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Abstract. The article is concerned with the existence of positive solutions
of a semi-linear elliptic system defined in a cylinder Ω = Ω′ × (0, a) ⊂ R

n,
where Ω′ ⊂ R

n−1 is a bounded and smooth domain. The system couples a
superlinear equation defined in the whole cylinder Ω with another super-
linear (or linear) equation defined at the bottom of the cylinder Ω′ ×{0}.
Possible applications for such systems are interacting substances (gas in
the cylinder and fluid at the bottom) or competing species in a cylindrical
habitat (insects in the air and plants on the ground). We provide a priori
L∞ bounds for all positive solutions of the system when the nonlinear
terms satisfy certain growth conditions. It is interesting that due to the
structure of the system our growth restrictions are weaker than those
of the pioneering result by Brezis–Turner for a single equation. Using
the a priori bounds and topological arguments, we prove the existence of
positive solutions for these particular semi-linear elliptic systems.
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1. Introduction

For scalar equations of the form{−Δu = f(x, u) in Ω ⊂ R
n

u = 0 on Ω (1.1)

where Ω is a smooth bounded domain of Rn and f(x, u) behaves like up for u
large, the question of the existence of positive solutions has been intensively
studied [2,3,11,17,20,23]. One way to obtain existence results for (1.1) is using
topological arguments especially when the equation has no variational struc-
ture. The main difficulty when using a topological approach lies in the need of
obtaining a priori bounds. In recent years, several approaches have been devel-
oped to deal with this problem [3,11,17]. Subsequently, many existence results
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proved by a priori estimates for the scalar Eq. (1.1) have been extended to
corresponding elliptic nonlinear coupled systems [4,5,12,13,15]. For instance,
the following superlinear system{−Δu = vp in Ω, u = 0 on ∂Ω

−Δv = uq in Ω, v = 0 on ∂Ω
(1.2)

where Ω ⊂ R
n is a bounded domain and p, q > 1, is usually referred to as the

coupled Lane-Emden system and has been widely investigated in the last few
years (see [10,16,24] and the references therein). Such problems arise in the
study of multicomponent reaction diffusion processes and in the modeling of
several physical phenomena such as pattern formation and population evolu-
tion (see [25] and the references therein). The solutions in most of the cases
represent densities and thus positive solutions of the systems are of particu-
lar interest. The exponents (p, q) in system (1.2) interplay, compensating each
other, which play a crucial role in the questions of existence and nonexistence
of positive solutions.

In [4], Clément, de Figueiredo and Mitidieri used a method which was
developed in [11] for the case of one equation to obtain L∞ a priori bounds.
For another coupled system studied by de Figueiredo and Yang [15], the dif-
ficulties of obtaining a priori bounds were due to the presence of gradients in
the nonlinear terms. The authors had to use some norm with weights depend-
ing on the distance to the boundary of the domain. They obtained a priori
bounds via the so called blow-up method which was introduced by Gidas–
Spruck [17] for the scalar case. In [5], the authors found L∞ a priori bounds
with different exponent assumptions imposed on the nonlinear terms; the tech-
nique used in their work is based on the work of Brezis and Turner [3] for one
equation, in which they combined the Hardy–Sobolev inequality with interpo-
lation techniques. In [5] the Brezis–Turner exponent assumption was replaced
by conditions that involve two curves in the (p, q) plane. We remark that the
method introduced by Brezie-Turner was the first general way to obtain uni-
form bounds of positive solutions and has become a classical way. Many other
problems like reaction-diffusion systems and Ambrosetti-Prodi type problems
have been solved by this method (see [14,21]).

The objective of this paper is to study the existence of positive solutions
of a particular semi-linear elliptic system defined in a cylinder Ω = Ω′×(0, a) ⊂
R

n, where Ω′ ⊂ R
n−1 is a bounded and smooth domain. The system couples a

superlinear equation defined in the whole cylinder Ω with another superlinear
(or linear) equation defined at the bottom Ω′×{0} of the cylinder. Possible ap-
plications for such systems are interacting substances (gas in the cylinder and
fluid at the bottom) or competing species in a cylindrical habitat (insects in
the air and plants on the ground). Extending the method of Brezis–Turner [3]
to this kind of system, we provide a priori L∞ bounds for all positive solutions
when the nonlinear terms satisfy certain growth conditions. The approach we
use consists of using the Hardy–Sobolev inequality and a suitable fixed point
theorem. Unlike the setting in [3] where the nonlinear term f(x, u) is defined
on Ω×R, in our framework f is non-local and we have to distinguish two cases,
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depending on the space dimension. It is interesting that due to the structure
of the system our growth restrictions are weaker than those of the pioneering
result by Brezis–Turner for a single equation. Using the a priori bounds and
topological arguments, we prove the existence of positive solutions for these
particular semi-linear elliptic systems.

2. The Main Result

In this paper we consider a system of equations on a cylindrical domain Ω =
Ω′ × (0, a) ⊂ R

n(n ≥ 3), with x = (x′, xn) ∈ Ω and Ω′ ⊂ R
n−1 is smooth.

The particularity of this system is that it couples two unknowns u(x) and
v(x′) which are defined on different domains. We can think of Ω as a jar
or a cylindrical habitat containing two interacting substances or species: the
substance u(x) (say a gas, insects, birds...) is distributed in the interior of the
jar or habitat Ω, while the substance v(x′) (say a fluid, plants, worms...) is
located at the bottom Ω′ × {0} of the jar or on the ground of the habitat. A
simple model of such a time independent interacting system is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Δ(n)u(x) = h(x)v(x′)γ x ∈ Ω

−Δ(n−1)v(x′) =
∫ a

0
uη(x′, xn) dxn x′ ∈ Ω′

u(x) = 0 x ∈ ∂Ω′ × [0, a]; ∂νu(x) = 0, x ∈ Ω′ × {0, a}
v(x′) = 0 x′ ∈ ∂Ω′

(2.1)

where Δ(n) =
∑n

i=1
∂2

∂x2
i
, x′ = (x1, . . . , xn−1), ν denotes the exterior normal to

the boundary ∂Ω, and γ, η are exponents with γ > 1 and η ≥ 1.
Here, we assume that the vertically cumulated effect of the substance

u(x), x ∈ Ω, interacts with the substance v(x′) at the bottom Ω′, hence the
term

∫ a

0
uη(x′, xn) dxn in the second equation; on the other hand, the substance

v(x′) at the bottom Ω′ interacts with the substance u(x) via a continuous
coefficient function h : Ω → R

+, which we may consider decreasing with
increasing height xn.

The operator Δ(n−1) with Dirichlet boundary condition in the second
equation is invertible, and we can insert the expression

v(x′) = (−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)

into the first equation of the system, to obtain the non-local equation{−Δ(n)u(x) = h(x)
[
(−Δ(n−1))−1(

∫ a

0
uη(x′, xn) dxn)

]γ
x ∈ Ω

u(x) = 0 for x ∈ ∂Ω′ × [0, a] ∂νu(x) = 0 for x ∈ Ω′ × {0, a}.
(2.2)

Our aim is to prove the following result:

Theorem 2.1. Suppose that Ω := Ω′ × (0, a) ⊂ R
n is a bounded open domain.

Furthermore,
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1) if 1 ≤ η < 4n
(n−1)(n−2) , then assume that 1 < γη ≤ 2n+2

n ;

if η ≥ 4n
(n−1)(n−2) , then assume that 1 < γη ≤ n+1

n−1 + 2nγ
(n−1)2 .

2) h ∈ C(Ω,R+), with hm := min{h(x), x ∈ Ω} > 0.
Then Eq. (2.2), and hence system (2.1), has a positive solution u ∈ W 2,q(Ω), 1 ≤
q < ∞.

Remark 2.1. Notice that for n = 3, 4, we are always in case 1), since then

2n + 2
n

<
4n

(n − 1)(n − 2)
.

The proof follows the ideas of the influential paper by Brezis–Turner [3],
in which a single equation with a super-linear non-linearity was considered. It
is interesting to note that the maximal exponent in the article of Brezis–Turner
was n+1

n−1 . For η = 1, the maximal exponent for γ is
{ 2n+2

n , 3 ≤ n ≤ 6,
n2−1

n2−4n+1 , n ≥ 7

which is larger than n+1
n−1 , this is due to the regularizing effect of the inverted

operator (−Δ(n−1))−1.
We have not seen such type of coupled systems in the literature. Of

course, one can consider many different versions of such couplings.

3. Lp regularity on the cylinder

The proof of Theorem 2.1 depends on a priori estimates of the solutions and
a related existence theorem. The Lp theory presented here is to pave the way
to get the a priori bound. In this part we will concentrate on showing that a
weak solution of the equation⎧⎪⎪⎨

⎪⎪⎩

−Δ(n)u = f(x) x ∈ Ω

u(x′, xn) = 0, x′ ∈ ∂Ω′

∂xn
u(x′, xn) = 0 xn ∈ {0, a}.

