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Abstract

Monkeypox (mpox) virus has become a “public health emergency of inter-
national concern” in the last few months, as declared by the World Health
Organization, especially for low-income countries. A symptom of mpox in-
fection is the appearance of rashes and skin eruptions, which can lead people
to seek medical advice. A technology that might help perform a preliminary
screening based on the aspect of skin lesions is the use of Machine Learning
for image classification. However, to make this technology suitable on a large
scale, it should be usable directly on people mobile devices, with a possible
notification to a remote medical expert.

In this work, we investigate the adoption of Deep Learning to detect
mpox from skin lesion images derived from smartphone cameras. The pro-
posal leverages Transfer Learning to cope with the scarce availability of mpox
image datasets. As a first step, a homogenous, unpolluted, dataset was
produced by manual selection and preprocessing of available image data,
publicly released for research purposes. Subsequently, we compared multi-
ple Convolutional Neural Networks (CNNs) using a rigorous 10-fold strati-
fied cross-validation approach and we conducted an analysis to evaluate the
models’ fairness toward different skin tones. The best models have been
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then optimized through quantization for use on mobile devices; measures of
classification quality, memory footprint, and processing times validated the
feasibility of our proposal. The most favorable outcomes have been achieved
by MobileNetV3Large, attaining an F-1 score of 0.928 in the binary task and
0.879 in the multi-class task. Furthermore, the application of quantization
led to a reduction in the model size to less than one-third, while simultane-
ously decreasing the inference time from 0.016 to 0.014 seconds, with only
a marginal loss of 0.004 in F-1 score. Additionally, the use of eXplainable
AI has been investigated as a suitable instrument to both technically and
clinically validate classification outcomes.

Keywords:
Deep Learning, m-health, mpox, monkeypox, transfer learning, mobile
optimization

1. Introduction

While the whole world is still dealing with the coronavirus disease (COVID-
19) and its mutations [1], the recent outbreaks of mpox1 virus (formerly
known as Monkeypox) in different western countries have raised serious con-
cern among public health authorities [2]. The mpox is a zoonotic disease
caused by an orthopoxvirus, and it is closely related with variola (i.e., the
smallpox virus), cowpox, and vaccinia viruses [3]. Although it was first iso-
lated in 1958 from laboratory monkeys, its original hosts also included squir-
rels, rats, and dormice [4].

Since the first human case reported in 1970 in the Democratic Republic
of Congo, the spread of mpox has been always limited to Central and West
Africa, infecting new hosts through close body contact, respiratory droplets,
or animal bites, becoming an endemic disease in those regions. The incuba-
tion period ranges from 5 to 21 days, and the actual disease is characterized
by generic symptoms such as fever, intense headache and muscle pain, while
the most specific sign of mpox is related to the appearance of skin rashes and
eruptions that usually begin within 1–3 days of the appearance of fever and
tend to be more concentrated on the face and extremities rather than on the
trunk [5].

1In the rest of the paper we will use Mpox with capital letter when referring to the
detection class, while mpox when referring to the virus.
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Figure 1: Geographical distribution of the recent mpox outbreak [6].

Since the middle of 2022, a continuously increasing number of cases and
sustained chains of transmissions have been reported in regions without di-
rect or immediate epidemiological links to endemic areas, including countries
in Europe, North America, and Australia. On 19 September 2023, the World
Health Organisation (WHO) reported a total of 90,465 laboratory confirmed
cases and 663 probable cases across 115 countries [6], as shown in Figure 1.
Even though mpox is usually not fatal, according to the Centers for Dis-
ease Control and Prevention (CDC), people with severely weakened immune
systems, children under 1 year old, subjects with a history of eczema, and
pregnant or breastfeeding women may more likely get seriously ill or even
die [7].

Such rapid and widespread dissemination of the virus has raised several
worries in the medical community, highlighting the need for proactive coun-
termeasures in order to prevent another global pandemic [5]. In this regard,
recent studies have emphasized how mobile-health systems (m-health), along
with Artificial Intelligence (AI), can represent a game changer in containing
the spread of a virus [8, 9]. In fact, using the plethora of sensors embedded
in modern mobile devices and their increasingly advanced computational ca-
pabilities, smartphones and wearables can be used as low-cost, pervasive,
and non-invasive tools to support the early diagnosis of new cases. For ex-
ample, Rong et al. developed a smartphone-based fluorescent lateral flow
immunoassay for the detection of Zika virus [10], Brangel et al. proposed the
use of a mobile application to read immunochromatographic strips to detect
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antibodies against Ebola [11], while more recent works used Deep Learning
(DL) models to detect COVID-19 digital biomarkers in respiratory sounds
collected by smartphone microphones [12, 13]

In this work, we propose a DL-based m-health solution to detect mpox
from skin lesion images captured by personal smartphones. The considered
use case is the following: the user takes a close picture of a skin region
that the application uses to automatically detect mpox. Technically, we
use Transfer Learning [14] to adapt state-of-the-art Convolutional Neural
Networks (CNNs) models [15] to automatically identify visual features of
mpox skin rashes, distinguishing the typical symptoms of the virus from skin
lesions produced by other pathologies that can be easily confused also by
expert eyes, including Chickenpox and Acne, at different severity levels.

Compared with previous works, this paper addresses three issues. First,
the elaboration of available skin lesion images to make them homogeneous
with respect to skin section focus and measure, to generate a new homoge-
neous dataset. In fact, existing datasets include highly heterogeneous images
(e.g., images of a group of people or of entire parts of body) that are unsuit-
able for the considered problem.

Second, the design of a mpox detection system able to run autonomously
on personal mobile devices at least to provide a preliminary warning to com-
mon users, and that relies on cloud components only for model training and
interaction support with a medical expert. To this end, we optimize the fi-
nal DL model to reduce by 4× the memory footprint of our system, without
negatively affecting its classification performance.

Third, the integration of eXplainable AI (XAI ) methods [16] to validate
the system performance in recognizing the disease from skin lesion pictures
and further define a clinical validation process involving medical experts.
According to the literature, XAI techniques greatly improve the general un-
derstanding of deep neural networks [17], increasing the trust in the overall
system by both medical personnel and final users, thus fostering widespread
adoption of such digital solutions. In fact, the target of our proposal is
twofold: on the one hand, medical experts can take advantage of such a tool
to speed up the diagnosis of new cases, while, on the other hand, final users
can autonomously perform a preliminary screening of suspicious skin lesions
that must be further investigated by their personal physicians or dermatolo-
gists.

In summary, we can highlight our contributions as follows:
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• We adopted Transfer Learning and fine-tuned 5 state-of-the-art Deep
Learning models to detect mpox from skin lesion images.

• We performed an extensive evaluation of the considered solutions through
a series of experiments involving the use of a 10-fold cross-validation
technique, and provided an additional analysis aimed at verifying the
absence of possible bias towards specific skin tones.

• We optimize the best model to be able to perform all the data process-
ing and classification directly on mobile devices, compatibly with the
typical memory constraints of commercial smartphones.

• We use XAI techniques to validate our model’s predictions.

• We publicly release all the materials produced in this work, including a
curated selection of data called Mpox Close Skin Images (MCSI ) that
is composed of 400 skin images already pre-processed in order to show
homogeneous characteristics, which are also perfectly balanced over 4
different classes: Mpox, Chickenpox, Acne, and Healthy.

The remainder of the paper is organized as follows. Section 2 presents
the related work regarding the use of Deep Learning in medical image anal-
ysis, including preliminary works recently proposed in the literature for the
automatic detection of mpox through image processing. In Section 3, we
describe in detail our mpox detection system for mobile devices. Section 4
outlines the experimental setup we adopted to evaluate the classification per-
formance of the considered DL models, and discusses the obtained results. In
Sections 5 and 6 we detail the use of XAI techniques and the mobile-oriented
optimization. Lastly, in Section 7 we draw our conclusions and present some
directions for future work.

2. Related Work

This section first briefly introduces the state of the art in the field of
CNN for medical image analysis and in particular in the field of dermatology.
Then, it analyzes the existing datasets of mpox skin lesions and the mpox
classification techniques.
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2.1. Convolutional Neural Networks in medical image analysis
Among the different deep neural networks, Convolutional Neural Net-

works (CNNs) represent one of the most effective architectures for applica-
tions dealing with image data [18]. CNNs can automatically extract relevant
features from raw input images by using a series of convolutional, nonlinear,
and pooling layers. Thanks to this characteristic, CNNs made impressive
achievements in many computer vision tasks, including image classification,
object detection, image segmentation, and face recognition [15].

