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Abstract: A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovas-
cular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains
anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT)
is involved in inflammation, whilst interscapular brown adipose tissue (iBAT) drives metabolism
in obese rodents. Melatonin, a pineal indoleamine, acting as a SIRT1 modulator, may alleviate
cardiometabolic damage. In the present study, we morphologically characterized the heart, eWAT,
and iBAT in male heterozygous SIRT1+/− mice (HET mice) on a high-fat diet (60%E lard) versus a
standard rodent diet (8.5% E fat) and drinking melatonin (10 mg/kg) for 16 weeks. Wild-type (WT)
male C57Bl6/J mice were similarly fed for comparison. Cardiomyocyte fibrosis and endoplasmic
reticulum (ER) stress response worsened in HET mice on a high-fat diet vs. other groups. Lipid
peroxidation, ER, and mitochondrial stress were assessed by 4 hydroxy-2-nonenal (4HNE), glucose-
regulated protein78 (GRP78), CCAA/enhancer-binding protein homologous protein (CHOP), heat
shock protein 60 (HSP60), and mitofusin2 immunostainings. Ultrastructural analysis indicated the
prevalence of atypical inter-myofibrillar mitochondria with short, misaligned cristae in HET mice on a
lard diet despite melatonin supplementation. Abnormal eWAT adipocytes, crown-like inflammatory
structures, tumor necrosis factor alpha (TNFα), and iBAT whitening characterized HET mice on
a hypercaloric fatty diet and were maintained after melatonin supply. All these data suggest that
melatonin’s mechanism of action is strictly linked to full SIRT1 expression, which is required for the
exhibition of effective antioxidant and anti-inflammatory properties.

Keywords: sirtuin1; melatonin; heart; epididymal adipose tissue; interscapular brown adipose tissue;
mitochondria; endoplasmic reticulum stress; obesity

1. Introduction

A sedentary lifestyle, dramatically reinforced by the recent COVID-19 lockdown;
overweight; and obesity contribute to cardiovascular diseases and related multimorbidity,
like diabetic cardiomyopathy, coronary artery disease, and cancer [1–3]. Indeed, when
body mass index exceeds 30 kg/m2, the risk of cardiometabolic complications increases [4].
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These events are aggravated by the aging process when chronic heart diseases may occur,
decreasing life expectancy [5]. Thus, when a patient is admitted to a hospital emergency
room for cardiac damage, screening for multiple metabolic adverse events is strongly
recommended. Together with a sedentary lifestyle, a caloric diet rich in fat and sugars
contributes to obesity in humans and rodents [6]. A hypercaloric fatty diet induces cardiac
mitochondria changes, oxidative stress, calcium flux alterations, fibrosis, and inflammation,
linked to insulin resistance, in rodent models of diabetes and in patients [7].

Given the strict connection between the heart and adipose tissue (AT) in the regulation
of metabolism, specific adipose depots must be considered [8]. Indeed, the abdominal
visceral white AT (WAT), which forms more than 95% of the adipose mass in humans, is the
main target of lipid deposition and energy dissipation during high-calorie intake [9]. How-
ever, in male mice, the epididymal WAT (eWAT) is the unique depot prone to inflammation
and obesogenic remodeling [10,11]. The interscapular AT depot, called brown AT (iBAT), is
fundamental for combating obesity and diabetes, favoring cardiac remodeling after mild
infarction in mice [12]. The main histological fingerprint of pro-inflammatory changes in AT
depots is the crown-like structure (CLS), a peculiar arrangement of infiltrating macrophages
around dying adipocytes [13]. So, it is important to evaluate the “quality” of AT, its pro-
inflammatory acquisition, and not only its quantity to efficiently manage cardiovascular
diseases [14]. Cardiovascular damage and abdominal AT remodeling are strictly related,
sharing common pathogenic mechanisms, in obese patients and in rodents [15,16]. The
main pathogenetic factors are endoplasmic reticulum (ER) stress, oxidative stress, and
chronic inflammation [17].

In cardiomyocytes, misfolded mitochondrial proteins are deposited in the ER, and
perturbation of calcium flux activates an aberrant ER reaction, called the unfolded protein
response [18]. This mechanism is initiated by resident ER sensors that upregulate the tran-
scription of master ER chaperone, glucose-regulated protein78 (GRP78), and proapoptotic
C/EBP homologous protein (CHOP) [19,20]. Another chaperone, called heat shock protein
60 (HSP60), is involved in recovering mitochondrial protein folding, and its deletion in
the heart induced dilated cardiomyopathy in mice [21]. So, handling proper clearance of
proteins is pivotal in the heart where the ER and mitochondria are strictly associated at Z
lines, where they drive calcium flux for contractility [22–24].

Mitochondria represent up to 45% of a single cardiomyocyte volume and are scattered
in different subcellular sites and so defined as subsarcolemmal, inter-myofibrillar (IMF), and
perinuclear populations [25]. Despite the forced regular presence of mitochondria in the
sarcomere, their dynamism and ability to change size are essential to maintaining energetic
metabolism in the heart [26,27]. Indeed, the prevalence of small mitochondria, called
fission, or elongated mitochondria, called fusion, may be detrimental or beneficial for ATP
production [28] and precedes reactive oxygen species production [29]. Oxidative damage
in the heart triggers lipid peroxidation of mitochondrial membranes which generates toxic
aldehydes like 4-hydroxynonenal (4HNE) and overt energetic failure [30].