(3.1)

with f ∈ Lp(Ω) (1 < p < ∞) will also be a strong solution which is twice
weakly differentiable. The proof of the regularity is based on the a priori esti-
mates below. In view of the mixed boundary conditions and the special shape
of the domain, we will do an even reflection on the bottom of the cylinder
to reduce the problem to a familiar case for which we can refer to the ninth
chapter in [18].

3.1. Lp a priori estimate

We define the space H1
cyl(Ω) as the closure in H1(Ω) of the set C1

cyl(Ω) =
{
u ∈

C1(Ω) | u(x) = 0, x ∈ ∂Ω′ × [0, a]
}
. Correspondingly, W 1,p

cyl = {u ∈ W 1,p(Ω) |
u(x) = 0, x ∈ ∂Ω′ × [0, a] }.
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Interior estimate:

Lemma 3.1.1. Assume that u ∈ W 2,p
loc (Ω) ∩ Lp(Ω), 1 < p < ∞, is a strong

solution of the Eq. (3.1), then for f ∈ Lp(Ω) and for any open domain Ωi ⊂⊂
Ω,

‖u‖W 2,p(Ωi) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)), (3.2)

where C = C(n, p,Ωi,Ω).

Since the interior estimate does not require the boundary condition, the proof
of this lemma follows from the same proof of Theorem 9.11 [18].

Estimate on the bottom and the top:

Lemma 3.1.2. Assume that u ∈ W 2,p(Ω), Ω = Ω′ × (0, a) ⊂ R
n, where Ω′ ⊂

R
n−1 is a bounded and smooth domain. 1 < p < ∞ is a strong solution of

(3.1), then for f ∈ Lp(Ω) and for any open domain Ωb ⊂⊂ Ω ∪
{

Ω′ × {0}
}

or

Ωt ⊂⊂ Ω ∪
{

Ω′ × {a}
}

‖u‖W 2,p(Ωb) ≤ Cb(‖u‖Lp(Ω) + ‖f‖Lp(Ω))

or

‖u‖W 2,p(Ωt) ≤ Ct(‖u‖Lp(Ω) + ‖f‖Lp(Ω))

where Cb = C(n, p,Ωb,Ω), Ct = C(n, p,Ωt,Ω).

Proof. We extend u and f to Ω′×(−a, a) by even reflection, that is, by setting

u(x′, xn) = u(x′,−xn), f(x′, xn) = f(x′,−xn)

for xn < 0. It follows that the extended functions, say ũ and f̃ , satisfy the same
equation of (3.1) weakly in Ω′ × (−a, a). To prove this we take an arbitrary
test function ϕ ∈ C1

cyl(Ω
′ × (−a, a)), then since u is a weak solution of (3.1)

on Ω, we have∫
Ω′×(0,a)

∇u∇φ dx =
∫

Ω′×(0,a)

fφ dx, ∀ φ ∈ C1
cyl(Ω

′ × (0, a)). (3.3)

As ϕ ∈ C1 in Ω′ × (0, a) and ϕ = 0 on ∂Ω′, we can take φ = ϕ in Ω′ × (0, a),
then ∫

Ω′×(0,a)

∇u∇ϕ dx =
∫

Ω′×(0,a)

fϕ dx. (3.4)

On the other hand, due to the even reflection, from (3.3), we get∫
Ω′×(−a,0)

∇u∇φ′ dx =
∫

Ω′×(−a,0)

fφ′ dx, ∀ φ′ ∈ C1
cyl(Ω

′ × (−a, 0)),

then taking φ′ = ϕ in Ω′ × (−a, 0), so∫
Ω′×(−a,0)

∇u∇ϕ dx =
∫

Ω′×(−a,0)

fϕ dx. (3.5)

(3.4)+(3.5), we obtain
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∫
Ω′×(0,a)

∇u∇ϕ dx +
∫

Ω′×(−a,0)

∇u∇ϕ dx =
∫

Ω′×(−a,a)

∇ũ∇ϕ dx

=
∫

Ω′×(0,a)

fϕ dx +
∫

Ω′×(−a,0)

fϕ dx

=
∫

Ω′×(−a,a)

f̃ϕ dx.

Consequently, we have∫
Ω′×(−a,a)

∇ũ∇ϕ dx =
∫

Ω′×(−a,a)

f̃ϕ dx ∀ϕ ∈ C1
cyl(Ω

′ × (−a, a)).

Besides, ũ = 0, x ∈ ∂Ω′×[−a, a] and ∂ũ
∂xn

∣∣
xn=−a

= − ∂ũ
∂xn

∣∣
xn=a

= − ∂u
∂xn

∣∣
xn=a

=
0, so that ũ is a weak solution of (3.1) in Ω′ × (−a, a). By the evenness of ũ,
we also have ∂ũ

∂xn

∣∣
xn=0

= 0. Then, for any open subset Ω̃b ⊂⊂ Ω′ × (−a, a) we
are able to apply the interior estimate and thus get the desired estimate for
Ω̃b and hence also for Ωb := Ω̃b ∩ Ω. �

Estimate on the side:

Lemma 3.1.3. Assume that u ∈ W 2,p(Ω), Ω = Ω′ × (0, a) ⊂ R
n, where Ω′ ⊂

R
n−1 is a bounded and smooth domain. 1 < p < ∞ is a strong solution of

(3.1) with u = 0 on ∂Ω′ × [0, a], then for f ∈ Lp(Ω) and for any open domain
Ωs ⊂⊂ {Ω′ × (0, a)},

‖u‖W 2,p(Ωs) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)),

where C = C(n, p,Ωs,Ω).

Proof. Since u(x) = 0, x′ ∈ ∂Ω′, the proof follows from the boundary Lp

estimate of Theorem 9.13 [18]. �

Estimate on the edge (∂Ω′ × {0, a}):

Lemma 3.1.4. Assume u ∈ W 2,p(Ω), Ω = Ω′ × (0, a) ⊂ R
n, where Ω′ ⊂ R

n−1

is a bounded and smooth domain. 1 < p < ∞, a strong solution of (3.1)
with u = 0 on ∂Ω′ × [0, a], then for f ∈ Lp(Ω) and for any open domain
Ωe ⊂⊂ Ω ∪ {Ω′ × {0}},

‖u‖W 2,p(Ωe) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)), (3.6)

where C = C(n, p,Ωe,Ω).

Proof. In the proof of Lemma 3.1.2, we extended u and f to Ω′×(−a, a) by even
reflection, and we proved that the extended function ũ is a weak solution of
(3.1) in Ω′×(−a, a) with f replaced by f̃ . In this case, each point x0 ∈ ∂Ω′×{0}
is a boundary point of Ω′ × (−a, a) on the side, we then can proceed as in
the proof of Lemma 3.1.3 with Ωs replaced by ΩS ⊂⊂ {Ω′ × (−a, a)}, since
Ωe ⊂ ΩS , we have

‖u‖W 2,p(Ωe) ≤ ‖ũ‖W 2,p(ΩS) ≤ C
(
‖ũ‖Lp(Ω′×(−a,a)) + ‖f̃‖Lp(Ω′×(−a,a))

)

≤ C
(
2‖u‖Lp(Ω′×(0,a)) + 2‖f‖Lp(Ω′×(0,a))

)
.
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We therefore derive

‖u‖W 2,p(Ωe) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)).

�

Combining all the estimates above, we get the following result.

Global Lp estimate and regularity:

Lemma 3.1.5. Assume that u ∈ W 2,p(Ω)∩W 1,p
cyl (Ω), 1 < p < ∞, satisfies (3.1);

if f ∈ Lp(Ω), then

‖u‖W 2,p(Ω) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)),

where C = C(n, p,Ω).

Proof. (see a similar proof of Theorem 2.2.3 [26]) From the boundary estimate
we conclude that for x0 ∈ ∂Ω, there exists a neighborhood U(x0) such that

‖u‖W 2,p(U(x0)∩Ω) ≤ ‖u‖W 2,p(Ωs) + ‖u‖W 2,p(Ωb) + ‖u‖W 2,p(Ωt) + ‖u‖W 2,p(Ωe)

≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)). (3.7)

According to Heine–Borel theorem, there exists a finite open covering U1, . . . , UN

to cover ∂Ω. Denote K = Ω \ N∪
i=1

Ui, then K is a closed subset of Ω and there

exists a subdomain U0 ⊂⊂ Ω such that U0 ⊃ K. Lemma 3.1.1 shows that

‖u‖W 2,p(U0) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)). (3.8)

Using the theorem on the partition of unity, we can choose functions η0, η1, . . . , ηN

such that

0 ≤ ηi ≤ 1, ∀x ∈ Ui (i = 0, 1, . . . , N),
N∑

i=0

η(x) = 1, x ∈ Ω̄.

Thus

‖u‖W 2,p(Ω) =
∥∥ N∑

i=0

ηiu
∥∥

W 2,p(Ω)
≤

N∑
i=0

‖ηiu‖W 2,p(Ω)

≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)). (3.9)

�

In the next lemma we eliminate the dependence of u on the right.

