. In general, for ωKL > ωe1 we would need a combination
of extremely eccentric inner binaries, small discs (xout < 5/1.5) and large disc cavities
(Rin/a1 > 2). Thus, if polar alignment occurs because of a sufficiently slow precession of
the inner binary, the disc Kozai-Lidov oscillation will not prevent polar alignment, since
it is generally slower than precession. Having checked that, we go back to discussing
the role of the inner binary precession. We define the corresponding T1 = ωe1/ωpa,1
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Figure 6.5: Dependency of T1 (see sec. 6.1.3) on mass ratios, semi-major axes ratio and
eccentricities. When T1 is smaller than unity (dash dotted red line) polar alignment is
possible, conversely for T1 > 1 it is not. On the left panel, T1 is plotted as a function
of the inner binary mass ratio q1 (fixing q2 to 0.5), while on the right one as a function
of the outer binary mass ratio q2 (fixing q1 to 0.5). The thicker lines refer to e2 = 0 and
e1 = 0.5. The dotted and dashed lines show how lowering e1 to 0.2 (fixing e2 = 0) and
raising e2 to 0.7 (fixing e1 = 0.5) affect T1, respectively. Different colors refer to different
semi-major axes ratios.

parameter for the inner binary as

T1 =
4

3
√
5
a3
(
Rin

a1

) 7
2 x

3/2
o − 1

1− x−2
o

q2/q1
(1− q1)(1− q2)

F1(e1, e2), (6.11)

with

F1(e1, e2) =

√
1− e21

(1− e22)
3

1

e1
√

1 + 4e21
, (6.12)

The T1 factor scales with the third power of the semi-major axes ratio. Thus, either
widening the outer orbit or shrinking the inner one, results in an overall decrease of T1.
The precession frequency lowers (i.e. the precession is slower) with lower a because
the torque between the inner and the outer orbit weakens. In addition, T1 depends on
the inner and outer orbit eccentricities via the F1 term. This term diverges for both e2
approaching unity and e1 approaching zero. In the former case, the precession frequency
of the inner orbit diverges, making polar alignment impossible. In the latter case, the
nodal libration frequency of the polar disc tends to zero. Again, as the inner binary
becomes more circular, the process of polar alignment becomes less likely.

As for the mass ratios, polar alignment is made difficult for high values of q2 and
for q1 approaching zero. Higher values of q2 result in a higher precession frequency.
Meanwhile, very low q1 reduce the inner binary to a single star, reducing the torque on
the disc to zero. Conversely, when q2 tends to zero, the third outer body perturbation
becomes negligible, which slows the precession and favours polar alignment.

Figure 6.5 shows how T1 depends on the system orbital parameters. In this plot, we
assume Rin = 1.5 a1 and Rout = 5 a1, thus xo = 5/1.5. In the left panel, T1 is plotted
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as a function of the inner binary mass ratio q1 (fixing q2 to 0.5), while on the right one
as a function of the outer binary mass ratio q2 (fixing q1 to 0.5). The thicker lines refer
to a configuration in which e1 = 0.5 and e2 = 0. The dotted and dashed lines show
how raising e2 to 0.7 (fixing e1 to 0.5) and lowering e1 to 0.2 (fixing e2 to zero) affect T1,
respectively.

A disc orbiting the innermost binary of a hierarchical system is able to go polar in the
vast majority of the inner binary parameter space, contrary to an accretion disc around
the outer orbit of a hierarchical system. Except for very small q1 and very high q2, the T1
factor is always below unity no matter the eccentricities, semi-major axis ratio or mass
ratios.

In the case of HD98800 we have precise measurements of the orbital parameters of
both the inner orbits and of the outer orbit of the quadruple stellar system (Zúñiga-
Fernández et al. 2021). If we approximate HD98800 A to a single body, the disc around
HD98800 B measures a T1,HD ≈ 3 × 10−4. This value is well below unity as expected,
being the disc in a polar configuration.

6.2 Numerical simulations

We performed 3D numerical simulations using the Smoothed Particle Hydrodynamics
(SPH) code PHANTOM (Price et al. 2018b), widely used in the astrophysical community
to study gas and dust in protostellar environments (e.g. Dipierro et al. 2015; Mentiplay
et al. 2019; Veronesi et al. 2020; Ragusa et al. 2020; Toci et al. 2020; Ballabio et al. 2021; Veri-
cel et al. 2021) and for simulating the hydrodynamics of stellar systems with more than
two stars embedded in accretion discs (e.g. Ragusa et al. 2017, 2021; Martin & Lubow
2019; Price et al. 2018a; Cuello et al. 2019; Poblete et al. 2019; Calcino et al. 2019; Small-
wood et al. 2021; Ceppi et al. 2022). These simulations are designed to test the criteria
presented in Sections 6.1.2 and 6.1.3 for polar alignment in discs orbiting a hierarchical
triple outer (sec. 6.2.1) and inner (sec. 6.2.2) orbit.

6.2.1 Circum-triple disc simulations

Simulations S1 and S2 test the polar alignment of a disc around the outer orbit of a
hierarchical triple (S1), compared to the same disc orbiting around the binary associated
to the triple outer orbit (i.e. the binary with the same orbital parameters of the triple
outer orbit and made of the third body and a star obtained by condensing the triple
inner binary in its centre of mass, simulation S2). The triple system consists of a circular
equal mass inner binary (ma = mb = 0.5M⊙) orbited by a coplanar third star with mass
equal to the inner binary mass (mc = ma + mb = 1 M⊙). The semi-major axis of the
inner binary is a1 = 1 au. The semi-major axis and the eccentricity of the outer orbit
are a2 = 10 au and e2 = 0.5. The outer and the inner orbital plane are coplanar. The
associated binary system consists of a star of mass mc orbited by a star of mass ma +mb.
The eccentricity and semi-major axis of the binary are the same as the triple outer binary
orbit.

Both the binary and triple system are orbited by the same gaseous accretion disc.
The disc is initially tilted to the stellar orbital plane of β = 70◦ and the longitude of the
ascending node Ω equals 90◦. Each simulated disc is made of 3 × 105 SPH particles,
resulting in a vertical resolution of ⟨h/H⟩ ∼ 0.24. The total gas mass is initially the 1% of
the stellar mass and the discs extend from Rin = 15 au to Rout = 100 au. The gas surface
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density is initially distributed with a power law profile
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with p = 1 and Σin = 22.2 g/cm2. We adopt a locally isothermal equation of state
P = c2sρ, with
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with q = 0.25. The resulting disc aspect ratio is given by
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with an H0/R0 = 0.1 at R = Rin. Viscosity is implemented with the artificial viscosity
method (Lucy 1977; Gingold & Monaghan 1977) resulting in a Shakura & Sunyaev (1973)
α-viscosity (Lodato & Price 2010) with αSS ∼ 0.01 (αAV = 0.42). In every simulation,
stars are modelled as sink particles (Bate et al. 1995; Price et al. 2018b).

The initial tilt of the disc is well above the critical angle for polar alignment around
a binary system, which is βcrit(e = 0.5,Ω = 90◦) ∼ 40◦ (Farago & Laskar 2010). Thus,
we expect the circumbinary disc in simulation S2 to polarly align. Conversely, even if
the outer orbit parameters in the hierarchical triple of simulation S1 are the same as the
binary in S2, T2 ∼ 6 > 1. Thus, we expect the disc not to align polarly.

Figure 6.6 shows radially averaged tilt (β, top panels) and longitude of the ascend-
ing node (Ω, bottom panels) profiles of the disc as a function of time. The two systems
behave very differently: the circumbinary disc undergoes polar alignment, since the in-
clination oscillates around β ∼ 90◦ and the longitude of the ascending node librates, as
expected for a disc going polar (Martin & Lubow 2019). On the other hand, the circum-
triple disc aligns to the stellar orbital plane (i.e. the inclination decreases) and it pre-
cesses, with its longitude of the ascending node spanning 2π. There are two processes
that make the longitude of the ascending node to precess: i) the eccentricity vector, to
which the longitude of the ascending node refers, is precessing; ii) the disc itself is pre-
cessing, as an inclined circumbinary disc would around a pure binary. This can be seen
computing the longitude of the ascending node referring to the initial eccentricity vector
position. This absolute longitude of the ascending node is plotted as a dashed curve in
Fig. 6.6. As expected, polar alignment does not occur in this case, since the precession
rate of the eccentricity vector is larger than the polar alignment one.

The disc inclination, apart from the oscillating behaviour, is exponentially decaying
towards the mid-plane. We fit the exponential decay to find the timescale of coplanar
alignment, obtaining τcop ∼ 3.8 × 104 outer orbit periods. The timescale τcop is of the
order of the disc viscous timescale for this disc (∼ 2 × 104 outer orbits). Bate et al.
(2000) found that the alignment timescale (given by their equation (35), see also Lubow &
Ogilvie (2000)) for a tilted disc is of the order of (or slightly longer than) the disc viscous
timescale. This suggests that an accretion disc with T2 > 1 orbiting the outer levels of a
hierarchical system sees the central system as a circular binary. In fact, the evolution of
the tilt angle of the circum-triple disc in simulation S1 is similar to a circum-binary disc
orbiting a low eccentric binary system (an exponentially decaying tilt and a precessing
longitude of the ascending node). This is due to the fact that the disc sees the eccentricity
vector of the central stellar system averaged over the precession period.
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Figure 6.6: Radially averaged tilt (top row) and longitude of the ascending node (bottom
row) of the circumbinary (left column, simulation S2) and circumtriple (right column,
simulation S1) disc as a function of time. Dashed line is the longitude of the ascending
node with respect to the initial semi-major axis direction, rather than the eccentricity
vector. In the left column the circum-binary disc is aligning polarly. As expected due to
the mass of the disc, the polar alignment inclination is less than 90 degrees.

In the right column the circum-triple disc is going coplanar, even if the orbital
parameters of the triple outer orbit are the same as the binary orbital parameters.

6.2.2 Circum-binary disc simulation in a triple system

Simulation S3 studies a disc orbiting the inner binary of a hierarchical triple system. The
stellar system consists of an eccentric (e1 = 0.5) equal mass inner binary (ma = mb =
0.5M⊙) orbited by a third star with mass equal to the inner binary mass (mc = ma+mb =
1M⊙) in a circular orbit. The semi-major axis of the inner and outer binary are a1 = 1 au
and a2 = 20 au respectively, and the inner and outer orbits are coplanar.

The inner binary is orbited by a circum-binary disc with an initial tilt of β = 70◦ and a
longitude of the ascending node of 90◦. The disc is simulated with 3×105 SPH particles,
resulting in a vertical resolution of ⟨h/H⟩ ∼ 0.23. The total gas mass is initially the 1‰
of the inner binary mass and the disc extends from Rin = 1.5 au to Rout = 5 au. The gas
surface density profile is the same as in Eq. (6.13), with Σin = 2.7× 102 g cm−2, and the
temperature and aspect ratio profiles are given by Eqs. 6.14 and 6.15. Viscosity and stars
are implemented as in previous simulations, with αSS ∼ 0.01 (αAV = 0.44).

The initial disc tilt is above the critical angle for polar alignment around a pure binary
system. In addition, in this configuration T1 ∼ 0.008 < 1, which should translate into
disc polar alignment (see Sect. 6.1.3).

Figure 6.7 shows radially averaged tilt (β, top panel) and longitude of the ascending
node (Ω, bottom panel) profiles of the disc as a function of time. The tilt plot clearly
shows that the disc oscillates around 90◦ with the amplitude being damped over time.
The longitude of the ascending node is librating as well: thus, the disc is going polar
as expected. However, the disc is librating around the eccentricity vector of the inner
binary, which in turn is precessing with time. As a consequence, the disc angular mo-
mentum is precessing as well. This can be seen computing the disc longitude of the
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Figure 6.7: Radially averaged tilt (top row) and longitude of the ascending node (bottom
row) of the circum-inner binary disc (simulation S3) as a function of time. Dashed line is
the longitude of the ascending node with respect to the initial semi-major axis direction,
rather than the eccentricity vector. The disc is aligning to a polar configuration. The
libration timescale and the stationary inclination differ from the circumtriple disc due to
the lower mass of the circuminner binary disc.

ascending node with respect to the initial semi-major axis direction, instead of referring
to the inner binary eccentricity vector, which is precessing. This absolute longitude of
the ascending node is plotted in the second row of Fig. 6.7 with a dashed curve. The
absolute longitude of the ascending node is oscillating as the relative longitude of the
ascending node, but its mean value is decreasing with time following the precession of
the inner binary eccentricity vector.

