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Abstract: 

Smartphone users are beyond two billion worldwide. 

Heavy users of the texting application rely on input 

prediction to reduce typing effort. In languages 

based on the Roman alphabet, many techniques are 

available. However, Japanese text is based on 

multiple character sets such as Kanji (Chinese-like 

word symbols), Hiragana and Katakana syllable sets. 

For its time/labor intensive input, next word 

prediction is crucial. It is still an open challenge. To 

tackle this, a hybrid language model is proposed. It 

integrates a Recurrent Neural Network (RNN) with 

an n-gram model. RNNs are powerful models for 

learning long sequences for next word prediction. 

N-gram models are best at current word completion. 

Our RNN language model (RNN-LM) predicts the 

next words. According the “price” of the 

performance gain paid by a higher time complexity, 

our model best deploys on a client-server 

architecture. Heavily-loaded RNN-LM deploys on 

the server while the n-gram model on the client. Our 

RNN-LM consists of an input layer equipped with 

word embedding, an output layer, and hidden layers 

connected with LSTMs (Long Short-Term 

Memories). Training is done via BPTT (Back 

Propagation Through Time). For robust training, 

BPTT is elaborated by learning rate refinement and 

gradient norm scaling. To avoid overfitting, the 

dropout technique is applied except for LSTM. Our 

novel model is compact (2 LSTMs, 650 units per 

layer), indeed. Due to synergetic elaboration, it 

shows 10% lower perplexity than Zaremba’s 

excellent conventional models in our Japanese text 

prediction experiment. Our model has been 

incorporated into IME (Input Method Editor) we call 

Flick. On the Japanese text input experiment, Flick 

outperforms Mozc (Google Japanese Input) by 16% 

in time and 34% in the number of keystrokes. 
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Abstract— Smartphone users are beyond two billion worldwide. 

Heavy users of the texting application rely on input prediction to 

reduce typing effort. In languages based on the Roman alphabet, 

many techniques are available. However, Japanese text is based 

on multiple character sets such as Kanji, Hiragana and Katakana. 

For its time intensive input, next word prediction is an open 

challenge. To tackle this, a hybrid language model is proposed. It 

integrates a Recurrent Neural Network (RNN) with an n-gram 

model. RNNs are powerful models for learning long sequences for 

next word prediction. N-gram models are best at current word 

completion. Our RNN language model predicts next words. 

According the “price” of the performance gain paid by a higher 

time complexity, our model best deploys on a client-server 

architecture. Heavily-loaded RNN-LM deploys on the server 

while the n-gram model on the client. It consists of an input layer 

equipped with word embedding, an output layer, and hidden 

layers connected with LSTMs (Long Short-Term Memories). 

Training is done via BPTT (Back Propagation Through Time). 

For robust training, BPTT is elaborated by learning rate 

refinement and gradient norm scaling. To avoid overfitting, the 

dropout technique is applied except for LSTM. Due to synergetic 

elaboration, it shows 10% lower perplexity than Zaremba’s 

excellent conventional models in our experiment. Our model has 

been incorporated into IME (Input Method Editor) we call Flick. 

In our experiment, Flick outperforms Mozc (Google Japanese 

Input) by 16% in time and 34% in the number of key strokes. 

 
Index Terms—Input Method Editor, word prediction, hybrid 

language model, client-server model, Recurrent Neural Networks, 

Back Propagation Through Time 

I. INTRODUCTION 

N today’s world, billions of users rely on smartphones and 

mobile communication technologies in their personal and 

work time. In Japan, the Japanese Ministry of Internal Affairs 

and Communications, 2017, has reported the number of 

smartphone users reached 60.48 million [25]. The widespread 

use of smartphones for text-based messaging has increased 

on-the-job flexibility, allowing people to decide when and 

where to exchange messages. It can also impact on 

productivity. On smartphones, a software keyboard is used to 

input texts. Software keyboards and their providing services 

such as next word prediction, shape the speed and accuracy 

with which smartphone users communicate. 

As Komachi and Kida [32] reported, inputting texts via a 

software keyboard requires more time than by traditional 

keyboards. This negative impact on productivity is partly 

language-dependent. Recent findings suggest that inputting 

Japanese text requires an even larger amount of typing than 

other languages. 

[47] shows there are 2.71 billion characters in 34.2 million 

English Twitter posts (tweets) and there are 625 million 

characters in 13.8 million Japanese tweets. In other words, the 

average length of English is 79.23 characters, while that of 

Japanese tweets is 45.28 characters. These results seem to 

suggest inputting Japanese is easier than English. 

However, attention should be paid to the fact that inputting 

most Japanese characters requires typing multiple keys, since 

there is a large set of characters that represent full syllables, as 

opposed to the other writing systems, which approximately 

have one letter per phoneme. For instance, a Kanji character “

東” (east) requires typing “higashi” (i.e. 7 keys).  

More concretely, we calculated Japanese keystrokes per 

character (KSPC). KSPC is proposed in [37]. To measure the 

average Japanese KSPC, we used the core data of the Balanced 

Corpus of Contemporary Written Japanese [38]. This corpus 

contains equal amounts of text data from different domains 

(poems, magazine articles, blogs, government documents, and 

others). This result showed the average number of keystrokes to 

input a single Japanese character is 2.3, i.e. the average number 

of keystrokes to input Japanese tweets is (2.3 keystrokes * 

45.28 character =) 104.14. It exceeds that one (79.23 

keystrokes) of English tweets. According to [52], the average 

number of characters inputted by ordinary people is 5.4 per 

second. Based on the above estimate of the average size of 

Japanese tweets, we get 104.14 keystrokes / 5.4 seconds = 

19.29 seconds on average for each Japanese tweet, while (79.23 

keystrokes / 5.4 seconds =) 14.67 seconds are enough for an 

English tweet. Japanese requires around 25% larger amount of 

typing than English. 

In detail, Japanese relies on multiple character sets such as 

Kanji (Chinese word symbols) as well as the two syllable sets 

Hiragana and Katakana. Katakana and Hiragana have 46 basic 

letters each and some modified forms. Totally, the three sets 

include over 6,000 characters, which obviously cannot be 

assigned to the keys of a physical keyboard and even less on a 

mobile device’s software keyboard. Thus, Japanese is usually 

input using special software tools called Input Method Editors 

(IMEs). To reduce input time and key strokes, Japanese IMEs 

provide character sets conversion (e.g. alphabet-to-Kana, 

Kana-to-Kanji) and current/next word prediction. IMEs are 

used on personal computers as well as smartphones. In case of 

smartphones, IMEs are used via software keyboards instead of 

physical keyboards. Many software keyboards used on 

smartphones offer a predictive text input function. Such 

functions predict the current word as well as the next word 

based on the characters typed so far. To decrease the high (25% 

more than English) input cost of Japanese, it is very important 

to predict the next words. Inputting Kanji has remarkably high 

cost since Kanji consists of one or more syllables per character 

and has many homophone characters (e.g. over 50 Kanji 

characters for “kai”: 解, 会, 回, 貝, 快, 戒, 階, …, 介, 櫂). It is 

especially important to decrease, by word prediction, the many 

keystrokes needed for Kanji conversion (e.g. 5-10 keystrokes to 

obtain “櫂” for “kai” even having a window of 5-10 character 

width). Our challenge is improving current and next word 

prediction to decrease the high input cost of Japanese, 

especially Kanji. 