Lemma 3.1.6. (A better a priori LP estimate, cf. [6], Lemma 3.2.1) Assume
that u ∈ W 2,p(Ω) ∩ W 1,p

cyl (Ω), 2 ≤ p < ∞, satisfies (3.1), if f ∈ Lp(Ω), then

‖u‖W 2,p(Ω) ≤ C‖f‖Lp(Ω), (3.10)

where C = C(n, p,Ω).
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Proof. We argue by contradiction. If (3.10) is not true, then ∀N , ∃uN ∈
W 2,p(Ω) ∩ W 1,p

cyl (Ω), fN ∈ Lp(Ω), such that⎧⎪⎪⎨
⎪⎪⎩

−Δ(n)uN = fN , x ∈ Ω

uN (x′, xn) = 0, x′ ∈ ∂Ω
′

∂xn
uN (x′, xn) = 0 xn ∈ {0, a}

(3.11)

but

‖uN‖W 2,p(Ω) ≥ N‖fN‖Lp(Ω).

Let

vN =
uN

‖uN‖Lp(Ω)
, gN =

fN

‖uN‖Lp(Ω)
,

then ⎧⎪⎪⎨
⎪⎪⎩

−Δ(n)vN = gN , x ∈ Ω

vN (x′, xn) = 0, x′ ∈ ∂Ω
′

∂xn
vN (x′, xn) = 0 xn ∈ {0, a}

(3.12)

and

‖vN‖Lp(Ω) = 1, ‖vN‖W 2,p(Ω) =
‖uN‖W 2,p(Ω)

‖uN‖Lp(Ω)
.

From the global estimate Lemma 3.1.5 we have

‖vN‖W 2,p(Ω) ≤ C(‖gN‖Lp(Ω) + ‖vN‖Lp(Ω))

≤ C

( ‖fN‖Lp(Ω)

‖uN‖Lp(Ω)
+ 1
)

≤ C

N

‖uN‖W 2,p(Ω)

‖uN‖Lp(Ω)
+ C

=
C

N
‖vN‖W 2,p(Ω) + C

taking N > C, then

‖vN‖W 2,p(Ω) ≤ C. (3.13)

Following from Rellich–Kondrachov theorem (cf. [1], Theorem 6.3), W 2,p(Ω) ↪→
W 1,p(Ω) compactly. That is there exists a sub-sequence such that

‖vN − v‖Lp(Ω) → 0, ‖∇vN − ∇v‖Lp(Ω) → 0. (3.14)

Since vN satisfies (3.12) weakly, then∫
Ω

∇vN∇ϕ dx =
∫

Ω

gNϕ dx, ∀ϕ ∈ C∞
cyl(Ω). (3.15)

From (3.14), we have vN ⇀ v in W 1,p
cyl (Ω), and hence∫

Ω

∇vN∇ϕ dx →
∫

Ω

∇v∇ϕ dx, N → ∞.
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On the other hand, since

‖gN‖Lp(Ω) =
‖fN‖Lp(Ω)

‖uN‖Lp(Ω)
≤ 1

N

‖uN‖W 2,p(Ω)

‖uN‖Lp(Ω)
=

1
N

‖vN‖W 2,p(Ω)

and (3.13), we see ‖gN‖Lp(Ω) → 0 as N → ∞, which implies ∀ϕ ∈ C∞
cyl(Ω)∫

Ω

gNϕ dx → 0, N → ∞.

So, ∫
Ω

∇v∇ϕ dx = 0, ∀ϕ ∈ C∞
cyl(Ω), v ∈ W 1,p

cyl (Ω).

as N → ∞ in (3.15). Hence v weakly satisfies⎧⎪⎪⎨
⎪⎪⎩

−Δ(n)v = 0, x ∈ Ω

v = 0, x′ ∈ ∂Ω
′

∂xn
v = 0 xn ∈ {0, a}

(3.16)

In the following we prove v = 0. Indeed, multiplying with v on both sides
of Eq. (3.16), we get

∫
Ω

|∇v|2 dx = 0, so ∇v = 0, combining with the boundary
condition then v = 0, which contradicts with ‖vN‖Lp(Ω) → ‖v‖Lp(Ω) = 1. �

3.2. Regularity:

With the above a priori estimate we can get the following existence result:

Lemma 3.2.1. If f ∈ Lp(Ω) with 2 ≤ p < ∞, then the problem (3.1) has a
unique strong solution u ∈ W 2,p(Ω).

Proof. The existence of the strong solution follows as in Th.9.15 [18]. Here we
present the main points of the proof. We start from the L2 regularity.

L2 interior regularity: If f ∈ L2(Ω), u ∈ H1
cyl(Ω) is a weak solution of

(3.1), then u ∈ H2
loc(Ω) ∩ W 1,p

cyl (Ω), and for each open subset V ⊂⊂ Ω we have
the estimate

‖u‖H2(V ) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)), (3.17)

the constant C depending only on V , Ω. The proof of L2 interior regularity is
the same as Theorem 1 ([8] section 6.3.1).

In order to get the boundary regularity, we extend u and f to Ω′×(−a, a)
as we did in Lemma 3.1.2. The extended function ũ and f̃ satisfy the same
equation of (2.1) weakly in Ω′ × (−a, a). Since the bottom Ω′ ×{0} is inside of
Ω′ × (−a, a) after the extension, then the proof of regularity near the bottom
Ω′ × {0} is the same as L2 interior regularity. Considering u = 0 on ∂Ω′, then
the regularity near the side of the cylinder is the same as Theorem 4 ( [8]
section 6.3.2). Thus we have:

L2 boundary regularity: If f ∈ L2(Ω), u ∈ H1
cyl(Ω) is a weak solution of

(3.1), then u ∈ H2(Ω), and we have the estimate

‖u‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)), (3.18)

the constant C depending only on Ω.
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We are now in a position to prove Lemma3.2.1 with 2 < p < ∞. In fact,
given that we have the same Lp a priori estimates as in chapter 9 [18], the
interior regularity result follows directly from Lemma 9.16 [18]. After we did
the even reflection, the case of local boundary regularity is handled similarly
as the Lemma 9.16 as well.

For the uniqueness, assume u1, u2 ∈ W 2,p(Ω) both the strong solution of
(3.1). Let u = u1 − u2, then u ∈ W 2,p(Ω) and satisfy (3.16) weakly with v
replaced by u. From Lemma 3.1.6,

‖u‖W 2,p(Ω) ≤ 0,

therefore, u = 0 a.e. in Ω, that is, u1 = u2. �

4. A Priori Bounds

In this section we will see that the growth conditions imposed on the nonlinear
terms play an important role in acquiring a priori bounds for all positive
solutions of system (2.1). These terms are embedded into different Lp spaces as
the dimension n varies. Depending on the size of η (the growth of nonlinearity
in u) we will find two different growth restrictions for γ (the growth of the
nonlinearity in v).

First, we state the following Hardy-type estimate in H1
cyl(Ω), which is the

preparatory step of the technical aspects of the proof. The constant C may
change from line to line, we will use C for a generic constant.

Lemma 4.1. There exists C > 0 such that for any u ∈ H1
cyl(Ω), we have

∫
Ω

|∇u|2 dx ≥ C

∫
Ω

∣∣∣ u

δn−1

∣∣∣2 dx

where δn−1 = δ(x′) denotes the distance of x to ∂Ω′, Ω′ ⊂ R
n−1.

Proof. Notice that
∫

Ω

u2(x)
δ2(x′)

dx =
∫ a

0

∫
Ω′

u2(x)
δ2(x′)

dx′dxn; we start the proof

from the inner integral. Consider un ∈ C∞
cyl(Ω); for fixed xn, un(x′, xn) is a

function of x′, then by Hardy’s inequality [22] we have∫
Ω′

u2
n(x′, xn)
δ2(x′)

dx′ ≤ C

∫
Ω′

∣∣∣∂un(x′, xn)
∂x′

∣∣∣2 dx′,

and then integrating along the xn direction,∫ a

0

∫
Ω′

u2
n(x)

δ2(x′)
dx′dxn

≤ C

∫ a

0

∫
Ω′

∣∣∣∂un(x)
∂x′

∣∣∣2 dx′dxn +
∫ a

0

∫
Ω′

∣∣∣∂un(x)
∂xn

∣∣∣2 dx′dxn

≤ C

∫
Ω

∣∣∣∂un(x)
∂x

∣∣∣2 dx. (4.1)
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Since C∞
cyl(Ω) is dense in H1

cyl(Ω), for u ∈ H1
cyl(Ω), there exists functions

un(x) ∈ C∞
cyl(Ω) such that∫
Ω

∣∣∣∇(un(x) − u(x))
∣∣∣2 dx → 0,

∫
Ω

|un(x) − u(x)|2 dx → 0

as n → ∞. This implies that {un} is a Cauchy sequence in H1
cyl(Ω), then there

exist nε such that for n,m ≥ nε,∫
Ω

∣∣∣∇(un(x) − um(x))
∣∣∣2 dx ≤ ε.