6.3 Discussion

6.3.1 Polar alignment in hierarchical stellar systems

Hierarchical systems with more than two stars are common in a young stellar population
(Duchêne & Kraus 2013; Moe & Di Stefano 2017), and they typically host discs orbiting
their hierarchical levels. A significant fraction of misaligned stellar discs studied in the
literature are orbiting or are inside systems with more than two stars (e.g. Phuong et al.
2020; Keppler et al. 2020; Kraus et al. 2020; Bi et al. 2020; Price et al. 2018a; Kennedy
et al. 2019). By studying the observed misalignment distribution of discs in multiple
stellar systems, we aim at obtaining information about their physical properties, their
formation and early stage evolution. Properties of discs (e.g. size, viscosity) affect the
evolution of the tilt angle which, in return, provides information about them. In order to
extract information from the final observed tilt distribution, we need to understand the
way in which it evolves and, possibly, the initial conditions of its evolution.

In particular, the fraction of discs in a polar configuration gives us insights about the
fraction of highly-eccentric binary systems with highly-inclined discs. Remarkably, the
time evolution towards a polar orbit is faster than the disc lifetime. So, in principle, the
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final outcome of the evolution process (i.e. the observed fraction of polar discs) directly
traces the initial conditions (i.e. the outcome of star formation process). Indeed, the
fraction of polarly aligned discs is related to how common the critical configuration is
(i.e. a binary with eccentricity eb, orbited by a disc with tilt β > βcrit(eb,Ω)). However,
we have to take into account that pure binary systems and systems with more than two
stars have different critical conditions for polar alignment.

The analytical and numerical findings, reported in Sections 6.1 and 6.2, show that
the secular evolution of the osculating orbital elements in hierarchical systems is a threat
to disc polar alignment. In particular, a fast enough precession of the orbit eccentricity
vector prevents the mechanism of polar alignment. Figures 6.2 and 6.5 show the T pa-
rameter discussed in Sections 6.1.2 and 6.1.3 (respectively) as a function of the relevant
parameters of a hierarchical triple (the two mass ratios q1 and q2, the semi-major axis ra-
tio a and the inner and outer orbit eccentricities e1 and e2). When T is larger than unity,
the polar orbit is unstable — no matter how high the disc-orbit misalignment is. Under
this condition, the pure binary criteria for polar alignment derived in the literature can
not be applied to hierarchical systems.

Looking at the parameter space explored in Figure 6.2 and at the numerical results
in section 6.2.1, discs orbiting the outer levels of hierarchical systems are generally not
able to go polar. Indeed, the T parameter is always larger than unity, except for radially
narrow discs and where the system is reduced to an actual binary system (i.e. for a
mass ratio of the inner binary (q1) approaching zero and for very small semi-major axis
ratios (a)). Thus, regardless of the mutual inclination, a misaligned radially extended
disc orbiting an outer level of a hierarchical system always evolves towards a coplanar
configuration. Since the eccentricity vector is quickly precessing, the disc evolves as
orbiting a circular orbit given that the eccentricity vector is averaged over a precession
period.

In a circum-binary disc in an hierarchical system, however, polar alignment is possi-
ble as the T factor is generally below unity (see Figs. 6.5 and 6.7). As the precession of
the inner binary eccentricity vector is slow enough for the polar disc to follow it, the disc
remains locked to the eccentricity vector, precessing with it and conserving the polar con-
figuration. Note that the disc precession happens on the eccentricity vector precession
timescale and not on the typical nodal precession timescale for a tilted circum-binary
disc (Bate et al. 2000; Lodato & Facchini 2013). Superimposed to this precession, the
longitude of the ascending node is librating as well, due to the precession of the disc
angular momentum vector around the inner binary eccentricity vector.

The evolution of the osculating elements in hierarchical systems further affects the
polar alignment process in such systems. The critical angle for polar alignment sig-
nificantly depends on Ω, that is relative to the central orbit eccentricity vector (see eq.
7.4). Given that this vector in hierarchical system precesses with time, Ω is constantly
spanned with time. Thus, regardless of the initial Ω value, the triple configuration will
precess, eventually exploring the Ω related to the lowest critical angle. Therefore, even
if the initial Ω results in a configuration where β < βcrit (so no polar alignment for a
pure binary configuration), the triple configuration will polarly align as soon as the Ω
precession allows it to fullfill the condition β > βcrit(Ω, eb). Thus, given the eccentricity
of the orbit, the critical angle for polar alignment in hierarchical systems is always the
one with Ω = 90◦ (the lower one).

Up to now, we only discussed hierarchical stellar systems with inner and outer or-
bits coplanar to each other. When the inner and the outer orbit of a hierarchical triple
are misaligned, the secular evolution of the osculating orbital parameters is even more
complex. Indeed, not only the argumentum of periapsis precesses with time, but also
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Figure 6.8: Disc-orbit misalignment of circumbinary discs in Tables 3 and 4 in Czekala
et al. (2019) as a function of the central system eccentricity. Green dots are accretion discs
orbiting pure binary systems, blue dots are accretion discs orbiting an outer hierarchical
level of a hierarchical system, red dots are accretion discs orbiting the innermost hier-
archical level of a hierarchical system (HS). The triangle represents the lower limit on
the mutual inclination of R Cra. Dotted lines connect the two degenerate solutions for
HD 142527, SR 24N, and GG Tau A systems.

Kozai-Lidov oscillations of the stellar orbits occur. Thus, the eccentricity of each hier-
archical level orbit and the mutual inclination between the hierarchical orbital planes
oscillate with time. However, at least for a circular outer orbit, the Kozai-Lidov oscilla-
tion frequency is similar to the precession frequency of the inner binary orbit we derived
in Eq. (6.10) (Naoz 2016; Antognini 2015). Therefore, the T parameter is still reliable
to predict the possibility of polar alignment in the inner orbit of misaligned hierarchical
triples. However, a thorough analysis of this problem is needed, especially regarding
the possibility of polar alignment in misaligned hierarchical triples circum-outer orbit
accretion discs and we defer this to subsequent work. An aspect of crucial importance
is that Kozai-Lidov oscillations can trigger polar alignment in misaligned hierarchical
systems. Indeed, in the oscillation the orbits eccentricities raise (lowering the critical an-
gle) and the orbital inclinations oscillation makes also the tilt of the disc to change. This
can trigger polar alignment in configurations with a lower-than-unity T parameter, but
a low initial orbit-disc misalignment.

We thus expect polar alignment to still be possible only around the innermost level
of hierarchical systems even for misaligned multiple systems, where it can be even pro-
moted by Kozai-Lidov oscillations and the Ω precession.

6.3.2 Observed tilt distribution of discs around binaries and hierarchical systems

Figure 6.8, originally reported by Czekala et al. (2019), collects all protoplanetary discs
in the literature orbiting in multiple stellar systems for which we know the inclination
between the disc and the system orbital plane. Each point in the plot represents a disc
orbiting a pair of bound stars, either in a pure binary system or in a higher multiplicity
system. Green dots refer to discs orbiting in a pure binary system, blue dots refer to discs
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Figure 6.9: Disc-orbit misalignment of circumbinary discs in Tables 3 and 4 in Czekala
et al. (2019) as a function of the orbit semi-major axis. Legend is the same as figure 6.8.

that have more than two stars orbiting in their cavity (i.e. the outer level of hierarchical
systems) and red dots refer to discs orbiting a binary with external companions outside
the disc (i.e. the innermost level of hierarchical systems). The dots connected by dotted
vertical lines are two possible solutions for the mutual inclination due to a 180° ambi-
guity in the longitude of the ascending node of the system due to lack of radial velocity
information.

The three populations show different tilt distribution. Discs orbiting pure binary
systems (green dots) are mostly coplanar, hence there are no polarly aligned discs. This
mismatches with the theoretical expectation. If the initial tilt distribution is nearly ran-
domly distributed, we expect a wider scatter in the distribution because the population
should be slowly going coplanar on a tilt evolution timescale comparable to the viscous
timescale (Bate et al. 2000; Lubow & Ogilvie 2000). This could be due to a lower aver-
age tilt in the initial population or to a faster than expected tilt evolution (e.g. due to
an higher than expected viscosity). In addition, we lack the expected small population
of polarly aligned discs (resulting from the fraction of discs initially more tilted than
the critical angle for polar alignment in binaries). Hence, either the conditions for polar
alignment are less populated than expected or external factors reduce the stability of the
polar configuration (e.g. the interaction with the environment).

The tilt distribution of circum-binary discs in hierarchical systems is more articu-
lated. We have a small fraction of polarly aligned discs (i.e. the disc in HD98800B and
possibly in SR 24N), although there are less discs in this populations than in the pure
binaries one. This is in agreement with our analytical findings (polar configuration is
stable in such systems) and suggests that the conditions for polar alignment are more
likely for those systems than in pure binaries. This is also in line with what discussed
in section 6.3.1: phenomena that are typical of systems with more than two stars could
be able to foster polar alignment. First, polar alignment for such configurations could be
triggered by Kozai-Lidov oscillations of the hierarchical system. Second, by varying the
longitude of the ascending node, the precession of the orbit eccentricity vector allows the
disc to always reach the configuration in which the critical angle for polar alignment is
minimum. We defer the study of the impact of these mechanisms on polar alignment to
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future works. Additionally, depending on the stellar system parameters (such as binary
mass, semi-major axis, eccentricity) general relativity could limit the possibility of polar
alignment for extended discs (Lepp et al. 2022). Thus, the presence of an additional ex-
ternal companion truncating the disc from the outside could facilitate polar alignment
for circum-inner binary discs as well. The rest of the population is nearly coplanar. Thus,
discs that do not go polar evolve as in the pure binary case.

It is worth noting that also the binary separation plays a role in the degree of align-
ment of circum-binary discs (see figure 6.9). Indeed, short period binaries (no matter
if isolated or with an external companion) present coplanar discs. The inclination dis-
tribution of that region of the parameter space could be affected also by the short pe-
riod binary formation mechanisms that drive initially wider binaries to shrink. Still,
wider binaries inclination distributions present the same trends discussed in the previ-
ous paragraph (i.e. highly misaligned discs around inner binaries and more coplanar
discs around pure binaries).

Even though the statistics are low, in the population of discs orbiting more than two
stars there are no coplanar discs, neither highly misaligned (possibly polar) ones. In-
deed, the highest blue point refer to the degenerate solution with an high inclination for
the GG Tau A circum-triple disc. All the hydrodynamical models of GG Tau A in the
literature favour the mildly inclined solution (Aly et al. 2018; Keppler et al. 2020; Caz-
zoletti et al. 2017). Thus, the correct tilt for GG Tau A is around 30 degrees despite the
uncertainty in the astrometry and the highest blue point should be discarded. The lack
of polar discs agrees with our analytical findings. The lack of coplanar discs constrasts
with our results in discs orbiting coplanar hierarchical systems. Indeed, we found that
circum-triple discs evolve as orbiting a circular binary (due to the fast precession of the
eccentricity vector). In addition, gived that they form via the same mechanisms, we
expect the same initial tilt distribution for discs in pure binaries and in hierarchical sys-
tems. If the initial condition and the evolution are similar, then why is the tilt distribution
of pure binaries and systems with more than two stars so different?

We suggest the answer lies in the orbital dynamics of systems with more than two
stars. This kind of systems have access to a richer dynamical evolution compared to
pure binary systems. As previously discussed their orbital parameters and orbital ori-
entation evolve with time on a shorter timescale compared to the disc lifetime. In par-
ticular, misaligned hierarchical systems vary their inclinations with time. Specifically,
let us consider a hierarchical triple system orbited by a low-misaligned accretion disc.
Looking at the pure binary population, on the long run the disc should become coplanar
with the triple orbital plane. If the inner and outer orbit of the triple are misaligned,
however, we expect their mutual inclination to evolve with time due to Kozai-Lidov os-
cillations. Thus, the inclination of the outer orbit will oscillate as well. As a consequence,
the mutual inclination between the circum-triple disc and the triple outer orbit will os-
cillate with time, even if the disc had enough time to align to the stellar plane. Thus, the
observed misalignment in the systems with more than two stars population is possibly
the result of these stellar orbit evolution processes, and not the outcome of accretion disc
evolution. This implies that the misaligned configurations we observe in systems with
more than two stars are not stable — or slowly evolving — configurations. Indeed, be-
cause we are taking a snapshot of an oscillating stellar orbital plane, we happen to be
observing a tilted disc by pure chance.