In recent years, CNNs have also achieved remarkable results in health-
care applications and, in particular, computer-aided diagnosis. For example,
Majumdara et al. [19] proposed an ensemble of 3 pre-trained CNN models,
namely, GoogleNet [20], VGG11 [21], and MobileNetV3Small [22] for the
detection of breast cancer in histopathological images, obtaining a classifica-
tion accuracy of 99.16% and 96.95% with two benchmark datasets. Kumar
et al. [23] present a custom CNN model to detect malaria parasites in blood
cell images. Despite the small size of the proposed network (i.e., only 4
convolutional and pooling layers, followed by 2 fully connected layers for
classification), the authors were able to obtain an accuracy score of 96.62%.
Other solutions use CNN as shared feature extractors in multitask models to
classify images and, at the same time, localize specific elements of the med-
ical image [24]. In the last two years, CNN models have also been adopted
in different technological solutions aiming at containing the spread of the
COVID-19 pandemic, including: systems to monitor social distancing and
the use of face masks in public places [25, 26]; to automatically analyze blood
samples [27], chest X-Ray and Computerized Tomography (CT) images [28];
and to fast screening the population by analyzing respiratory sounds collected
from mobile devices, represented as spectrogram images [12, 29].

Dermatology is another field of application where the use of CNNs is in-
creasingly investigated [30]. Among others, Shetty et al. compare the perfor-
mance of several shallow classifiers (e.g., Random Forest and Support Vector
Machines) with a custom CNN in classifying dermoscopic images of different
types of skin lesions for skin cancer detection [31]. The paper shows that,
using a dataset of 700 images and data augmentation techniques, CNN over-
come the best classifiers by 7%, scoring an overall accuracy of 95.18%. Roy
et al. [32] explore several segmentation approaches to detect different skin
diseases (e.g., candidiasis and cellulitis). Finally, Kassem et al. [33] reports
94.92% accuracy by using transfer learning and a pre-trained GoogleNet to
detect melanoma among 8 different classes of skin lesions.
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Table 1: Mpox datasets

Name Images Classes Available

MSLD [34] 228 2 Yes 2

MDS22 [35] 161 4 No
MSID [36] 770 4 Yes 3

RMSD [37] 2056 2 Yes 4

DM [38] 117 2 Yes 5

MPXV [39] 139, 198 2 No

MCSI (ours) 400 4 Yes

2.2. Datasets of skin lesions for mpox detection

Since one of the most common symptoms of mpox is the appearance of
skin rashes and lesions, the analysis of skin images is a promising solution
for the early detection of this novel global outbreak of the virus. Thus, an
annotated dataset of images is required to train the model.

The existing available datasets include images of skin lesions caused by
mpox as well as images in other classes, for example, images of the skin
without lesions or with lesions caused by other diseases. The six datasets
proposed in the literature are summarized in Table 1.

Ali et al. [34] present the Monkeypox Skin Lesion Dataset (MSLD)2 con-
taining 228 skin lesion images collected from different sources on the Inter-
net and divided into two classes: Mpox cases and a generic Others class,
which includes skin lesions caused by other diseases (e.g., Chickenpox and
Measles), but also samples without evident lesions. Ahsan et al. [35] provide
the Monkeypox-dataset-2022 (MDS22 ), which includes a total of 161 im-
ages of Mpox, Chickenpox, Measles and skin without any lesions labeled as
Healthy. However, at the time of writing, MDS22 is no longer accessible. The
third dataset, called Monkeypox Skin Images Dataset (MSID) [36] includes
770 images divided in the same 4 classes as MDS22 3. The fourth dataset,
called Roboflow Monkeypox Skin Dataset (RMSD) [37] includes 2056 images
divided into 2 classes asMSLD. The positive class includes augmented images

2https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset
3https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset
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of mpox, while for the negative case, different images were web scraped for
different pathologies such as Lyme, Drug Rash, Pityriasis Rosea Rash, and
Ring Worm4. The Data monkeypox (DM ) [38] is another dataset available
on Kaggle 5 and includes a total of 117 pictures collected from web sources.
It comprises 45 images labeled as mpox cases, along with 74 images labeled
as non-mpox. The latter category encompasses both samples without skin
lesions and instances of other pathologies such as scarlet fever and roseola.

Finally, theMPXV dataset introduced by Thieme et al. [39] stands out as
the largest dataset employed in the existing literature for the task of mpox
detection, featuring a total of 139,129 images. This extensive dataset en-
compasses 676 images linked to mpox cases, sourced from various outlets
including scientific literature, encyclopedia entries, news articles, and social
media. A significant portion of these mpox-related images originated from
a prospective study conducted in collaboration with the Stanford University
Medical Center. Additionally, the dataset includes 138,522 images depicting
non-mpox skin lesions, drawn from publicly accessible dermatological repos-
itories and the institutional skin cancer lesion dataset known as Esteva [40].
This last dataset and that derived from the clinical study are not publicly
available due to privacy reasons.

Unfortunately, existing public datasets have severe limitations. First,
they contain very heterogeneous pictures in terms of both resolution and
subjects, including histopathology images, whole-body parts, and full-body
images. For example, one image in MSID represents a group of three people
(normal184), others represent people watching in the mirror (normal198) or
using skin care product (normal188), while others represent full body parts
(chickenpox15 or monkeypox46). Similarly, RMSD contains web-scraped
images, that in some cases represent monkeys (images109, images224, Monkeypox 1),
a collage of both normal and positive samples (images247), or images of hos-
pital buildings (images17, images49). In other cases, images are present in
the test folder multiple times with different processing or extracted from dif-
ferent sources (image9, 1 MONKEYPOX-BOY, image54). Also, Altun et al. [37]
take into account skin rashes that are clearly different from those caused by
mpox, like those caused by Lyme disease.

While these datasets could possibly be useful for the training of a model

4https://app.roboflow.com/ds/uHWnw424Sk?key=w8YJKfcD2i
5https://www.kaggle.com/datasets/ahmadnasayrah/data-monkeypox
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aimed at automatically classifying web-scraped images, we argue that they
are unsuitable for our use case in which the user takes a close picture of
the skin and manually crops it (if needed) so that it only contains the skin
rash and not other visual features. Image heterogeneity may jeopardize the
ability of ML models to perform proper classification, due to the presence of
“distracting” irrelevant features [41, 42].

Another limitation is that images in some classes are under-represented.
For example, MSLD contains only 17 images in the measles class. This is due
to the fact that, for some diseases, there are few images that are public and
suitable (e.g., with a sufficient resolution). However, dealing with such severe
imbalanced data poses a challenge for machine learning models, which typi-
cally leads to poor predictive performance (especially for the minority class)
due to the lack of an equal distribution of training data samples over the dif-
ferent classes. Although such a problem is usually addressed by oversampling
minority class examples or by undersampling the majority class [43], such an
approach is unfeasible for small datasets such as those publicly available for
mpox. Furthermore, the existing datasets do not include a class of bacterial
skin infections (e.g., acne) that, according to the WHO, should be considered
in the clinical differential diagnosis of mpox [44].

Unlike existing data sets, in this paper we present the MCSI (Mpox Close
Skin Images) dataset, which includes 400 homogeneous skin images equally
distributed in four classes (Mpox, Chickenpox, Acne, and Healthy). MCSI
has been collected by merging other public datasets, and it only includes
close skin pictures, as those produced by users taking photos of their own
skin lesions from a short distance. The details related to both data collection
and elaboration are described in Section 4.1.

2.3. Classification techniques supporting mpox detection

Three papers propose binary classification techniques trained and eval-
uated on MSLD. In particular, Ali et al. [34] compare the performance of
3 popular CNN architectures, namely, VGG16 [21], ResNet50 [45], and In-
ceptionV3 [46], along with an ensemble of the three with majority voting.
The authors note that ResNet50 is able to score the best accuracy, 82.96%,
while the ensemble solution shows a lower performance than the single mod-
els. Sahin et al. [47] use transfer learning and fine-tuning for different CNNs,
with the aim of finding the best model to implement on a mobile device.
The experiments show that MobileNetvV2 [48] obtains the best accuracy
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(91.11%). Finally, Alcalá-Rmz et al. [49] present an alternative solution
based on GoogleNet that yields 97.08% accuracy.

Two other recent studies, namely Jaradat et al.[38] and Thieme et al.[39],
delves into the application of deep learning (DL) models for the detection of
mpox in skin images. However, their focus is exclusively on the binary clas-
sification problem, distinguishing between mpox and non-mpox cases. The
former study uses the DM dataset, yielding an interesting F-1 score of 0.94
when MobileNetV2 is employed as the prediction model. The latter study
is based on the more extensive MPXV dataset. They report a sensitivity
of 0.83 and a specificity of 0.965 using the ResNet34 model. Their study is
noteworthy for the model performance evaluation across various skin tones
and body regions.