Notice un − um ∈ C∞
cyl(Ω), we substitute un with un − um in (4.1), then

∫ a

0

∫
Ω′

|un(x) − um(x)|2
δ2(x′)

dx′dxn ≤ C

∫
Ω

∣∣∣∇(un(x) − um(x))
∣∣∣2 dx ≤ ε,

which implies that
{un(x)

δ(x′)

}
is a Cauchy sequence in L2(Ω) and hence

un(x)
δ(x′)

→ y,

for some y ∈ L2(Ω). It remains to show y = u(x)
δ(x′) . Since δ(x′) is bounded, we

have that

un(x) → yδ(x′), in L2(Ω).

In fact, ∫
Ω

|un(x) − δ(x′)y|2 dx′dxn =
∫

Ω

∣∣∣un(x)
δ(x′)

· δ(x′) − δ(x′)y
∣∣∣2 dx

=
∫

Ω

|δ(x′)|2
∣∣∣un(x)
δ(x′)

− y
∣∣∣2 dx

≤ C

∫
Ω

∣∣∣un(x)
δ(x′)

− y
∣∣∣2 dx

→ 0,

and since un(x) → u(x) in L2(Ω), we conclude that indeed y = u(x)
δ(x′) . Then we

complete the proof by letting n → ∞ in (4.1). �

The next lemma is a variant of the Hardy-inequality.

Lemma 4.2. There exists C > 0 such that for n ≥ 3, and 0 ≤ τ ≤ 1, we have∥∥∥ u

δτ
n−1

∥∥∥
Lq(Ω)

≤ C‖∇u‖L2(Ω), ∀u ∈ H1
cyl(Ω)

where
1
q

=
1
2

− 1 − τ

n
.

Proof. By the Hölder inequality,
∥∥∥ u

δτ
n−1

∥∥∥
Lq(Ω)

=
(∫

Ω

(
uτ

δτ
n−1

· u1−τ

)q

dx
) 1

q
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≤
((∫

Ω

(∣∣ u

δn−1

∣∣τq
) r

q

dx
) q

r
) 1

q ·
((∫

Ω

(
|u|(1−τ)q

) s
q

dx
) q

s
) 1

q

=
∥∥∥ uτ

δτ
n−1

∥∥∥
Lr(Ω)

· ∥∥u1−τ
∥∥

Ls(Ω)

=
∥∥∥ u

δn−1

∥∥∥τ

Lτr(Ω)
‖u‖1−τ

L(1−τ)s(Ω)
(4.2)

where
1
q

=
1
r

+
1
s

. We choose τr = 2 and
1

(1 − τ)s
=

1
2

− 1
n

, thus

1
q

=
1
s

+
τ

2
=

1
2

− 1 − τ

n
.

Applying Lemma 4.1 and Sobolev’s embedding theorem to the respective term
in (4.2) we obtain ∥∥∥ u

δτ
n−1

∥∥∥
Lq(Ω)

≤ C‖Du‖τ
L2(Ω) ‖Du‖1−τ

L2(Ω) (4.3)

Then (4.3) becomes the desired inequality. �
In what follows we let J ′

1 denote the first positive eigenfunction satisfying{−Δ(n−1)J
′
1 = λ′

1 J ′
1, x′ ∈ Ω′

J ′
1(x

′) = 0, x′ ∈ ∂Ω′

where λ′
1 is the first eigenvalue of −Δ(n−1) and J ′

1 is normalized so that∫
Ω′ |J ′

1|2 dx′ = 1. Furthermore, J1(x) is the eigenfunction to the correspond-
ing Laplacian equation in Ω, with J1(x′, xn) := J ′

1(x
′), xn ∈ (0, a), that is

J1(x′, xn) is constant in the variable xn and satisfies⎧⎪⎪⎨
⎪⎪⎩

−Δ(n)J1 = λ′
1 J1 x ∈ Ω

J1(x) = 0 x ∈ ∂Ω′ × [0, a]

∂xn
J1(x) = 0 x ∈ Ω′ × {0, a}

Remark 4.1. It is known that J ′
1(x

′) > 0 in Ω′ and it follows from Hopf’s
Lemma that J ′

1(x
′) ≥ Cδn−1(x′) with C > 0. Note that

∫
Ω

|J1(x)|2 dx = a.

The basic a priori bound we prove is the following.

Theorem 4.1. Suppose that h(x) ≥ hm > 0. Furthermore,

– if 1 ≤ η <
4n

(n − 1)(n − 2)
, then suppose that 1 < γη ≤ 2n+2

n ;

– if η ≥ 4n

(n − 1)(n − 2)
, then suppose that 1 < γη ≤ n + 1

n − 1
+

2nγ

(n − 1)2
.

Then there is a constant K such that for any u ∈ H1
cyl(Ω) non-negative

and satisfying weakly

⎧⎪⎪⎨
⎪⎪⎩

−Δ(n)u = h(x)
[
(−Δ(n−1))

−1
(∫ a

0
uη(x′, xn) dxn

) ]γ
+ tJ1 x ∈ Ω

u(x′, xn) = 0 x′ ∈ ∂Ω
′

∂xnu(x′, xn) = 0 xn ∈ {0, a}
(4.4)
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then we have u ∈ L∞(Ω) and

‖u‖L∞(Ω) ≤ K,

where K is independent of t ≥ 0.

We first prove some lemmas.

Lemma 4.3. Under the assumptions of Theorem 4.1, there is a constant K1 > 0
such that for any non-negative u ∈ H1

cyl(Ω) satisfying weakly Eq. (4.4) for some
t ≥ 0, then we have

t ≤ K1 and
∫

Ω

f(x, u) δn−1(x) dx ≤ K1 ,

where f(x, u) := h(x)
[
(−Δ(n−1))−1

(∫ a

0
uη(x′, xn) dxn

) ]γ .

Proof. Since u ∈ H1
cyl(Ω) is a weak solution of (4.4), we have

∫
Ω

∇u ∇ϕ(x) dx =

∫
Ω

f(x, u)ϕ(x) dx + t

∫
Ω

J1 ϕ(x) dx ∀ ϕ ∈ H1
cyl(Ω) (4.5)

Taking ϕ = J1 we get∫
Ω

∇u ∇J1 dx =
∫

Ω

f(x, u)J1 dx + t

∫
Ω

|J1|2 dx.

Note that ∂Ω = (∂Ω′ × [0, a]) ∪ (Ω′ × {0, a}). The left side of the equation
yields, using that u|∂Ω′×[0,a] = 0 and ∂νJ1|Ω′×{0,a} = 0∫

Ω

∇u · ∇J1 dx =
∫

∂Ω

u ∂νJ1 dx −
∫

Ω

uΔ(n)J1 dx

= −
∫

Ω

uΔ(n)J1 dx

= λ′
1

∫
Ω

uJ1 dx.

Since by assumption h(x) has the positive lower bound hm, then

λ′
1

∫
Ω

uJ1 dx =
∫

Ω

f(x, u)J1 dx + t

∫
Ω

|J1|2 dx

=
∫

Ω

h(x)
[
(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]γ

J1 dx + t

∫
Ω

|J1|2 dx

≥ hm

∫
Ω

[
(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]γ

J1 dx + t

∫
Ω

|J1|2 dx

= hm

∫
Ω∩{[(−Δ(n−1))−1

∫ a
0 uη(x) dxn]<k}

[
(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]γ

J1 dx

+ hm

∫
Ω∩{[(−Δ(n−1))−1

∫ a
0 uη(x) dxn]≥k}

[
(−Δ(n−1))−1
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(∫ a

0

uη(x) dxn

)]γ

J1 dx

+ t

∫
Ω

|J1|2 dx,

where k > 0 will be chosen below. Since we consider non-negative solu-
tions, then

∫ a

0
uη(x′, xn) dxn is non-negative, and by the maximum principle,

(−Δ(n−1))−1
(∫ a

0
uη(x′, xn) dxn

)
is non-negative. Therefore

λ′
1

∫
Ω

uJ1 dx ≥ hm

∫ a

0

dxn

∫
Ω′∩{[(−Δ(n−1))−1

∫ a
0 uη(x) dxn]≥k}[

(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]γ

J ′
1 dx′

+ t

∫
Ω

|J1|2 dx

≥ hm · a · kγ−1 ·
∫

Ω′∩{[(−Δ(n−1))−1
∫ a
0 uη(x) dxn]≥k}[

(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]
J ′

1 dx′

+ t

∫
Ω

|J1|2 dx

= hm · a · kγ−1 ·
{∫

Ω′

[
(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]
J ′

1 dx′

−
∫

Ω′∩{[(−Δ(n−1))−1
∫ a
0 uη(x) dxn]<k}

[
(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]
J ′

1 dx′
}

+ t

∫
Ω

|J1|2 dx

≥ hm · a · kγ−1 ·
{∫

Ω′

[
(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]
J ′

1 dx′ − C(k)
}

+ t

∫
Ω

|J1|2 dx.