6.4 Conclusions

In this chapter we showed that the requirement on the parameters of a circum-binary
disc for going polar are necessary but not sufficient when dealing with hierarchical sys-
tems. A crucial additional requirement is that the eccentricity vector precession timescale
of the system orbited by the accretion disc has to be longer than the disk libration
timescale. We derived an analytical criterion to be satisfied in order for a disc to go polar
around the outer levels of a hierarchical system (Eq. (6.6)) and around the innermost
hierarchical level (Eq. (6.11)).

We found that discs orbiting the outer level of a hierarchical system can hardly po-
larly align. Except for radially narrow discs and very small mass and semi-major axis
ratios, the precession of the outer orbit eccentricity vector is always faster than the nodal
libration. Conversely, discs orbiting the innermost level of a hierarchical system are able
to go polar as the precession of the inner eccentricity vector is slower than polar align-
ment. Smoothed particle hydrodynamics simulations confirm these results and surveys
of circumbinary accretion discs are also in agreement — even though statistics are still
poor.

In addition, we found that the inclination of an accretion disc orbiting a hierarchical
system evolves as if it was orbiting a circular binary. The disc sees the central system
eccentricity vector averaged over the precession period. This is in contrast with the
fact that pure binary systems and systems with more than two stars host different disc
populations. The former presents discs mostly coplanar with the stellar orbital plane
with little spread in the tilt distribution. The latter consists of misaligned discs with a
wider spread in tilt distribution. We suggest that the scatter in misalignment observed in
system with more than two stars is due to the secular oscillation of hierarchical systems
orbital parameters, that continuously vary the stellar orbital plane orientation, rather
than to the evolution of the accretion discs.

In conclusion, this work shows that when analysing the population of discs around
binaries it is important to separate pure binaries from binaries inside hierarchical sys-
tems. Indeed, the misalignment distributions of pure binaries and systems with more
than two stars tell us different stories. The former is the result of viscous disc evolution,
while the second one is related to N-body orbital parameter oscillations. This additional
complexity can be a precious tool to deeper investigate the impact of multiplicity on ac-
cretion disc evolution and planet formation, and, in general, to better understand the
formation of multiple stellar systems. The increasing statistics of this population will
allow us also to better measure the fraction of polar discs and the distribution of mutual
inclination in the two populations. This is an important test for our theory. Indeed, the
final distribution have to be the result of the initial conditions we derived with models,
plus the theoretical expected evolution. A mismatch between the predicted and the ob-
served populations would highlight missing pieces in the theory of disc formation and
evolution.
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CHAPTER 7

Probing initial distributions of orbital eccentricity and disc
misalignment via polar discs

This chapter is based on the paper “Probing initial distributions of orbital eccentricity and disc
misalignment via polar discs” by Simone Ceppi, Nicolás Cuello, Giuseppe Lodato, Cristiano
Longarini, Daniel J. Price, Daniel Elsender and Matthew R. Bate, published on Astronomy &
Astrophysics, Volume 681, in January 2024

The tilt of an accretion disc orbiting an eccentric binary has two alternative equilib-
rium configurations. If the mutual inclination (initial disc tilt with respect to the stellar
orbital plane) is below a critical angle for polar alignment (Farago & Laskar 2010; Zanazzi
& Lai 2018; Cuello & Giuppone 2019) the disc is expected to nodally precess, and align
to the stellar orbital plane due to viscous dissipation (Bate et al. 2000; Lubow & Ogilvie
2000). If the initial mutual inclination is higher than the critical angle for polar alignment,
Aly et al. (2015) and Martin & Lubow (2017) showed that the circumbinary disc angular
momentum vector precesses around the binary orbit eccentricity vector. Due to viscous
dissipation, the disc evolves to a polar configuration in which the mutual inclination is
around 90◦ (depending on disc parameters, see Martin & Lubow 2019).

Ceppi et al. (2023) showed that, in the general case of a disc in a multiple stellar
system, if the disc is orbiting more than two stars the polar alignment mechanism is
highly suppressed1. Conversely, if the disc is orbiting a pair of stars with additional
bodies outside the disc, polar alignment is at least as likely as in the pure circumbinary
disc case.

The properties of multiple stellar systems are already used to find insights into the
physics driving stellar and planet formation evolution. The available statistics on multi-
ple stellar systems supports that the vast majority of stars are born in a multiple stellar
system and that stellar multiplicity increases with stellar mass (Larson 1972; Duchêne &
Kraus 2013; Offner et al. 2022). These are crucial constraints for numerical experiments
on the collapse of molecular clouds (Bate et al. 2002; Krumholz et al. 2012; Bate 2018,
2019; Mathew & Federrath 2021; Mathew et al. 2023; Lebreuilly et al. 2023). Orbital pa-
rameter distributions, such as the semi-major axis distribution (Duquennoy & Mayor
1991; Raghavan et al. 2010), or the binary mass ratio distribution (Moe & Di Stefano

1Polar alignment could still occur under the right conditions (e.g. very small semi-major axis ratios or
for very small discs). Ceppi et al. (2023) derived an analytical criterion to assess the stability of the polar
configuration in triples (see also the criterion obtained by Lepp et al. 2023).
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106 7.1 Initial conditions and polar disc population

2017; El-Badry et al. 2019) also help to constrain formation mechanisms. The presence
of more than two stars is expected to change the shape of these distributions, encoding
additional information about the dependence on multiplicity (Smith et al. 1997; Ceppi
et al. 2022; Offner et al. 2022).

In this chapter, we show that, from the current distribution of mutual misalignment
and eccentricity — like the one in Czekala et al. (2019) — and with increased statistics,
we are able to constrain the distributions of eccentricity and inclination between orbital
planes and discs at birth. Such distributions, in turn, depend on which physical prop-
erties are more significant in the formation process of these objects. In addition to dy-
namical interactions between stars (Bate et al. 2002; Bate 2018; Elsender et al. 2023), the
presence and the strength of magnetic fields (Price & Bate 2007; Wurster et al. 2019; Zhao
et al. 2020; Lebreuilly et al. 2021), different metallicities (Elsender & Bate 2021) and the
level of turbulence in the cloud (Bate et al. 2010; Walch et al. 2012) may play a significant
role in setting the initial properties of disc and star populations.

The chapter is organised as follows: In Section 7.1 we present a model to compute
the fraction of polar discs and the mean eccentricity of stellar orbits hosting polar discs.
By applying this method to a population of hierarchical systems and of pure binaries,
we derive the relationship between the initial and evolved distributions of system prop-
erties. Finally, in Section 7.2 we constrain the initial conditions for both populations. In
Section 7.3 we discuss our results and we give our conclusions in Section 7.4.

7.1 Initial conditions and polar disc population

7.1.1 Polar disc fraction and mean polar systems eccentricity

As soon as the condition for polar alignment is satisfied, an accretion disc starts oscil-
lating around the polar configuration. The disc dissipates the oscillation on a fraction of
the viscous timescale (Lubow & Martin 2018; Zanazzi & Lai 2018). Thus, it is reasonable
to assume that all discs able to go polar in the initial population will do so. Then, if
we neglect the impact of subsequent external interactions, the fraction of polarly aligned
discs we observe in a given evolved population is directly linked to the initial conditions
(eccentricity and misalignment distributions) in a forming population.

In this section, we build a toy model to estimate the expected fraction of polar discs
and their eccentricity distribution in an evolved young stellar population (Class II).

Given the observed and theoretically predicted preference for low mutual inclina-
tions (e.g. Czekala et al. (2019); Elsender et al. (2023)), we describe the initial distribution
of mutual inclination with a normalised exponential distribution:

Pβ(β) =
1

Nβ
exp

(
− β

σβ

)
, (7.1)

where β is the mutual inclination, σβ is a parameter that regulates the shape of the distri-
bution and Nβ normalises the distribution over the support considered, i.e. from β = 0
to π/2.

The initial distribution of eccentricity is described by a normalised power law distri-
bution:

Pe(e) =
1

Ne
eα, (7.2)

where e is the orbital eccentricity, α is a parameter regulating the distribution shape and
Ne normalises the distribution over e = 0 to 1. This is in line with surveys of eccentric-
ities (Duquennoy & Mayor 1991; Raghavan et al. 2010; Hwang et al. 2022) and it allows
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for a thermal distribution (P (e) ∝ e) that can be produced by repeated N-body interac-
tions (Jeans 1919; Ambartsumian 1937; Heggie 1975).

Thus, the two-dimensional probability density function for the initial condition is
given by:

P (e, β) = Pe(e)Pβ(β). (7.3)

For an orbit co-rotating with the central system, the critical angle for polar alignment
is2 (Farago & Laskar 2010; Zanazzi & Lai 2018; Cuello & Giuppone 2019)

βcrit(e,Ω) = arcsin

√
1− e2

1− 5e2 cosΩ2 + 4e2
. (7.4)

where e is the orbital eccentricity and Ω is the disc longitude of the ascending node.
Supposing that all discs above βcrit go polar and neglecting subsequent external in-

teractions, we can integrate over the initial mutual inclination above βcrit, to obtain the
distribution of polar discs as a function of system eccentricity Ppol(e). At this stage, we
consider Ω = π/2 and we will fix Ppol(e) to take into account a distribution of longitude
of the ascending node in Sec. 7.1.2. Thus,

Ppol(e) =

∫ π/2

βcrit(e,
π
2 )

P (e, β)dβ. (7.5)

Integrating Ppol over the eccentricity we obtain the expected fraction of polar discs
(Fp) in an evolved population, that is the ratio between the number of polar discs and
the total number of discs in the population:

Fp =

∫ 1

0

Ppol(e)de. (7.6)

Additionally, from Ppol we can compute the mean eccentricity of stellar systems host-
ing polar discs, i.e.:

⟨e⟩ =
∫ 1

0

ePpol(e)de. (7.7)

Integrals in Eqs. (7.6) and (7.7) are challenging to solve due to the dependencies of
βcrit. In the next section we present two assumptions to remove the Ω dependency in
the case of hierarchical systems and pure binaries. By doing so, we only deal with the
eccentricity dependence in these integrals.

7.1.2 Taking into account the longitude of ascending node

Figure 7.1 shows how the critical angle βcrit in Eq. (7.4) depends on the longitude of the
ascending node (Ω) for different orbital eccentricities. Let us take the subpopulation of
circumbinary discs with a given mutual misalignment βsp orbiting pure binaries with a
given orbital eccentricity esp. We have a Ωcrit so that the critical angle for polar alignment
βcrit(esp,Ωcrit) = βsp. All discs with Ω < Ωcrit (dotted line in Figure 7.1) will not polar
align. All discs with a Ω > Ωcrit (dashed line) will polar align.

2for a counterrotating orbit βcrit(eb,Ω) = π − arcsin

√
1−e2

b

1−5e2
b
cos Ω2+4e2

b
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Figure 7.1: Critical angle for polar alignment as a function of the disc longitude of the
ascending node for a fixed binary eccentricity (e = 0.2, 0.5, 0.8). Given a mutual inclina-
tion (e.g. 50◦) and an eccentricity (e.g. e = 0.5), the dashed (dotted) line is the Ω interval
in which the disc will go perpendicular (coplanar) to the orbital plane.

If we suppose a uniformly distributed Ω, the fraction of discs that will polar align
is the ratio between the length of the dashed curve and the width of the Ω interval (i.e.
π/2).Thus, the fraction f of discs that will polarly align is:

f(esp, βsp) = 1− 2

π
Ωcrit(esp, βsp). (7.8)

In the case of a binary population, we have to take into account the factor f(e, β). To
compute the distribution of polar discs with respect to orbital eccentricity, Equation (7.5)
becomes:

Ppol(e) =

∫ π/2

βcrit(e)

P (e, β)f(e, β)dβ. (7.9)

In circumbinary discs in hierarchical systems, the precession of the eccentricity vector
drives the polar alignment process (Ceppi et al. 2023). The orbit precesses on a shorter
timescale than the timescale for coplanar alignment. Hence, precession could lower the
critical angle for polar alignment to its minimum value because the system quickly ex-
plores the Ω for which the critical angle is minimum. This is true only if, while the system
is exploring different longitudes of the ascending node, the tilt of the disc does not de-
crease significantly. Otherwise, the polar alignment of the disc would still be favoured
compared to binary systems but the initial longitude of the ascending node would nev-
ertheless be relevant. If we suppose this hypothesis to hold, for discs orbiting the inner
binary of a triple what really matters is the minimum critical angle no matter the lon-
gitude of ascending node. Independent of Ω, if the disc inclination is higher than the
minimum critical angle (the one for Ω = 90◦) the disc will polar-align. Therefore, for
triples βcrit(e,Ω) = βcrit(e,Ω = 90◦). Thus, Eq. (7.5) can be written as

Ppol(e) =

∫ π/2

βcrit(e)

P (e, β)dβ =

= −Pe(e)
σβ
Nβ

[
exp

(
−π/2
σβ

)
− exp

(
−βcrit(e)

σβ

)]
.