Other three papers present techniques trained on MDS22 or MSID that
hence have the opportunity to distinguish among the four classes defined
in these datasets. Sitaula and Shahi [50] present a classifier based on an
ensemble of Xception and DenseNet-169 with majority voting. In this case,
the technique is trained and evaluated onMDS22 and it achieves an accuracy
of 87.13%. The paper by Ahsan et al. [51] also proposes a technique trained
and evaluated on MDS22. Specifically, it proposes two studies using a pre-
trained version of VGG16: the former classifies mpox versus chickenpox,
obtaining 83% accuracy on 18 test images; while the latter obtains 78%
accuracy when comparing mpox with all other cases. Abdelhamid et al. [52]
evaluates optimization algorithms to find the optimal hyperparameters of
a deep neural network for image classification in the MSID dataset. The
solution reports that GoogleNet yields an accuracy of 98.80%.

Finally, [37] proposes a classification technique trained on RMSD. It
compares different state-of-the-art models adopting transfer learning in the
task of binary classification, obtaining the best results with MobileNetV3
small, with an accuracy of 96.8% and an F-1 score of 0.978.

Unfortunately, the presented works suffer from a main limitation due to
the characteristics of the considered datasets. In addition, they also present
some issues from the methodological point of view. For instance, [47] and [37]
are evaluated with a fixed random split into train-validation-test sets and do
not adopt cross-validation. This approach can lead to overfitting the model
on specific dataset partitions, potentially overestimating its generalization
capabilities and performance when deployed in real application environments,
especially when the training is based on a limited dataset [53]. In other cases,
the papers do not clearly specify the evaluation methodology (e.g., [52]).
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Figure 2: Scheme of the mpox diagnosis infrastructure considered in this work.

Finally, none of the previous papers present solutions optimized for mobile
devices.

In this paper, we train the models with a dataset specifically designed
for the addressed problem, such as MCSI. We provide a thorough and repro-
ducible comparison of several state-of-the-art CNNs, and we investigate the
obtained results through the use of Grad-CAM [54], a popular eXplainable-
AI technique.

3. Mpox detection system for mobile devices

Figure 2 shows the high-level architecture of the proposed framework to
detect mpox from skin lesion images collected from mobile devices. The
whole process can be summarized in two main stages. In the first stage, we
rely on the Transfer Learning approach to adapt a set of pre-trained CNNs
to our application scenario, using MCSI to fine-tune their parameters. The
rationale for using existing CNNs is that they have been proven to be effective
in addressing classification problems in the medical imaging domain [55].
However, one limitation of the CNNs is that they need to be trained on a
large amount of data (e.g., Imagenet[56]) and this is extremely expensive in
terms of computational time and resources. We address this limitation by
using existing CNNs for which pre-trained weights are available.After the
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experimental comparison of the models’ performance, we identify the best
model for our mpox detection system, which is then optimized for mobile
devices. Since the fine-tuning process includes complex and time-consuming
operations, it is executed on a remote server.

The second stage involves the use of the optimized best-performing model
to identify new mpox cases, performing the whole data processing on user
devices: a new picture is firstly acquired from the device camera and then
cropped in order to contain the target skin lesion. The resulting image is then
used as input to the deep learning model that generates the classification.
Moreover, a XAI module is used to both explain and, to some extent, validate
the model’s prediction, highlighting the most important sections of the input
image that led to the model output.

In the following, we describe in detail the main building blocks of the
proposed solution.

3.1. Model selection and fine-tuning

The framework relies on transfer learning to adapt a set of pre-trained
CNNs to our application scenario, thus reducing the dependence on a large
number of training data to build up the target learners [14].

We consider the following 5 CNNs that represent the state-of-the-art on
image classification:

• VGG-16 [21], composed by 5 consecutive blocks of convolutional layers
for features extraction, followed by 3 fully-connected layers for classi-
fication. Convolutional layers use 3 × 3 kernels with a stride of 1 and
padding of 1 to ensure that each activation map retains the same spa-
tial dimensions as the previous layer. A Rectified Linear Unit (ReLU)
activation is performed right after each convolution, and a max pool-
ing operation is used at the end of each block to reduce the spatial
dimension. Max pooling layers use 2 × 2 kernels with a stride of 2
and no padding to ensure that each spatial dimension of the activation
map from the previous layer is halved. Finally, two fully-connected
layers with 4096 ReLU activated units are used before a final 1000
fully-connected softmax layer.

• Inception-Resnet-V2 [57] represents a combination of two popular
architectures: GoogleNet [20] and ResNet [45]. While the former is
based on the concept of “Network in Network” [58], where a large
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number of convolutional kernels constitute a very deep architecture to
increase the network’s generalization, the latter introduced the idea of
directly bypassing the input information to the output, thus changing
the direct learning target value into learning the residual value between
the input and the output. Inception-Resnet-v2 combines the two con-
cepts, using residual connections instead of filter concatenation, to both
accelerate the training and improve the performance.

• NASNetMobile [59], a simplified version of Neural Architecture Search
Network (NASNet) proposed by GoogleBrain, which is a scalable CNN
architecture consisting of basic building blocks, called cells, that are
optimized using reinforcement learning. A cell consists of only a few op-
erations, including both convolutions and pooling, which are repeated
multiple times according to the required capacity of the network. The
mobile version consists of 12 cells, with a total of 5.3 million parame-
ters.

• MobileNetV3 [60], a CNN-based architecture especially tuned to best
performing on smartphone CPUs through a hardware-aware Network
Architecture Search (NAS), combining a series of building-blocks de-
veloped by previous models: the depth-wise separable convolutions as
an efficient replacement for traditional convolution layers from Mo-
bileNetV1 [61], the linear bottleneck and inverted residual structure
introduced by MobileNetV2 [62], and the lightweight attention mod-
ules used in MnasNet [63]. The model comes in two flavors - which
both are tested in this work - that are MobileNetV3-Large and
MobileNetV3-Small, which are targeted for high and low resource
use cases, respectively.

For all the aforementioned architectures, we take into account their in-
stances pre-trained with ImageNet [56], a large-scale dataset of 3.2 million
images and 1000 different labels, which is commonly used to train CNNs in
the image classification domain [64]. Note that ImageNet does not contain
labels related to the specific problem domain considered in this paper. To
mitigate this domain shift, we employ Transfer Learning replacing the last
fully-connected layers of the network with a novel set of classification layers
fine-tuned with MCSI dataset.

We then validate the considered models through the use of a 10-fold
cross-validation procedure and Hyperband, a broadly used hyperparameter
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Figure 3: Example of data augmentations used in our experiments.

selection algorithm for deep neural networks, which is able to speed up the
random search over the parameter spaces through adaptive resource alloca-
tion and early-stopping [65]. In other words, Hyperband uses a combination
of small random searches aimed at partitioning the original search space into
smaller sub-spaces. Once a search iteration is completed, the most promising
sub-spaces (i.e., those that allowed the network to obtain the best results)
are further explored until a performance plateau is reached or the iterations
budget (i.e., the maximum number of iterations) has been exhausted. In this
process, we exclusively fine-tune the final classification layers, which drasti-
cally decreases the number of parameters to be trained and, consequently, the
amount of data required for the training. Furthermore, to mitigate the risk of
model overfitting during the training phase, we employ standard techniques,
including Early Stopping and Dropout.

Furthermore, during the evaluation process, we investigate the feasibility
of using data augmentation in our application scenario to possibly improve
the performance of the fine-tuned models. Specifically, we employ the 6 stan-
dard image augmentation techniques [66] shown in Figure 3: (i) Rotation,
which changes the image angle, simulating different orientations; (ii) Trans-
lation, simulating different positions of the skin rash inside a specific picture;
(iii) Flip, which mirrors the image, thus simulating different type of pimples;
(iv-v)Contrast and Brightness, simulating different settings in the amount
and intensity of light; and, finally, (vi) Zoom, scaling the image to simu-
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late variations in the distance between the skin lesion and the smartphone
camera.

Data augmentation is not applied to the test and validation sets to avoid
introducing bias in the models’ evaluation. We include the parameters that
affect the augmentation factors (e.g., rotation angle or zoom level) into the
tuning phase to identify the set of values that lead to the best classification
performance for our application scenario.