Next, choose k such that hm · a · kγ−1 ≥ (λ′
1)

2 + 1, thus

λ′
1

∫
Ω

uJ1 dx ≥ [(λ′
1)

2 + 1] ·
∫

Ω′

[
(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]
J ′

1 dx′ − C

+ t

∫
Ω

|J1|2 dx

= [(λ′
1)

2 + 1] ·
∫

Ω′

[(∫ a

0

uη(x) dxn

)]
· [(−Δ(n−1))−1J ′

1

]
dx′ − C
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+ t

∫
Ω

|J1|2 dx

= [(λ′
1)

2 + 1] ·
∫

Ω′

(∫ a

0

uη(x) dxn

)[
1
λ′

1

J ′
1

]
dx′ + t

∫
Ω

|J1|2 dx − C

=
(λ′

1)
2 + 1

λ′
1

∫
Ω

uη(x)J1 dx + t

∫
Ω

|J1|2 dx − C

=
(

λ′
1 +

1
λ′

1

)∫
Ω

uη(x)J1 dx + t

∫
Ω

|J1|2 dx − C

=
(

λ′
1 +

1
λ′

1

){∫
Ω∩{u≤1}

uη(x)J1 dx

+
∫

Ω∩{u>1}
uη(x)J1 dx

}
+ t

∫
Ω

|J1|2 dx − C

≥
(

λ′
1 +

1
λ′

1

)∫
Ω∩{u>1}

uη(x)J1 dx + t

∫
Ω

|J1|2 dx − C

≥
(

λ′
1 +

1
λ′

1

)∫
Ω

u(x)J1 dx + t

∫
Ω

|J1|2 dx − C

Hence,

C ≥ t

∫
Ω

|J1|2 dx +
1
λ′

1

∫
Ω

u(x)J1 dx

which implies t is bounded, and also∫
Ω

u(x)J1 dx < C.

Since λ′
1

∫
Ω

uJ1 dx =
∫

Ω

f(x, u)J1 dx+t

∫
Ω

|J1|2 dx, we see that also
∫

Ω

f(x, u)J1 dx

is bounded, and using Remark 4.1 we obtain,∫
Ω

f(x, u)δn−1(x′) dx ≤ C

∫
Ω

f(x, u)J1 dx < K1

This completes the proof of Lemma 4.3. �

Next, we show a Poincaré type inequality in W 1,p
cyl (Ω).

Lemma 4.4. There exists a constant C > 0 such that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω), ∀u ∈ W 1,p
cyl (Ω). (4.6)

Proof. We may assume u ∈ C∞
cyl(Ω) and (0, x2, . . . , xn) ∈ ∂Ω′, then

|u(x1, x2, . . . , xn)| = |u(x1, x2, . . . , xn) − u(0, x2, . . . , xn)|
=
∣∣∣
∫ x1

0

d

dt
u(t, x2, . . . , xn) dt

∣∣∣,
therefore Hölder’s inequality yields

|u|p =
∣∣∣
∫ x1

0

d

dt
u(t, x2, . . . , xn) dt

∣∣∣p
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≤
∣∣∣
∫ x1

0

1qdt
∣∣∣

p
q
∣∣∣
∫ x1

0

∣∣∂u

∂t
(t, x2, . . . , xn)

∣∣p dt
∣∣∣, 1

p
+

1
q

= 1

≤ C
∣∣∣
∫ x1

0

∣∣∂u

∂t
(t, x2, . . . , xn)

∣∣p dt
∣∣∣.

Taking the integration over Ω on both sides, we get∫
Ω

|u|p dx ≤ C

∫
Ω

∫ x1

0

∣∣∂u

∂t
(t, x2, . . . , xn)

∣∣p dtdx,

and applying Fubini’s theorem to the right hand side of the inequality,∫
Ω

|u|p dx ≤ C

∫ x1

0

∫
Ω

∣∣ ∂u

∂x1
(x1, x2, . . . , xn)

∣∣p dxdt

≤ C

∫ x1

0

∫
Ω

|∇u|p dxdt

≤ C‖∇u‖p
Lp(Ω)

since Ω′ is bounded. Now assuming un ∈ C∞
cyl(Ω) converging to u in W 1,p

cyl (Ω),
from the result above we have∫

Ω

|un|p dx ≤ C‖∇un‖p
Lp(Ω) ∀ n ∈ N.

Letting n go to infinity, we conclude that∫
Ω

|u|p dx ≤ C‖∇u‖p
Lp(Ω).

�

In the next Lemma we prove an H1-a priori bound for any weak non-
negative solution of Eq. (4.4).

Lemma 4.5. Under the assumptions of Theorem 4.1 there is a constant K2 such
that

‖u‖H1(Ω) ≤ K2

for every non-negative weak solution of Eq. (4.4).

Proof. Taking ϕ = u ∈ H1
cyl(Ω) in (4.5) we obtain

‖∇u‖2
L2(Ω) ≤

∫
Ω

f(x, u)u dx + K1

∫
Ω

J1u dx.

Applying the Hölder inequality and the Poincaré inequality in H1
cyl(Ω) to the

second term on the right hand side we get

‖∇u‖2
L2(Ω) ≤

∫
Ω

f(x, u)u dx + K1‖J1‖L2(Ω)‖u‖L2(Ω)

≤
∫

Ω

f(x, u)u dx + C‖∇u‖L2(Ω). (4.7)

Next, for 0 < α < 1, by Hölder’s inequality we get∫
Ω

f(x, u)u dx =
∫

Ω

(
δα
n−1f

α(x, u)
) (

f1−α(x, u) · u

δα
n−1

)
dx
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≤ ∥∥δα
n−1f

α(x, u)
∥∥

L
1
α (Ω)

∥∥∥f1−α(x, u) · u

δα
n−1

∥∥∥
L

1
1−α (Ω)

=
∥∥δn−1f(x, u)

∥∥α

L1(Ω)

(∫
Ω

f(x, u)
u

1
1−α

δ
α

1−α

n−1

dx
)1−α

. (4.8)

We now distinguish the two cases:
Case 1: 1 ≤ η < 4n

(n−1)(n−2)

We first show that for each ε > 0 there is a Cε such that

‖f(x, u)‖L∞(Ω) ≤ ε‖u‖βnη
Lsη(Ω) + Cε (4.9)

where
n − 1

2
< s ≤ 2∗

η
, βn :=

1
η

· 2n + 2
n

. (4.10)

In fact, since u ∈ H1
cyl(Ω), according to the Sobolev inequality, we know

that u ∈ Lq(Ω), (q ≤ 2∗ = 2n
n−2 ), and because

∥∥∥
∫ a

0

uη dxn

∥∥∥s

Ls(Ω′)
=
∫

Ω′

(∫ a

0

uη dxn

)s

dx′

=
∫

Ω′

(∫ a

0

uη · 1 dxn

)s

dx′

≤
∫

Ω′

(
(
∫ a

0

uηs dxn) · (
∫ a

0

1θ dxn)
s
θ

)
dx′

≤ C

∫
Ω′

(
∫ a

0

uηs dxn) dx′

= C‖u‖sη
Lsη(Ω) (4.11)

where 1
s + 1

θ = 1, (s, θ > 1) and sη ≤ 2∗, we see that
∫ a

0
uη dxn ∈ Ls(Ω′). Next,

using that (−Δ(n−1))−1 is a continuous operator from Ls(Ω′) → W 2,s(Ω′),
s ≤ 2n

n−2 · 1
η , we are able to use the Morrey embedding inequality in Ω′ ⊂ R

n−1

and we have, for s > n−1
2 ,

‖f(·, u)‖L∞(Ω) ≤ max
x∈Ω̄

{h(x)}C
∥∥[(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]∥∥γ

L∞(Ω′)

≤ C
∥∥[(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)]∥∥γ

W 2,s(Ω′) s > (n − 1)/2

≤ C
∥∥∫ a

0

uη(x) dxn

∥∥γ

Ls(Ω′)

= C
(∫

Ω′

(∫ a

0

uη(x) dxn

)s

dx′
)γ/s

≤ C
(∫

Ω′

(∫ a

0

1θ dxn

) s
θ

·
(∫ a

0

|u(x)|sη dxn

)
dx′
)γ/s

,
1
s

+
1
θ

= 1

≤ C aγ/θ (
∫

Ω

|u(x)|sη dx)γ/s ≤ C
∥∥u∥∥γη

Lsη(Ω)
. (4.12)
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Therefore f(x, u) ∈ L∞(Ω) for fixed u ∈ H1
cyl(Ω). Due to the condition of

Theorem 2.1, it follows that 1 < γ < βn, and we conclude that

lim
‖u‖Lsη(Ω)→∞

‖f(x, u)‖L∞(Ω)

‖u‖βnη
Lsη(Ω)

= 0,

which means that for ε > 0 small, there exists Mε > 0 such that ‖f(x, u)‖L∞(Ω) ≤
ε‖u‖βnη

Lsη(Ω), for ‖u‖Lsη(Ω) ≥ Mε. This shows (4.9).

