

Journal Pre-proof

Fast ML-based Next-Word Prediction for Hybrid Languages

Yukino Ikegami , Setsuo Tsuruta , Andrea Kutics ,
Ernesto Damiani , Rainer Knauf

PII: S2542-6605(24)00006-4
DOI: https://doi.org/10.1016/j.iot.2024.101064
Reference: IOT 101064

To appear in: Internet of Things

Received date: 14 September 2023
Revised date: 20 December 2023
Accepted date: 4 January 2024

Please cite this article as: Yukino Ikegami , Setsuo Tsuruta , Andrea Kutics , Ernesto Damiani ,
Rainer Knauf , Fast ML-based Next-Word Prediction for Hybrid Languages, Internet of Things (2024),
doi: https://doi.org/10.1016/j.iot.2024.101064

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.iot.2024.101064
https://doi.org/10.1016/j.iot.2024.101064

Fast ML-based

Next-Word Prediction for

Hybrid Languages

Manuscript title:

Fast ML-based Next-Word Prediction for Hybrid

Languages

Authors:

 Yukino Ikegami, IO Inc., Tokyo, Japan,

yknikgm@gmail.com

 Setsuo Tsuruta, School of Information

Environment, Tokyo Denki University, Tokyo,

Japan, tsuruta@mail.dendai.ac.jp

 Andrea Kutics, International Christian

University, Tokyo, Japan, matz@icu.ac.jp,

ORCID 0000-0002-9313-1119

 Ernesto Damiani, Cyber-Physical Systems

Center, Khalifa University, Abu Dhabi,

ernesto.damiani@ku.ac.ae, ORCID

0000-0002-9557-6496

 Rainer Knauf, Ilmenau University of

Technology, Ilmenau, Germany,

rainer.knauf@tu-ilmenau.de, ORCID

0000-0001-8795-6360

Rainer Knauf is the corresponding author.

Abstract:

Smartphone users are beyond two billion worldwide.

Heavy users of the texting application rely on input

prediction to reduce typing effort. In languages

based on the Roman alphabet, many techniques are

available. However, Japanese text is based on

multiple character sets such as Kanji (Chinese-like

word symbols), Hiragana and Katakana syllable sets.

For its time/labor intensive input, next word

prediction is crucial. It is still an open challenge. To

tackle this, a hybrid language model is proposed. It

integrates a Recurrent Neural Network (RNN) with

an n-gram model. RNNs are powerful models for

learning long sequences for next word prediction.

N-gram models are best at current word completion.

Our RNN language model (RNN-LM) predicts the

next words. According the “price” of the

performance gain paid by a higher time complexity,

our model best deploys on a client-server

architecture. Heavily-loaded RNN-LM deploys on

the server while the n-gram model on the client. Our

RNN-LM consists of an input layer equipped with

word embedding, an output layer, and hidden layers

connected with LSTMs (Long Short-Term

Memories). Training is done via BPTT (Back

Propagation Through Time). For robust training,

BPTT is elaborated by learning rate refinement and

gradient norm scaling. To avoid overfitting, the

dropout technique is applied except for LSTM. Our

novel model is compact (2 LSTMs, 650 units per

layer), indeed. Due to synergetic elaboration, it

shows 10% lower perplexity than Zaremba’s

excellent conventional models in our Japanese text

prediction experiment. Our model has been

incorporated into IME (Input Method Editor) we call

Flick. On the Japanese text input experiment, Flick

outperforms Mozc (Google Japanese Input) by 16%

in time and 34% in the number of keystrokes.

Keywords:

Input Method Editor, word prediction, hybrid

language model, client-server model, Recurrent

Neural Networks, Back Propagation Through Time

Conflict of Interest:

The authors declare that they have no conflict of

interest.

Funding:

This work was supported

 by JSPS Fund KAKENHI, grant number

15K00349, and

 by the European Commission Fund

HORIZON under the project TOREADOR,

grant number H2020-688797.

Abstract— Smartphone users are beyond two billion worldwide.

Heavy users of the texting application rely on input prediction to

reduce typing effort. In languages based on the Roman alphabet,

many techniques are available. However, Japanese text is based

on multiple character sets such as Kanji, Hiragana and Katakana.

For its time intensive input, next word prediction is an open

challenge. To tackle this, a hybrid language model is proposed. It

integrates a Recurrent Neural Network (RNN) with an n-gram

model. RNNs are powerful models for learning long sequences for

next word prediction. N-gram models are best at current word

completion. Our RNN language model predicts next words.