3.2. CNN optimization for mobile devices

Our main goal is the definition of a mpox detection system that can be
entirely executed on mobile devices. However, neural networks are both
computationally and memory intensive. While modern smartphones are
equipped with increasingly powerful hardware (e.g., multicore CPUs and,
in some cases, dedicated GPUs) that allows performing the inference phase
in just a few milliseconds, neural models’ size still represents a challenge,
making it difficult to deploy them on embedded systems with limited mem-
ory resources.

To cope with this issue, several techniques have been recently proposed
to reduce the memory footprint of deep learning models, including pruning,
where redundant connections among hidden units are removed, or weight
clustering, which consists in replacing similar weights in a layer with a rep-
resentative value found by clustering algorithms [67, 68]. Quantization is
another practical and broadly used technique to optimize deep learning mod-
els by simply lowering the operations’ precision from 32-bit floats to 16-bit
floats or even 8-bit integers. Despite its simplicity, it is generally effective in
reducing the overall model’s size by 4× at least, with little or no degradation
in terms of accuracy [69]. Furthermore, while other approaches must be used
during the training phase, quantization can be applied to the final fine-tuned
model yield by transfer learning.

3.3. Explaining the model’s predictions

Deep learning models including CNNs are weak in explaining their infer-
ence process and final predictions, thus being typically considered as a black-
box. This characteristic is not suitable for many real-world applications, and
especially for the health sector, in which explainability and transparency are
essential not just for researchers and developers to validate their models, but
also for the users who can be directly affected by AI decisions.
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For this reason, increasing attention has recently been paid to eXplainable
AI (XAI) techniques with the aim of making AI models more transparent,
understandable, and interpretable, so as to increase trust in their predictions.
Different XAI approaches have been recently proposed for deep learning mod-
els, based on the characteristics of specific architectures [16]. According to
Ibrahim et al. [70], XAI techniques for CNNs can be categorized as decision
models and architecture models. While the former solutions aim at identify-
ing the parts of an image that mostly contributed to the network decision,
the latter explore the network internals, analyzing the mechanism of both
hidden layers and neurons.

Given its simplicity in both implementation and interpretability, for our
mpox detection system, we decided to use Grad-CAM [71] as XAI approach,
one of the most popular decision models used in medical imaging [72, 73].
Grad-CAM is defined as an importance attribution feature algorithm that
generates a visual explanation for class-discriminative prediction. Specifi-
cally, it captures the features that positively influence the prediction of a
given class, by computing its gradient and then propagating it back to the
last convolutional layer to finally generate a heatmap that visually repre-
sents the most relevant part of the input image that has led the model to
that prediction. As a preliminary stage, this approach represents a useful
tool to validate the ability of the considered fine-tuned deep models in cor-
rectly detecting mpox. Then, after a thorough clinical validation performed
by experts with a larger amount of data, such a XAI technique might be
also implemented on the mobile device of the final user to support the pre-
screening of suspicious skin lesions.

4. Experimental evaluation

In this section, we present the experimental evaluation performed to iden-
tify the best DL model. We first present the MCSI dataset. Then, we de-
scribe in detail the evaluation protocol and metrics adopted to measure the
classification performances of the fine-tuned CNN models. Finally, we dis-
cuss the obtained results. The source code and data are publicly available
on dedicated Zenodo repositories [74, 75], while the cross-validation folds are
completely reproducible by the provided code.
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(a) No skin sample (b) Cropped (c) Whole body parts

Figure 4: Examples of the criteria applied during the dataset creation.

4.1. The Mpox Close Skin Images dataset

The Mpox Close Skin Images (MCSI ) dataset has been created according
to three design principles. First, the dataset only includes close skin images
with or without skin lesions, as these are representative of the pictures that
can be collected by the users in the considered use case. Second, MCSI
contains images of skin lesions caused by diseases that, according to the
WHO, should be considered in the mpox clinical differential diagnosis [44].
In particular, we consider one class for chickenpox rash and one for acne,
which is a common skin condition caused by bacterial skin infections. Third,
the number of samples is balanced among the different classes, to avoid bias.

Specifically, MCSI includes: (1) images of Mpox cases collected by Ali
et al. [34] by web scraping news portals, publicly available case reports, and
websites; (2) pictures of Chickenpox lesions available on the Hardin Library
for the Health Sciences of the University of Iowa6, (3) samples of Acne at
different severity levels, collected by Wu et al. [76] and freely available on
Github7, and (4) samples of skin without evident lesions, named as Healthy,
available in the dataset collected by Muñoz-Saavedra et al. [77].

In order to create MCSI dataset we followed a two-steps procedure: first,
we excluded images where no skin is visible (as in Figure 4a). Then, for the
remaining images, we selected the larger square area that contains the skin
and no background (see example in Figure 4b). The area is discarded if its
sides are less than 224 pixels long. This is due to the fact that some original

6http://hardinmd.lib.uiowa.edu/chickenpox.html
7https://github.com/xpwu95/LDL
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Figure 5: Sample images from the collected dataset for each of the 4 considered classes:
Mpox, Chickenpox, Acne, and Healthy.

images contain whole body parts (as in the examples shown in Figure 4c)
and hence the selected area can result in having a low resolution.

Currently MCSI dataset labels are derived from those available online and
no verification has been conducted by expert medical practitioners. However,
we intend to verify the validity of the annotations in MCSI with the collab-
oration of medical experts as part of our future work.

The resulting dataset comprises a total of 100 images for each of the 4
designated categories. Figure 5 provides a representative selection of images
from our dataset, showcasing examples from each category.
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4.2. Evaluation protocol and metrics
The evaluation protocol is based on the following: we decided to rely on

10-fold stratified cross-validation to avoid biasing the results based on specific
train/validation/test splits of the dataset. The procedure can be summarized
as follows. Firstly, we partition the dataset into 10 folds, ensuring that
all the considered classes of images are equally represented in each fold.
For each of the 10 cross-validation iterations, one fold is selected as the
test set, while the remaining 9 represent the development set that is further
divided into stratified non-overlapping train (75%) and validation (25%).
We apply data augmentation at run-time, only on the training sets. Then, a
hyperparameters tuning process (Section 4.3) is used by training models on
the train set and testing them on the validation set. The model yielding the
best performance is then tested on the test set, providing the performance
for that iteration.

We measure the average performance of the fine-tuned models obtained
during the 10-fold cross-validation by using the different base models as back-
bone for features extraction, and a set of fully-connected layers are trained
from scratch for classification. We consider the following standard classi-
fication metrics: Accuracy, which is the percentage of correct predictions;
Sensitivity, which represents the true positive rate; Specificity, that indicates
the true negative rate; and F-1 Score, which is the harmonic mean of Preci-
sion and Sensitivity.

We perform the whole process for two different classification settings: bi-
nary and multiclass. In the former, we evaluate the models’ ability to identify
mpox cases without distinguishing the other classes, which are merged into
a single “other” class. Since in this setting the training data are unbalanced,
we replace the standard F-1 Score with its micro average in order to avoid
biasing the results towards the majority class (i.e., “other”). By contrast, in
the latter setting, the models learn to distinguish all the four classes available
in MCSI.

Furthermore, we conduct a statistical analysis to determine the level of
significance in the obtained classification results in terms of accuracy, thereby
identifying the most effective model(s) for our specific application scenario.
Initially, we examine the outcomes of the two classification tasks without
employing data augmentation. We conduct this analysis by using Repeated
Measures Analysis of Variance (ANOVA-RM), a statistical method used to
assess significant differences among the means of three or more dependent
groups. We chose this method because our models were evaluated on the
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same data folds, making the results dependent on each other. Moreover,
even though ANOVA is generally robust to slight deviations from normality
assumptions (especially with small sample sizes), we use the Shapiro-Wilk
test to assess the distribution characteristics of the results. This evaluation
aimed to confirm that the models’ results can be approximated by a nor-
mal distribution. Since ANOVA-RM only indicates the presence or absence
of a significant difference, without specifying the specific groups that dif-
fer from each other, we subsequently employ the Tukey’s Honest Significant
Difference (HSD) test, which allows us to determine the significance of per-
formance differences between each pair of models, providing a more detailed
understanding of the disparities.

Next, we perform a statistical assessment to evaluate the impact of data
augmentation on each model, by employing the following procedure. The
initial step involves using the Shapiro-Wilk test to determine whether the
performance of the model, both with and without augmentation, follows a
normal distribution. If both distributions pass the test (i.e., p > 0.05), we
proceed to assess their homoscedasticity using Bartlett’s test, which deter-
mines if the distributions have equal variances. However, if either distri-
bution failed the Shapiro-Wilk test, indicating non-normality, we utilize the
non-parametric Wilcoxon’s rank-sum test as an alternative to the two-sample
t-test. Finally, if the distributions exhibited homoscedasticity, we employ the
standard Independent t-test to evaluate their statistical significance; other-
wise, we use the Corrected Independent t-test (also known as Welch’s test)
instead.