Next, with the aid of Lemma 4.3 and due to (a + b)l ≤ al + bl (a, b ≥
0, 0 < l < 1), we deduce from (4.8)
∫

Ω

f(x, u)u dx ≤ Kα
1

(∫
Ω

f(x, u)
u

1
1−α

δ
α

1−α

n−1

dx
)1−α

≤ C
∥∥f(·, u)

∥∥1−α

L∞(Ω)

[∫
Ω

u
1

1−α

δ
α

1−α

n−1

dx

]1−α

≤ εC ‖u‖βnη(1−α)
Lsη(Ω)

[∫
Ω

u
1

1−α

δ
α

1−α

n−1

dx

]1−α

+ Cε

[∫
Ω

u
1

1−α

δ
α

1−α

n−1

dx

]1−α

.

(4.13)

Now we choose 0 < α =
n + 2
2n + 2

< 1, so that βnη +
1

1 − α
=

2
1 − α

. From

(4.7), (4.8) and (4.13), we get by the Sobolev inequality for Ω ⊂ R
n

‖∇u‖2
L2(Ω) ≤ εC

∥∥u∥∥βnη(1−α)

Lsη(Ω)

∥∥∥ u

δα
n−1

∥∥∥
L

1
1−α (Ω)

+ Cε

∥∥∥ u

δα
n−1

∥∥∥
L

1
1−α (Ω)

+C
∥∥∇u

∥∥
L2(Ω)

≤ εC
∥∥∇u

∥∥
L2(Ω)

∥∥∥ u

δα
n−1

∥∥∥
L

1
1−α (Ω)

+Cε

∥∥∥ u

δα
n−1

∥∥∥
L

1
1−α (Ω)

+ C
∥∥∇u

∥∥
L2(Ω)

. (4.14)

Applying Lemma 4.2 with τ = α we have∥∥∥ u

δα
n−1

∥∥∥
Lq(Ω)

≤ C‖∇u‖L2(Ω),

where
1
q

=
1
2

− 1 − α

n
, i.e. q =

1
1 − α

by the choice of α above. We can then

conclude from (4.14) that

‖∇u‖L2(Ω) ≤ C,

and the proof of Lemma4.5 is complete in this case since also ‖u‖L2(Ω) ≤ C

by Lemma 4.4 in H1
cyl(Ω). Note that the choice of s in (4.10) is possible for

1 ≤ η < 4n
(n−1)(n−2) .

Case 2: η ≥ 4n
(n−1)(n−2)
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We show that for 1 ≤ γ < βn := n2−1
(n−1)2η−2n∥∥f(·, u)

∥∥
Lr(Ω)

≤ ε
∥∥u∥∥βnη

Lρη(Ω)
+ Cε, (4.15)

where

1 ≤ ρ ≤ 2∗

η
, r > 1 and γ r ≤ 1

1
ρ − 2

n−1

= ρ✩ (
1
ρ

>
2

n − 1
). (4.16)

Here ρ✩ =
ρ(n − 1)

n − 1 − 2ρ
denotes the critical Sobolev exponent for the embedding

W 2,ρ(Ω′) ⊂ Lρ✩

(Ω′), Ω′ ⊂ R
n−1.

In fact, first u ∈ H1
cyl(Ω) which implies u ∈ Lρ(Ω), 1 ≤ ρ ≤ 2∗ · 1

η , then
as in (4.11),

∫ a

0
uη dx ∈ Lρ(Ω′). By Lp regularity in Ω′, we have v ∈ W 2,ρ(Ω′).

Then if γr ≤ ρ✩, we again have ‖v‖Lγ r(Ω′) ≤ C‖v‖W 2,ρ(Ω′) by the Sobolev
embedding theorem. After this we have

‖f(·, u)‖r
Lr(Ω) =

∫
Ω

(h(x))r ·
[
(−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)]γ r

dx

≤ C

∫
Ω′

[
(−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)]γ r

dx′

= C
∥∥v∥∥γ r

Lγ r(Ω′)

≤ C‖v‖γ r
W 2,ρ(Ω′)

≤ C
∥∥∥
∫ a

0

uη(x′, xn) dxn

∥∥∥γ r

Lρ(Ω′)

= C
(∫

Ω′

(∫ a

0

uη(x′, xn)dxn

)ρ

dx′
) γr

ρ

≤ C
(∫

Ω′

∫ a

0

uρη(x′, xn)dxndx′
) γr

ρ

= C
∥∥u∥∥γrη

Lρη(Ω)
. (4.17)

Since ρ ≤ 2∗
η , we have f(x, u) ∈ Lr(Ω) for fixed u ∈ H1

cyl(Ω) and

‖f(·, u)‖Lr(Ω) ≤ C‖u‖γη
Lρη(Ω) (4.18)

and hence, for 1 < γη < βnη and every ε > 0 there exists Cε such that

‖f(·, u)‖Lr(Ω) ≤ ε ‖u‖βnη
Lρη(Ω) + Cε.

This shows (4.15).
From (4.8), (4.15), Lemma 4.3 and the Hölder inequality we now deduce
∫

Ω

f(x, u)u dx ≤ C
(∫

Ω

f(x, u)
u

1
1−α

δ
α

1−α

n−1

dx
)1−α

≤ C

(∥∥f(·, u)
∥∥

Lr(Ω)

∥∥∥∥u
1

1−α

δ
α

1−α

n−1

∥∥∥∥
Lh(Ω)

)1−α
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≤
(
ε
∥∥u∥∥βnη(1−α)

Lρη(Ω)
+ Cε

) ∥∥∥∥u
1

1−α

δ
α

1−α

n−1

∥∥∥∥
1−α

Lh(Ω)

= ε
∥∥u∥∥βnη(1−α)

Lρη(Ω)

∥∥∥∥ u

δα
n−1

∥∥∥∥
L

h
1−α (Ω)

+ Cε

∥∥∥∥ u

δα
n−1

∥∥∥∥
L

h
1−α (Ω)

,

(4.19)

where
1
r

+
1
h

= 1, r > 1, h > 1. Again applying the Hardy inequality with
τ = α we get ∥∥∥∥ u

δα
n−1

∥∥∥∥
L

h
1−α (Ω)

≤ C‖∇u‖L2(Ω), (4.20)

where
1 − α

h
=

1
2

− 1 − α

n
, and thus 1 − α =

nh

2(n + h)
. Since 0 < 1 − α < 1,

so 0 <
nh

2(n + h)
< 1, which implies

1 < h <
2n

n − 2
= 2∗, r >

2n

n + 2
.

Then as before, we take

βnη =
1

1 − α
= 2
(

1
h

+
1
n

)
= 2
(

1 − 1
r

+
1
n

)
. (4.21)

Now that ρ ≤ 2∗

η
, from (4.7), (4.19), (4.20) and (4.21) we get

‖∇u‖2
L2(Ω) ≤ ε‖∇u‖L2(Ω)

∥∥∥ u

δα
n−1

∥∥∥
L

h
1−α (Ω)

+ Cε

∥∥∥ u

δα
n−1

∥∥∥
L

h
1−α (Ω)

+ C‖∇u‖L2(Ω)

≤ ε‖∇u‖2
L2(Ω) + Cε‖∇u‖L2(Ω) + C‖∇u‖L2(Ω). (4.22)

We can then conclude from (4.22) that

‖∇u‖L2(Ω) ≤ C.

Now combining (4.21) with γ r ≤ ρ✩ and γ < βn, we are going to find a
best r to have the largest γ. So first we take ρ = 2∗

η . Thus

γ ≤ (
2∗

η
)✩ · 1

r
=

1
η
2∗ − 2

n−1

· 1
r

=
2n

n−2 (n − 1)

(n − 1)η − 2 2n
n−2

· 1
r

=
2n(n − 1)

(n − 1)(n − 2)η − 4n
· 1
r
.

Since βn is increasing with respect to r and the largest γ is decreasing with
respect to r, we can let

2n(n − 1)
(n − 1)(n − 2)η − 4n

· 1
r

=
1
η

· 2(1 − 1
r

+
1
n

)
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and derive

r =
n(2n2 − 4n + 2)η − 4n2

(n2 − 1)(n − 2)η − 4n(n + 1)
(η ≥ 4n

(n − 1)(n − 2)
), (4.23)

and thus, from (4.21)

βn =
n2 − 1

(n − 1)2η − 2n
.

Like the first case, the choice of ρ in (4.16) is possible for the second case
of Theorem 2.1. Based on the above two cases (1 ≤ η < 4n

(n−1)(n−2) , η ≥
4n

(n−1)(n−2) ), the proof of Lemma 4.5 is complete. �

Proof of Theorem 4.1. Likewise, we consider two cases:
Case 1: 1 ≤ η < 4n

(n−1)(n−2) , 1 < γη ≤ 2n+2
n .