Sirtuin1 (SIRT1), the most studied isoform of human sirtuin proteins, homologs of the
Sir2 gene in yeast, is involved in epigenetic regulation and mitochondrial metabolism [31,32].
Indeed, SIRT1, acting as a lysine deacetylase via nicotinamide adenine dinucleotide on
histones and non-histone proteins, controls the survival or death of cardiomyocytes in
aging and diseases [33,34]. Moreover, in the heart, SIRT1 activates transcription factors
able to modulate mitochondrial biogenesis [35,36]. Notably, in visceral AT, SIRT1 regulates
adipogenesis, limiting obesity and glucose intolerance [37].

SIRT1-knockout (KO) mice presented developmental cardiac defects, growth retarda-
tion, and perinatal mortality [38]. Conversely, heterozygous SIRT1+/− mice survived until
adulthood but presented left ventricular dilatation [39]. Studies on adult cardiac-specific
SIRT1-KO mice indicated a higher predisposition to adverse changes like diabetic cardiomy-
opathy, ER stress, and apoptosis [40,41]. By contrast, SIRT1 upregulation alleviated cardiac
oxidative damage and diabetic vascular complications [42] even if excessive SIRT1 over-
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expression induced cardiomyopathy [43]. Similarly, mice carrying an adipocyte-specific
deletion of SIRT1 developed insulin resistance and AT inflammation [44].

Melatonin (N-acetyl-5-methoxytryptamine) is an endogenous indoleamine produced
by the pineal gland, with a pivotal role in the synchronization of circadian rhythms,
and is able to positively influence the cardiovascular system [45] and to control energy
expenditure in obesity [46]. Melatonin reaches mitochondria via specific transporters,
limits mitochondrial fission, and activates mitophagy [47]. Previous studies indicate
that melatonin enhances SIRT1 expression in the heart, thus reducing oxidative damage
and inflammation in obese leptin-deficient mice and in diabetic mice [48,49]. Moreover,
melatonin controls body weight, increases BAT depot mass, and stimulates thermogenic
genes in dietary-induced obese mice [50] and in Zucker diabetic rats [51]. Compelling
evidence outlines the potentiality of melatonin as a preventive or supplementary treatment
in animal models of cardiometabolic disorders [52,53].

In this study, we analyzed the heart, eWAT, and interscapular BAT (iBAT) in het-
erozygous SIRT1+/− mice (HET mice) fed a hypercaloric diet based on lard and drinking
melatonin for 16 weeks. Oxidative damage, ER stress, mitochondrial chaperones, and in-
flammation were evaluated. Furthermore, inter-myofibrillar mitochondria were estimated
to better address the role of melatonin in this particular animal model.

Our results indicated that SIRT1 haploinsufficiency in mice nullified the protective
efficacy of melatonin in the heart and AT, failing to limit dietary-induced cardiometabolic
damage and underlying that melatonin action is strictly linked to full SIRT1 expression.

2. Results
2.1. Sirtuin1 Content in Mouse Heart

In the heart, the amount of nuclear SIRT1 in wild-type (WT) mice on a high-fat diet
(HFD) was markedly lower compared to WT mice on a standard diet (STD), but notably,
supplementation of WT mice on an HFD with melatonin prevented a decrease in SIRT1.
Conversely, HET mice showed a very weak nuclear SIRT1 band independently of the diet and
melatonin supplementation. These observations are summarized in Supplementary Figure S1.

2.2. Metabolic Data and Cardiac Fibrosis

Metabolic parameters of whole-body heterozygous SIRT1 mice (HET mice) on an
STD have already been reported by Planavila et al. [39]. Furthermore, plasmatic glucose
measurements and indirect calorimetry in WT and HET mice on the lard-based regimen
were previously indicated [54]. Considering that all parameters analyzed were similar
in WT and HET mice on an STD with or without melatonin, we decided to report data
of mice on a normocaloric diet as “controls” here. The body weight and eWAT weight
of WT and HET mice on a standard diet (STD) or an HFD and drinking or not drinking
melatonin are presented in Table 1. The body and eWAT weights were measured at the
beginning of treatments (T0), in 12-week-old mice, and after 16 weeks of dietary treatment
(T1), in 28-week-old mice. At the end of treatments (T1), the increment in body weight was
statistically significant both in WT and HET mice (32–34% increase vs. relative littermates,
p < 0.05). Remarkably, melatonin supplementation promoted a significant reduction in
body weight (12%) in WT mice on an HFD. In contrast, HET mice on an HFD drinking
melatonin presented only a limited weight loss (6%).

Similarly, eWAT weight was recorded at the end of treatments. In WT mice on a lard
regimen, eWAT weight doubled in comparison with that in standard-diet-fed littermates,
and melatonin promoted a weight decrease of 35%. Curiously, in HET mice, eWAT weight
increased poorly after the obesogenic regimen and decreased by 20% after melatonin intake.
According to Xu et al. [55], iBAT weight was not estimated due to its extremely limited
amount (0.06–0.07 g) which makes the appreciation of differences inconsistent.

As weight in rodents fed an obesogenic diet is strictly dependent on age and energy
dissipation, our data refer to young-adult mice (7 months old) maintained at 22 ◦C, a
temperature lower than thermoneutrality (28 ◦C) [56].
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Notably, even if the amounts of daily food/water intake were similar, HET mice fed
an HFD demonstrated reduced locomotor activity and oxygen consumption, at night, that
might be the reason for abnormal body weight and eWAT depot parameters [54].