(7.10)

With the previous assumptions, we are left only with the eccentricity dependence
both for binaries and hierarchical systems.
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Figure 7.2: Fraction of polar discs (Fp, leftmost column) and mean orbital eccentricity
of systems hosting polar discs (⟨e⟩, central column) for binary system population (top
row) and triple system population (bottom row). As shown by the rightmost column,
each point of the α − σβ parameter space is uniquely characterized by a pair of Fp and
⟨e⟩ (crossing of two contour lines, red contour for polar fraction, black contour for mean
eccentricity).

7.1.3 Polar fraction and mean eccentricity for multiple systems

Given a pair of values α and σβ — the parameters of the distributions of eccentricity and
mutual angle, respectively — we are now able to compute the expected polar disc frac-
tion of an evolved population and the mean eccentricity of systems hosting a polar disc
with Equations (7.6) and (7.7), respectively. For pure binaries and hierarchical systems,
the polar disc distributions are given by Eqs. (7.9) and (7.10), respectively.

We semi-analytically computed these integrals over the α–σβ parameter space for
the initial distributions. The parameter α ranges between −1 and 2, while σβ ranges
between 0.01 and +∞. The left panels in Figure 7.2 show how the fraction of expected
polar discs in an evolved population Fp depends on α and σβ for binary and hierarchical
systems. In general, the binary population is less prone to host polar discs compared to
systems with more than two stars. This is due to the different βcrit we used to describe
the two populations. The higher the probability of having high eccentricity or mutual
inclination, the more likely it is to find configurations with a high mutual inclination and
orbital eccentricity which go polar more easily. Thus, Fp increases for higher α or σβ .

The central panels in Figure 7.2 show the mean eccentricity of orbits hosting polar
discs (⟨e⟩) over the α–σβ parameter space for binaries and hierarchical systems. The
binary polar population tends to have higher ⟨e⟩, again due to the f factor (Eq. (7.8)).
Indeed, the Ω interval allowing polar alignment is larger for more eccentric systems.
Thus, we have more polar discs around highly eccentric systems. Lowering σβ raises
⟨e⟩. Indeed, higher eccentricity values are required in regions where systems are mildly
misaligned. Conversely, lowering α means lowering ⟨e⟩. The less likely is to have very
eccentric systems in the initial population, the less eccentric the polar population will be.

Each pair of α–σβ uniquely connects to a pair of Fp − ⟨e⟩. This can be seen with
contour lines in the right panel of Figure 7.2. A given pair of polar fraction Fp and mean
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eccentricity ⟨e⟩ contour lines cross only at one point of the α–σβ parameter space. Thus,
we are able to numerically invert the α–σβ and Fp − ⟨e⟩ coordinate systems to obtain
plots in Figure 7.3. This plot showcases how α and σβ depend on Fp and ⟨e⟩. Doing so,
once we have constrained Fp and ⟨e⟩ from observations in a population we can constrain
α and σβ in the initial condition.

7.1.4 Measurement of polar fraction and mean eccentricity

Statistics on mutual inclinations between discs and stellar orbital planes are fairly scarce
at the moment. Even if it is relatively easy to measure the disc inclination with respect to
the sky plane, constraining the stellar orbital inclination is challenging. Thus, in the most
recent literature surveys (Czekala et al. 2019; Zurlo et al. 2023) the sample size is around
15 discs. Among these discs, only one accretion disc is confirmed in a polar configura-
tion: HD 98800B (Kennedy et al. 2012; Zúñiga-Fernández et al. 2021). Additionally, two
discs are likely polar3 (HD 142527, Balmer et al. (2022), and SR 24 N, Fernández-López
et al. (2017)). Another notable example is 99 Her, which is a polar debris disc that likely
evolved from a polar accretion disc (Smallwood et al. 2020). HD 98800B and SR 24N have
additional companions outside the circumbinary disc. The semimajor axis ratios for the
two systems are about 0.02 and 0.01 for HD 98800 and SR 24, respectively. The presence
of additional bodies could possibly affect the process of polar alignment, for example,
exciting Kozai-Lidov oscillations in the disc. However, the outer orbits of these triples
are too wide to drastically impact the inner disc (Martin et al. 2014).

In the following, we show that the two different prescriptions for Ω in binaries and
hierarchical systems with more than two stars result in similar values for the mean ec-
centricity, and in minor differences in terms of polar fraction distributions compared to
the current uncertainties we have in surveys. Thus, here we do not distinguish between
binaries and hierarchical systems in the sample.

We estimate the mean eccentricity of systems hosting polar discs averaging over con-
firmed polar systems (HD98800B), systems that are likely polar (SR24 N and HD142527)
and the polar debris disc 99 Her. We obtain an average eccentricity of ⟨e⟩obs = 0.67±0.11.

To evaluate the polar disc fraction, if we take into account the single confirmed polar
system (HD98800B) we end up with a polar fraction of 0.08. If, however, we include also
the additional two likely polar systems (SR24 N and HD142527) the fraction raises up
to 0.25. We take the average of these two values as a very rough estimate for the polar
fraction, with their standard deviation as an error. The result is F obs

p = 0.17± 0.08. This
fraction should be considered as an upper limit. In a sample of well-measured discs and
orbital planes inclinations, there is a bias towards systems in which those quantities of
interest are measured properly (for example because they are promising polar discs).

In the following, we use F obs
p and ⟨e⟩obs as references for exploring the parameter

space of the initial conditions.

7.2 Mapping observations onto the parameter space

For a binary (triple) population, Figures 7.3a and 7.3b (7.3c and 7.3d) show α and σβ ,
respectively, as a function of ⟨e⟩ and Fp.

White regions are regions where no α and σβ pair results in the given pair of ⟨e⟩
and Fp. In the following, we check which initial distribution is more likely to form the
observed polar-aligned disc population in binaries and triples.

3There is a degeneracy of 180◦ in the orbital longitude of the ascending node (Czekala et al. 2019).
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(a) α as a function of ⟨e⟩ and Fp for po-
lar binary population.
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(b) σβ as a function of ⟨e⟩ and Fp for
polar binary population.
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(c) α as a function of ⟨e⟩ and Fp for po-
lar triple population.
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(d) σβ as a function of ⟨e⟩ and Fp for
polar triple population.

Figure 7.3: α (left) and σβ (right) as a function of ⟨e⟩ and Fp for binary (top) and triple
(bottom) populations. White regions are Fp − ⟨e⟩ pairs that cannot be generated by any
α − σβ pair. Purple curves are the parameter space region in which α = 2, 1, 0 for solid,
dotted and dashed, respectively. Green curves are the parameter space region in which
σβ = ∞. Black star is the solution for randomly distributed mutual inclination and
eccentricity. White box point with error bars is the F obs

p and ⟨e⟩obs observation values
derived in section 7.1.4. Red circle points are Fp − ⟨e⟩ pairs measured in the four Bate
(2019) molecular cloud collapse simulations with different metallicities.
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7.2.1 Randomly distributed initial condition

The first assumption we test is flat distributions in both orbital eccentricity and mutual
inclination. This corresponds to taking the limit for σβ approaching infinity and α = 0
in Eqs. (7.1) and (7.2) respectively. The assumptions are: i) star formation at the molecu-
lar cloud level gives no preferential orbital eccentricity; ii) there is no preferred mutual
inclination at the onset of stellar and disc formation.

Under these assumptions, we can compute analytically both the polar fraction and
the mean eccentricity of the triple polar population, solving Eqs. (7.6) and (7.7) respec-
tively with Pe = 1 and Pβ = 2/π. The results are F tri

p = 0.54 and ⟨e⟩tri = 0.63.
For the binary population, we numerically integrate Eq. (7.9) since the f factor makes

the integral not analytically solvable. Results for binaries are F bin
p = 0.40 and ⟨e⟩bin =

0.65. We find these points in Fig. 7.3 at the crossing of the green and the dashed pur-
ple curves, marked with a star. Indeed, green and dashed purple curves are the limit
for σβ approaching infinity and α = 0, respectively. In surveys, we find a polar frac-
tion F obs

p = 0.17 ± 0.08 and a mean eccentricity ⟨e⟩obs = 0.67 ± 0.11 (see Section 7.1.4).
Even if the mean eccentricity in this configuration is compatible with the observed one,
the observed polar fraction is not compatible with the expected polar fraction for a bi-
nary/triple population.

These circumbinary discs form around young stars due to accretion of surrounding
gas and circularisation. Assuming that there is no correlation between the forming sys-
tem’s and the disc’ angular momenta, then rather than assuming a flat distribution of
mutual inclination, we expect Pβ = sinβ. In this case, we can take advantage of Eq. (16)
in Aly et al. (2015) which gives the fraction of configurations undergoing polar preces-
sion for a randomly distributed Ω, thus applicable to the binary population. Integrating
over the eccentricity we obtain an expected F bin

p = 1 − tanh (2/
√
5)/π ≈ 0.54 > 0.4.

This estimate is higher than the one previously computed given that, in this case, higher
inclinations are favoured compared to coplanar configurations. Likewise, for the triple
population, we analytically solve Eq. (7.6) with Pβ = sinβ, obtaining F tri

p = (5−
√
5)/4 ≈

0.69 > 0.54.
This result implies that non-uniform distributions — either in mutual inclination

and/or orbital eccentricity — are needed to explain the observed polar population (or
that many polar discs have been missed, which seems unlikely).

7.2.2 Correlated orbit-disc mutual inclinations

The first hypothesis we relax is the random initial distribution of mutual misalignment.
We are still bound to move along the dashed purple curve in Figures 7.3b and 7.3d
(where α = 0). Over this restricted parameter space region, ⟨e⟩ has a lower limit given
by the σβ = ∞ case (i.e. 0.65 and 0.63 for binaries and triples, respectively), while Fp

can span values from 0 to the σβ = ∞ case (i.e. 0.40 and 0.54 for binaries and triples,
respectively). The restricted parameter space region is compatible with ⟨e⟩obs and F obs

p .
In particular, observations constrain σβ to range between 0.25 and 0.78 for binaries and
between 0.17 and 0.43 for triples which implies a narrow β distribution around β = 0,
i.e. close to aligned orbit-disc systems should be more common at birth. Such correla-
tion between the angular momenta of the disc and of the binary/triple orbit is needed to
describe the observed polar population, under the assumption of randomly distributed
initial orbital eccentricities.
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7.2.3 Non-flat initial conditions

We now allow α and σβ to explore the whole parameter space to fully exploit the in-
formation contained in the measurement of ⟨e⟩ and Fp. The observed mean eccentricity
and polar fraction select a region of possible values of α and σβ highlighted by the error
bars in Fig. 7.3. For binaries, we obtain α ≤ 0.6 and 0.26 ≤ σβ ≤ 1.8. As for the triples,
α ≤ 0.46 and 0.23 ≤ σβ ≤ 1.87.

Again, the small statistics suggest the presence of a correlation between the angu-
lar momenta of the discs and stellar systems. As for the eccentricity, even if it is still
marginally compatible with a random distribution, present data suggest a decreasing
function (α < 0). Indeed, with a flat or slightly increasing eccentricity distribution, we
would expect an higher mean eccentricity or an higher polar fraction.

7.3 Discussion

7.3.1 Constraining initial conditions in multiple stellar systems

Our analysis suggests that, to be compatible with present data about polar discs, ini-
tial distributions both for mutual inclinations and eccentricities have to be non-uniform.
While we expect the angular momenta of forming discs and multiple systems to be cor-
related, the distribution of eccentricities we find does not completely match with obser-
vational results from surveys of evolved multiple stellar systems.

The observed evolved eccentricity distribution ranges from a uniform distribution
(α = 0) for orbits with semi-major axis of the order of 100 AU (Raghavan et al. 2010),
up to an (increasing) thermal distribution (α = 1) for 500 AU and becomes even steeper
for larger systems (Duquennoy & Mayor 1991; Tokovinin 2020; Hwang et al. 2022). Con-
versely, we find an α between −1 and 0.6, pointing towards a slightly decreasing distri-
bution, only marginally compatible with a uniform one.