4.3. Hyperparameters tuning

Actual performances of deep neural networks depend on several hyperpa-
rameters that must be tuned in order to find the best configuration for ev-
ery application scenarios. We adopted Hyperband for fine-tuning the model
and data augmentation parameters. Considering the model’s parameters,
we tune the learning rate (LR in the range [1e− 6, 0.001]) and the number
of classification layers (N layers among values {1, 2, 3}). Then, for each
classification layer, we tune the number of hidden neurons (Dense among
the values {256, 512, 1024, 2048, 4096}) and the dropout rate (Dropout in the
range [0, 0.5]).

Regarding the data augmentation, we explore two different types of pa-
rameters’ spaces: continuous and discrete. The former is defined within
[0, 0.5] and governs the application of Rotation, Zoom, Contrast, Brightness,
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Figure 6: Explored parameters for MobileNetV3Large with augmentation (on fold 0)

Translation (both horizontally, Tr-width, and vertically, Tr-height), in-
dicating the percentage in which each operation is applied on the original
image. For example, the value 0.2 for Rotation, represents a random rota-
tion of the image between [−20%,+20%]). The latter controls the application
of Flip type, which may be applied in three different modalities: Vertical
(0), Horizontal (1), and the combination of the two (2).

Figure 6 shows an example of the parameters space explored by Hyper-
band during the fine-tuning of MobileNetV3Large with data augmentation.
The X-axis indicates the exploration space for a given parameter and can
include a finite set of values (e.g., the N layers) or can be continuous in a
given interval (e.g., Dropout). Instead, Y-axis indicates the accuracy lev-
els. In order to ease the visualization, the density of points is shown with
colors (with the viridis color map): a single point is shown in purple while
multiple overlapping points are shown in yellow. Finally, the cross symbol
(+) highlights the combination of parameters that produced the best results,
which is also reported on the sub-plot titles. Note that the parameters Dense
and Dropout refer to the corresponding classification layer. So, for example,
Dense 1 represents the number of hidden neurons in classification layer 1.
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Table 2: Binary classification performance of the considered base models, with and without
data augmentation in the training phase. The performance is reported as mean and
standard deviation over the 10-folds of the cross-validation.

Base model Augmentation Accuracy Sensitivity Specificity F-1 Score

VGG16
✗ .898 (±.059) .833 (±.106) .710 (±.223) .897 (±.057)
✓ .890 (±.028) .835 (±.027) .730 (±.067) .890 (±.028)

InceptionResNetV2
✗ .732 (±.051) .568 (±.063) .240 (±.196) .734 (±.052)
✓ .728 (±.068) .544 (±.109) .180 (±.244) .728 (±.068)

NASNetMobile
✗ .811 (±.038) .726 (±.061) .550 (±.151) .812 (±.037)
✓ .835 (±.044) .727 (±.080) .510 (±.173) .835 (±.044)

MobileNetV3Small
✗ .930(±.041) .877 (±.067) .780(±.123) .929(±.040)
✓ .921 (±.043) .872 (±.062) .780(±.114) .919 (±.040)

MobileNetV3Large
✗ .930 (±.042) .861 (±.086) .730 (±.177) .928 (±.040)
✓ .930(±.039) .878(±.071) .780(±.140) .928 (±.037)

Hence, if a classification layer does not exist (as in the case of layer 2 when
N layers is 2) the corresponding Dense and Dropout parameters have a value
of zero.

4.4. Mpox detection performances

In this section, we present in detail the results obtained by fine-tuning
the considered CNN architectures in both binary and multiclass classification
settings, with and without data augmentation. We also present an analysis of
their ability to correctly represent image data samples in the latent features
space, thus providing additional support to the standard evaluation metrics.

4.4.1. Binary classification task

Table 2 summarizes the binary classification results of the fine-tuned mod-
els, both with and without data augmentation; the results are expressed in
terms of mean and standard deviations of the considered evaluation metrics,
calculated over the 10-folds of the cross-validation.

Most of the considered base models are able to reach an accuracy level
above 80%. InceptionResNetV2 performs worst, thus clearly indicating that
such an architecture is not able to detect mpox skin rashes from lesions pro-
duced by other pathologies. This is even clearer by observing the confusion
matrix in Figure 7, noting that the model incorrectly classifies 76% of the
overall Mpox samples with the original training data and 82% with data
augmentation.
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Figure 7: Confusion matrices related to the binary classification task with original training
data (a) and by employing data augmentation (b). Label 0 refers to Mpox samples, while
label 1 indicates the generic class Others.

NASNetMobile obtains better results than InceptionResNetV2, but its
specificity score is still too low, and its misclassification rate is particularly
high to be considered a valid candidate for our system. On the other hand,
VGG16 performs better than the previous models. In this case, we can also
note a small improvement introduced by using data augmentation, reducing
the percentage of incorrectly classified mpox samples from 29% to 27%.

The two variants of MobileNetV3 obtain the best results, reaching in
both cases an average accuracy level of 0.93 and with comparable results
for all the considered metrics. MobileNetV3Small is able to reach the maxi-
mum value also in terms of F-1 score, overcoming by approximately 10% the
performance of the larger model. In terms of misclassification rate without
data augmentation, MobileNetV3Small improves MobileNetV3Large by 5%,
while the larger model performs slightly better in classifying data samples
labeled Others. On the other hand, in this case, data augmentation seems
to introduce more confusion in the model predictions. In fact, while it allows
MobileNetV3Large to improve its Mpox detection rate, at the same time, it
increases the misclassification of Others samples for both models, reaching
an error rate of 4% and 2% for MobileNetV3Small and MobileNetV3Large,
respectively.
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Despite MobileNetV3 achieving the highest classification score, the sta-
tistical analysis does not reveal significant differences in accuracy compared
to VGG16, with a probability of p = 0.609. On the contrary, the analysis
confirms that InceptionResNetV2 is the least performing model, exhibiting
lower performance compared to the other architectures. It shows a decrease
of −16.5% compared to VGG16 (p = 0.0), a decrease of −8% compared to
NASNetMobile (p = 0.004), and a decrease of −19.5% compared to the two
MobileNetV3 alternatives (p = 0.0).

Finally, regarding the utilization of data augmentation, the statistical
analysis verifies that employing this technique does not significantly im-
pact the average performance of the models, obtaining probabilities consid-
erably higher than the significance threshold of 0.05 for all the architectures.
Specifically, we observe a probability of p = 0.625 for VGG16, p = 0.857
for InceptionResNetV2, p = 0.226 for NASNetMobile, p = 0.602 for Mo-
bileNetV3Small, and no difference at all for MobileNetV3Large, obtaining a
probability of p = 1.0.

We also conducted leave-one-out cross-validation on the best-performing
model, namely MobileNetV3Large, for the binary task with and without
augmentation. For this experiment, we used the same hyperparameters as
in the best-performing folder after hyperparameter tuning. The results show
slightly improved performance (i.e., micro F-1 Score of 0.94 and 0.93 without
and with augmentation, respectively) that are due to the larger training set
used in this specific evaluation approach.

4.4.2. Multiclass classification task

Table 3 summarizes the multiclass classification results of the fine-tuned
models, again with and without data augmentation, over the 10-fold cross-
validation. It is worth knowing that the specificity in the multiclass setting
is the average of the specificity for each class. More specifically, for a given
class C, we calculate the specificity of the model based on the one-vs-all
approach, thus as the binary problem of distinguishing between samples be-
longing to C (positive samples) and samples in all other classes (negative
samples). Specificity is calculated as true negative, the number of negative
cases that are correctly identified as negative, divided by true negatives plus
false positives, which is the number of negative cases that are incorrectly
identified as positive.

Similarly to the binary results, InceptionResNetV2 and NASNetMobile
show the worst performances, clearly indicating their inability to recognize
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Table 3: Multiclass classification performance of the considered base models, with and
without data augmentation in the training phase. The performance is reported as mean
and standard deviation over the 10-folds of the cross-validation.