Then, we focused on the heart, performing histological analysis of fibrosis, a quite common
sign of obesity. Fibrosis, evident as blue color in Masson’s staining (Figure 1a–c) and as red color
in Sirius Red staining (Figure 1d–f), was absent in HET mice on a standard diet (Figure 1a,d) but
evident in HET mice fed an HFD for 16 weeks, which presented significant (p < 0.05) perivascular
(coronary vessels) and interstitial fibrosis (Figure 1b,e). This morphological feature was still
maintained in the HFD plus melatonin group, mainly in the perivascular area (Figure 1c,f),
corresponding to a total fibrosis index greater than 15% (Figure 1g).

Table 1. Metabolic data: body weight and eWAT weight.

STD (n = 6) HFD (n = 10) HFD + MEL (n = 10)

WT body weight—T0 (g) 26.35 ± 0.8 27.58 ± 0.7 26.49 ± 0.9
WT body weight—T1 (g) 29.09 ± 0.9 42.35 ± 1.1 A,C 34.05 ± 0.7 B

WT body weight gain (g) 2.74 14.77 7.56
HET body weight—T0 (g) 27.03 ± 0.8 27.34 ± 0.9 27.65 ± 0.8
HET body weight—T1 (g) 30.06 ± 0.7 40.42 ± 1.0 A 38.10 ± 0.6 A

HET body weight gain (g) 3.03 13.08 10.45
WT eWAT weight—T0 (g) 0.82 ± 0.04 1.12 ± 0.02 A,C 0.93 ± 0.03 A,B

HET eWAT weight—T1 (g) 0.78 ± 0.02 0.70± 0.02 A 0.68 ± 0.04 A

Values are means ± standard deviation. eWAT: epididymal adipose tissue; HET: SIRT1+/−; STD: standard
maintenance diet; HFD: high-fat diet (TD 03584-lard 35%); MEL: melatonin; WT: wild type. n = number of mice.
A, p < 0.05 vs. STD; B, p < 0.05 vs. HFD; C, p < 0.05 vs. HFD plus melatonin.
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Figure 1. Heart fibrosis. Representative photomicrographs showing perivascular and interstitial
collagen deposition (arrows) in the left ventricles of (a,d) HET mice on standard diet, (b,e) HET mice
on HFD, (c,f) HET mice on HFD plus melatonin. Masson’s staining (a–c) and Sirius Red staining
(d–f). Original magnification: 400× (a–c) and 200× (d–f). Bars = 20 µm (a–c) and 50 µm (d–f).
Morphometrical estimation of total heart fibrosis (g). * p < 0.05 vs. HET mice on STD; # p < 0.05 vs.
HET mice on HFD. AU: arbitrary units; HET: SIRT1+/−; HFD: high-fat diet (TD 03584-lard 35%);
MEL: melatonin; STD: standard maintenance diet; V: coronary vessel.
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2.3. Heart Lipid Peroxidation and Endoplasmic Reticulum Stress

Abnormal body weight and fat depots, together with cardiac fibrotic changes, sug-
gested the onset of metabolic damage, starting early in HET mice on a lard diet for 16 weeks.
For this reason, in left ventricular cardiomyocytes, we analyzed the presence of 4 hydroxy-
2-nonenal (4HNE), a lipid peroxidation marker associated with oxidative damage. Indeed,
toxic lipid peroxidation products are produced in cardiac mitochondria when reactive
oxygen species attack unsaturated lipid membranes, and they represent an index of inflam-
mation and oxidative damage [57]. The immunohistochemical analysis of 4HNE indicated
its absence in WT and HET mice placed on a standard diet (Figure 2a,d) but a strong brown
signal in WT and HET mice on an HFD (Figure 2b,e), reduced only in WT mice after mela-
tonin intake (Figure 2c). Conversely, in HET mice on an HFD plus melatonin, moderate
4HNE immunostaining was still detected (Figure 2f), indicating the persistence of lipid
peroxidation in this group. The morphometrical quantification of 4HNE immunostaining
is plotted in Figure 2g.
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Figure 2. Heart lipid peroxidation. Representative photomicrographs of ventricular cardiomyocyte
4HNE immunostaining in (a) WT mice on standard diet, (b) WT mice on HFD, (c) WT mice on
HFD plus melatonin, (d) HET mice on standard diet, (e) HET mice on HFD, (f) HET mice on
HFD plus melatonin. Original magnification: 400×, bars = 20 µm. Quantitative analysis of 4HNE
immunopositivity indicated the maintenance of toxic lipid peroxidation products in HET mice (g).
* p < 0.05 vs. WT mice on STD; # p < 0.05 vs. HET mice on STD; + p < 0.05 vs. WT mice on HFD;
§ p < 0.05 vs. HET mice on HFD; ** p < 0.05 vs. WT mice on HFD plus melatonin. AU: arbitrary
units; HET: SIRT1+/−; HFD: high-fat diet (TD 03584-lard 35%); MEL: melatonin; STD: standard
maintenance diet.
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Considering the strong relationship between lipid peroxidation, SIRT1, and ER stress
in the heart, we analyzed the presence of ER stress in ventricular cardiomyocytes. GRP78,
the master regulator of the ER stress response, was localized using immunohistochemistry
in WT and HET mice under different diets [40].