Using prefixes or previous words is effective to input 

prediction to reduce typing effort. To solve Japanese input 

problems mentioned above, Google Japanese input technology 

called Mozc [34] can predict both the current word and the next 

words, using a n-gram language model (n-gram LM). A 

drawback of the n-gram model is that it heavily depends on the 

training data used for learning. It is well-suited for extremely 

large amounts of training data [19]. In other words, Mozc has 

difficulty in accurate prediction of the next words since it 
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depends on the availability of sufficiently long series of 

previous word inputs. Namely, the performance of Mozc has 

turned out to be insufficient for user-acceptable prediction of 

next words. 

On the other hand, Recurrent Neural Networks (RNNs) have 

been applied successfully to process the sequential data in 

speech recognition by Sak et al. [56]. They use the 

backpropagation through time (BPTT) [62] to Long 

Short-Term Memory (LSTM) [22], which is a variant of RNNs, 

to address the vanishing/exploding gradient problem [6] of the 

original RNN paradigm. RNNs are widely applied to text input 

prediction. Alsharif et al. [3] proposed RNN combined with 

Finite State Transducer (FST) [46] for the challenging task of 

keyboard gesture decoding. Their work deals with a very large 

lexicon decoding on a synthetic large scale dataset. It combines 

LSTM with conventional FST decoding. However, unlike a 

conventional software keyboard layout (e.g. Qwerty), Japanese 

Kana layout (e.g. 12 keys layout, Godan layout) keyboard is not 

suitable for gesture inputting. Most recently, Hard et al. [20] 

proposed a technique for mobile keyboard prediction. It uses a 

federated decentralized learning technique to train an LSTM 

model. In spite of expected high cost-performance, it has 

security problems of due to potential poisoning attacks by 

mischievous users taking part to the federation. Yu et al. [60] 

proposed on-device LSTM based text input prediction. It 

approaches to decrease the size of the language model but 

sacrifices a word perplexity in exchange for resizing. 

This paper tackles the problem of seriously inefficient 

Japanese text inputting on smartphones. Our novel method 

focuses on predicting the next words in Japanese text input. It 

relies on an elaborated Recurrent Neural Network based 

language model (RNN-LM) and improves over previous works 

such as Mozc [34] that uses just n-gram. Mikolov et al. [43] 

have shown that RNN-LM interpolated with n-gram LM is a 

better model than RNN-LM only. We take a distinct, though 

related, approach by loosely integrating RNN-LM with an 

n-gram LM. RNN-LM functions for next word prediction while 

n-gram LM for current word completion. Considering the 

cost-performance of different architectures, we opted for a 

simple yet effective client-server model. The heavily-loaded 

RNN-LM is deployed on servers. The n-gram language model 

is deployed on local clients. Due to security threats, we do not 

use federated learning [20]. 

In order to increase the next-word prediction performance, 

our RNN-LM works as follows. For dimensionality reduction, 

a continuous bag-of-words algorithm [40] condenses sparse 

information (>100K) in an input layer to dense one (<1K). This 

reduces the computational burden of huge vocabulary due to 

Japanese multiple characters such as Kanji and Kana. 3 hidden 

layers are included each having 650 units for decreasing 

perplexity. To create an elaborated Recurrent Neural Network 

(RNN) model, hidden layers are combined with Long 

Short-Term Memory (LSTM) [22]. They are used as input and 

projection (or output) layers of LSTM. Considering 

cost-performance, we have two LSTMs. LSTM is known to be 

capable of robust training by solving the vanishing gradient 

problem [4], [6], [21] as described in Section IV. Back 

Propagation Through Time (BPTT) [62] in LSTM is used to 

prevent the learning from vanishing/exploding gradient. 

Usually, BPTT is provided with an efficient weight updating 

mechanism called Adam [30] that automatically adjusts the 

learning rates. To avoid exploding gradients, our BPTT also 

uses a gradient norm scaling technique [49]. The dropout 

methodology advocated by Zaremba et al. [63], which 

randomly masking only some units in input of hidden layers, is 

adopted. This elaboration reduces overfitting by keeping 

LSTM’s valuable memorizing ability intact. 

The effects of our elaboration model are shown by perplexity 

in Japanese text prediction experiment. It is compared with 

excellent conventional models such as Zaremba’s. Our model is 

incorporated in an IME we call Flick. The extensive evaluation 

of Flick and its comparison with Mozc proves that Flick 

outperforms Mozc in terms of both elapsed time of inputting 

Japanese texts and the number of keystrokes. 

The results introduced and experimentally evaluated are: 

 Considering time intensive Japanese text input on mobile 

devices, our novel model resulted in an architecture 

combining a n-gram model client with a synergistically 

elaborated compact RNN-LM server core (2 LSTMs, 650 

units per layer), indeed. 

 Despite the compact architecture, the result of synergetic 

elaboration showed lower perplexity in time intensive 

Japanese text input prediction. 

 As a result, the proposed technique was applied by 

implementing a novel IME called Flick which is really 

used as a smartphone application. Compared with 

conventional IME without RNN, Flick outperformed a 

conventional Japanese IME (Mozc). 

 Results of the novel model’s contributions (proposed 

ideas) were evaluated by the experiment as follows: 

(1) Our synergetic elaboration showed 10% lower 

perplexity than Zaremba’s excellent conventional 

models.  

(2) Flick outperformed the conventional IME without 

RNN called Mozc (Google Japanese Input) by 16% 

saved in the input time and 34% saved in the number 

of key strokes 

The paper is organized as follows: Section II introduces and 

reviews related works in detail. Section III describes the details 

of our method. Section IV shows the results of evaluation 

experiments. Section V draws the conclusion. 

II. RELATED WORK 

A. Input Method 

There are several approaches to predict input text on mobile 

phones. Using prefixes or previous words is effective to input 

prediction to reduce typing effort. Currently, phrase-based 

predictive input systems are widely used [32]. POBox [41] is a 

predictive input technology that allows users to enter just a part 

of a word and then searches for similar words by spelling, 

pronunciation, or shape. It relies on a static database of words. 

[33] proposed a corpus-based predictor that also requires a 

document storage system. In [16], a predictive input engine is 

                  



proposed, which uses the input string and the previous inputs’ 

history to generate a candidate list of inputs to be presented to 

the user. The engine generates a candidate list by finding all 

previous inputs whose prefix matches the current input string 

and ordering them (predicted input candidates) by frequency. 

Some research works approach the input of multilingual text. 

Dictionary-based techniques have been proposed since long 

[27], [57]. However, they have limitations. Thesaurus-based 

approaches are known to perform badly if unknown words and 

new or buzz words are input [51]. Furthermore, homographs in 

Japanese (Kanji characters that have multiple readings) cannot 

be addressed with Thesaurus-based approaches [28].  

Chinese modeless input method [10] can automatically 

switch the input mode when a user changes language between 

Chinese and English. Character-surface n-grams are exploited 

to detect ASCII strings with high probability to discriminate 

Chinese from English. Nevertheless, their method suffers from 

the so-called “zero frequency problem” [50]. Also, there are 

many cases between which it is difficult to discriminate. 

Consequently, false positives can occur if the n-gram length n is 

small, and switching delay can occur if n is too high. Character 

feature based approaches (e.g., the distribution of 

upper/lowercase) have succeeded but just in single character 

recognition for point-wise natural language processing [48]. 