First, we have to consider that we do not observe systems hosting circum-multiple
discs with semi-major axis larger than about 100 AU (e.g. Czekala et al. 2019) nor numer-
ical simulations form them (e.g. Elsender et al. 2023), thus we are interested in comparing
our results with this range of semi-major axis in which α is closer to our findings (sys-
tems of ∼ 200 AU have α ∼ 0.6). In addition, gravitational interactions tend to raise the
average eccentricity of the population. However, the thermalisation of the distribution
could be only partially explained with gravitational interaction during cluster evolution
which should act for much longer in order to push α from 0 to 1 (Heggie 1975; Weinberg
et al. 1987). Thus, depending on the thermalisation timescale, we could reconcile our
findings with observed distributions.

In addition, the orbital eccentricity can evolve through interactions between the bi-
nary and the circumbinary disc. For example, D’Orazio & Duffell (2021) numerically
show that the hydrodynamical interaction with a coplanar disc could lead to preferred
values of binary eccentricity. Even if it is not clear if this result is compatible with eccen-
tricity surveys, the fact that our model does not take into account that the eccentricity
of observed systems could be systematically different from the initial condition is also
something to investigate in the future. To the best of our knowledge, there are no studies
regarding this effect on misaligned circumbinary discs.

7.3.2 Comparison with cluster formation simulations

Nowadays, it is possible to perform detailed numerical simulations of the collapse of
molecular clouds. In such simulations, the initial conditions of the cloud are set (e.g.
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amount of turbulence, strength of magnetic fields, metallicity), and regulate the distri-
bution of the parameters of the population of the forming protosystems. By tuning the
properties of the cloud, one could aim at reproducing the measured distribution of incli-
nation and eccentricity. This would result in an indirect measurement of the molecular
cloud properties.

In this work, we applied this analysis to the molecular cloud collapse simulations by
Bate (2019). We measured α and σβ in the newly born protostellar systems population
by fitting the synthetic Ppol (Eq. (7.5)) resulting from the simulation. We computed the
expected Fp and ⟨e⟩ with Equations (7.6) and (7.7), respectively. Finally, we compared
the values of Fp and ⟨e⟩ obtained from the simulations with the ones measured in obser-
vations (see Section 7.1.4).

The simulation set consists of four molecular clouds collapsing with four different
metallicities (see details in Elsender & Bate 2021). We note that the higher the metallic-
ity, the steeper the eccentricity distribution becomes. The steep decrease in eccentricity
does not fit well with the same functional form as the observed distributions, on which
we based our parameterisation. Thus, we are able to satisfactorily fit the three lower
metallicities only.

The three red dots in Figure 7.3 represent the computed Fp and ⟨e⟩ for 3 different
realisations of the same cloud but with different metallicities. The metallicity has an
impact both on the eccentricity and mutual inclination distribution, hence the scatter
in Figure 7.3. However, it appears to have too little impact on the properties of the
population.

Regardless of the metallicity, the resulting polar disc fractions all are generally too
low compared to observations. Given that the distribution of misalignment angles from
the calculations of Bate (2019) and the observed systems are in good agreement (Elsender
et al. 2023), this mismatch must be due to the lack of eccentric orbits in the simulations
(possibly due to the simulations being too dissipative). We note however that, as dis-
cussed in Section 7.1.4, the proposed observational value has to be considered as an
upper limit. In other words, we cannot currently completely rule out such small polar
disc fractions from observations.

Finally, this analysis would benefit from numerical simulations producing distribu-
tions of mutual inclination and eccentricity, but for different sets of initial conditions
(e.g. different amount of turbulence or magnetic field strength) — such as Bate (2019)
with metallicity. This would lead to more robust predictions and better constraints for
the polar disc population. Provided accurate measurements of Fp and ⟨e⟩, the method
illustrated here constitutes a powerful way to infer the initial conditions in molecular
clouds from disc populations.

7.4 Conclusions

We showed how to measure the correlation between the inclination of accretion discs
and of forming stellar multiple systems (i.e. the distribution of mutual inclination) and
the distribution of orbital eccentricity of such stellar systems at the onset of star and disc
formation. Using our model, we were able to compute the two fundamental parame-
ters describing the initial distributions of disc-orbit mutual inclination (σβ) and orbital
eccentricity (α). The only required measurements are the fraction of polar discs in a disc
population (Fp) and the mean eccentricity of systems hosting polar discs (⟨e⟩). Despite
the low statistics available, we find that:

1. The observed disc population is not compatible with a randomly distributed ini-



tial distribution of mutual misalignment – there must be a preference for aligned
systems;

2. The orbital eccentricity is marginally compatible with a random distribution as
observed in field stellar systems with semi-major axis below 100 au. The observed
increasing eccentricity for wider orbits is still compatible with present data up to
∼ 200 au. However, our model suggests a slight initial preference for circular
orbits. We will investigate in future works if this discrepancy is compatible with
the eccentricity evolution of young multiple stellar systems.

The limitation of this proof-of-concept toy model lies in the simplified distributions
taken to describe the initial conditions. This simplification allowed us to describe the
distributions with only two parameters, facilitating the computation of the relations be-
tween α − σβ and Fp − ⟨e⟩ pairs, the parameter space discussion, and the comparison
with data. This gives no degeneracy in the model and a strictly two dimensional param-
eter space. A better observational constraint on the polar disc fraction would improve
the robustness of this method. Also, the impact of the interaction with a polar disc on
the eccentricity of the binary system has to be investigated further.

In conclusion, by measuring the polar disc fraction and the distribution of mutual
inclinations, we showed that it is possible to infer the initial eccentricity and mutual
inclination distributions of binaries and triples at birth. This will shed light on formation
processes within molecular clouds that affect the population of binary and triple stars.
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Summary and conclusions

In this thesis, we delved into the pivotal role of multiple stellar systems, particularly
those with more than two and three stars, in shaping the formation and evolution of
stellar populations. While these systems are the predominant playground for stellar and
planetary formation, they are often regarded as complex exceptions, especially in com-
parison to the more extensively studied single stellar system configurations. The models
and evolution theories developed over the past six decades have significantly enhanced
our comprehension of accretion disc physics. However, it is essential to acknowledge
that these models are typically idealised, as the majority of stars reside in multiple stel-
lar systems. Furthermore, even stars observed as single entities may have been part of a
multiple stellar system in the past or undergone temporary interactions with additional
bodies, such as during flybys.

Theoretical challenges in modelling multiple stellar systems are mirrored by obser-
vational limitations, with multiplicity often concealed within disc cavities and hidden
by surrounding material. Nevertheless, advancements in observational instruments are
steadily revealing multiple stellar systems within discs, while astrometry is becoming
more sensitive. The present capabilities offer us the opportunity to develop a compre-
hensive theory for disc and planet formation in multiple stellar systems and prepare our
models for forthcoming observational data.

Throughout this thesis, I underlined the significance of taking into account multiple
stellar systems in models of stellar and planetary formation. Ignoring the influence of
multiplicity restricts the range of configurations for which our theories hold. Despite the
added complexity, multiple stellar systems provide a unique way for a more profound
understanding of the overall stellar and planet formation processes. The broader pa-
rameter space and diverse mechanisms inherent to these systems yield an abundance of
observables that probe various aspects of ongoing physical processes, from gas hydrody-
namics to dust dynamics and evolution. Importantly, these observables are indicative of
fundamental hydrodynamical properties governing stellar and planet formation across
diverse systems, not just those with two or more stars.

In particular, this thesis challenges the oversimplification of reducing the dynamics
of multiple stellar systems with more than two stars to two-body system dynamics. It as-
serts the critical importance of accounting for the secular evolution of these systems and
highlights additional phenomena inherent to multiple stellar systems that can elucidate
observations, providing otherwise inaccessible insights in stellar formation physics.

• In Part II of this thesis, I presented the work I carried out in Ceppi et al. (2022)
about how accreting mass distributes over the stars of a stellar system with more
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than two stars (a.k.a. differential accretion). We found that the presence of an ad-
ditional body affects the way in which mass distributes over the stars and that this
deviation can be interpreted with simple geometrical cross-section and gravita-
tional interaction considerations. This is an example of an overlooked mechanism
which can give us crucial insights into the way in which stars grow and evolve.
Particularly, the key feature called ’twin peak’ (i.e. an excess of unitary mass ratio
binaries in surveys of multiple stellar systems mass ratios, Moe & Di Stefano 2017;
El-Badry et al. 2019) is often justified by invoking this mechanism which should
push binaries towards equalising their masses. Even if there are successful models
which explain such feature Tokovinin & Moe (2020), there are hints that the picture
could still be incomplete. For example, Torniamenti et al. (2021) showed the pres-
ence of a similar peak via a physically informed pairing of stars from the initial
stellar mass function. In addition, the mass needed for this process to work (which
is of the order of the stellar mass) is puzzling, given the mass available in the cir-
cumbinary discs modelled around such stellar systems. With the results of this
work, higher accretion rates and faster equalisation times support the idea that the
peak could be the result of multiple stellar systems accretion history. A definitive
answer on what is the origin of the shape of multiple stellar systems mass ratio
surveys can advance our understanding regarding their complex evolution.

• In Part III, I generalised the criteria for disc polar alignment in binary systems to
multiple stellar systems with more than two stars. I showed that the conditions
for a disc to librate in a pure binary system are necessary but not sufficient con-
ditions when more than two stars are at play. In particular, the secular evolution
of the system hierarchical levels has to be taken into account. The precession of
the eccentricity vector, around which the disc angular momentum precesses in the
polar configuration, can be too fast for the polar alignment process to occur. In
Ceppi et al. (2023) I found that, generally, a disc orbiting a pair of stars with ad-
ditional companions outside the disc is able to polarly align. Conversely, a disc
orbiting more than two stars is not able to polarly align given that the eccentricity
vector precesses too quickly. Even if this is true in the vast majority of the param-
eter space, there are specific configurations that contradict this general rule (see
Figs. 6.5-6.2). These findings are crucial because, besides showing that ignoring
the higher multiplicity of a hierarchical system can lead to wrong results, most of
the multiple stellar systems with discs we observe with high mutual angles (i.e.
possibly in a polar configuration) consist of more than two stars. In addition, once
we realised that multiplicity matters in describing mutual inclination distributions,
we found that different sub-populations of mutual inclination surveys are charac-
terised by a specific hierarchical configuration. Indeed, discs orbiting pure binary
systems (with or without external companions) mainly show either very high or
nearly coplanar inclinations. Conversely, discs orbiting more than two stars mainly
present mildly misaligned configurations. This suggests that multiplicity has a role
in shaping such surveys and it changes the story these surveys are telling, opening
new lines of research discussed in the future perspective below.

• In Part IV, I took advantage of the process of polar alignment to constrain statisti-
cal properties of the initial distribution of orbital parameters at the onset of binaries
and multiple stellar system population formation. Given the faster timescale with
which polar discs settle in a polar configuration and the sharp criterion that makes
a disc librate instead of precessing, the population of polar discs in Class II some-
how retains information about the distributions of the parameters at the epoch in
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which polar alignment was triggered. In particular, it is possible to retrieve infor-
mation about the distribution of parameters polar alignment criteria are sensible
to: the mutual inclination distribution and the eccentricity distribution. In Ceppi
et al. (2024) I developed a simple toy model able to retrieve such information from
the fraction of polar discs in a multiple stellar system population and the mean
eccentricity of orbits hosting polar discs. Although the model will benefit from
additional refinements (as discussed below in future developments), even now we
can constrain initial distributions otherwise virtually inaccessible due to how much
embedded in the natal cloud very young populations are. The constraints will be
tighter by observationally improving the measurements of the fraction of polar
discs and the mean eccentricity of the polar system population.

During my PhD, I worked together with other scientists to foster the approach I
showcased in this thesis on multiple stellar systems study. In the following, I briefly
mention the works in which I had a prominent role and which I think better represents
the strength of this approach in order to investigate multiple stellar systems.