A faint GRP78 signal was localized in the heart of WT and HET mice fed a standard
maintenance diet (Figure 3a,d). GRP78 distribution was limited to a few cardiomyocytes
in WT mice on an HFD (Figure 3b) and almost absent in WT mice drinking melatonin
(Figure 3c). In contrast, GRP78 was significantly enhanced in HET mice on an obesogenic
diet (Figure 3e) and was still moderate after melatonin supplementation (Figure 3f). All
these findings suggest the occurrence of sustained ER stress in the HET group fed a
hypercaloric diet. The morphometrical quantification of GRP78 immunostaining is plotted
in Figure 3g.
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Figure 3. Heart endoplasmic reticulum stress. Representative photomicrographs of GRP78 immunos-
taining showing the extent of ER stress response in brown (a) WT mice on standard diet, (b) WT mice
on HFD, (c) WT mice on HFD plus melatonin, (d) HET mice on standard diet, (e) HET mice on HFD,
(f) HET mice on HFD plus melatonin. Original magnification: 400×, bars = 20 µm. (g) Quantitative
analysis of GRP78 immunopositivity. * p < 0.05 vs. WT mice on STD; # p < 0.05 vs. HET mice on STD;
+ p < 0.05 vs. WT mice on HFD; § p < 0.05 vs. HET mice on HFD; ** p < 0.05 vs. WT mice on HFD
plus melatonin. AU: arbitrary units; HET: SIRT1+/−; HFD: high-fat diet (TD 03584-lard 35%); MEL:
melatonin; STD: standard maintenance diet.

To further assess the involvement of ER-driven proapoptotic events in the heart, we an-
alyzed nuclear CHOP presence in cardiomyocytes. The immune reaction was undetectable
in WT mice (Supplementary Figure S2a–c) and HET mice (Supplementary Figure S2d–f)
on a maintenance normocaloric diet but evident under an HFD. Nuclear CHOP immunos-
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taining was absent in WT mice on an HFD plus melatonin (Supplementary Figure S2c) but
persisted in HET mice on an HFD plus melatonin (Supplementary Figure S2f).

2.4. Ultrastructural Analysis of Heart Mitochondria

To better assess oxidative damage induced by a fatty diet, we performed an ultrastruc-
tural analysis of inter-myofibrillary mitochondria (IFM) in the ventricular cardiomyocytes
of each experimental group. This is because IFM are mainly detected in metabolic remodel-
ing and damaged in heart failure [58]. In WT mice on an STD, round mitochondria were
regularly juxtaposed with sarcomeres (Figure 4a). They were enlarged and lost cristae in
WT mice on an HFD (Figure 4b) and recovered in WT mice on an HFD drinking melatonin
(Figure 4c). In HET mice on an STD, IFM presented a regular distribution and dense inner
matrix, and large perinuclear lipofuscin deposits were evident (Figure 4d). In HET mice on
an HFD, IFM became heterogeneous, showing poor cristae (Figure 4e). Finally, in HET mice
on an HFD plus melatonin, abnormal mitochondria with a pale inner matrix and devoid of
cristae or with very altered cristae were evident (Figure 4f). In HET mice fed a lard diet
with or without melatonin, abundant perinuclear lipofuscins were still observed.
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Figure 4. Ultrastructural analysis of heart mitochondria. Representative transmission electron
microscopy heart photomicrographs of (a) WT mice on standard diet, (b) WT mice on HFD, (c) WT
mice on HFD plus melatonin, (d) HET mice on standard diet, (e) HET mice on HFD, (f) HET mice
on HFD plus melatonin. Note the differences in size, density and cristae composition of inter-
myofibrillary mitochondria (m) under different dietary regimens. Blue arrows indicate lipofuscins.
Bars = 1 µm.

To best corroborate the response of IFM to different diets in WT vs. HET mice, we
performed a morphometric analysis of mitochondrion size using transmission electron
microscopy, as indicated in Figure 5.

The mean mitochondrion Feret’s diameter was plotted, according to classes rang-
ing from 0.5 microns to 1.2 microns in WT mice and from 0.5 microns to 1.5 microns in
HET mice on an STD. Under the lard hypercaloric regimen, the mean mitochondrion
diameter exceeded 1 micron (25% frequency) in WT mice, indicating the presence of “mega-
mitochondria”. Conversely, in HET mice on an HFD, the mitochondrion diameter was
shorter, about 0.8 microns (about 30% frequency). After melatonin intake in WT mice on an
HFD, most diameters decreased to 0.7–0.8 microns (60% frequency). In HET mice on an
HFD, mitochondrion diameter was maintained at 0.6–0.8 microns (55% frequency), with or
without melatonin supplementation.
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To further confirm the presence of abnormally enlarged mitochondria in WT mice on an
HFD compared with other experimental groups, we evaluated mitofusin2 (Mfn2), a marker
of elongated mitochondria. Mfn2 immunostaining was strong in the cardiomyocytes of
WT mice on a standard diet (Supplementary Figure S3a), was reduced in WT mice on a
lard diet (Supplementary Figure S3b), and was restored after melatonin supplementation
(Supplementary Figure S3c). All these findings suggest an adaptation of mitochondrion size
only in WT mice triggered by different energetic surpluses, and the inability of mitochondria
to change size in HET mice.
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Figure 5. Morphometry of heart inter-myofibrillar mitochondria. Morphometric analysis of mean
inter-myofibrillary mitochondrion diameter using transmission electron microscopy. Yellow arrow-
heads indicate enlarged mitochondria in WT mice; blue arrowheads indicate the most frequent
small-sized mitochondria in HET mice. HET: SIRT1+/−; HFD: high-fat diet (TD 03584-lard 35%); STD:
standard maintenance diet.