Other researchers focused ways to detect a change in the 

language used for input. [1] tried to find foreign inclusions 

within German text. This approach improves parsing accuracy 

[2]. However, it is specific to kindred alphabetic languages. A 

method called TypeAny for multilingual input has been 

introduced in [14]. However, TypeAny requires Japanese users 

to press at the end of each word a delimiter key which they 

would not normally need to press, as Japanese is (like Europe’s 

Uralic languages Estonian, Finnish and Hungarian) an 

agglutinative language where different morphemes can be 

added to words to determine their meaning [18]. 

To solve all these problems, a method based on multiple 

n-gram was proposed [23]. This method uses character surface, 

character-type, and history sequence features. It exploits two 

abstract features (character-type and history sequence) to 

handle the so-called zero frequency problem [50], achieving the 

generation of a fully discriminative model, i.e. one capable of 

making a classification suggestion for any word. As the n-gram 

system focuses on binary classification (Japanese or 

non-Japanese), texts including different languages can be 

efficiently managed. As to the use of n-gram features, trigrams 

(n-grams where n=3) have also been used for detecting whether 

a text is spam, which is also a binary classification problem 

[11]. 

To improve over the “pure” n-gram approach, we previously 

proposed a hybrid method [24] that combines n-gram with 

non-Japanese word dictionary matching. Using the dictionary, 

false positives against non-Japanese words decrease [12]. This 

technique decides whether current user input should be 

converted into Kana by looking at its encoding as a set of 

enhanced n-grams and considering both characters and 

character-type features. Such encodings are then classified via a 

linear SVM [17], [26] to achieve high-speed learning with 

high-accuracy for Kana-to-Kanji conversion. Both n-gram 

discrimination and non-Japanese word dictionary matching are 

exploited before performing Kana-to-Kanji conversion. Our 

previous method [24] follows the line of an open source 

software, Mozc, derived from the original Google IME. Using 

n-gram based discrimination jointly with dictionary matching, 

the Mozc techniques make up for the shortcomings of the other. 

Mozc considers the conditional probability P(y|x) of 

sentence y, given the input Hiragana string x. The input 

prediction problem given a prefix x can be formulated as a 

problem of deriving word y to maximize P(y|x). According to 

Bayes’ theorem, this maximization problem can be expressed 

as maximization of the product of a language model P(y) and a 

Kana-Kanji model P(x|y). We write: 

�̂� = argmax 𝑃(𝑦|𝑥) = argmax 𝑃(𝑦)𝑃(𝑥|𝑦) (1) 

𝑃(𝑦) = ∏ 𝑃(𝑤𝑖|𝑐𝑖)𝑃(𝑐𝑖|𝑐𝑖−1)

𝑛

𝑖=1

 (2) 

𝑃(𝑥|𝑦) = ∏ 𝑃(𝑟𝑖|𝑤𝑖)

𝑛

𝑖=1

 (3) 

where ci is the language class (e.g. part-of-speech, inflected 

forms) of word wi. P(wi|ci) is the probability of word 

occurrence, P(ci|ci-1) is the probability of class transition, ri are 

candidate readings of word wi, and finally P(ri|wi) is the 

probability of reading word wi as ri. 

As we mentioned before, both (i) the identification of the 

word currently being typed and (ii) the prediction of the next 

words that follow the current one are important for efficient 

typing. Due to time/labor intensive input of Japanese, (ii), the 

prediction of the next words is crucial. Mozc can handle both 

problems. However, Mozc is weak in accurate prediction of 

next words since this prediction depends on a sufficiently long 

series of previous word inputs. 

Alsharif et al. proposed a keyboard gesture decoding method 

[3] using Long Short-Term Memory (LSTM) [22] and Finite 

State Transducer [46]. While this method presupposes to use a 

software keyboard having a conventional PC-like layout (e.g. 

Qwerty), usually Japanese Kana layouts (e.g. 12 keys layout, 

Godan layout) keyboard is not designed to input a word by a 

single stroke. For this reason, their method is not suitable for 

Japanese Kana layout keyboard. On the other hand, our 

approach supports not only conventional PC-like layout but 

also Japanese Kana layout. Additionally, this task is limited to 

predict or complete the word currently input. 

[20] proposed the mobile keyboard prediction using 

federated learning, a decentralized learning technique to train 

models such as neural networks on users’ devices, uploading 

only ephemeral model updates to the server for aggregation, 

and leaving the users’ raw data on their device. While this 

method is based on the ethical doctrine that human nature is 

fundamentally good, research like [5] has shown that inference 

as well as poisoning attacks (injecting incorrect data) problem 

by mischievous users taking part to the federation are possible. 

Additionally, detecting poisoning attack from NNs’ parameter 

is difficult because it is too large parameters to detect. Thus, our 

approach does not consider the user’s feedback while learning a 

                  



language model. 

[60] proposed the recurrent neural network based text input 

prediction designed for mobile devices. It compacts RNN-LM 

by knowledge distillation, shared matrix factorization, and 

quantization. However, it sacrifices a word perplexity in 

exchange for language model size. On the other hand, our 

approach overcomes this tradeoff by putting the RNN-LM to 

the server and communicating via WebSocket [61], which is an 

interface to enable Web applications to maintain bidirectional 

communications with server-side processes. 

Among commercial software tools, SwiftKey
1
 seems to use a 

neural network based predictive input. Nevertheless, there is no 

technical paper describing its internals. To the best of our 

knowledge, SwiftKey’s
 
algorithm and performance data have 

not been made available to the research community. 

B. Language Models 

The n-gram model, which was first introduced in [53], has 

been applied successfully to natural language processing. Here, 

the conditional probability of the next word is calculated by a 

(n-1)-th order Markov model with the previous (n-1) words as 

states. If the total number of words in the vocabulary is V, the 

number of possible states is therefore of the order of V
n-1

. When 

n increases, however, the total number of states explodes 

exponentially (curse of dimensionality). 

For this reason, even for small vocabularies, practical values 

of n range from 3 (trigrams) to about 5, and longer sequences 

cannot be practically handled. Simple n-gram models also 

suffer from the so-called zero frequency problem [50] 

regarding the estimation of the likelihood of a word occurring 

for the first time. Although several methods have been 

proposed, their suitability has been based on empirical 

evaluation rather than a well-founded model. [36] proposed a 

cache model, which assumes that most recently used words are 

often used again. 

The application of Machine Learning to natural language 

processing has been attempted many times. 

For example, [44] proposed language models based on 

recurrent neural networks (RNNs) [15]. The RNN language 

model overcomes the curse of dimensionality problem by 

treating word sequences as attribute vectors. This way, we do 

not need one bit per word of vocabulary (multiplied by n) to 

represent the n-gram sequence. Rather, with the vector 

representation, we need one bit per attribute, where attributes 

describe character sequences independently from the words 

they contain (i.e., two different sequences may share part of the 

attributes). Computing attribute vectors amounts to computing 

a projection from the sparse space of word sequences to a 

denser data space. This projection is adjusting itself during the 

neural network training. It has been shown that it can capture 

semantic information about words [42]. For example, words 

represented by similar vector to the word “France” are “Spain”, 

“Belgium”, “Netherlands”, “Italy” and so on. 

[8] introduces an algorithm using machine learning which 

trains itself using Neural Networks. Moreover, it proposes 

 
1 https://swiftkey.com/ 

using it for the generation of replies, which is quite similar to 

Google’s EMail reply by single tap suggestions. 

[29] addresses the inefficiency issue by using long-term 

memory-recursive neural networks to generate text sequences 

in real-time conditions. It predicts a single data point at a time 

by considering a likelihood for the many possible word 

suggestions. Their system is able to generate the next real-time 

word in a wide variety of styles. 