Base model Augmentation Accuracy Sensitivity Specificity F-1 Score

VGG16
✗ .779 (±.052) .779 (±.054) .927 (±.018) .777 (±.057)
✓ .745 (±.059) .744 (±.059) .915 (±.020) .738 (±.062)

InceptionResNetV2
✗ .396 (±.087) .398 (±.088) .780 (±.023) .388 (±.084)
✓ .301 (±.057) .301 (±.067) .767 (±.023) .252 (±.078)

NASNetMobile
✗ .464 (±.073) .464 (±.073) .822 (±.025) .461 (±.076)
✓ .504 (±.103) .505 (±.104) .835 (±.034) .499 (±.106)

MobileNetV3Small
✗ .846 (±.062) .847 (±.061) .948 (±.020) .843 (±.065)
✓ .859 (±.054) .860 (±.052) .954 (±.017) .860 (±.049)

MobileNetV3Large
✗ .882(±.057) .881(±.055) .960(±.019) .879(±.058)
✓ .866 (±.088) .866 (±.080) .956 (±.029) .863 (±.086)

the different pathologies in the images. Moreover, data augmentation further
reduces the performance of InceptionResnetV2, reducing its F-1 score to
0.252, while it boosts the F-1 score of NASNetMobile to 0.499. In Figure 8
we can note in detail how these two models wrongly classify each class and,
in particular, how InceptionResNetV2 tends to classify every sample as Acne
(i.e., class 0). In contrast, VGG16 yields better results, although, similarly
to InceptionResnetV2, data augmentation slightly decreases its performance.

The MobileNetV3 variants achieve the best results also in the multiclass
setting. MobileNetV3Small yields slightly lower performance: −3.6% in ac-
curacy, −3.4% and −1.2% for sensitivity and specificity, and −3.6% in terms
of F-1 score. On the other hand, it benefits more from data augmenta-
tion, improving its F-1 score from 0.843 to 0.860. Quite the opposite hap-
pens for MobileNetV3Large; in fact, with data augmentation, all its indexes
drop. Nevertheless, the confusion matrices clearly show how both of the Mo-
bileNetV3 variants are able to successfully identify samples in the Mpox, Acne,
and Healthy classes (almost 98% of accuracy, both for augmented and non-
augmented models), while Chickenpox represents the hardest class, where
MobileNetV3Small scores an accuracy of 79% by augmenting the training
data, and the larger variant reaches 80% and 81%, respectively with and
without data augmentation.

Statistical analysis generally confirms the classification results obtained
in our study. Indeed, there were no significant differences found between
InceptionResNetV2 and NASNetMobile (p = 0.188), which both perform
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Figure 8: Confusion matrices related to the multiclass classification setting with original
training data (a) and with data augmentation (b). Label 0 refers to Acne samples, label
1 indicates Chickenpox, label 2 indicates Mpox, while label 3 indicates the normal class.

worse than the other considered models. Furthermore, the two variations of
MobileNetV3 exhibited a very high probability of p = 0.776, suggesting that
there were no significant differences between them.

In contrast to the binary classification problem, in the multiclass set-
ting, a noticeable difference can be observed between MobileNetV3Large and
VGG16 (p = 0.0154), while MobileNetV3Small and VGG16 are similar with
a probability of 0.2189. This difference can be attributed to the fact that
in the two-sample tests among the three models, the performance of Mo-
bileNetV3Small fell between the other two. Indeed, on average, it showed
a slight decrease of 3.6% in accuracy compared to its larger variant, while
performing better than VGG16 by 6.5%.

Finally, in the case of data augmentation, most of the models did not show
statistically significant differences. The probabilities observed were p = 0.190
for VGG16, p = 0.330 for NASNetMobile, p = 0.551 for MobileNetV3Small,
and p = 0.734 for MobileNetV3Large. Only InceptionResNetV2 showed a
probability below the threshold at p = 0.012, confirming the largest drop in
performance of 6.5% in terms of accuracy.

To sum up, we can consider both the MobileNetV3 variants as the best
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Figure 9: 3-D representation of the dataset based on the deep embeddings learned by each
model.

choice to detect mpox from skin lesion images, while the larger model is
preferable to accurately distinguish mpox from similar diseases. Moreover,
based on the statistical analysis, we can also note that data augmentation
does not lead to significant performance improvements, highlighting the need
for a larger amount of original training data, as well as a further investigation
of more sophisticated approaches of image data augmentation.

Similarly to the binary setting, we conducted a leave-one-out cross-validation
for the multiclass classification task. In this case, the results show similar or
slightly improved performance (i.e., F-1 Score of 0.90 and 0.85 without and
with augmentation, respectively).

4.4.3. Deep embeddings analysis

The obtained results are also supported by the analysis of the deep fea-
tures (i.e., embeddings) extracted by the different CNNs. Figure 9 shows how
each model represents the different classes of data samples in the deep latent
space, by using Principal Component Analysis (PCA) as data dimensionality
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algorithm to project the embeddings onto a 3-dimensional plane.
As we can note, for both InceptionResNetV2 and NASNetMobile, it is

particularly difficult to distinguish the 4 data clusters: while in the data
space modeled by the former CNN, the data points are mainly concentrated
in a single blob, in the latter they are distributed on a V-shaped hyperplane,
where data of different classes are overlapped to each other. By contrast, the
data space modeled by VGG16 makes it easier to distinguish the different
classes, even though data points belonging to Healthy are still considerably
mixed with both Acne and Mpox samples. The best deep representations
are given by the two MobileNetV3 variants, where the considered classes are
well-separated. In addition, it is worth noting a lower data dispersion in the
MobileNetV3Small embeddings space, thus facilitating the separation of the
4 clusters and, consequently, better classification performances.

4.4.4. Skin Tone-Based Classification Fairness

It is reasonable to posit that diversity in skin tones may influence the
predictive performance of DL models. Consequently, we undertook an addi-
tional investigation to assess the models’ accuracy in the context of varying
skin types.

Since MCSI dataset does not include information regarding the skin tone,
we relied on the well-known Fitzpatrick scale [78] to classify the available data
samples based on the skin pigment. This scale, originally devised within the
dermatology field, classifies human skin color into six distinct categories,
predicated on the skin’s response to ultraviolet (UV) light exposure. The
categories range from Type I, representing the palest skin that is prone to
sunburning and resistant to tanning, to Type VI, characterizing deeply pig-
mented, dark brown skin that does not sunburn easily.

For the purpose of our analysis, we opted to adopt a methodology akin
to that employed by Tadesse et al. [79] for categorizing the images into two
distinct groups: light and dark skin tones. Specifically, researchers grouped
the first four levels of the Fitzpatrick scale under the designation of Light
skin. Conversely, the fifth and sixth levels were categorized as Dark skin
tones.

A common approach to annotating images with Fitzpatrick labels is es-
timating skin tone via Individual Typology Angle (ITA), which is calculated
based on statistical features of image pixels and is negatively correlated with
the melanin index [80]. Following the same approach used in [81], we firstly
calculated the ITA value of each data sample by using the open-source Derm-
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Table 4: Average classification accuracy (and standard deviation) for the two types of skin
tones in binary and multiclass settings.

Binary Multiclass
Base model Augmentation Light Dark Light Dark

VGG16
✗ .793 (±.118) .886 (±.100) .774 (±.058) .766 (±.158)
✓ .774 (±.052) .899 (±.054) .733 (±.062) .757 (±.163)

InceptionResNetV2
✗ .586 (±.071) .551 (±.096) .413 (±.081) .321 (±.149)
✓ .556 (±.114) .521 (±.106) .307 (±.071) .276 (±.118)

NASNetMobile
✗ .673 (±.088) .785 (±.096) .474 (±.081) .428 (±.147)
✓ .676 (±.105) .786 (±.086) .496 (±.085) .481 (±.159)

MobileNetV3Small
✗ .839 (±.093) .921 (±.077) .854 (±.093) .820 (±.131)
✓ .851 (±.089) .883 (±.072) .850 (±.063) .857 (±.111)

MobileNetV3Large
✗ .773 (±.106) .965 (±.059) .876 (±.061) .868 (±.086)
✓ .835 (±.101) .919 (±.077) .850 (±.113) .862 (±.143)

ITA software 8, and then we mapped values greater than 10 as Light skin,
while the others as Dark skin. At the end of this process, the resulting labels
are distributed as follows: Mpox 57 Light and 43 Dark; Chickenpox, 78 Light
and 22 Dark; Acne, 73 Light and 27 Dark; and finally, Healthy 69 Light and
31 Dark.

Based on this distinction between light and dark skin, we evaluated the
models’ performance (without retraining the models) in both binary and
multiclass scenarios, accounting for the two distinct skin types. The summa-
rized results are presented in Table 4, showing the average accuracy values
and their corresponding standard deviations.