According the “price” of the performance gain paid by a higher

time complexity, our model best deploys on a client-server

architecture. Heavily-loaded RNN-LM deploys on the server

while the n-gram model on the client. It consists of an input layer

equipped with word embedding, an output layer, and hidden

layers connected with LSTMs (Long Short-Term Memories).

Training is done via BPTT (Back Propagation Through Time).

For robust training, BPTT is elaborated by learning rate

refinement and gradient norm scaling. To avoid overfitting, the

dropout technique is applied except for LSTM. Due to synergetic

elaboration, it shows 10% lower perplexity than Zaremba’s

excellent conventional models in our experiment. Our model has

been incorporated into IME (Input Method Editor) we call Flick.

In our experiment, Flick outperforms Mozc (Google Japanese

Input) by 16% in time and 34% in the number of key strokes.

Index Terms—Input Method Editor, word prediction, hybrid

language model, client-server model, Recurrent Neural Networks,

Back Propagation Through Time

I. INTRODUCTION

N today’s world, billions of users rely on smartphones and

mobile communication technologies in their personal and

work time. In Japan, the Japanese Ministry of Internal Affairs

and Communications, 2017, has reported the number of

smartphone users reached 60.48 million [25]. The widespread

use of smartphones for text-based messaging has increased

on-the-job flexibility, allowing people to decide when and

where to exchange messages. It can also impact on

productivity. On smartphones, a software keyboard is used to

input texts. Software keyboards and their providing services

such as next word prediction, shape the speed and accuracy

with which smartphone users communicate.

As Komachi and Kida [32] reported, inputting texts via a

software keyboard requires more time than by traditional

keyboards. This negative impact on productivity is partly

language-dependent. Recent findings suggest that inputting

Japanese text requires an even larger amount of typing than

other languages.

[47] shows there are 2.71 billion characters in 34.2 million

English Twitter posts (tweets) and there are 625 million

characters in 13.8 million Japanese tweets. In other words, the

average length of English is 79.23 characters, while that of

Japanese tweets is 45.28 characters. These results seem to

suggest inputting Japanese is easier than English.

However, attention should be paid to the fact that inputting

most Japanese characters requires typing multiple keys, since

there is a large set of characters that represent full syllables, as

opposed to the other writing systems, which approximately

have one letter per phoneme. For instance, a Kanji character “

東” (east) requires typing “higashi” (i.e. 7 keys).

More concretely, we calculated Japanese keystrokes per

character (KSPC). KSPC is proposed in [37]. To measure the

average Japanese KSPC, we used the core data of the Balanced

Corpus of Contemporary Written Japanese [38]. This corpus

contains equal amounts of text data from different domains

(poems, magazine articles, blogs, government documents, and

others). This result showed the average number of keystrokes to

input a single Japanese character is 2.3, i.e. the average number

of keystrokes to input Japanese tweets is (2.3 keystrokes *

45.28 character =) 104.14. It exceeds that one (79.23

keystrokes) of English tweets. According to [52], the average

number of characters inputted by ordinary people is 5.4 per

second. Based on the above estimate of the average size of

Japanese tweets, we get 104.14 keystrokes / 5.4 seconds =

19.29 seconds on average for each Japanese tweet, while (79.23

keystrokes / 5.4 seconds =) 14.67 seconds are enough for an

English tweet. Japanese requires around 25% larger amount of

typing than English.

In detail, Japanese relies on multiple character sets such as

Kanji (Chinese word symbols) as well as the two syllable sets

Hiragana and Katakana. Katakana and Hiragana have 46 basic

letters each and some modified forms. Totally, the three sets

include over 6,000 characters, which obviously cannot be

assigned to the keys of a physical keyboard and even less on a

mobile device’s software keyboard. Thus, Japanese is usually

input using special software tools called Input Method Editors

(IMEs). To reduce input time and key strokes, Japanese IMEs

provide character sets conversion (e.g. alphabet-to-Kana,

Kana-to-Kanji) and current/next word prediction. IMEs are

used on personal computers as well as smartphones. In case of

smartphones, IMEs are used via software keyboards instead of

physical keyboards. Many software keyboards used on

smartphones offer a predictive text input function. Such

functions predict the current word as well as the next word

based on the characters typed so far. To decrease the high (25%

more than English) input cost of Japanese, it is very important

to predict the next words. Inputting Kanji has remarkably high

cost since Kanji consists of one or more syllables per character

and has many homophone characters (e.g. over 50 Kanji

characters for “kai”: 解, 会, 回, 貝, 快, 戒, 階, …, 介, 櫂). It is

especially important to decrease, by word prediction, the many

keystrokes needed for Kanji conversion (e.g. 5-10 keystrokes to

obtain “櫂” for “kai” even having a window of 5-10 character

width). Our challenge is improving current and next word

prediction to decrease the high input cost of Japanese,

especially Kanji.