• In Rigliaco et al. (2023), we modelled a Herbig Ae/Be multiple stellar system
T CrA, in the Corona Australis star-forming region. This system is interesting as
scattered light images reveal the presence of a complex environment around it,
composed of bright orbiting material at very high inclinations, along with a dark
lane linked to the inner part of the outer disc mid-plane, and streamer that are trac-
ing infalling material from the surrounding environment. The light curve suggests
that the binary period is 29.6 yr. The system configuration consists of different geo-
metrical planes. The orbit of the binary star is perpendicular to the outflows and is
nearly edge-on. The disk is itself seen edge-on but with a different position angle.
We worked both on SPHERE and ALMA observations of the system. In particular,
I contributed with a full hydrodynamical model of the system along with radiative
transfer simulation to obtain synthetic images to be compared with the available
data. Moreover, both through simulations and with analytical considerations I
analysed the accretion rates onto the stars, affected by the different inclinations
of orbital and disc planes. Numerical simulations and the theoretical modelling of
this multiple stellar system led to a deeper understanding of the system properties,
stellar configuration, and the observed disc features.

• In Toci et al., under review, we tackled a longtime debate about the hierarchical
triple system GG Tauri A and the size and shape of the cavity of its surround-
ing circumtriple disc. Despite numerous observational attempts, a comprehensive
understanding of the geometry of the GG Tau A system is still lacking. Indeed, cur-
rent astrometry is not capable of breaking the degeneracy between coplanar and
misaligned orbits between the outer orbit of GG Tau A and its circumtriple disc. We
investigated through detailed gas and dust hydrodynamical simulations both the
coplanar and misaligned orbits finding that the best match between the position of
the stars, the cavity size, and the dust ring size of GG Tau A is obtained with the
misaligned configuration. Indeed, on a short timescale, it presents a circular cavity
and dust ring as in the observations. However, no matter the disc misalignment,
the cavity size and its eccentricity quickly grow on longer timescales and the model
anymore reproduces the correct morphology. Why GG Tauri A disc cavity did not
already develop an eccentric cavity remains to be investigated. Indeed, despite the
success of our model in describing the system on short timescales, GG Tauri A is
challenging. Some some mechanism must be at play in order to form the observed
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circular cavity, while avoiding the eccentricity growth observed in numerical sim-
ulations.

• In Alaguero et al., to be submitted, we investigated the (possibly) triple stellar sys-
tem V892 Tau. The system is characterised by a binary orbited by a circumbinary
disc plus a third companion (V892 Tau NE), which poor astrometry does not con-
strain if its orbit is bound or unbound. In this study, we focused on the emission
and the kinematical signatures in the circumbinary disc to check if those signa-
tures could be due to the interaction with a bound companion, and which kind of
orbit the companion should follow in order to better reproduce them. First, we
modelled the system as a pure circumbinary disc. However, a large fraction of
the observed features could not be explained without taking into account the third
body (Long et al. 2021). In Alaguero et al. we found, via a numerical investigation,
that an eccentric inclined orbit of V892 Tau NE is the configuration better match-
ing the observations. We successfully reproduced the disc extent and inclination
with respect to the inner binary plane. As a matter of fact, the third body’s mis-
aligned orbit makes the disc oscillate and precess with time leading to a long-lived
misalignment. Finally, the dissipation effects at play force the disc to eventually
settle on a close to coplanar but slightly misaligned configuration, compatible with
recent observation.

The quest for a complete understanding of multiple stellar systems formation and
evolution is still ongoing, along with the formation of planets in such intricate environ-
ments. However, the past track of theory developments, to which this thesis integrates
and further develops, is proof of the importance of stellar multiplicity in this field. Mul-
tiple stellar systems operate as sophisticated laboratories that we are still learning to
handle properly. The methods I developed in this thesis, constitute promising tools to
investigate the detailed physics of stellar and planet formation in multiple systems.

Further developments on this topic are the refinement of the models proposed. In
this context, I think that a more thorough exploration of the implications of the polar
alignment mechanism in young multiple systems would be particularly relevant.

• I found that differential accretion works differently in systems with more than two
stars. Indeed, in the context of hierarchical systems, even in simple coplanar cir-
cular configurations it is not for granted that the lightest bodies accrete more mass
(Ceppi et al. 2022). An additional interesting aspect of the problem, which we only
slightly developed in that paper, is whether material even has stable configura-
tions to settle into when orbiting the inner binary of a hierarchical triple. Indeed,
the circum-inner binary disc is internally truncated by the binary (about 1-3 binary
semi-major axes atmin) and externally limited by the Roche lobe size of the inner
binary (RL). Thus, it is not granted that, even in a stable hierarchical system where
RL > ain, there is enough space for the disc to be stable. Understanding which
configurations are able to hold inner discs allows us also to predict which config-
urations are able to host planets, which necessarily need discs to assemble. Addi-
tionally, it would be relevant to add dust to the equation to complete the study of
where there could be conditions for planet formation in multiple stellar systems.

• On top of the analytical criterion for polar alignment in hierarchical systems, the
work I carried out in Ceppi et al. (2023) suggests a possible paradigm shift in in-
terpreting the distribution of mutual angles in multiple stellar systems with discs.
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Indeed, my study highlights the primary role that multiplicity has in shaping this
distribution. In other words, depending whether systems are pure binaries or
multiple stellar systems, the resulting distributions are significantly different. In
particular, the population of mildly misaligned discs was previously interpreted
as composed of discs which were on their way to dissipating the mutual incli-
nation with their hosting stellar systems. Given that a vast portion, if not all, of
the observed discs in that sub-population is actually composed of discs orbiting
more than two stars, a more appealing interpretation is related to the dynamics of
tilted multiple stellar systems. Indeed, we know that hierarchical triple systems
with misaligned inner and outer orbits can undergo inclination oscillations via the
Kozai-Lidov mechanism Lidov (1962); Kozai (1962). Given that the inclination os-
cillation timescale is much shorter than the timescale on which the disc could react,
the tilt we are observing is likely a transitory configuration (due to an oscillating
outer orbit inclination rather than a slowly decreasing tilt inherited from the ini-
tial system configuration). This would explain why virtually no pure binaries, nor
discs orbiting the innermost hierarchical level of hierarchical systems show such a
range of misalignment. Indeed, most of them show either very low (nearly copla-
nar) or very high (possibly polar) configurations. Therefore, a thorough investiga-
tion of the disc dynamics in Kozai-Lidov oscillating hierarchical systems is needed.
Remarkably, it is not possible yet to establish the possible equilibrium configura-
tions of any given multiple system based on the initial conditions. If future studies
confirm the lack of mildly misaligned discs orbiting pure binaries, this could be
a hint that we have to better study the timescales on which mutual inclination is
dissipated and/or the initial distribution of mutual inclination between discs and
binary orbit. In this case, nearly all binaries have had time to reduce the initial
misalignment up to the coplanar configuration, which suggests an evolutionary
timescale faster than the viscous timescale.

• The work done in Ceppi et al. (2024) aims at better constraining the initial distribu-
tion of misalignment at the onset of stellar formation. The preliminary work I car-
ried out in the paper can be significantly improved by refining the model and with
better statistics. For the sake of clarity, we developed a toy-model which depends
only on two parameters so that we could lighten the computational effort and eas-
ily represent the workflow. However, more complex models could be built, espe-
cially for representing the initial distribution of eccentricity and mutual inclina-
tion. These distributions can be more sophisticated, with more complex functions
depending on more parameters in order to be more flexible in retrieving the initial
distribution. This will certainly increase the computational demand of the model
and could lead to degenerate solutions. However, if this effort is complemented
with higher statistics about polar discs, it will lead to more precise estimates of the
parameters predicted by the model. Thanks to this, we could robustly measure dis-
tributions of mutual inclination and eccentricity for entire populations of very em-
bedded multiple stellar systems. Reliable estimates of the initial mutual inclination
distribution are key for the development discussed for the work on disc dynamics
in multiple stellar systems undergoing Kozai-Lidov oscillations. Moreover, with
(simulated and observed) molecular cloud collapse simulation sets spanning dif-
ferent values of molecular cloud properties (such as turbulence or magnetic fields),
we could measure the impact that such properties have on the resulting synthetic
population. Matching the synthetic population parameter distributions with the
ones predicted by our model would eventually constrain molecular cloud proper-
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ties at the origin of the overall stellar formation process in a robust manner.

The work done in this thesis is nothing more than small steps towards a compre-
hensive understanding of multiple stellar systems formation and evolution physics. The
pivotal role of multiple stellar systems in the formation of stars, planets and everything
teeming with life on them is more than ever evident. We just need to turn our gaze away
from the Solar System and look at our nearest stellar system (α Centauri), the one closer
to look at and maybe to reach in the future, to contemplate a triple stellar system. Along
with present and future data on early stages of stellar formation, the hunt for planets
with more than one sun is already on, with the BEBOP program (Martin et al. 2019) and
it is only at its beginning (e.g. PLATO program Rauer et al. 2014). As scientists, we have
to be prepared.
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APPENDIX A

Numerical tests

A.1 Accretion rate dependency on accretion prescription and spatial
resolution

The accretion rate onto the stars of each stellar system is the main observable measured
in this work. In the following sections we detail the numerical tests we performed to
check that the measured accretion rates are reliable. In the first section we discuss how
the accretion rates depend on the accretion prescription we used in our simulations.
In the second section we test if the measured accretion rates are fully resolved in our
numerical simulations.

A.1.1 Accretion prescription

Given that we used sink particles, there is only one possible numerical choice when
setting the simulation: the sink radius Rsink. SPH particles inside a sphere of radius
0.8Rsink are automatically accreted onto the sink. The other particles inside a sphere
of radius Rsink are accreted only if they are both gravitationally bound to the sink and
have a sufficiently low angular momentum (Price et al. 2018b; Bate et al. 1995). In all our
simulations, we set all the accretion radii equal to 0.1 au. This radius is roughly 4% of
the smallest Roche lobe radius around secondary stars in binaries (that is the smallest
Roche lobe radius around small binaries in triples).

To test how the choice of sink radii affects stellar accretion, we ran two additional
simulations doubling and halving all sink radii of our reference simulation (the ts2 triple
in Set 1). We integrated these two configurations for 100 outer orbit periods and we
compared the accretion rates with the reference simulation.

Fig. A.1 shows the accretion rates and λ factors of test simulations, along with the
reference one. We found that deviations from the reference simulation due to different
sink radii are lower than 2%. The deviations due to the splitting we measure in this work
are at least one order of magnitude higher, particularly in triples with the small binary
lighter than the third body (compare Fig. A.1 with Fig. 5.2). Since the accretion rates
are not affected by the choice of the accretion radius, we conclude that our sink particles
measure stellar accretion properly.

A.1.2 Spatial resolution

To model accretion onto the stars in a realistic way, we simulate the entire circum-triple
disc. This choice limits our ability to carefully model the formation and evolution of
circumstellar discs. The simulations presented in this work barely resolve inner discs
in the cavity of the circum-tripe disc. These discs do form within the cavity but with a
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Figure A.1: Accretion rates and λ = (Ṁt,sec1 + Ṁt,sec2)/Ṁt,pri factors measured in the
triple simulations run to test the accretion prescription. On the upper panel are plotted
the accretion rate of the secondary (green) and primary (blue) star. On the lower panel
are plotted the ratio between the accretion rates. The solid line refers to the reference
simulation ts2. Each different line style refer to different sink radii. The secondary ac-
cretion rate for triple system is the sum of the accretion rates of the small binary stars.
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limited spatial resolution. Indeed, the spatial resolution in the immediate surrounding
of the stars is about 20% of the Roche lobe radius (that is the spatial scale of the expected
circum-stellar discs).

The net flux of mass through the Roche lobe boundary around each stars is the quan-
tity that sets the individual accretion rates. The formation of discs inside the Roche lobes
can introduce a delay during the disc formation phase. However, the mass that enters a
given lobe will eventually fall onto the star. Indeed, mass cannot accumulate indefinitely
in the Roche lobe. Here we wish to investigate whether the numerical resolution is high
enough to ensure that the accretion rates onto the stars are well resolved.

To test the resolution of our simulations we ran two additional simulation: we mul-
tiplied by 4 and divided by 2 the number of particles in the ts2 reference simulation,
obtaining a higher resolution simulation of 4 millions particles and a lower resolution
simulation with 500k particles. We ran the higher resolution simulation for 40 outer or-
bit periods and the lower resolution simulation for 100 orbits. Their accretion rates and
λ factors are shown in Fig. A.2.