Quite good results can be reached by narrowing the text 

content subject as [7] shows. Moreover, this approach tries to 

address the synonym problem, but in a narrowed text content 

field of anamneses language. 

However, current techniques focus on western languages. 

Attempts to apply them one by one to Japanese language ended 

up in the current poor text input systems for Japanese language 

of today’s smartphones. In addition to the previously 

mentioned problem with the non-isomorphism of “painted” 

Kanji and their pronunciation and, moreover, with their 

(context-dependent) meaning, Japanese language analysis 

requests the consideration of (1) word separation (which does 

not appear in the word sequence), (2) its above mentioned 

mixture of Kanji, Hiragana, and Katakana symbols, and (3) 

much longer phrases to analyze the nominal meaning of a 

sentence due to its grammatical structure and, moreover, 

topical and cultural context knowledge on how to express 

intended meanings by nominal words, which is a bit different to 

the western way of expressing meanings in a more direct way of 

choosing words. 

III. PROPOSED MODEL 

A. Predictive Text Input by Hybrid Language Models 

Predictive text input functions predict the next word based on 

the context. For example, as shown in Fig.1., if “カレーを” 

(curry wo) is input, then IME suggests “食べる” (eat), “作る” 

(cook) and the like.  

This feature can decrease typing effort, and most IMEs for 

smartphones implement it. However, as discussed before, it is 

difficult to accurately predict next words using an n-gram 

approach, since the accuracy of this prediction depends on 

 
Fig. 1. Text input prediction after inputting “カレーを” (curry wo) 

                  



considering a large 𝑛 , i.e. a sufficiently long sequence of 

previous inputs. To cope with this problem, our IME, which we 

call Flick, uses a hybrid language model. Basically, our hybrid 

model adds an RNN-based language model [15] (generally 

called RNN-LM [44]) for the next word prediction to the Mozc 

[34] approach (i.e. integration of a unigram and bigram 

language model) for the current input word conversion and 

completion. The Japanese input method editor Mozc was 

designed for the platform independent use and is adopted from 

Google Japanese Input, but does not suffer from extensive word 

conversion tables, which means, of course a slight loss of 

performance, which is partly compensated by custom 

directories. 

While RNN-LM provides effective prediction considering 

long contexts, dealing with large vocabulary (especially proper 

nouns) by RNN-LM is difficult due to computational cost. By 

contrast, while n-gram LMs are not suited for prediction 

considering long context due to the  exponentially 

computational cost of building the language model, n-gram LM 

can deal with large vocabulary via a lossless compression of 

dictionary and language models [34]. In addition, manually 

parameter adjustment to n-gram LM is relatively easier than to 

RNN-LM. For compensating each weak point by each 

advantage, we integrated RNN-LM (140K words vocabulary) 

with n-gram LM (1.16M words vocabulary), using the 

client-server model. The n-gram LM is used on mobile devices 

since this LM requires a relatively small amount of 

computational cost by limiting a word frequency model to 

𝑛 =  1  (unigram) and a part-of-speech transition model to 

𝑛 =  2 (bigram). By contrast, the RNN-LM is deployed on the 

server due to the puny computational capacities of mobile 

devices.  

Zaremba et al. [63] compared word perplexity (see Section 

IV for details) among various language models by using Penn 

Treebank corpus [40]. These results show that models 

combined with several models are better than single models. 

However, rich models (e.g. a model taking average from 38 

models) need high computational capacity. For this reason, we 

need to consider the cost-performance of our model in practice. 

In other words, considering the trade-off between quality of 

prediction and cost of prediction (e.g. amount of numerical 

computation and memory usage) is important. Accordingly, we 

chose the hybrid model of our elaborated RNN-LM (details are 

described in Section III-B) and n-gram LM. 

 

B. Recurrent Neural Networks Language Model 

RNNs are a variety of neural networks that make it possible 

to model long-distance dependencies. Unlike feed-forward 

neural networks, RNNs are effectively applicable to the 

prediction of (usually long) sequences of words. As shown in 

Fig. 2, we elaborate RNN-LM as follows: 

1. The word of current time step is converted into a 

one-hot-encoded sparse vector (𝒙𝑡). By using a continuous 

bag-of-words model, the word-embedding layer converts a 

one-hot-encoded sparse vector (𝒙𝑡) into dense vector (𝒉𝑡
0) 

for dimensionality reduction aiming at an efficient 

processing of RNN. 

2. During training, Zaremba’s dropout masks randomly units 

of hidden layers for LSTM’s input (𝒉𝑡
0, 𝒉𝑡

1 ) and linear 

transformation’s input 𝒉𝑡
2 (see Section III, B, 1, for details). 

3. In LSTM block, there are the memory cell state and various 

gates. The memory cell state act as a transport highway that 

transfers information all the way down the sequence chain. 

The memory cell state, in theory, can carry relevant 

information to any stage of sequence processing. So 

information from the earlier time steps can make its way to 

later time steps, reducing the effects of short-term memory. 

As the cell state goes on its procedure, information is added 

or removed to the memory cell state via gates. The gates are 

small neural networks that decide which information is 

allowed on the memory cell state. The gates can learn what 

information is relevant to keep or forget during training. 

4. For linear transformation to dimensions of the number of 

vocabulary, the output of last LSTM layer (𝒉𝑡
2) is multiplied 

by 𝑾𝑦ℎ, which is a weight matrix shaped by the number of 

words in vocabulary × the number of hidden units. 

5. The softmax function converts the output vector of arbitrary 

real values (𝒚𝑡) to a vector of real values (𝒒𝑡) in the range 

[0, 1] like a discrete probability distribution ranging over 

different possible categories. 

6. During training, Back Propagation Through Time (BPTT; 

details are described in Section III, B, 1) updates the 

weights (𝑾1, 𝑾2, 𝑾𝑦). 

In classic feed-forward Neural Networks (NNs), each layer 

feeds into the next layer in a chain connecting the inputs to the 

outputs. At each iteration t, a new example xt is fed to the 

network by setting the values of the input nodes. The NN feeds 

the activation forward by successively calculating the 

activations of each hidden layer. Finally, outputs can be read 

from the network’s top-most layer. When the next example xt+1 

is fed to the NN, new activations are computed, and all previous 

activations get overwritten. If consecutive inputs to the NN are 

unrelated to each other (say, images uploaded by different 

users), this is a perfectly acceptable. However, in our case, 

dependence between consecutive words must be considered. 

We recall that predict text inputs, we use a Language Model 

(LM) which decomposes the probability over input words by: 

𝑃(𝑤1 , ⋯ , 𝑤𝑚) =  ∏ 𝑃(𝑤𝑖  | 𝑤1, ⋯ , 𝑤𝑖−1)𝑚
𝑖=1  (4) 

As outlined in the Introduction, LMs use known frequencies 

of word co-occurrences to predict the probability of observing a 

sentence. The probability of a sentence is computed as the 

product of probabilities of each word, given the words that 

came before it. For example, the probability of the sentence 

“Let’s have coffee” is computed as the probability of finding in 

 

Fig.2. Structure of our RNN-LM (X indicates a unit masked by dropout) 

                  



a reference dataset of sentences the word “coffee” given “Let’s 

have”, multiplied by the probability of finding “have” given 

“Let’s”. 