2.5. Heart Heat Shock Protein60 Expression

Abnormal oxygen consumption, ATP, and reactive oxygen species production in heart
mitochondria are sensed by the mitochondrial chaperone HSP60 [59]. Indeed, HSP60 is
present in the mitochondrial matrix, and it is greatly involved in adaptive remodeling in
response to energetic challenges in cardiomyocytes [21].

In the present study, we assessed the presence of HSP60 as a cardioprotective marker in
different experimental groups (Figure 6). In WT mice (Figure 6a) and HET mice (Figure 6d)
on a standard diet, the HSP60 signal was faint in cardiomyocytes. Remarkably, in WT
mice on an HFD, HSP60 brown immunostaining was strong and granular in the cytoplasm
(Figure 6b) but decreased after melatonin supplementation (Figure 6c). In HET mice on
an HFD (Figure 6e), HSP60 staining was scattered and moderate and did not change after
melatonin intake (Figure 6f). The quantitation of HSP60 is reported in Figure 6g. These
data confirmed the inability of cardiac IFM in HET mice on an HFD to adapt to greater
energy consumption and the hypercaloric intake provided by the lard-based diet.
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Figure 6. Heart heat shock protein60 expression. Representative photomicrographs of brown HSP60
immunostaining in (a) WT mice on standard diet, (b) WT mice on HFD, (c) WT mice on HFD plus
melatonin, (d) HET mice on standard diet, (e) HET mice on HFD, (f) HET mice on HFD plus melatonin.
Original magnification: 1000×, bars = 10 µm. (g) Quantitative analysis of HSP60 immunopositivity.
* p < 0.05 vs. WT mice on STD; # p < 0.05 vs. HET mice on STD; + p < 0.05 vs. WT mice on HFD;
§ p < 0.05 vs. HET mice on HFD; ** p < 0.05 vs. WT mice on HFD plus melatonin. AU: arbitrary
units; HET: SIRT1+/−; HFD: high-fat diet (TD 03584-lard 35%); MEL: melatonin; STD: standard
maintenance diet; WT: wild type.

2.6. Epididymal Adipose Tissue and Brown Adipose Tissue Evaluation

Given the close relationship between anatomic localization of AT depots, inflammation,
and cardiovascular metabolism in obesity, we analyzed eWAT and iBAT in response to
different diets in WT and HET mice.

Considering the anatomic variability of three different eWAT zones, to better assess
the extent of inflammation, we performed hematoxylin–eosin staining in rostral eWAT
according to Altintas et al. [60].

Firstly, in eWAT, we quantified crown-like structures (CLSs), composed of the strict
association between macrophages/mastocytes and adipocytes. WT mice on an STD did
not present any CLSs (Figure 7a), whereas few CLSs were found in WT mice on an HFD
(Figure 7b), and the number of CLSs was reduced in WT mice on an HFD plus melatonin
(Figure 7c). In HET mice on an HFD, CLS density increased to more than 10-fold versus HET
mice on an STD and persisted, even at a lower number, after melatonin intake (Figure 7d–f).
The quantification of CLSs in eWAT is plotted in Figure 7g.

To further confirm the extent of inflammation in eWAT, we detected the presence
of the cytokine tumor necrosis factor alpha (TNFα) using immunohistochemistry. TNFα
immunostaining was barely detectable in WT mice on an STD (Figure 8a) and HET mice on
an STD (Figure 8d), faint in WT mice on an HFD (Figure 8b), and undetectable in WT mice
on an HFD plus melatonin (Figure 8c). In contrast, a strong brown TNFα immunostaining
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was associated with CLSs in HET mice on an HFD (Figure 8e) and was still evident in HET
mice on an HFD plus melatonin (Figure 8f).

iBAT histology was multilocular in WT mice with any dietary treatment, while on the
contrary, iBAT histology was predominantly unilocular, a sign of “whitening”, in HET mice
on an HFD and after melatonin intake. Indeed, in these two last experimental groups, the
adipocytes were full of large lipid droplets which gave them a unilocular appearance. This
finding was corroborated by the estimation of nuclear density per area of adipocytes. In
HET mice on an HFD, the number of nuclei was reduced by 70% compared to HET mice on
an STD and by 45% compared to HET mice on an HFD plus melatonin, corresponding to 8
and 12 nuclei per field compared to 20 nuclei per field in mice on an STD (Supplementary
Figure S4).
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Figure 7. Epididymal adipose tissue crown-like structure analysis. Representative hematoxylin–
eosin-stained eWAT photomicrographs: (a) WT mice on standard diet, (b) WT mice on HFD, (c) WT
mice on HFD plus melatonin, (d) HET mice on standard diet, (e) HET mice on HFD, and (f) HET mice
on HFD plus melatonin. The black arrows indicate the crown-like structures. Original magnification:
400×, bars = 20 µm. (g) Quantitative analysis of crown-like structures in epididymal adipose tissue.
* p < 0.05 vs. WT mice on STD; # p < 0.05 vs. HET mice on STD; + p < 0.05 vs. WT mice on HFD;
§ p < 0.05 vs. HET mice on HFD; ** p < 0.05 vs. WT mice on HFD plus melatonin.
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Figure 8. Epididymal adipose tissue tumor necrosis factor α analysis. Representative photomi-
crographs of TNFα immunostaining: (a) WT mice on STD, (b) WT mice on HFD, (c) WT mice on
HFD plus melatonin, (d) HET mice on STD, (e) HET mice on HFD, and (f) HET mice on HFD plus
melatonin. Original magnification: 400×, bars = 20 µm.