By (4.12), we know f(x, u) ∈ L∞(Ω) for any u ∈ H1
cyl(Ω) weak solution of

(4.4). According to Lemma 3.2.1, for any fixed u, we have u ∈ W 2,p(Ω), for
any p > 1 and since J1 is a known smooth function, we have by Lemma3.1.6
the estimate

‖u‖W 2,p(Ω) ≤ C ‖f(·, u)‖Lp(Ω) + ‖K1J1‖Lp(Ω) ≤ C ‖f(·, u)‖L∞(Ω) + C.

Choosing p > n
2 , we get by Morrey’s inequality

‖u‖L∞(Ω) ≤ C‖u‖W 2,p(Ω) ≤ C‖f(·, u)‖L∞(Ω) + C.

In particular, due to (4.12) and Lemma 4.5, for n−1
2 < s ≤ 2∗

η

‖u‖L∞(Ω) ≤ C ‖u‖γη
Lsη(Ω) + C

≤ C ‖Du‖γη
L2(Ω) + C

≤ C.

So that

‖u‖L∞(Ω) ≤ K.

Case 2: η ≥ 4n
(n−1)(n−2) , 1 < γη ≤ n+1

n−1 + 2nγ
(n−1)2 .

Similarly, for any fixed u ∈ H1
cyl(Ω) weak solution of (4.4), according to (4.17),

f(x, u) ∈ Lr(Ω), so u ∈ W 2,r(Ω) by Lemma 3.2.1, and by (3.10) with p = r we
have

‖u‖W 2,r(Ω) ≤ C‖f(x, u) + K1J1‖Lr(Ω). (4.24)

Next, we have by the Sobolev inequality that u ∈ Lμ(Ω), for μ ≤ r∗ =
1

1
r − 2

n

=

nr

n − 2r
. By (4.17), (4.24) and the Sobolev embedding theorem

‖u‖Lμ(Ω) ≤ C ‖u‖W 2,r(Ω) ≤ C ‖f(·, u)‖Lr(Ω) + C,

≤ C ‖u‖γrη
Lρη(Ω) + C

≤ C ‖Du‖γrη
L2(Ω) + C

≤ C.
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So finally we get

‖u‖Lμ(Ω) ≤ C, (4.25)

where 2∗ ≤ μ ≤ r∗.
For n

r = 2, we get η = 4n
n2−5n+2 > 4n

(n−1)(n−2) , where r is given by (4.23).
We denote this η as η′. Hence when 1 ≤ η < η′, thus 2 > n

r , then Morrey’s
embedding theorem implies r∗ = ∞, and then we are done.

Next, suppose that η′ ≤ η ≤ 2∗, it then follows that 2 ≤ n
r . Then we will

get an improved uniform Lp bound of f(x, u) by showing an improved uniform
Lp bound of u. To see this we first consider

(
r∗

η
)✩ =

1
η
r∗ − 2

n−1

=
1

η
r − 2η

n − 2
n−1

=
n(n − 1)r

(n − 1)(nη − 2ηr) − 2nr
.

Similarly, in the case 2 >
(n − 1)η

r∗ , we can replace ( r∗
η )✩ by +∞. In the case

2 ≤ (n − 1)η
r∗ , we compute

∥∥f(·, u)
∥∥

L

( r∗
η

)✩

γ (Ω)

=
∥∥∥∥h(x)

[
(−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)]γ∥∥∥∥
L

( r∗
η

)✩

γ (Ω)

=
(∫

Ω

h(x)
( r∗

η
)✩

γ

[
(−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)]( r∗
η )✩

dx

) γ

( r∗
η

)✩

≤ C

(∫
Ω′

[
(−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)]( r∗
η )✩

dx′
) γ

( r∗
η

)✩

= C

∥∥∥∥
[
(−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)]∥∥∥∥
γ

L
( r∗

η
)✩

(Ω′)

= C
∥∥∥v(x′)

∥∥∥γ

L
( r∗

η
)✩

(Ω′)

≤ C
∥∥∥v(x′)

∥∥∥γ

w
2, r∗

η (Ω′)

≤ C
∥∥∥
∫ a

0

uη(x′, xn) dxn

∥∥∥γ

L
r∗
η (Ω′)

= C
(∫

Ω′

(∫ a

0

uη(x′, xn)dxn

) r∗
η

dx′
) γη

r∗

≤ C
∥∥∥u(x′, xn)

∥∥∥γη

Lr∗ (Ω)
. (4.26)

From (4.25), we deduce ∥∥f(·, u)
∥∥

L

( r∗
η

)✩

γ (Ω)

≤ C.
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Noting that

( r∗
η )✩

γ
=

1
η
r∗ − 2

n−1

· 1
γ

=
1

η
r − 2η

n − 2
n−1

· 1
γ

>
n(n − 1)r

(n − 1)(nη − 2ηr) − 2nr
· η(n2 − 2n + 1) − 2n

n2 − 1
(γ < βn),

hence

( r∗
η )✩

γ
>

n(n − 1)r
(n − 1)(nη − 2ηr) − 2nr

· η(n2 − 2n + 1) − 2n

n2 − 1
> r, (4.27)

where the last inequality follows by elementary calculations, using (4.23). So
we see that f(·, u) is bounded in an improved Lp space, if 2 ≤ (n−1)η

r∗ . Then

taking p =
( r∗

η )✩

γ
, by (3.10) and the Sobolev inequality, we have,

∥∥u∥∥
L

⎛
⎝ ( r∗

η
)✩

γ

⎞
⎠

∗

(Ω)

≤ ∥∥u∥∥
W

2,
( r∗

η
)✩

γ (Ω)

≤
∥∥∥f(·, u)

∥∥∥
L

( r∗
η

)✩

γ (Ω)

+ C ≤ C, (4.28)

where

(
( r∗

η )✩

γ

)∗

=
1

γ

( r∗
η )✩

− 2
n

. From (4.27), we see

(
( r∗

η )✩

γ

)∗

> r∗, which

means we get a better uniform Lp bound of u. Afterwards, we repeat the
computation of (4.26) and get

∥∥∥f(x, u)
∥∥∥

L

(⎛⎝ ( r∗
η

)✩

γ

⎞
⎠

∗

η

)✩

γ (Ω)

≤ ∥∥u∥∥
L

⎛
⎝ ( r∗

η
)✩

γ

⎞
⎠

∗

(Ω)

≤ C.

Iterating (4.26)–(4.28), finally, we will derive

‖u‖L∞(Ω) ≤ C.

Thus, we have completed the proof of Theorem 4.1. �

5. Fixed Point Theorem and Existence of the Solution

In this section we complete the proof of Theorem 2.1. We first show a maximum
principle for the Poisson equation with mixed boundary conditions.

Lemma 5.1. ([7]) Let Ω ⊂ R
n, n ≥ 3, be the cylinder in (2.1) and let Γ1 , Γ2

be a partition of ∂Ω, with Γ1 = ∂Ω′, Γ2 = Ω ′ ×{0 , a}. Let g ∈ C∞
0 (Ω), g ≥ 0,
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g �≡ 0, and let u denote the solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = g in Ω

u = 0 on Γ1

∂u

∂ν
= 0 on Γ2

(5.1)

where ν is the outer unit normal vector to ∂Ω. Then the solution of (5.1)
satisfies:

u ≥ 0 in Ω.

Proof. If the claim were not true, then there exists a x0 ∈ Ω such that
u(x0) < 0. Without loss of generality, we suppose u(x0) = min

x∈Ω
u(x) < 0.

By the assumption, we know x0 /∈ Γ1. Next we show x0 /∈ Γ2; otherwise,
we may assume that x0 ∈ Ω′ × {0} or Ω′ × {a}, by interior regularity, since
g ∈ C∞

0 (Ω), we obtain u ∈ C∞(Ω) and u in W 2,p(Ω) (1 ≤ p < ∞). In ad-
dition, W 2,p(Ω) ↪→ C1(Ω̄) (for p > n) ( [1] Theorem 4.12, PART II), so we
have u ∈ C2(Ω) ∩ C1(Ω̄). Since Ω′ × {0} or Ω′ × {a} is flat, Ω satisfies the

interior ball condition at x0, and from Hopf’s lemma we have
∂u(x0)

∂ν
< 0,

which contradicts the assumption on Γ2. So x0 is an interior point of Ω. But
due to the maximum principle, u cannot have a negative minimum in Ω. �

We are now in the position to complete the proof of Theorem2.1.

Proof of Theorem 2.1. For every fixed u ≥ 0 in C1(Ω̄), by the Lax-Milgram
theorem we know there exists a unique solution for Eq. (2.2), which we de-
note by wu. That is, −Δ(n)wu = f(x, u), with f(x, u) = h(x)[(−Δ(n−1))−1∫ a

0
uη(x) dxn]γ . To solve problem (2.2), we define the mapping u → wu =:

F (u). If there is a fixed point of F in C1(Ω̄) such that F (u) = u, we are
done. Now we check that F satisfies the following fixed point theorem ( [9],
Theorem 3.1; [19], Theorem 1).