LMs have been successfully used as scoring mechanisms, 

e.g. in speech recognition systems, which generating multiple 

candidate sentences for a given utterance and then use the 

language model to pick the most probable one [39]. Given an 

existing sequence of words, we generate candidate next words 

and their predicted probabilities, and repeat the process until we 

have a full sentence. On the other hand, RNNs provide a way to 

implement sequential structures showing long-term 

dependencies, such as LMs. At each time step t, each hidden 

layer 𝒉𝑡
𝑙  of an RNN receives input from the previous hidden 

layer 𝒉𝑡
𝑙−1and from the same hidden layer at the previous time 

step (𝒉𝑡−1
𝑙 ). While the basic idea looks simple enough, applying 

it to predicting the next word(s) that will be input by a user 

typing a text message is not straightforward. 

To take a closer look to basic RNN operation, we start from 

the hidden layer update of an ordinary NN, namely  

𝒉 = 𝜙(𝒙𝑾 + 𝒃)  (5) 

where x is the input vector, W is the weight array and b is the 

bias, while 𝜙 is a standard activation function like tanh( ). The 

output of the RNN hidden layer has the form 

𝒉𝑡
𝑙 = 𝜙(𝒉𝑡

𝑙−1𝑾ℎ
𝑙 + 𝒉𝑡−1

𝑙 𝑾ℎ
𝑙 + 𝒃𝑙)  (6) 

The estimated probability distribution is computed by 

𝒚�̂� = 𝒉𝑡
𝐿𝑾𝑦 + 𝒃𝑦 

(7) 
𝒒�̂� = softmax(𝒚�̂�) 

Here, L is the number of hidden layers, softmax() is the 

normalized exponential function [4], [21], i.e. a generalization 

of the logistic function that converts the output vector of 

arbitrary real values to a vector of real values in the range [0, 1]. 

The output of the softmax() function is used to represent a 

categorical distribution - that is, a discrete probability 

distribution ranging over different possible categories. 

When our RNN predicts the upcoming word, the hidden 

layer has access to the current word and the activation vector of 

the previous one, and by extension, to the previous input(s). 

Also, even though the RNN in Fig.2 technically contains a loop 

(the hidden layer is connected to itself), this connection spans a 

time step. Thus, our RNN is still a feedforward network like the 

Locally Recurrent Globally Feedforward networks [59] and we 

can train it by back-propagation similar to classic NNs. 

For our RNN, we used the Long Short-Term Memory 

(LSTM) technique for updating the hidden layer in lieu of 

direct update, because the LSTM is known to be more robust in 

training w.r.t. the vanishing gradient problem [4], [6], [21]. We 

will discuss the problem of RNN-LM training in the next 

section. The LSTM technique “memorizes” information from 

multiple time steps. As shown in Fig. 3, we use an LSTM block 

with the following transformations that map inputs to outputs 

across blocks at consecutive layers and consecutive time steps: 

𝒛𝑡 = tanh(𝒉𝑡
𝑙−1𝑾𝑥𝑧

𝑙 + 𝒉𝑡−1
𝑙 𝑾𝑦𝑧

𝑙 + 𝒃𝑧
𝑙 ), 

(8) 
𝒊𝑡 = σ(𝒉𝑡

𝑙−1𝑾𝑥𝑖
𝑙 + 𝒉𝑡−1

𝑙 𝑾𝑦𝑖
𝑙 + 𝒃𝑖

𝑙), 

𝒇𝑡 = σ(𝒉𝑡
𝑙−1𝑾𝑥𝑓

𝑙 + 𝒉𝑡−1
𝑙 𝑾𝑦𝑓

𝑙 + 𝒃𝑓
𝑙 ), 

𝒐𝑡 = σ(𝒉𝑡
𝑙−1𝑾𝑥𝑜

𝑙 + 𝒉𝑡−1
𝑙 𝑾𝑦𝑜

𝑙 + 𝒃𝑜
𝑙 ), 

𝒄𝑡
𝑙 = 𝒇𝑡 ⊙ 𝒄𝑡−1

𝑙 + 𝒊𝑡 ⊙ 𝒛𝑡 , 

𝒉𝑡
𝑙 = 𝒐𝑡 ⊙ tanh(𝒄𝑡

𝑙 ), 

where 𝒉𝑡
𝑙  is a vector of l-th hidden layer at time step 𝑡, z is block 

input, i is input gate, y is block output, f is forget gate, o is 

output gate, 𝒄  is memory cell, ⊙ is the element-wise 

multiplication operator, and 𝜎 is a short-hand for the sigmoid() 

function introduced above. 

LSTM has the input gate to update the memory cell state. 

First, the previous hidden state and current input are passed into 

a sigmoid function to decide which values will be updated by 

transforming the values to be in the range [0, 1]. A value nearly 

0 means not important and nearly 1 means important. The 

hidden state and current input are also passed into the tanh 

function to squish values in the range [-1, 1] to help regulating 

the network. Then the tanh output is multiplied with the 

sigmoid output. The sigmoid output will decide which 

information is important to keep from the tanh output. LSTM 

should have enough information to calculate the memory cell 

state. First, the memory cell state gets pointwise multiplied by 

the forget vector. This has a possibility of dropping values in 

the memory cell state if it gets multiplied by values near 0. 

Then LSTM takes the output from the input gate and do a 

pointwise addition which updates the memory cell state to new 

values that the neural network finds relevant. That gives LSTM 

to new memory cell state. The output gate decides the next 

hidden state. The hidden state contains information on previous 

inputs. The hidden state is also used for predictions. First, 

LSTM passes the previous hidden state and the current input 

into a sigmoid function. Then the newly modified memory cell 

state is passed to the tanh function. The tanh output is 

multiplied with the sigmoid output to decide what information 

the hidden state should carry. The output is the new hidden 

state. Then the new memory cell state and the new hidden state 

are carried over to the next time step. And also, the block output 

is recurrently connected back to the block input and all of the 

gates. 

 

 

Fig. 3. Structure of LSTM block 

 

                  



1) Training RNN-LM 

Training RNN-LM for our specific problem requires caution. 

At every time step, our task is to predict the next word, given 

the word sequence up to that point. Classically, in the RNN 

training phase, a backpropagation technique (BP) is used to 

update the weights based on a loss function, which is an 

average of the losses at each time step. We rely on a standard 

loss function, cross-entropy, is computed as following: 

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥𝑡+1
(𝑛)

) log 𝑞(𝑥𝑡+1
(𝑛)

|𝑥𝑡
(𝑛)

)

|𝑽|

𝑛

 (9) 

where 𝑝 denotes empirical distribution of the test sample, 𝑞 

denotes estimated probability distribution by language model, 

V denotes the vocabulary, 𝑥𝑡
(𝑛)

 denotes 𝑛 -th word in the 

vocabulary at the position 𝑡 in the training data sequence. 

When trying to back-propagate across many steps, the 

following problems arise: (1) The time it takes to compute a 

single update may be long (2) The gradient across many 

recurrent steps may vanish. 

To prevent these problems, we feed data to our RNN in short 

sequences so that at every time step, our input is a single vector. 

Because our RNN must provide multiple outputs (one at each 

time step) we calculate the loss at every time step. The weights 

W of the RNN at time step 𝑡 influence both the loss at time step 

t and the loss at time step 𝑡 + 1. To combine our losses into a 

single global loss, we take the average of the losses at each time 

step. This technique for accurate training is known as BPTT 

(Back Propagation Through Time) [62]. Different from BP, 

procedure of BPTT is as follows: (1) Present a sequence of time 

steps of input-output pairs to the network, (2) Unfold a 

recurrent layer, (3) Calculate losses across each time step by 

loss function, (4) Accumulate losses into a single global loss, 

(5) Take the average of losses at each time step, (6) Update all 

weights of recurrent layers and feed-forward layers, and (7) 

The state of memory cells after processing each time step is 

saved for the next time step. 