3. Discussion

Heart failure is a complex multifactorial adverse event that occurs because of hyper-
tension, reduced cardiorespiratory fitness, chronic inflammation, and energetic dysfunc-
tions [61]. The maintenance of a regular body weight starting from childhood is highly
recommended to limit the risk of the onset of cardiac damage in adulthood and senes-
cence [62]. Despite recent advances in novel gene therapy, pharmacological treatments of
heart failure are not resolutive, and dietary supplementation with nutraceutical compounds
is strongly recommended [22].

Melatonin, a pineal indoleamine, has been successfully added to diets in animal
models of obesity to limit overweight, alleviating metabolic damage and UPR response in
a dose-dependent manner [63]. Moreover, low plasma melatonin levels were detected in
patients with hypertension and dilated cardiomyopathy [64,65].

A Western diet, rich in sugar and fat, affects cardiac metabolism in rodents depending
on species, duration of treatments, and dietary formulation [66], and adverse effects are
aggravated in SIRT1-insufficient mice [67].

Our group previously reported that HET mice on a lard-based diet with or without
melatonin for 16 weeks presented inflammation, steatosis, and mitochondrial changes at
the liver level [54].

In this study focused on the heart and different adipose depots, melatonin could not
alleviate cardiac fibrosis, mitochondrial damage, and pro-inflammatory status in HET
mice on a similar hypercaloric diet for 16 weeks. Similar adverse cardiac changes and
inflammation were reported in HET mice placed on a corn-oil-based high-fat diet for a
shorter time, only 5 weeks [68]. However, the proportion of saturated vs. unsaturated
fatty acids in the diet variably impacts mitochondrial membrane lipids, blocking SIRT1
activity in cardiomyocytes [69]. Furthermore, full SIRT1 deficiency in the heart aggravates
mitochondrial oxidative ability and induces fibrosis in mice under pressure overload [70].

Perivascular cardiac fibrosis and mitochondrial abnormalities, both in size and cristae,
in HET mice decreased only partially after melatonin supplementation. In contrast, fibrosis
was undetectable in WT mice on a lard-based diet for 16 weeks. This finding is because
more prolonged dietary treatment, for almost 30 weeks, is necessary to obtain overt cardiac
remodeling in obese mice [71,72]. However, a prolonged lard diet for over six months did
not induce a different respiratory ratio in isolated mitochondria in the heart of C57BL6
mice [73].
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Conversely, HET mice on an HFD with or without melatonin for 16 weeks presented
exacerbated lipid peroxidation, mitochondrial oxidative damage, and ER stress indicated
by 4HNE, GRP78, and CHOP immunostainings. The persistence of oxidative lipid peroxi-
dation products, like 4HNE, and the activation of mitochondrial/ER chaperones are early
factors of cardiomyopathy and ischemic damage, preceding overt heart failure [8,74]. In
contrast, the same markers deeply decreased in the heart of WT mice placed on an HFD
plus melatonin.

In addition, the HSP60 chaperone detected in ventricular cardiomyocytes, in WT mice
on an HFD, might represent an adaptive reaction to counteract mitochondrial proteins
misfolding, which is then recovered due to melatonin consumption [75]. On the contrary,
a faint HSP60 signal in HET mice on an HFD with or without melatonin suggested a
mitochondrial inability to adapt to the energetic surplus provided by lard.

Similarly, proapoptotic CHOP was detected in the cardiomyocyte nuclei of HET mice
on an HFD with or without melatonin intake [76]. This last finding well correlates with the
role of SIRT1 in directly deacetylating eIF2a/PERK, one of the three branches of ER stress,
thus limiting CHOP-induced apoptosis [41]. Recently, in lipopolysaccharide-stimulated
chondrocytes, ER-stress-mediated apoptosis via CHOP was antagonized by melatonin
via SIRT1 expression [27]. A similar trend was reported by Yang et al. [77] in H9C2
cardiomyocytes treated with palmitic acid, which negatively impacts SIRT1 activity. Both
full expression and activity of SIRT1 greatly affect the mitochondrial role, ER stress, and
cell death in different cellular types and may be regulated by melatonin.

An interesting morphologic finding reported in this study is the perinuclear deposition
of lipofuscins in the heart of adult HET mice, independently of the diet, suggesting the
inability to dismantle aberrant proteins and lipids [78]. Indeed, lipofuscins, a well-known
hallmark of senescence, are composed of oxidized proteins, lipids, and metals [79]. Even
if we did not analyze autophagy in the heart here, in the liver of HET mice, we docu-
mented inconsistent autophagy already in basal conditions [54]. Furthermore, accelerated
senescence has been reported in cardiac hypertrophy in mice defective in mitochondrial
shaping proteins [80], and lipofuscins correlate with mitochondria swelling in HET mice,
as indicated by Alam et al. [26].

Another peculiar result reported here is the prevalence of small, round mitochondria in
HET mice regardless of the diet, in line with low Mfn2 expression. Notably, Mfn2, a marker
of fused and elongated mitochondria, was moderate in WT mice on an STD, decreased in
WT mice on an HFD, and restored in WT mice on an HFD plus melatonin. These findings
might be the consequence of full SIRT1 expression in WT mice, and its ability to deacetylate
Mfn2, contributing to proper mitochondrial adaptation and dynamism [80].