The statistical analysis (i.e., standard t-test) highlights some significant
differences only in the binary classification task, showing better performance
in classifying the under-represented class, that is, dark skin samples. Specif-
ically, in the binary classification setting, MobileNetV3Large without data
augmentation obtains significance of p = 0.000881, while VGG16 and NAS-
NetMobile with data augmentation show significance values of p = 0.000092
and p = 0.025547, respectively. One plausible explanation for this phe-
nomenon could be the higher contrast between skin tone and skin lesion col-
ors in the case of dark skin samples. This contrast likely aids the DL models
in accurately identifying conditions such as mpox and the other considered

8https://github.com/AdamCorbinFAUPhD/derm_ita/tree/master
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Acne Pred: Acne Acne Pred: Chickenpox

Chickenpox Pred: Chickenpox Chickenpox Pred: Acne

Monkeypox Pred: Monkeypox Monkeypox Pred: Chickenpox

Normal Pred: Normal Normal Pred: Acne

Figure 10: Examples of Grad-CAM results for each class with MobileNetV3Large, first
and third columns show the input image, (Correctly and wrongly predicted respectively).
Second and fourth columns show Grad-CAM explanations (for correctly and misclassified
examples)

pathologies from skin images.

5. Analysis of Grad-CAM indications

Gaining a more profound comprehension of deep learning models, often
perceived as “black-boxes”, is important in the context of medical applica-
tions. Specifically, the field of Explainable Artificial Intelligence (XAI) has
emerged with dual objectives: enhancing model interpretation and allowing
additional validations of the model results.

One notable XAI technique, Grad-CAM, assumes significance in this pur-
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suit by enabling the identification of salient features that drive the model’s
predictions. Consequently, it serves as a valuable adjunct tool for delving
into the rationale underpinning the decisions made by the model.

We decided to apply Grad-CAM to the predictions provided by Mo-
bileNetV3Large as one of the best-performing models in both classification
tasks. Specifically, in order to understand what features of the input im-
ages are considered relevant by the model, in Fig. 10 we reported 8 different
examples of explanations, four correctly predicted, along with their class acti-
vation maps (first and second columns), and four misclassified samples, with
their corresponding maps (third and fourth columns). The ground-truth la-
bel and the predicted one are indicated at the top of each image, while the
heatmaps have been generated by superimposing the class activation map to
the original image. While bluish areas identify less relevant features for the
given class, warmer colors (e.g., orange and red) represent the most relevant
ones that have led the models to provide the specified prediction.

For example, the first row represents a case of Acne. When the model
correctly classifies the image, the relevant features are distributed across all
scars and pustules, which are typical of a strong presence of acne. However,
when the model misclassifies the image, the main focus of the network is
on the pimples, neglecting the skin scars, causing the model to classify the
image as Chickenpox.

Regarding the Chickenpox sample, when the model provides a correct
prediction, its focus is only on the largest pimples, whereas when the model
makes an incorrect prediction, its attention is distributed to minor skin de-
fects in addition to the pimples, classifying the image as Acne.

For Mpox, the model is capable of correctly identifying the pathology when
vesicles and crusts are formed, but it clearly fails in the early stages of the
pathology, when pimples have not yet fully developed, providing a wrong
prediction (i.e., Chickenpox in this case).

Finally, when the model correctly classifies a Healthy image, as we can
expect, the importance of the feature is evenly distributed throughout the
image without focusing on specific elements. On the contrary, when the
model misclassifies a healthy sample, it is because it gives great relevance to
hair and skin damage, classifying the image as Acne.

The model’s visual attention analysis shows that MobileNetV3Large ef-
fectively identifies reasonable features for each class. The model’s misclas-
sifications are justifiable due to the similarity of the different classes, and,
despite these errors, the model’s overall ability to identify relevant features
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Table 5: Model sizes and classification performance with mobile optimization.

Task Base model Quant. Size (MB) Accuracy Sensitivity Specificity F-1 Score

b
in
ar
y

VGG16
✗ 268.44 .894 (±.049) .841 (±.075) .740 (±.143) .851 (±.070)
✓ 67.22 .894 (±.053) .841 (±.077) .740 (±.143) .851 (±.072)

InceptionResNetV2
✗ 350.53 .735 (±.056) .562 (±.110) .220 (±.266) .533 (±.130)
✓ 89.42 .702 (±.113) .585 (±.105) .350 (±.310) .548 (±.127)

NASNetMobile
✗ 336.37 .830 (±.036) .765 (±.032) .640 (±.070) .769 (±.036)
✓ 85.03 .738 (±.060) .750 (±.065) .780 (±.123) .702 (±.058)

MobileNetV3Small
✗ 211.05 .932 (±.043) .883 (±.070) .790 (±.129) .902 (±.064)
✓ 53.01 .915 (±.046) .851 (±.067) .730 (±.116) .875 (±.068)

MobileNetV3Large
✗ 382.93 .928 (±.042) .884 (±.090) .800 (±.200) .891 (±.074)
✓ 96.17 .923 (±.051) .875 (±.106) .780 (±.225) .884 (±.089)

m
u
lt
ic
la
ss

VGG16
✗ 318.21 .779 (±.053) .779 (±.054) .927 (±.018) .777 (±.057)
✓ 79.63 .782 (±.044) .782 (±.044) .927 (±.015) .779 (±.050)

InceptionResNetV2
✗ 485.12 .398 (±.088) .398 (±.088) .799 (±.027) .388 (±.084)
✓ 122.48 .308 (±.064) .306 (±.065) .769 (±.022) .243 (±.075)

NASNetMobile
✗ 259.23 .470 (±.074) .470 (±.074) .822 (±.026) .467 (±.076)
✓ 65.51 .471 (±.095) .471 (±.095) .823 (±.034) .449 (±.102)

MobileNetV3Small
✗ 225.77 .847 (±.061) .847 (±.055) .949 (±.014) .843 (±.065)
✓ 55.62 .833 (±.066) .833 (±.066) .944 (±.020) .831 (±.066)

MobileNetV3Large
✗ 278.73 .881 (±.055) .881 (±.055) .962 (±.018) .879 (±.058)
✓ 69.98 .880 (±.046) .879 (±.046) .961 (±.014) .875 (±.052)

highlights its potential in our specific use-case scenario, providing more reli-
ability on the model’s predictions.

6. Impact of mobile optimization

Table 5 shows the great advantage of using quantization to reduce the
memory footprint of the models without requiring their retraining. As we
can note, the original size of the DL models trained for mpox detection con-
siderably varies for the different base architectures, ranging between 200 MB
and almost 500 MB, which can limit their implementation on several personal
mobile devices. On the other hand, by using quantization to lower the oper-
ations’ precision from 32-bit floats to 16-bit floats, all the models’ sizes are
reduced by approximately 4 times. For example, the size of VGG16 tuned
for binary classification dropped from 268.44 MB to just 67.22 MB, while
the size of InceptionResNetV2 for multiple classes (i.e., the most demanding
model in terms of memory) has been reduced by 74.75%, limiting its memory
footprint from 485.12 MB to 122.48 MB.
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Furthermore, it is important to highlight that the impact of quantization
on the classification performance of the majority of the examined architec-
tures remains relatively modest, resulting in an average reduction of no more
than 1% in accuracy.

However, it is noteworthy that InceptionResNetV2 and NASNetMobile
exhibit more pronounced performance penalties due to quantization. Specifi-
cally, InceptionResNetV2 experiences a decline of approximately 3% and 9%
in accuracy in the binary and multiclass settings, respectively. Meanwhile,
NASNetMobile’s accuracy registers a noteworthy 10% reduction, albeit ex-
clusively in the binary task. Remarkably, in the multiclass experiments, it
performs nearly on par with its non-quantized counterpart. We suspect that
this can be attributed to the inherent effect of quantization, which com-
promises the precision of both weight parameters and activation functions.
Consequently, this effect is more pronounced in larger networks, such as In-
ceptionResNetV2 and NASNetMobile. Additionally, it is worth noting that
these models already exhibit relatively lower accuracy levels prior to quanti-
zation, and when this factor is coupled with quantization, it results in more
substantial performance losses compared to the other models.

Besides the memory size and classification performance, we also conduct
an empirical evaluation of the models’ time complexity. Even though our
application scenario does not require real-time predictions, fast computation
represents a key requirement when dealing with mobile personal devices like
smartphones. Therefore, to perform this type of experiment, we rely on the
benchmark tool provided by TensorFlow Lite (TFLite) 9, the Google-released
mobile library for deploying models on mobile devices, microcontrollers, and
other edge devices. Specifically, we first convert our CNN models to the
TFLite format; then, we deploy such models on the TFLite Android bench-
mark app10 that executes each model 50 times with synthetic input to collect
reliable statistics related to the inference times on a real Android smartphone.
Moreover, in order to get insights on the models’ performance on different
hardware settings, we perform our evaluation on 2 smartphones, by using
both CPU (with multithreading) and GPU for the computation: (i) a recent
Google Pixel 6a released in 2022, with the latest Android 13 operating sys-
tem, an Octa-Core CPU (2x2.80 GHz Cortex-X1, 2x2.25 GHz Cortex-A76,

9https://www.tensorflow.org/lite
10https://www.tensorflow.org/lite/performance/measurement
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Table 6: Average inference times (in seconds) on different mobile devices, by using both
CPU (4 threads) and GPU for the computation.