This way, the training of the hidden layer consists of 

matrix-vector multiplications, which can be done efficiently 

off-line. 

To update weights in BPTT, the Adam optimizer [30] is used. 

Adam combines the advantages of AdaGrad [13] and RMSProp 

[58], which are extensions of stochastic gradient descent. It 

maintains learning rates per parameter that improves 

performance on problems with sparse gradients. RMSProp also 

maintains learning rates per parameter that are adapted based 

on the average of recent magnitudes of the gradients for the 

weight (e.g., how quickly it is changing). This means the 

algorithm works well on online and noisy gradients (e.g., 

applying dropout). Adam uses learning rates based on the 

average first moment (the mean) as in RMSProp, and uses also 

the average of the second moments of the gradients (the 

uncentered variance) as in AdaGrad. To determine the 

appropriate learning rate, Adam updates exponential moving 

averages of the gradient and the squared gradient. The moving 

averages themselves are estimates of the first and the second 

moments of the gradients. While these moving averages are 

initialized as (vectors of) zero, which leads to moment 

estimates that are biased towards 0, this initialization bias can 

be easily counteracted, resulting in bias-corrected estimates. 

A flow of updating parameters by Adam is as follows: 

1. Compute gradients 𝑔 by loss function. 

2. Update biased first moment estimate 𝑚 and biased second 

raw moment estimate 𝑣  with exponential decay rates 

𝛽1, 𝛽2: 

𝑚 =  𝛽1𝑚 + (1 −  𝛽1)𝑔 (10) 

𝑣 =  𝛽2𝑣 + (1 −  𝛽2)𝑔 (11) 

3. Compute bias-corrected first moment estimate �̂�  and 

bias-corrected second raw moment estimate �̂�: 

�̂�  =  𝑚 / (1 −  𝛽1) (12) 

�̂�  =  𝑣 / (1 − 𝛽2) (13) 

4. Update parameter vector 𝜃 with step size 𝛼: 

𝜃 =  𝜃 −  𝛼�̂�/(√�̂� + 𝜀) (14) 

Kingma’s work [30] shows that Adam is robust and 

well-suited to a wide range of non-convex optimization 

problems such as multi-layer neural network. Its performance 

gain outweighs the computational costs of building it in. Since 

the next word prediction task has the problems of sparse/noisy 

gradients and non-convex optimization, we applied Adam 

optimizer to update weights of our elaborated RNN-LM. 

In addition, we exploit the gradient norm scaling technique, 

which has been proposed in [49] to prevent exploding gradient 

[6]. The gradient norm scaling involves changing the 

derivatives of the loss function to have a given vector norm 

when the L2 vector norm (sum of the squared values) of the 

gradient vector exceeds a threshold value. For example, a norm 

of 5 is specified, meaning that if the vector norm for a gradient 

exceeds 5, then the values in the vector will be rescaled so that 

the norm of the vector equals 5. This is formulated as follows: 

𝑔 = {

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

‖𝑔‖
𝑔 (if ‖𝑔‖ ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝑔 (otherwise)

 (15) 

where 𝑔 indicates gradient. 

Furthermore, as mentioned before, we applied Zaremba’s 

dropout technique [63] to train the LSTM for reducing 

overfitting. The dropout operator corrupts or forgets the 

information carried by the units, forcing them to perform their 

intermediate computations more robustly and/or efficiently. At 

the same time, we do not want to erase all the information from 

the units. It is especially important that the units remember 

events that occurred many time steps in the past. 

Standard dropout technique [55] temporarily and 

dynamically removes units from the network, along with all its 

incoming and outgoing connections. Amount of removing units 

is determined probabilistically or randomly. This technique 

works well as the Restricted Boltzmann Machine model [54]. 

Unfortunately, standard dropout as it is does not work well 

for RNNs. Standard dropout perturbs the recurrent connections 

by means of random determination to dynamically remove 

units, which makes it difficult for the LSTM to learn to store 

information for long periods of time. For this reason, our 

implementation exploits Zaremba’s dropout technique, which 

does not use dropout on the recurrent connections. In order not 

to randomly remove/forget in LSTM block but to remember 

                  



events that occurred on many significant time steps in the past, 

we used dropout outside LSTM. Moreover, according to our 

experiments, this particular dropout technology provides a 

reasonable trade-off between the additional complexity cost 

and the resulting performance gain. 

As shown in Fig. 2, dropout is applied to only input of LSTM 

blocks (𝒉𝑡
0, 𝒉𝑡

1) and linear transformation (𝒉𝑡
2). Therefore, our 

LSTM can benefit from dropout regularization without 

sacrificing its valuable memorization ability. 

 

2) Generating the next word 

We have just described an RNN model that takes sequences 

of words from our training data and tries to predict the next 

word at every time step. After training, RNN-LM can be 

deployed as a service to generate plausible sentences on behalf 

of applications. The generation procedure works as follows: say 

our word sequence begins with the word “Reserve”. We feed 

the word “Reserve” to the RNN-LM and get a conditional 

probability distribution over the next words 

P(x2|x1=”Reserve”). We can then sample from this 

distribution, e.g. producing a token “table”, and then assign 

x2=”table”, feeding this to the network at the next time step. 

We use a word encoding algorithm, continuous bag-of-words 

model [42] to represent words as vectors, making highly 

dimensional and sparse word vectors to become dense. 

IV. IMPLEMENTATION AND EVALUATION 

We implemented our hybrid approach as an IME called 

Flick. Flick integrates the RNN-LM-based predictive function 

described in the previous section with the n-gram processing 

function of the conventional tool Mozc. In this section, Flick is 

evaluated by comparing it to Mozc. 

A. Flick Implementation 

Flick is composed of three parts: a text input/output part, the 

n-gram LM part, and the RNN-LM part. The former two parts 

are deployed on the mobile application at the client side. The 

𝑛-gram LM is used to predict/convert a current intended word  

being input with checking syntactical aspects such as a 

part-of-speech. The text input/output part and the n-gram LM 

part of Flick use Mozc and run at the client-side. The RNN-LM 

part of Flick is deployed and processed at the server-side due to 

client-side limitation of computational capacities. The 

RNN-LM part of Flick has input nodes and output nodes. Input 

nodes receive the past word sequence inputted by the user. 

Output nodes show a sequence of predicted words in the order 

of probability. 

To train our RNN-LM, about 4,000,000 sentences from 

Twitter’s posts (tweets) were used. And 280,000 tweets, which 

do not contain in the training dataset, were used as the test 

dataset. We used MeCab [35] as Japanese word segmentation 

(token reader). MeCab is an open source word segmentation 

library for Japanese text. MeCab can analyze and segment a 

Japanese sentence into its parts of speech. In this work, the 

mecab-ipadic is used as MeCab’s dictionary. The vocabulary 

size of our RNN-LM is about 140,000 words. 