Regarding eWAT analysis, a noteworthy finding addressed here is the inflammatory
reaction in HET mice on a lard diet with or without melatonin. Conversely, in WT mice
on an HFD mice plus melatonin, no local inflammation was detectable. The inflammatory
response in rostral eWAT was linked to high CLS density and well correlated with SIRT1
heterozygosity and insulin resistance reported in HET mice [81]. Intriguingly, eWAT was
the unique site of synthesis of plasmatic SIRT1, necessary for lipolysis and regulation of glu-
cose [82]. SIRT1 haploinsufficiency probably affected adipocyte metabolism in mice placed
on an obesogenic diet. Our group previously reported that melatonin supplementation for
8 weeks, at a higher dose (100 mg/kg/day), reduced inflammation and hypertrophy in
abdominal visceral AT in leptin-deficient genetically obese mice [83]. Furthermore, iBAT
“whitening”, morphologically characterized by the presence of large unilocular adipocytes
and reduced nuclear density, was evident in HET mice on a lard diet and maintained in
mice drinking melatonin, housed at 22 ◦C, below thermoneutrality. This last finding agrees
with reduced energy expenditure registered in HET mice and with mitochondrial degener-
ation reported in iBAT by Xu et al. [55]. In conclusion, adult HET mice on a hypercaloric
lard-based diet displayed morphologic and metabolic changes in the heart and AT depots,
as presented in Figure 9. The data reported in the present study support the fundamental
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interdependence between full SIRT1 expression and melatonin allowing the latter to exert
its antioxidant and anti-inflammatory role in obesity.

However, some limitations occurred in this study. Firstly, this was intentionally a
morphological study, considering the large body of evidence in the literature on molecular
characterization of SIRT1-deficient mice (KO or heterozygous) with dietary-induced obesity
and in vitro cardiomyocytes. Second, different sirtuin isoforms, mainly SIRT3 and SIRT6,
might be considered as mitochondrial markers of heart failure and require future dedicated
studies. Third, we focused here on male adult mice, but sex differences associated with
obesity, estrogen levels, insulin resistance, and cardiovascular damage should be eval-
uated in females. The gender-dependent point might be addressed because the spatial
organization of mitochondrial subpopulations is different in male vs. female hearts [84].
Finally, considering the different light/day biorhythms in mice vs. humans, more clinical
studies are mandatory to highlight the strong interconnection between melatonin and SIRT1
expression in cardiac obesity in male and female patients at different lifespan periods.
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Figure 9. HET heart and adipose tissue alterations. Schematic representation of heart and adi-
pose tissue depot alterations observed in HET mice on a hypercaloric lard-based diet. 4HNE:
4-hydroxynonenal; BAT: brown adipose tissue; GRP78: glucose-regulated protein 78; CHOP:
CCAA/enhancer-binding protein homologous protein; TNFα: tumor necrosis factor alpha; WAT:
white adipose tissue.

4. Materials and Methods
4.1. Animal Model and Dietary Treatments

In this study, we adopted well-characterized SIRT1+/− heterozygous mice (HET mice)
obtained after five generations of breeding on a C57Bl/6J background at CSIC-UAM. All
treatments were carried out in compliance with the European Community Commission
directive guidelines (2020/63/UE) and approved by the local CSIC Ethical Committee
(code D.N.I. 50840973W). Male HET mice and wild-type (WT) littermates, at 12 weeks of
age, were randomly divided into the following experimental groups (6–10 mice/group):
(1) WT mice fed with a standard maintenance diet (total energy 315 kcal/100 g); (2) WT mice
fed with a standard diet and orally treated with melatonin; (3) HET mice fed a standard
diet; (4) HET mice fed a standard diet and orally treated with melatonin; (5) WT mice
fed with an HFD (total energy 540 kcal/100 g); (6) WT mice fed with an HFD and orally
treated with melatonin; (7) HET mice fed an HFD; and (8) HET mice fed an HFD and
orally treated with melatonin. According to European Regulation 86/609 EEC based on the
3Rs principle of animal welfare, the number of mice on a standard diet and on a standard
diet plus melatonin supplementation was limited (n = 6/experimental group). Melatonin
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(Melapure™ kindly provided by Flamma S.p.A., Chignolo d’Isola, Bergamo, Italy) was
dissolved in 1% ethanol and diluted in drinking water to yield a final dose of 10 mg/kg
body weight/day. The drinking bottles containing melatonin solution were wrapped with
aluminum foil to maintain dark conditions, made fresh, and replaced twice every week.
The dietary formulations adopted in this study are presented in Supplementary Table S1.
More details on the HFD formulation are reported by Mao et al. [85].

At the end of the treatment period, all experimental animals were sacrificed at 28 weeks
of age by euthanasia in the morning starting from 10:00 a.m. The heart, eWAT, and iBAT
were collected and adequately processed for morphological, immunohistochemical, and
Western blotting analyses.

All samples were fixed in 4% buffered paraformaldehyde for 24 h, paraffin-embedded,
and then sectioned using a microtome (5 µm thick). A small part of the ventricular heart
sample of each experimental animal was adequately proceeded for transmission electron
microscopy evaluation or for SIRT1 Western blotting evaluation, as further described
in detail.

4.2. Morphological and Morphometrical Analysis

AT paraffin alternate sections were deparaffinized, rehydrated, and stained with
hematoxylin–eosin. Nuclear density in iBAT was estimated in hematoxylin–eosin-stained
sections digitally imaged and calculated as the total number referring to each digital frame
corresponding to 0.04 mm2 (light microscope magnification of 400×) [86]. Fifteen fields
were randomly analyzed for each experimental animal. The CLSs in eWAT were counted
on ten randomly selected fields (light microscope final magnification of 200×) for five
non-consecutive hematoxylin–eosin-stained sections per experimental animal using an
image analysis program (Image Pro Premier 9.1, Media Cybernetics, Rockville, MD, USA).