Google Pixel 6a Xiaomi Mi 9T
Task Base model Quant. CPU GPU CPU GPU

b
in
ar
y

VGG16
✗ .429 (±.051) .031 (±.002) .606 (±.013) .245 (±.011)
✓ .104 (±.013) .031 (±.002) .430 (±.021) .245 (±.011)

InceptionResNetV2
✗ .134 (±.012) .057 (±.007) .515 (±.050) .188 (±.016)
✓ .064 (±.005) .057 (±.007) .441 (±.039) .188 (±.016)

NASNetMobile
✗ .041 (±.014) .023 (±.003) .206 (±.051) .062 (±.029)
✓ .033 (±.005) .023 (±.003) .421 (±.037) .060 (±.027)

MobileNetV3Small
✗ .018 (±.004) .011 (±.002) .056 (±.014) .033 (±.010)
✓ .011 (±.002) .011 (±.002) .104 (±.023) .032 (±.010)

MobileNetV3Large
✗ .018 (±.010) .013 (±.004) .067 (±.028) .032 (±.019)
✓ .014 (±.004) .013 (±.003) .140 (±.040) .032 (±.020)

m
u
lt
ic
la
ss

VGG16
✗ .423 (±.067) .031 (±.002) .612 (±.012) .249 (±.012)
✓ .117 (±.084) .031 (±.002) .196 (±.007) .249 (±.012)

InceptionResNetV2
✗ .139 (±.008) .059 (±.008) .243 (±.007) .192 (±.020)
✓ .065 (±.004) .059 (±.008) .141 (±.016) .192 (±.020)

NASNetMobile
✗ .036 (±.009) .021 (±.002) .084 (±.022) .051 (±.021)
✓ .031 (±.003) .021 (±.003) .127 (±.015) .052 (±.021)

MobileNetV3Small
✗ .011 (±.007) .009 (±.003) .028 (±.016) .024 (±.015)
✓ .008 (±.003) .009 (±.003) .040 (±.009) .040 (±.009)

MobileNetV3Large
✗ .016 (±.005) .012 (±.001) .047 (±.014) .029 (±.007)
✓ .014 (±.002) .012 (±.001) .062 (±.004) .029 (±.007)

and 4x1.80 GHz Cortex-A55), and the Mali-G78 MP20 GPU; and (ii) an
older Xiaomi Mi 9T, released in 2019, with Android 10, an Octa-core CPU
(2x2.2 GHz Kryo 470 Gold and 6x1.8 GHz Kryo 470 Silver), and an Adreno
618 GPU.

Table 6 summarizes the average inference times (in seconds) of the con-
sidered models in the different hardware settings, both for the binary and
multiclass classification tasks, highlighting in bold face the best results for
each device and task. It is clear that even the largest models such as VGG16
and InceptionResNetV2 can provide a prediction in less than 0.612 seconds
when deployed on modern smartphones. The benefit of using quantization
can be mainly observed when the computation is based on CPU, reducing
the inference time by 50% at least in some cases (e.g., VGG16 and Incep-
tionResNetV2 with Google Pixel 6a). On the other hand, all models can be
executed by the GPU in less than 0.059 seconds on Google Pixel 6a and 0.245
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seconds on Xiaomi Mi 9T, thanks to its ability to parallelize all operations
that are involved in a deep neural network [82].

Finally, we can also note that the CNN that performs best in terms of
classification accuracy, i.e., MobileNetV3 (both Small and Large variants), is
also the one with the lowest inference time. In fact, while the larger variant
provides a prediction for binary and multiclass classification, respectively, in
not more than 0.018 and 0.016 seconds on Google Pixel 6a and not more than
0.140 and 0.062 seconds with Xiaomi Mi 9T, MobileNetV3Small requires only
not more than 0.018 and 0.011 seconds on the Google phone and not more
than 0.104 and 0.040 seconds on the Xiaomi, thus proving the feasibility of
efficiently performing the whole data processing and prediction tasks directly
on mobile devices.

7. Conclusions and future work

The paper introduces a novel m-health system for the preliminary screen-
ing of mpox infections through pictures of skin rashes and eruptions taken
with common smartphone cameras. The system is designed to be entirely
executed on mobile devices and is characterized by the use of Transfer Learn-
ing to adapt state-of-the-art Convolutional Neural Network (CNN) models
for image classification, mobile-oriented optimization of the models through
quantization, and the use of Grad-CAM as eXplainable AI (XAI) technique
for technical validation.

While the proposed solution cannot replace the expertise of a medical
professional, it serves as a preliminary alert system for self-examination in
at-home settings, particularly in areas with limited medical assistance and
where continuous Internet connectivity is not assured. In addition, such a
system can play a pivotal role for supporting the preliminary screening of
large populations, alleviating the burden on medical facilities, and limiting
the dissemination of the virus, aiding in the prompt identification of emerging
outbreaks by detecting new cases as soon as they arise.

The paper also presents the Mpox Close Skin Images (MCSI) dataset,
which contains skin images (possibly with lesions), and no other background
information. Images have been manually selected and cropped from samples
available in other public datasets collected from online resources in uncon-
trolled environments. Therefore, MCSI contains images that are homoge-
neous with respect to the image content (skin and lesion) but heterogeneous
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with respect to other factors like skin color, lighting conditions, and acquisi-
tion camera.

We use MCSI to evaluate the classification performance of the proposed
system, using both binary (Mpox vs. All) and multiclass classification tasks
with a 10-fold stratified cross-validation approach. The results showed that
MobileNetV3Small achieved the best performance in binary classification
(0.930 of Accuracy), while MobileNetV3Large was the best model to distin-
guish the different classes (0.882 of Accuracy). Mobile optimization through
quantization allowed us to reduce the models’ sizes by 4× without signifi-
cantly impacting their performance. The models have also been evaluated
for their complexity in terms of execution time on commercial smartphones,
and they all obtained performances under 1 second to provide the prediction,
with quantization further reducing the inference time on CPUs.

Despite achieving promising results, our study has four main limitations.
First, the limited number of training data. Second, the lack of other metadata
information, that can help evaluate the data heterogeneity with respect to
various factors like gender, race, age, and physical conditions. This is clearly
relevant for ethical data collection and fair model training. Third, MCSI con-
tains images derived from online resources that were manually selected and
cropped by a skilled operator, while in the intended application the images
will be self-acquired and possibly cropped by the end-user or a caregiver by
following the application instructions. We cannot exclude that self-acquired
images will have different properties that can impact the performance of the
detection models. The fourth limitation is related to annotations’ reliability,
in terms of skin lesion type: MCSI derives the annotations from the existing
datasets and the source of the annotations is not specified.

A possible solution to address the first three problems above is to release
a prototype application implementing the proposed detection system. The
application could help remotely collect new images, hence creating a larger
dataset to improve the current detection model. Also, the application could
easily collect additional user information, like gender and age. Another ad-
vantage of this solution is that the images would be collected by the end-users
or their caregiver. In order to address the fourth limitation, but also to ef-
fectively design the proposed application and clinically validate the related
results, it is essential to establish a strict collaboration with medical experts,
especially dermatologists and virologists. The collaboration could also pro-
vide additional data to further investigate the algorithms performances.

In addition, from a technical point of view, future research includes in-
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vestigating the Federated Learning (FL) technique in this use case scenario,
which has the potential to improve the m-health system in various ways.
First, FL facilitates the collaborative training of the detection model by mo-
bile devices without the need to share users’ data with a central server or
other devices. Each device gathers data locally, trains a model using it, and
then shares only the model updates with a central server, which aggregates
and distributes them back to all the devices. This approach can address pri-
vacy concerns since sensitive health data remains under the user’s control.
Secondly, training the model with data from multiple devices can improve
the accuracy of the model by incorporating more diverse data. This is par-
ticularly crucial for the detection of skin lesion, where the types of lesion
and the color of the skin can vary significantly between various populations.
Finally, FL may enable real-time updates of the detection model as new
data becomes available, thus aiding the system to adapt to data changes and
further enhance the model’s accuracy over time.
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