Hyper-parametrization is an important issue. To address it, 

comparison about hyper-parameters for NN architectures was 

newly done. As criteria, neither the prediction accuracy nor 

error is appropriate to express the prediction capability since 

this task is that user choices the next word from some 

candidates and also there are too many classes (vocabulary size 

≈  140,000) as classification problem. Thus the prediction 

capability of our language model is expressed by its word 

perplexity (PPL). PPL is the common evaluation metric for a 

language model. Since we evaluate the language model and not 

just the correctness of the prediction, this metrics is more 

appropriate than the recall metrics. Generally, PPL measures 

how well the proposed probability model 𝑞(𝑿) represents the 

target data 𝑞∗(𝑿). Let a validation dataset be 𝑫 = {𝑿(𝒏)}𝑛=1
|𝐷|

, 

which is a set of sentences, where the 𝑛-th sentence length is 

𝑇(𝑛)
, and the vocabulary size of this dataset is |𝑉|, the word 

perplexity is represented as follows: 

𝑤𝑜𝑟𝑑 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = −
1

|𝑉|
∑ ∑ log𝑏 𝑞(𝑿𝑡

(𝑛)
)

𝑇(𝑛)

𝑡=1

|𝐷|

𝑛=1

 (16) 

We usually assign base 𝑏 = 2 or 𝑏 = 𝑒. The PPL shows how 

much varied the predicted distribution for the next word is. 

When a language model represents the dataset well, it should 

show a high probability only for the correct next word, so that 

the entropy should be high. In the above equation, the sign is 

reversed, so that smaller perplexity means better model. 

Finally, our model combines the advantages of several 

techniques within hybrid language model by integrating a 

Recurrent Neural Network (RNN) with a n-gram model. RNNs 

perform best for learning long sequences for next word 

prediction. On the other hand, n-gram models are best at current 

word completion. Not just the chosen combination of learning 

techniques, but also the architecture supports an efficient word 

prediction by running the cost intensive part of RNN-LM on the 

sever and the n-gram model on the client. Our RNN-LM 

consists of an input layer equipped with word embedding, an 

output layer, and hidden layers connected with LSTMs (Long 

Short-Term Memories). Training is done via BPTT (Back 

Propagation Through Time). For robust training, BPTT is 

elaborated by learning rate refinement and gradient norm 

scaling. Additionally, we avoid overfitting by a dropout 

technique. Experimentally, we figured out that dropout rates 

between 3% and 6% are appropriate for avoiding overfitting. 

To limit the computational complexity, our model is compact. 

It consists of two LSTMs and 650 units per layer). Due to 

synergetic effects, it shows 10% lower perplexity than 

TABLE IV 

ELAPSED TIME FOR EACH PERSON ON THE REAL USER TEST (IN SEC.) 

Person No. 1 2 3 4 5 6 7 8 

Mozc 1795 1258 1418 1202 1416 1248 1260 1229 

Flick (Mozc + RNN-LM) 1477 1208 1197 986 1217 933 1208 1137 

 

                  



TABLE I 
COMPARISON OF PPL AMONG DIFFERENT HYPER PARAMETERS ON 

JAPANESE TWITTER DATASET (LOWER IS BETTER) 

Hyper parameters PPL 
Parameters 

to be trained 

Hidden unit 100 226.98 28,300,800 

Hidden unit 200 205.68 56,781,600 

Hidden unit 600 176.83 173,904,800 

Hidden unit 600 with dropout 159.9 173,904,800 

Hidden unit 650 169.22 188,905,200 

Hidden unit 650 with dropout 158.28 188,905,200 

Hidden unit 700 166.85 203,985,600 

Hidden unit 700 with dropout 157.91 203,985,600 

 

Zaremba’s excellent conventional models in our Japanese text 

prediction experiment. Our model has been incorporated into 

IME (Input Method Editor). On the Japanese text input 

experiment, Flick outperforms Mozc (Google Japanese Input) 

by 16% in time and 34% in the number of key strokes. 

Some of the particular experimentation results are as follows. 

In comparison among hyper-parameters, the condition is fixed 

to learning epoch = 3, 2 LSTM, threshold for gradient norm 

scaling = 5 and dropout rate = 0.5 (if any). The result is shown 

in TABLE I.  

This result shows PPLs of applied dropout models are lower 

than the others. Comparing hidden unit = 650 (with dropout) 

with hidden unit = 700 (with dropout), although the PPL differs 

by only 0.4, the difference in the number of parameters to be 

trained is large. Thus, hidden unit = 650 with dropout is used. 

Though the language is not Japanese but English, TABLE II, 

which is based on Mikolov’s work [43], shows the comparison 

among different neural network models/architectures on the 

Penn Treebank corpus (1M words) [40]. KN5 denotes the 

baseline: interpolated 5-gram model with modified Kneser-Ney 

smoothing [31] and no count cutoffs. While models applied 

modified Kneser-Ney smoothing is often used in n-gram 

language models, this evaluation result shows that NN-LMs 

(including RNN and LSTM) outperform the n-gram model in 

terms of PPL. This evaluation shows also that BPTT provides a 

more positive effect than BP because the word perplexity of 

BPTT is lower than BP.  

Coming to Japanese, TABLE III shows the comparison 

among our proposed RNN-LM and the other language models, 

using the same Japanese Twitter dataset as used in TABLE I. 

While TABLE II shows our elaborated RNN-LM is not the best 

model on the English small dataset, TABLE III shows our 

elaborated RNN-LM is the best model on the Japanese large 

dataset. And also these comparison results proved RNN-LM is 

over 20-30% better than the n-gram approach in the prediction 

capability expressed by PPL. 

As shown in TABLE I, increasing the hidden unit number 

from 100 to 650 decreased the word perplexity around 25% 

(from 227 to 169). Though this hyper parameterization effect is 

quite straightforward, this also shows that describing the 

practical engineering technique is important, due to its leading 

to practically beneficial methodologies such as dropout. 

Indeed, in TABLE I, hidden unit 650 without dropout and 

hidden unit 650 with dropout are close (only 6% different) each 

other in word perplexity. But, the quality of prediction is 

significantly different. The one without dropout is much 

inferior. Perplexity in the Japanese twitter dataset decreases just 

around 6% (from 169 to 158) due to the dropout over LSTM as 

TABLE I shows. But, as the example shows, the one with 

dropout clearly suggests the word much more related to the 

context than that without dropout. 

Despite using BPTT, going back too many time steps leads 

the gradient to vanish/explode. However, the length of tweets 

used in this experiment is limited up to 140 characters. 

Additionally, the average number of characters in Japanese 

tweets is 45.28 characters, i.e. the average number of time steps 

to learn is less than 45.28 since this task is not character-level 

prediction but word-level prediction. Thus, we do not truncate 

the number of time steps in BPTT. In conclusion, by virtue of 

scientific experimental experience for increasing prediction 

performance, our RNN-LM was elaborated as follows: (1) 

having 650 hidden units to decrease word perplexity and Long 

Short-Term Memory (LSTM) for robust training (2) using 

Zaremba’s dropout to reduce overfitting. This elaborated 

RNN-LM combined with Mozc’s n-gram is evaluated as to the 

Japanese input time and the number of key strokes. 

B. Evaluation Method 

To evaluate the effectiveness of our method using the 

above-mentioned elaborated RNN-LM together with the 

n-gram technique, we performed tests involving users of 

texting applications and compared our results with those of 

Mozc. Mozc, which uses a word n-gram language model only, 

provided an ideal benchmark for this analysis. Hereby, we 

considered two performance parameters: 

1. the time, which required to enter texts using our Flick with 

the time needed when using Mozc, and 

2. the number of key strokes (finger actions) to enter texts. 