F : C1(Ω̄) → C1(Ω̄) a compact mapping, acting in the cone of non-
negative functions, will have a fixed point u with 0 < r ≤ ‖u‖C1(Ω̄) ≤ R < ∞
provided

1) Fu �= s′u, s′ ≥ 1 for ‖u‖C1(Ω̄) = r and
2) Fu �= u − tJ̃1, t ≥ 0, for ‖u‖C1(Ω̄) = R,

where J̃1 = (−Δ(n))−1J1.
Step 1: F : C1(Ω̄) → C1(Ω̄) is a compact mapping. It is easy to see

that F is continuous, since it is a composition of continuous maps. Then, let
A ⊂ C1(Ω̄) be a bounded set, for u ∈ A we have

‖f(x, u)‖L∞(Ω) =
∥∥∥∥h(x)

[
(−Δ(n−1))−1

(∫ a

0

uη(x′, xn) dxn

)]γ∥∥∥∥
L∞(Ω)

≤ C max
x∈Ω̄

{h(x)}
∥∥∥∥(−Δ(n−1))−1

(∫ a

0

uη(x) dxn

)∥∥∥∥
γ

L∞(Ω′)
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≤ C

∥∥∥∥(−Δ(n−1))−1
(∫ a

0

uη(x) dxn

)∥∥∥∥
γ

W 2,s(Ω′)
s > (n − 1)/2

≤ C
∥∥∥
∫ a

0

uη(x) dxn

∥∥∥γ

Ls(Ω′)

≤ C
∥∥u∥∥γη

Lsη(Ω)

≤ C
∥∥u∥∥γη

L∞(Ω)

≤ C
∥∥u∥∥γη

C1(Ω)

≤ C
∥∥u∥∥γη

C1(Ω̄)

≤ C, (5.2)

thus f(x, u) ∈ L∞(Ω) and {f(x, u), u ∈ A} is uniformly bounded. Since
−Δ(n)wu = f(x, u), by Lemmas 3.1.6 and 3.2.1, wu ∈ W 2,q(Ω), q large enough,
and lies in a bounded set in W 2,q(Ω). Then by Morrey’s inequality, we get for
q > n, wu ∈ C1,γ′

(Ω̄), that is

‖wu‖C1,γ′ (Ω̄) ≤ C‖wu‖W 2,q(Ω) ≤ C‖f(·, u)‖Lq(Ω) + C

≤ C‖f(·, u)‖L∞(Ω) + C ≤ C,

where γ′ = 1 − n
q . Therefore we have for every x, y in Ω̄, and ∀u ∈ A

|Dwu(x) − Dwu(y)| ≤ C|x − y|γ′
.

Hence, ∀ε > 0, we take δ = ( ε
C )γ′/1 then, if |x − y| < δ, {wu} satisfies

|Dwu(x) − Dwu(y)| ≤ C|x − y|γ′
< ε

which means {wu, u ∈ A} is uniformly bounded and equicontinuous in C1(Ω̄).
According to the Arzelà-Ascoli theorem, it is in a compact set in C1(Ω̄). Hence,
F is a compact mapping from C1(Ω̄) to C1(Ω̄).

Step 2: F maps the non-negative cone in C1(Ω̄) into itself. For this we
are going to prove that when u is fixed non-negative, then wu is non-negative.
Indeed, wu satisfies⎧⎪⎪⎨

⎪⎪⎩

−Δ(n)wu(x) = f(x, u), x ∈ Ω

wu(x) = 0, x ∈ ∂Ω′ × [0, a]

∂xn
wu(x) = 0, x ∈ Ω′ × {0, a},

(5.3)

where f(x, u) = f(x) = h(x)[(−Δ(n−1))−1
∫ a

0
uη(x′, xn)dxn]γ . By (5.2) f ∈

L∞(Ω) so that f ∈ Lp(Ω) for any p > 1 when u is fixed in C1(Ω̄).
We assume ⎧⎪⎪⎨

⎪⎪⎩

−Δ(n)wun
(x) = fn, x ∈ Ω

wun
(x) = 0, x ∈ ∂Ω′ × [0, a]

∂xn
wun

(x) = 0, x ∈ Ω′ × {0, a},

(5.4)
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where fn ∈ C∞
0 (Ω), fn ≥ 0, ‖fn − f‖Lp(Ω) → 0 (1 ≤ p < ∞). Applying

Lemma 5.1, we get

wun
≥ 0, ∀n ∈ N, x ∈ Ω̄.

On the other hand, subtracting (5.3) from (5.4), we get⎧⎪⎪⎨
⎪⎪⎩

−Δ(n)(wun
(x) − wu(x)) = fn − f, x ∈ Ω

wun
(x) − wu(x) = 0, x ∈ ∂Ω′ × [0, a]

∂xn
(wun

(x) − wu(x)) = 0, x ∈ Ω′ × {0, a}.

Since fn − f ∈ L∞(Ω), by Lemma 3.2.1, we have wun
− wu ∈ W 2,p(Ω), p large

enough. Then by Lemma3.1.6 and Morrey’s inequality we have wun
− wu ∈

C1,γ′
(Ω̄), and ‖wun

− wu‖C1,γ′ (Ω̄) ≤ C‖wun
− wu‖W 2,p(Ω) ≤ C‖fn − f‖Lp(Ω)

for p > n. So, ‖wun
− wu‖C1,γ′ (Ω̄) ≤ C‖fn − f‖Lp(Ω). Furthermore

lim
n→∞ ‖wun

− wu‖C1,γ′ (Ω̄) ≤ C lim
n→∞ ‖fn − f‖Lp(Ω) = 0,

which implies

lim
n→∞{sup

x∈Ω̄

|(wun
− wu)(x)| + sup

x∈Ω̄

|(Dwun
− Dwu)(x)|} = 0

so,

wun
→ wu ∀x ∈ Ω̄.

Since wun
≥ 0, then wu ≥ 0 in Ω̄.

Next we verify the two conditions (1) and (2).
(1) holds for r < ( 1

C )
1

γη−1+1, where C will be determined later. If not, we
suppose that there exists s′ ≥ 1 and u with ‖u‖C1(Ω̄) = r such that Fu = s′u.
Since −Δ(n)F (u) = f(x, u), we obtain

−Δ(n)(Fu) = −Δ(n)(s′u) = f(x, u)

then

−Δ(n)u =
1
s′ f(x, u).

Multiplying by u and taking the integral over Ω on both sides, we have,∫
Ω

−Δ(n)u · u =
1
s′

∫
Ω

f(x, u) · u ≤
∫

Ω

f(x, u) · u. (5.5)

Case 1: 1 ≤ η < 4n
(n−1)(n−2) , 1 < γη ≤ 2n+2

n ; by (5.5), Hölder inequality and
(4.12) we get∫

Ω

|∇u|2 dx ≤
∫

Ω

f(x, u) · u dx ≤ C‖f(x, u)‖L∞(Ω)‖u‖L2(Ω)

≤ C‖u‖γη
Lsη(Ω)‖u‖L2(Ω).

From (4.10), the Sobolev embedding inequality and Lemma4.4 we derive,

‖Du‖2
L2(Ω) ≤ C‖Du‖γη+1

L2(Ω). (5.6)
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and hence ( 1
C

) 1
γη−1 ≤ ‖Du‖L2(Ω) ≤ C‖Du‖L∞(Ω).

However, by assumption( 1
C

) 1
γη−1+1

> r = ‖u‖C1(Ω̄) ≥ ‖Du‖L∞(Ω)

which is a contradiction.
Case 2: η ≥ 4n

(n−1)(n−2) , 1 < γη ≤ n+1
n−1 + 2nγ

(n−1)2 ; from (4.18) and (5.5), we
have ∫

Ω

|∇u|2 dx ≤
∫

Ω

f(x, u) · u dx ≤ C‖f(x, u)‖Lr(Ω)‖u‖Lh(Ω)

≤ C‖u‖γη

L2∗ (Ω)
‖u‖Lh(Ω), (5.7)

where
1
r

+
1
h

= 1. Moreover, since r > 2, so h < 2 < 2∗. Then by the Sobolev

embedding inequality, we have the same result as (5.6). Thus 1) will follow by
the same proof.

For 2), we show that there exists R1 > 0 such that there is no solution
of F (u) = u − tJ̃1 with ‖u‖C1(Ω̄) ≥ R1,∀t ≥ 0. Indeed, suppose u ∈ H1

cyl(Ω) a
solution of F (u) = u − tJ̃1, then −Δ(n)F (u) = f(x, u), that is,

− Δ(n)u = f(x, u) + tJ1. (5.8)

then by Theorem 4.1, ‖u‖L∞(Ω) ≤ K, K independent of t ≥ 0. We conclude
that for any 1 < q < ∞,

‖u‖C1(Ω̄) < ‖u‖C1,γ′ (Ω̄) ≤ C‖u‖W 2,q(Ω)

≤ ‖f(x, u)‖L∞(Ω) ≤ C‖u‖γη
L∞(Ω) ≤ C · Kγη = R1.

So for any R > R1, F (u) �= u − tJ̃1. �
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