Using prefixes or previous words is effective to input

prediction to reduce typing effort. To solve Japanese input

problems mentioned above, Google Japanese input technology

called Mozc [34] can predict both the current word and the next

words, using a n-gram language model (n-gram LM). A

drawback of the n-gram model is that it heavily depends on the

training data used for learning. It is well-suited for extremely

large amounts of training data [19]. In other words, Mozc has

difficulty in accurate prediction of the next words since it

I

depends on the availability of sufficiently long series of

previous word inputs. Namely, the performance of Mozc has

turned out to be insufficient for user-acceptable prediction of

next words.

On the other hand, Recurrent Neural Networks (RNNs) have

been applied successfully to process the sequential data in

speech recognition by Sak et al. [56]. They use the

backpropagation through time (BPTT) [62] to Long

Short-Term Memory (LSTM) [22], which is a variant of RNNs,

to address the vanishing/exploding gradient problem [6] of the

original RNN paradigm. RNNs are widely applied to text input

prediction. Alsharif et al. [3] proposed RNN combined with

Finite State Transducer (FST) [46] for the challenging task of

keyboard gesture decoding. Their work deals with a very large

lexicon decoding on a synthetic large scale dataset. It combines

LSTM with conventional FST decoding. However, unlike a

conventional software keyboard layout (e.g. Qwerty), Japanese

Kana layout (e.g. 12 keys layout, Godan layout) keyboard is not

suitable for gesture inputting. Most recently, Hard et al. [20]

proposed a technique for mobile keyboard prediction. It uses a

federated decentralized learning technique to train an LSTM

model. In spite of expected high cost-performance, it has

security problems of due to potential poisoning attacks by

mischievous users taking part to the federation. Yu et al. [60]

proposed on-device LSTM based text input prediction. It

approaches to decrease the size of the language model but

sacrifices a word perplexity in exchange for resizing.

This paper tackles the problem of seriously inefficient

Japanese text inputting on smartphones. Our novel method

focuses on predicting the next words in Japanese text input. It

relies on an elaborated Recurrent Neural Network based

language model (RNN-LM) and improves over previous works

such as Mozc [34] that uses just n-gram. Mikolov et al. [43]

have shown that RNN-LM interpolated with n-gram LM is a

better model than RNN-LM only. We take a distinct, though

related, approach by loosely integrating RNN-LM with an

n-gram LM. RNN-LM functions for next word prediction while

n-gram LM for current word completion. Considering the

cost-performance of different architectures, we opted for a

simple yet effective client-server model. The heavily-loaded

RNN-LM is deployed on servers. The n-gram language model

is deployed on local clients. Due to security threats, we do not

use federated learning [20].

In order to increase the next-word prediction performance,

our RNN-LM works as follows. For dimensionality reduction,

a continuous bag-of-words algorithm [40] condenses sparse

information (>100K) in an input layer to dense one (<1K). This

reduces the computational burden of huge vocabulary due to

Japanese multiple characters such as Kanji and Kana. 3 hidden

layers are included each having 650 units for decreasing

perplexity. To create an elaborated Recurrent Neural Network

(RNN) model, hidden layers are combined with Long

Short-Term Memory (LSTM) [22]. They are used as input and

projection (or output) layers of LSTM. Considering

cost-performance, we have two LSTMs. LSTM is known to be

capable of robust training by solving the vanishing gradient

problem [4], [6], [21] as described in Section IV. Back

Propagation Through Time (BPTT) [62] in LSTM is used to

prevent the learning from vanishing/exploding gradient.

Usually, BPTT is provided with an efficient weight updating

mechanism called Adam [30] that automatically adjusts the

learning rates. To avoid exploding gradients, our BPTT also

uses a gradient norm scaling technique [49]. The dropout

methodology advocated by Zaremba et al. [63], which

randomly masking only some units in input of hidden layers, is

adopted. This elaboration reduces overfitting by keeping

LSTM’s valuable memorizing ability intact.

The effects of our elaboration model are shown by perplexity

in Japanese text prediction experiment. It is compared with

excellent conventional models such as Zaremba’s. Our model is

incorporated in an IME we call Flick. The extensive evaluation

of Flick and its comparison with Mozc proves that Flick

outperforms Mozc in terms of both elapsed time of inputting

Japanese texts and the number of keystrokes.