Since our system’s language model need not to be frequently 

updated, training is done once-for-all and offline. Therefore, 

the comparison with the time required for training is not 

relevant for the application (after training). In particular, we put 

more attention to time and keystroke reduction for users.  

Eight people (5 females and 3 males) participated in our 

experiment. The order of using methods (Mozc and Flick) is 

TABLE II 
COMPARISON OF PPL AMONG DIFFERENT LANGUAGE MODELS ON PENN 

TREEBANK (1M WORDS). 

Model PPL 

KN5 (baseline) [31] 186 

feedforward NN 141 

RNN trained by BP 137 

RNN trained by BPTT 123 

Zaremba’s medium regularized LSTM [63] 82 

Our elaborated RNN 109 

 

TABLE III 

COMPARISON OF PPL AMONG PROPOSED RNN-LM AND THE OTHER 

MODELS ON THE SAME JAPANESE TWITTER DATASET AS IN TABLE I. 

Model PPL 

KN5 (baseline) [31] 247 

Feedforward NN 334 

Zaremba’s medium regularized LSTM [63] 174 

Our elaborated RNN 158 

 

                  



randomly changed in every particular experiment. Also, the 

order of example texts to input is shuffled every experiment. 

We used 8 different texts, each one originated from a different 

source: a currently best-seller book, a magazine, a newspaper, a 

governmental paper, an internet bulletin-board, a blog, a school 

textbook on history, and a current newsletter of the local 

government. Each person had to type all these 8 texts of about 

half a page each, four of them by using Mozc and four of them 

by using Flick. Each person typed 4 texts by using Mozc and 4 

texts by using Flick. Which person using which method (Mozc 

or Flick) was randomly changed. For each text, we gained 4 

typing examples of using Mozc and 4 examples of using Flick. 

Finally, in the experiment we gained 64 typing examples. 

 

C. Corpus 

As to the corpus for the user test and evaluation, we used the 

core data of the Balanced Corpus of Contemporary Written 

Japanese (BCCWJ) [38], which contains various domain text 

data and is manually annotated with word segmentation and 

pronunciations.  

The BCCWJ is a 100 million words balanced corpus. It 

consists of three subcorpora (1) a publication subcorpus, a (2) 

library subcorpus, and (3) a special-purpose subcorpus). It 

covers a wide range of text source types: books in general, 

magazines, newspapers, governmental white papers, 

best-selling books, an internet bulletin-board, a blog, school 

textbooks, minutes of the national diet, publicity newsletters of 

local governments, laws, and poetry verses. A random 

sampling technique has been used to improve the 

representativeness of the corpus. It consists of two types of 

data: the balanced sampling data and the single domain data. 

The BCCWJ balanced sampling data is a single file that 

contains equal amounts of text from various domains 

mentioned above (poems, magazine articles, blogs, government 

documents, and others). On the assumption that people will use 

the proposed method in various scenarios, we selected 

sentences fitting to different contexts. 

 

D. Results 

TABLE IV shows the results of the user test. Every user 

using our method (Flick: Mozc + elaborated RNN-LM) shows 

faster text input compared with Mozc.  

TABLE V shows the average and standard deviation of 

elapsed times for both methods. To test whether our result is 

statistically significant, we performed a t-test, which gave a 

significant result: t (7) = 4.7; p < .01. The results show that our 

predictive text input based on n-gram (Mozc) enhanced by our 

scientifically elaborated RNN-LM exploiting 2 layers LSTM, 

which have 650 hidden units per layer, and Zaremba’s dropout 

is significantly effective for Japanese text input prediction. 

Especially, since such RNN-LM correctly suggests the next 

word reflecting the context, our elaborated RNN-LM 

contributes to reducing text input time. And also, TABLE VI 

shows the standard deviation of Flick is lower than Mozc. This 

means a difference of input time between peoples, which 

familiar with mobile devices, with peoples, unfamiliar with 

mobile devices, is reduced by using Flick. In addition, TABLE 

VI shows the results of the comparison of the numbers of 

keystrokes to enter texts, which same as user test, by Japanese 

Kana-layout keyboard such as Fig. 1. Flick is less than Mozc in 

terms of the number of keystrokes. Compared with the directly 

inputting, Flick saved about 42% of the number of keystrokes. 

Thus, it leads that the Flick user’s fingers are less tired and the 

time to input text is decreased. 

V. CONCLUSION 

This paper proposed a novel hybrid approach to develop a 

smartphone IME for Japanese. It can predict the current input 

words by traditional n-gram based text prediction model on the 

client but the next word. Particular contributions and results are 

summarized here are: 

 A hybrid language model, integrates a Recurrent Neural 

Network (RNN) with an n-gram model and combines the 

advantages both, 

 Its “price” with respect to complexity issues has been 

limited by a client-server architecture, that turn out to have 

the best performance in terms complexity. The very 

complex RNN-LM deploys on the server while the n-gram 

model on the client. 

 We developed an elaborated RNN-LM equipped with 

word embedding, an output layer, and hidden layers 

connected with LSTMs (Long Short-Term Memories). 

 We performed the training with Training via BPTT (Back 

Propagation Through Time). For a more robust training, 

BPTT is elaborated by learning rate refinement and 

gradient norm scaling. To avoid overfitting in the training 

process, the dropout technique is applied. 

 To increase prediction performance, our RNN-LM is 

equipped with 2 LSTMs among hidden layers each having 

650 units. The LSTMs use BPTT elaborated for more 

robust training by learning rate refinement and gradient 

norm scaling. 

 To avoid overfitting, we took Zaremba’s dropout only for 

hidden layers outside (except) LTSM. Considering 

cost-performance for practical use on mobile devices, our 

TABLE VI 
NUMBER OF KEYSTROKE BY KANA-LAYOUT KEYBOARD 

 Average Sum (all sentences) 

Direct input 

(no input prediction) 
26.97 1160 

Mozc 21.27 915 

Flick (Mozc + RNN-LM) 15.87 682 

 

TABLE V 

AVERAGE AND STANDARD DEVIATION OF ELAPSED TIME (IN SEC.) 

 Average 
Standard 

deviation 

Mozc 1353.3 183.8 

Flick (Mozc + RNN-LM) 1170.4 154.6 

 

                  



novel model was rather compact (2 LSTMs, 650 units per 

layer, which run in the sever and are not related to mobile 

devices), indeed. 

 However, due to such synergetic elaboration, our model 

experimentally showed an about 10% lower perplexity 

than the excellent conventional models such as Zaremba’s. 

 Our technique was applied by implementing a novel IME 

called Flick. It is really used as a smartphone application. 

Compared with conventional IME without RNN, Flick 

experimentally outperformed a conventional Japanese 

IME (Mozc) in the input time (saved 16%) and the number 

(saved 34%) of keystrokes. 

Since the functional performance seems to be close to objective 

limitations, our work will be focused on complexity issues of 

the calculation by simplifying the model without a detectable 

loss of functional performance, for example by reducing the 

number of units per layer. We try to find the best trade-off 

between simplicity and performance experimentally. 

Moreover, we think about a technology of “dynamic training” 

(some sort of learning) as well as that of “contrastive learning” 

(both, some sorts of machine learning). The former, during the 

system’s application by finding out frequent patterns with the 

objective to come up with a prediction in shorter time and with 

less keystrokes. The latter [45] is one of recent technologies to 

aim at extending our work to Asian languages that share more 

similarities with Japanese. 
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