The simulations show that the accretion rate of secondaries are fully resolved: the
simulations at higher and lower resolution exhibit the same accretion rates as the refer-
ence simulation. We note that the accretion rate of the primary grows with resolution.
This implies that the circum-primary disc material is not fully resolved. Hence, we con-
clude that our results based on secondary splitting and the resulting accretion rate de-
viations are not affected by resolution issues. However, the measured λ factors (both
in binaries and in triples) are slightly overestimated, due to the underestimation of the
primary accretion rate. The configuration we tested is the most affected by this issue, as
it is the one with the lower primary accretion rate. Here, the λ factor is overestimated
by ≈ 8%. It is worth highlighting that the ratio of λ factors constitutes a more reliable
quantity given that we are comparing binary and triple simulations at the same resolution.
However, our results about primary splitting (Sec. 5.2.3.2) have to be dealt with more
caution. Our results are still relevant in the sense that – instead of discussing individ-
ual accretion rates – we report the relative deviations measured for different choices of
orbital parameters.

A.2 Integration time

Our simulations in sets 1, 2, and 3 last 100 outer orbit periods. As discussed in section
5.1, this time span is half a viscous timescale at the inner edge of the disc. Thus, by
the end of the simulation, the circum-triple disc has not reached steady-state. Given the
number of simulations required to perform the analysis made in this work, modelling
the entire disc viscous evolution is beyond our computational ability. Moreover, note
that the configuration considered here, where the mass reservoir in the evolving disc is
limited, will not actually settle into a steady state even for longer times. However, in this
work we are interested in the way in which mass distributes from the circum-multiple
disc over the stellar system stars. This is well measured by the ratio of the stellar ac-
cretion rate. In all the simulations we run, these ratios show an initial transient of less
than 20 binary orbits – regardless of the multiplicity and of the orbital parameters of the
system, before settling down into quasi equilibrium. To further test this, we ran the three
qwide = 0.65 simulations in Set 1 for longer integration times. Fig. A.3 shows the accre-
tion rates and the λ factors measured in these simulations. We find that, independently
on the total accretion rate, mass divides between the sinks in the same way (i.e. we mea-
sure a constant λ factor) until the gas smoothing length in the surrounding of the small
binary exceeds the small binary semi-major axis. This happens around 250 orbits and
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Figure A.2: Accretion rates and λ = (Ṁt,sec1 + Ṁt,sec2)/Ṁt,pri factors measured in the
triple simulations run to test the resolution. On the upper panel are plotted the accretion
rate of the secondary (green) and primary (blue) star. On the lower panel are plotted
the ratio between the accretion rates. The solid line refers to the reference simulation ts2.
Dotted and dashed line refer to the lower and higher resolution simulations, respectively.
The secondary accretion rate for triple system is the sum of the accretion rates of the
small binary stars.



it is a purely numerical effect caused by the loss of resolution around the small binary.
Thus, even if the total accretion rate will evolve towards the steady-state, we expect the
accretion rate ratios to remain constant. This allowed us to reliably measure the λ factors
even if our simulations have not reached a steady-state.
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Figure A.3: Accretion rates and λ = (Ṁt,sec1 + Ṁt,sec2)/Ṁt,pri factors measured in the
triple simulations run to test longer integration times. On the upper panel are plotted the
total accretion rate of the system (red) and the accretion rate of the secondary (green) and
primary (blue) star. On the lower panel are plotted the ratio between the accretion rates
(secondary over primary). The solid, dashed and dotted lines refer to the binary (b65),
ts triple (ts65) and tp triple (tp65) simulations, respectively. The secondary (primary)
accretion rate for ts (tp) triple system is the sum of the accretion rates of the small binary
stars.



APPENDIX B

Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a numerical method built on a Lagrangian
scheme firstly developed for the study of astrophysics systems involving fluid dynamics
(Gingold & Monaghan 1977; Lucy 1977).

In this chapter we discuss the basis of SPH, with the aim of better understand their
implementation in the code used to carry out simulations in this thesis, PHANTOM.

The first part is devoted to show how the equations of hydrodynamics are computed
on a set of particles that discretize the simulated fluid. We start from computing the
density of the fluid considering a discrete set of particles. This is a first example of
kernel interpolation, and later it will be also the base onto which build the SPH scheme,
as in Price (2012).

B.1 Density calculation and equations of motion

The first step in a numerical simulation is to discretise the physical quantities that de-
scribe the system in order to treat them numerically. The basis of SPH (as for others
numerical approaches to hydrodynamics) lies in the way chosen to rebuild continuum
physical quantities from their discrete description. Different approaches are related to
different possible ways of describing a fluid.

The first approach is the Eulerian description. In this view we consider a small vol-
ume, fixed in space, through which the fluid flows, carrying its physical properties. The
variables that describe the fluid (e.g. density ρ, temperature T ) are function of the time
and of the position of the considered volume (e.g ρ(t, r)). In this view changes in physical
quantities are time derivatives at fixed position.

The second one is the Lagrangian description in which we consider a specific fluid
element with its physical properties. The variables that describe the fluid are function of
the time and of the considered fluid element (e.g ρ(t, a), where a is a label for that partic-
ular fluid element). In this view any changes in physical quantities is time derivatives at
a fixed fluid element.

B.1.1 Computing density

If we want to compute the density ρ(r) at a certain time from a set of point masses of
mass m, we can create (in line with the Eulerian description) a mesh and separate the
point masses in the cells. A basic way to compute the density of a cell is to divide the
mass it contains by its volume (fig 1a).

Limitations to this approach are its dependency from the geometry of the mesh and
the lack of conservation of physical quantities. It also easily over-sample sparse region
and under-sample dense one.
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Another possibility is to not construct a mesh, but to compute the density at a point
r sampling the local mass distribution. For example one can build a sphere of radius R
(with R fixed or tuned to contain a fixed number Nnb of neighbour particles) and define

ρ(r) =
∑Nnb

b=1 mb

4
3πR

3
. (B.1.1)

Thereby we have no dependency on the geometry of the mesh, and we tune our
sampling on the density needs.

However this approach is often very noisy, due to the fact that a particle crossing the
sphere surface, even if away from r, can affect significantly ρ.

A way to reduce this problem is to weight the impact of a particle on the density com-
putation in r with its distance from r itself. This leads to the third approach, a weighted
summation on the particles, that is the SPH approach we present in the next section.

B.1.2 The SPH way to compute density

The third way to compute ρ(r) is by a weighted summation over the mass of the nearest
Nnb particles around r. So

Nnb∑
b=1

mbW (r − rb, h), (B.1.2)

where W is a generic function (called smoothing kernel) that weights the impact of a par-
ticle to the sum, in respect of how far the particle is, compared to a scale length h called
smoothing length.

Since conservation of total mass implies that
∫
V
ρdV =

∑Npart

b=1 mb, with Npart the
total number of particles, W has to be normalised:∫

V

W (r − rb, h)dV = 1. (B.1.3)

A good smoothing kernel needs to grant:
1) A weighting that is positive, decreases monotonically with relative distance and

has smooth derivatives;
2) Symmetry with respect to r − rb, thus W has to depend on |r − rb|;
3) A bell shape in order to limit the impact of far away particles on the summation.
In order to fullfill the above requests, the first choice that comes to mind is the Gaus-

sian

W (r − rb, h) =
σ

hd
exp

[
− (r − rb)

2

h2

]
, (B.1.4)

where d is the number of spatial dimension and σ a normalisation factor that depends
on d.

The main problem with a Gaussian kernel is that its strictly positive everywhere in
space, and this leads to account for the contribution of all the particles of the system,
with a consequent computational cost that scales with N2

part, with Npart the number of
particles of the system.

This behaviour can be fixed setting the Gaussian-like kernel to zero outside of a cer-
tain radius (that is to create two sets of particles, one with particles inside a certain num-
ber of h that count in the computation of ρ, and one outside that do not contribute), with
the advantage that the computational cost reduces toO(NnbNpart) and the disadvantage
to make the density estimate more noisy.
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B.1.3 Setting the smoothing length

We turn now our attention in how to set the smoothing length h, noting that it is free
to be a function of time and space. It make sense to have h depends on the position
because in our system we want an even resolution and the same h can be too wide for
dense region or uselessly short (contain no neighbour) for sparse one. Moreover the
evolution in time of the system changes the optimal smoothing length for the same spot.

That’s why it worth to relate the smoothing length in r to the local density of particles
and write

h(r) ∝ n(r)−1/d, (B.1.5)

with
n(r) =

∑
b

W (r − rb, h). (B.1.6)

If we consider particles with the same mass, n(r) (from which h depends) becomes
proportional to ρ(r), that in turn depends on h. So we now have two equations that have
to be solved1 simultaneously to compute h(r), namely

ρ(ra) =
∑
b

mbW (rab, h) (B.1.7)

and

h(ra) = η

(
ma

ρa

)1/d

, (B.1.8)

where we computed the quantities at the position ra of the particle a, and introduced the
notation rab ≡ ra − rb.

B.1.4 Density and equations of motion

We now show that the interpolation of the density described above (Eq. B.1.7), along
with its gradient, can be the pillar onto which build the SPH algorithm.

We begin from the discrete Lagrangian that controls the dynamics of the particles.
With T the kinetic energy and V the thermal energy we can write

L = T − V =
∑
b

mb

[
1

2
v2
b − ub (ρb, sb)

]
, (B.1.9)

where u is the specific internal energy, wrote as a function of density and entropy, and v
the velocity of the particle.

Note that even without considering this Lagrangian as the discrete version of the
continuum hydrodynamics one (it can be shown that it is, e.g. Eckart (1960)), it’s sym-
metries and thus conservation properties will be inherited by its consequent equations
of motion.

Through the least action principle we can retrieve the Euler-Lagrange equation,

d

dt

(
∂L

∂v

)
− ∂L

∂r
= 0. (B.1.10)

Before to compute the derivatives in (B.1.10), we must stop to stress two important
assumption we made retrieving it:

1with a root-finding method like Newton-Raphson or Bisection.
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1. We assumed that the Lagrangian in (B.1.9) is differentiable, in order to use Euler-
Lagrange equations;

2. We are not considering the discrete time integration in the Euler-Lagrange equa-
tion.

The first assumption exclude any chance to treat discontinuity in our system without
special consideration (e.g. as discussed in section B.2, introducing viscosity).

The second remind us that the choice of a particular integration scheme influence
the numerical properties of our simulation (e.g. lack of exact conservation of quantities,
with a non symplectic integrator)

We can now insert the Lagrangian in the Euler-Lagrange equation, obtaining the
equations of motion:

∂L

∂va
= mava; (B.1.11)

and
∂L

∂ra
= −

∑
b

mb
∂ub
∂ρb

∣∣∣∣
s

∂ρb
∂ra

. (B.1.12)

These equations are computed at the position of particle a and assuming that entropy s
is constant, so implying no dissipation.

We derive the [∂ub/∂ρb]s term in (B.1.12) from the first thermodynamic principle cast
per unit mass,

du = Tds+
P

ρ2
dρ, (B.1.13)

where u is the specific internal energy, Tds is the heat added to the system per unit mass
and P/ρ2dρ is the work on the fluid per unit mass2.

From (B.1.13) we see that the change in specific thermal energy at constant entropy
reads

∂ub
∂ρb

∣∣∣∣
s

=
Pb

ρ2b
. (B.1.14)

Moreover, in section B.1.6 we compute the ∂ρb/∂ra derivative in equation (B.1.12),
that is the gradient of the density at particle b respect to the position of particle a. There
we show that substituting into (B.1.12) the equation (B.1.14) and the density gradient in
(B.1.26) gives us the SPH equations of motion

dva

dt
= −

∑
b

mb

[
Pa

Ωaρ2a

∂W (rab, ha)
∂ra

+
Pb

Ωbρ2b

∂W (rab, ha)
∂ra

]
, (B.1.15)

that for a constant smoothing length reduces to

dva

dt
= −

∑
b

mb

(
Pa

ρ2a
+
Pb

ρ2b

)
∇aW (rab, ha). (B.1.16)

From the latter equations we can stress again the dissipationless nature of SPH, com-
puting the time derivatives of the total linear momentum or total angular momentum,

2PdV is the work done by the system, so P
mN

dV is the work done per unit mass, with N and m the number
and the mass of particles respectively, but V/N is the volume of a particle, that is m/ρ. So dV

N
= m d 1

ρ
=

− m
ρ2

dρ. Thus the work done on the system per unit mass is P
ρ2

dρ.
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respectively
∑

amava and
∑

a ra × mava, and obtaining exactly zero. These conserva-
tion properties follows from the symmetries of the Lagrangian and of the SPH density
estimate (B.1.7) in it, as stated by Noether’s theorem.