To assess fibrosis, heart paraffin sections were stained with Masson Trichrome and
Sirius Red stainings, following standard protocols. The percentage of fibrosis from both
Masson Trichrome- and Sirius Red-stained sections (observed in blue and red color, respec-
tively) was evaluated using the same image analysis program and expressed in arbitrary
units (AU).

All the morphometrical evaluations were performed by two observers blinded to the
experimental groups, and it was assumed that the morphological evaluations were correct
if there were no statistically different values between the investigators.

4.3. Immunohistochemical Analysis

Alternate heart and eWAT paraffin sections were deparaffinized, rehydrated, and
then incubated with 3% hydrogen peroxide for 30 min to block endogenous peroxidase
activity. The sections were then incubated with specific normal serum for 60 min at room
temperature, and then, heart sections with the primary antibodies polyclonal anti-rabbit
4HNE (diluted 1:400; Abcam, Cambridge, UK), polyclonal anti-rabbit GRP78 (diluted
1:250; Abcam, Cambridge, UK), monoclonal anti-mouse HSP60 (diluted 1:200; StressGen,
Enzo Life Science, Lausen, Switzerland), polyclonal anti-goat CHOP (diluted 1:50; Santa
Cruz Biotechnology Inc., Dallas, TX, USA), and polyclonal anti-rabbit mitofusin2 antibody
(1:500; Abcam; Cambridge, UK) and AT sections were incubated with monoclonal anti-
mouse TNFα (diluted 1:200; Santa Cruz Biotechnology Inc., Dallas, TX, USA) for 1 h at room
temperature and overnight at +4 ◦C. Both heart and AT sections were sequentially incubated
with specific biotinylated immunoglobulins, avidin–biotin–peroxidase complex (Vector
Labs, Burlingame, CA, USA), and 0.05% 3-3-diaminobenzidine tetrahydrochloride (DAB;
Sigma Aldrich, St. Louis, MO, USA) and finally counterstained with hematoxylin [87]. A
negative control for each immunohistochemical staining was produced by omitting the
primary antibody in the presence of isotype-matched IgG.

The sections were then observed with an optical microscope (Olympus, Hamburg,
Germany) by two observers blinded to the treatments. Ten randomly selected fields
for five non-consecutive sections for each experimental animal were analyzed, and the
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immunopositivity for each primary antibody was evaluated using an image analysis
program (Image Pro Premier 9.1, Media Cybernetics, Rockville, MD, USA) and expressed
in arbitrary units (AU). We assumed that the evaluations were correct if there were no
statistically different values between the two investigators.

4.4. Transmission Electron Microscopy

A small part of the heart of each experimental animal was fragmented in small pieces,
fixed in 2.5% glutaraldehyde and cacodylate buffer 0.1 M for 3 h, and then post-fixed in 2%
osmium tetroxide in the same buffer for 1 h at +4 ◦C. Then the samples were dehydrated
in progressive ethanol concentrations and propylene oxide and embedded in an Epon
812 mixture, as previously described [49]. Thin sections (80 nm) were collected on copper
grids, double stained in uranyl acetate and lead citrate, and observed under a transmission
electron microscope (Philips CM12, FEI Company, Eindhoven, The Netherlands) set at
80 kV.

Feret’s diameter, i.e., the longest distance between any two points within a given
mitochondrion, was analyzed in the IFM population. Mean values were obtained using
Image Processing and Analyses in JAVA, NIH, Bethesda, MD, USA and different classes of
mitochondria were plotted by diameter. Two hundred IFM were randomly estimated in
four mice/group at a final magnification of 13,000×.

4.5. Western Blotting

A part of each heart (including atria and ventricles) was removed and immediately
frozen in liquid nitrogen and stored at −80◦ C until the Western blotting assay was performed.

According to the manufacturer’s instructions (Nuclear and Cytoplasmic Extraction kit,
Thermo Scientific, Rockford, IL, USA), nuclear and cytoplasmatic extraction was performed.
The protein concentration of the nuclear extract was determined using a Pierce BCA assay
kit (Thermofisher, Rockford, IL, USA). Equal amounts of proteins (40µg) were loaded into
10% SDS polyacrylamide gels and subjected to electrophoresis. The separated proteins
were transferred to nitrocellulose membranes, and then the membranes were blocked
with 1% bovine serum albumin solution for 1 h, followed by overnight incubation at 4 ◦C
with the following primary antibodies: mouse monoclonal SIRT1 (diluted 1:1000; Abcam,
Cambridge, United Kingdom) and mouse monoclonal β-actin antibody (diluted 1:5000;
Sigma-Aldrich, St. Louis, MO, USA). After washing with tris-buffered saline w/tween-
20, the blots were incubated with biotinylated specific immunoglobulins (Vector Labs.,
Burlingame, CA, USA) for 1 h at room temperature. Subsequently, the membranes were
incubated in avidin–biotin–peroxidase complex (Vector Labs., Burlingame, CA, USA). The
reaction products were visualized using 0.05% diaminobenzidine plus 0.03% hydrogen
peroxide (Sigma, St. Louis, MO, USA) as chromogen [88].

4.6. Statistical Analysis

All results are indicated as mean ± standard deviation (SD). Analysis of statistical
significance was performed using one-way or two-way analysis of variance (ANOVA)
corrected using the Bonferroni test to determine differences between single treatment
groups. p < 0.05 was set as a significant value.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25020860/s1.
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