It remains to determine how energy evolves. In the absence of dissipation, from
equation (B.1.14), we can derive

dua
dt

=
Pa

ρ2a

dρa
dt

. (B.1.17)

Deriving the (B.1.7) to express the time derivative of the density we obtain an SPH
equation for the evolution of the specific internal energy u, namely

dua
dt

=
Pa

Ωaρ2a

∑
b

mb (va − vb) · ∇aW (rab, ha) . (B.1.18)

B.1.5 Kernel interpolation

The process shown in section B.1.2 in order to compute density from a set of point masses
scattered in space is a special case of the general process of interpolating a quantity A(r)
at any point in space from quantities defined only on a set of discrete point {rb} (that, in
the density example, are the positions of the particles).

The general theory of interpolation starts from the identity

A (r) =
∫
A (r′) δ (r − r′) dr′ (B.1.19)

where A is scalar variable and δ the Dirac delta function.
Than we approximate the δ function with a first order approximation function W

with finite width h, writing

A (r) =
∫
A (r′)W (r − r′, h) dr′ +O(h2), (B.1.20)

where W has to be normalised in space and has to tend to a delta for small h. The
function W is the smoothing kernel introduced for the computing of the density.

To finally recover the form of an interpolated quantity, ⟨A(r)⟩, we discretise the equa-
tion (B.1.20) on a finite set of points (the particles), by replacing the integral with a sum-
mation, and the mass element ρdr with the particle mass m, obtaining

⟨A (r)⟩ ≈
∑
b

mb
Ab

ρb
W (r − rb, h), (B.1.21)

that no wonder reduces to (B.1.7) for A = ρ.
In order to construct the SPH-style hydrodynamic equations that have to be solved

to simulate our system we have to define the vector operators that appear in the hydro-
dynamic equations.

For example we can define the gradient of the function A(r) taking the gradient of
(B.1.21), that results in

∇⟨A (r)⟩ ≈
∑
b

mb
Ab

ρb
∇W (r − rb, h), (B.1.22)
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that has the noticeable property of depending on the gradient of the kernel function (that
we know, and we chosen wisely) and not from the gradient of A (that we don’t know).

The same can be done for vector quantities (e.g. ∇ · A (r), ∇ × A (r)), we report the
computation of ∇ · A (r), as it will be useful in section B.1.7:

∇ · A (r) ≈
∑
b

mb
Ab

ρb
· ∇W (r − bb, h) . (B.1.23)

Also, from this example is straight to show that the approximation done in the δ
approximation in (B.1.20) are not negligible, as from (B.1.22) it’s clear that the defined
gradient of a function A doesn’t reduce to zero for a constant A.

It became necessary to find smart ways to define operators, rather than the bare defi-
nition above. For example, for the gradient, it’s meaningful (given that the gradient of a
constant is not zero) to write

∇A = ∇ (1 ·A) = ∇A+A∇1 (B.1.24)

So we can redefine the definition (B.1.22) of the gradient in ra with

∇⟨A (ra)⟩ ≡ ∇A (ra)−Aa∇1 =

=
∑
b

mb
Ab

ρb
∇W (rab, h)−

∑
b

mb
Aa

ρb
∇W (rab, h) =

=
∑
b

mb
Aab

ρb
∇W (rab, h).

(B.1.25)

In principle we can now write hydrodynamics equations in the SPH way sobstituting
the SPH version of operators in them and implement them in a code.

B.1.6 SPH equations of motion

We have to compute the ∂ρb/∂ra derivative in equation (B.1.12), that is the gradient of
the density at particle b respect to the position of particle a. In order to compute this
gradient we take the gradient of the density estimate, giving

∂ρb
∂ra

=
1

Ωb

∑
c

mc
∂W (rbc, hb)

∂ra
(δba − δca) , (B.1.26)

where δ is the Dirac delta and Ωb is a term to account for the gradient of the smoothing
length (as it depends on ρ), defined as

Ωa =

[
1− ∂ha

∂ρa

∑
b

mb
∂W (rab, ha)

∂ha

]
. (B.1.27)

Using equation (B.1.8) to compute h, give us

∂h

∂ρ
= − h

ρd
. (B.1.28)

Using (B.1.14) and (B.1.26) in (B.1.12), and some algebra, gives us the SPH equations
of motion

dva

dt
= −

∑
b

mb

[
Pa

Ωaρ2a

∂W (rab, ha)
∂ra

+
Pb

Ωbρ2b

∂W (rab, ha)
∂ra

]
, (B.1.29)
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that for a constant smoothing length reduces to

dva

dt
= −

∑
b

mb

(
Pa

ρ2a
+
Pb

ρ2b

)
∇aW (rab, ha). (B.1.30)

B.1.7 SPH equations and kernel interpolation

We have constructed three equations into which is condensed the physics that rules our
particles (through the Lagrangian defined in Eq. B.1.9), the thermodynamics of our sys-
tem (Eq. B.1.13) and our choice of how to compute density (Eq. B.1.7).

Theses equations are:

ρ(ra) =
∑
b

mbW (rab, h); h(ra) = η

(
ma

ρa

)1/d

, (B.1.31)

dva

dt
= −

∑
b

mb

[
Pa

Ωaρ2a

∂W (rab, ha)
∂ra

+
Pb

Ωbρ2b

∂W (rab, ha)
∂ra

]
, (B.1.32)

dua
dt

=
Pa

Ωaρ2a

∑
b

mbvab · ∇aW (rab, ha) . (B.1.33)

To recognise that these are the SPH (or interpolated) version of the not yet mentioned
continuum hydrodynamics equations (continuity, Euler and energy respectively), we
have to recall the definitions of vector operator given in B.1.5.

We can take as an example the density estimate. Taking the time derivative, with
constant smoothing length, we have

dρa
dt

=
∑
b

mbvab · ∇aW (rab, h) , (B.1.34)

that consist in two terms.
Comparing the first one,

va ·
∑
b

mb
ρb
ρb

∇aW (rab, h), (B.1.35)

with the definition of the gradient in (B.1.22) make us recognize it as v · ∇ρ.
For the second, comparing with the divergence definition in (B.1.23), we have∑

b

mb
ρbvb

ρb
· ∇aW (rab, h) ≈ ∇ · (ρv). (B.1.36)

Putting things together, we retrieve the continuity equation, namely

dρ

dt
= v · ∇ρ−∇ · (ρv) = −ρ∇ · v. (B.1.37)

The need of differentiability of the Lagrangian (thus of density and thermal energy)
and the above-requested absence of dissipation (taking entropy as constant) imply the
need of special care in intrinsic dissipative situation, as we discuss in the next section.
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B.2 Artificial viscosity

The non dissipative SPH formulation force us to introduce an artificial viscosity (Mon-
aghan 1997) to deal with situation where dissipation is required. First of all to treat
shocks, where we have an increase of entropy, and to prevent interpenetration of parti-
cles.

The problems with shocks arise from the assumption of differentiability of the La-
grangian made in the previous sections. This problem emerge3 as the shocked quantities
varies on a not resolved scale (typically a mean free path of the gas particles), leading to
an apparent discontinuity on the large scale.

To deals with shocks we can smooth them over a small number of smoothing lengths
in order to maintain the shock appearance on a large scale, while keeping finite gradients
and preserving the correct behavior away from the shock. In other words making the
shock no longer discontinuous on the small scale (Price 2008).

For this purpose we have to modify the stress tensor, that until now consists only in
the isotropic pressure term, adding a dissipation term to diffuse these discontinuities.

A possible4 way (shown by Monaghan (1997)) to achieve this, is to introduce a dissi-
pative artificial viscosity term in addition to the pressure term, of the form

qAVa =

{
1
2α

AV
a ρavsig,a |vab · r̂ab| , vab · r̂ab < 0

0 vab · r̂ab ≥ 0
(B.2.1)

with
vsig,a = cs,a + βAV |vab · r̂ab| . (B.2.2)

The βAV parameter was originally added to prevent particle penetration in high Mach
number shocks (Monaghan 1989).

A switch has to be added to reduce dissipation away from shocks, while providing
as little dissipation as possible and in the meantime resolving the shock. This is done by
evolving αAV in time (Morris & Monaghan 1997) and only at the shock location.

Although in this thesis we have not dealt with shock situations, we dealt with the
artificial viscosity technique. This is because the artificial viscosity modification of the
Euler equation links to the Navier-Stokes viscosity terms and so it can be used to repre-
sent a physical viscosity in the whole disc (Lodato & Price 2010).

Actually, from the study of second-order derivatives in SPH formulation (Español &
Revenga 2003), it can be shown that

−
∑
b

mb

ρb
(Aab · r̂ab)

Fab

|rab|
=

1

5
∇ (∇ · A) +

1

10
∇2A, (B.2.3)

where we defined ∇aW (rab, h) ≡ Fabr̂ab.
The comparison of this expression with the Euler equation (B.1.15) with the addition

of artificial viscosity stress tensor term (neglecting the non linear term) show that the
artificial viscosity term can be written as(

dv
dt

)
AV

≈ αAVvsig |rab|
(
1

5
∇ (∇ · v) +

1

10
∇2v

)
, (B.2.4)

3in SPH and real physical systems.
4also the way implemented in PHANTOM.



an so it mimics an actual Navier-Stokes viscosity with

νAV ≈ 1

10
αAVvsig |rab| , (B.2.5)

and
ζAV

ρ
≈ 1

6
αAVvsig |rab| . (B.2.6)

In order to use artificial viscosity as a Shakura & Sunyaev (1973) viscosity, we have
to slightly modify the request made above for shock capture with the following (Lodato
& Price 2010):

1. Viscosity should be applied for both approaching and receding particles,

2. The βAV term in the signal velocity should be dropped such that vsig = cs,

3. qAV should be multiplied by a factor h/ |rab|, similar to Monaghan (1992), and

4. The Morris & Monaghan (1997) switch should not be used, so αAV should be
treated as a constant.

These conditions result in rewriting qAVa as

qAVa =
1

2
αAVρacs,a |vab · r̂ab|

h

|rab|
, (B.2.7)

giving

νAV ≈ 1

10
αAVcsh, (B.2.8)

and
ζAV

ρ
≈ 1

6
αAVcsh. (B.2.9)

This allows us to write the αSS parameter of Shakura in terms of artificial viscosity
as:

αSS ≈ 1

10
αAV ⟨h⟩

H
, (B.2.10)

where ⟨h⟩ is the azimuthally averaged smoothing lenght.
Equations above show two main complication in using artificial viscosity to represent

real viscosity:

1. The physical αSS viscosity vary through the disc, and with the resolution;

2. We introduce a large unwanted bulk viscosity coefficient.

In the physics of accretion disc the second point it’s not so influent since the ∇ · v is not
large and usually counterbalance the high coefficient.





Bibliography

Adams, F. C., Ruden, S. P., & Shu, F. H. 1989, Astrophys. J., 347, 959
Allen, P. R., Koerner, D. W., McElwain, M. W., Cruz, K. L., & Reid, I. N. 2007, Astron. J.,

133, 971
Alves, F. O., Caselli, P., Girart, J. M., et al. 2019, Science, 366, 90
Aly, H., Dehnen, W., Nixon, C., & King, A. 2015, Mon. Not. R. Astron. Soc., 449, 65
Aly, H., Gonzalez, J.-F., Nealon, R., et al. 2021, Mon. Not. R. Astron. Soc., 508, 2743
Aly, H. & Lodato, G. 2020, Mon. Not. R. Astron. Soc., 492, 3306
Aly, H., Lodato, G., & Cazzoletti, P. 2018, Monthly Notices of the Royal Astronomical

Society, 480, 4738
Aly, H., Lodato, G., & Cazzoletti, P. 2018, Mon. Not. R. Astron. Soc., 480, 4738
Ambartsumian, V. A. 1937, , 14, 207
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Duchêne, G. & Kraus, A. 2013, , 51, 269
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El-Badry, K., Rix, H.-W., Tian, H., Duchêne, G., & Moe, M. 2019, Mon. Not. R. Astron.

Soc., 489, 5822
Elliott, P., Bayo, A., Melo, C. H. F., et al. 2014, Astron. Astrophys., 568, A26
Elsender, D. & Bate, M. R. 2021, Mon. Not. R. Astron. Soc., 508, 5279
Elsender, D., Bate, M. R., Lakeland, B. S., Jensen, E. L. N., & Lubow, S. H. 2023, Mon. Not.

R. Astron. Soc., 523, 4353
Encalada, F. J., Looney, L. W., Tobin, J. J., et al. 2021, Astrophys. J., 913, 149
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