The results introduced and experimentally evaluated are:

 Considering time intensive Japanese text input on mobile

devices, our novel model resulted in an architecture

combining a n-gram model client with a synergistically

elaborated compact RNN-LM server core (2 LSTMs, 650

units per layer), indeed.

 Despite the compact architecture, the result of synergetic

elaboration showed lower perplexity in time intensive

Japanese text input prediction.

 As a result, the proposed technique was applied by

implementing a novel IME called Flick which is really

used as a smartphone application. Compared with

conventional IME without RNN, Flick outperformed a

conventional Japanese IME (Mozc).

 Results of the novel model’s contributions (proposed

ideas) were evaluated by the experiment as follows:

(1) Our synergetic elaboration showed 10% lower

perplexity than Zaremba’s excellent conventional

models.

(2) Flick outperformed the conventional IME without

RNN called Mozc (Google Japanese Input) by 16%

saved in the input time and 34% saved in the number

of key strokes

The paper is organized as follows: Section II introduces and

reviews related works in detail. Section III describes the details

of our method. Section IV shows the results of evaluation

experiments. Section V draws the conclusion.

II. RELATED WORK

A. Input Method

There are several approaches to predict input text on mobile

phones. Using prefixes or previous words is effective to input

prediction to reduce typing effort. Currently, phrase-based

predictive input systems are widely used [32]. POBox [41] is a

predictive input technology that allows users to enter just a part

of a word and then searches for similar words by spelling,

pronunciation, or shape. It relies on a static database of words.

[33] proposed a corpus-based predictor that also requires a

document storage system. In [16], a predictive input engine is

proposed, which uses the input string and the previous inputs’

history to generate a candidate list of inputs to be presented to

the user. The engine generates a candidate list by finding all

previous inputs whose prefix matches the current input string

and ordering them (predicted input candidates) by frequency.

Some research works approach the input of multilingual text.

Dictionary-based techniques have been proposed since long

[27], [57]. However, they have limitations. Thesaurus-based

approaches are known to perform badly if unknown words and

new or buzz words are input [51]. Furthermore, homographs in

Japanese (Kanji characters that have multiple readings) cannot

be addressed with Thesaurus-based approaches [28].

Chinese modeless input method [10] can automatically

switch the input mode when a user changes language between

Chinese and English. Character-surface n-grams are exploited

to detect ASCII strings with high probability to discriminate

Chinese from English. Nevertheless, their method suffers from

the so-called “zero frequency problem” [50]. Also, there are

many cases between which it is difficult to discriminate.

Consequently, false positives can occur if the n-gram length n is

small, and switching delay can occur if n is too high. Character

feature based approaches (e.g., the distribution of

upper/lowercase) have succeeded but just in single character

recognition for point-wise natural language processing [48].

Other researchers focused ways to detect a change in the

language used for input. [1] tried to find foreign inclusions

within German text. This approach improves parsing accuracy

[2]. However, it is specific to kindred alphabetic languages. A

method called TypeAny for multilingual input has been

introduced in [14]. However, TypeAny requires Japanese users

to press at the end of each word a delimiter key which they

would not normally need to press, as Japanese is (like Europe’s

Uralic languages Estonian, Finnish and Hungarian) an

agglutinative language where different morphemes can be

added to words to determine their meaning [18].

To solve all these problems, a method based on multiple

n-gram was proposed [23]. This method uses character surface,

character-type, and history sequence features. It exploits two

abstract features (character-type and history sequence) to

handle the so-called zero frequency problem [50], achieving the

generation of a fully discriminative model, i.e. one capable of

making a classification suggestion for any word. As the n-gram

system focuses on binary classification (Japanese or

non-Japanese), texts including different languages can be

efficiently managed. As to the use of n-gram features, trigrams

(n-grams where n=3) have also been used for detecting whether

a text is spam, which is also a binary classification problem

[11].

To improve over the “pure” n-gram approach, we previously

proposed a hybrid method [24] that combines n-gram with

non-Japanese word dictionary matching. Using the dictionary,

false positives against non-Japanese words decrease [12]. This

technique decides whether current user input should be

converted into Kana by looking at its encoding as a set of

enhanced n-grams and considering both characters and

character-type features. Such encodings are then classified via a

linear SVM [17], [26] to achieve high-speed learning with

high-accuracy for Kana-to-Kanji conversion. Both n-gram

discrimination and non-Japanese word dictionary matching are

exploited before performing Kana-to-Kanji conversion. Our

previous method [24] follows the line of an open source

software, Mozc, derived from the original Google IME. Using

n-gram based discrimination jointly with dictionary matching,

the Mozc techniques make up for the shortcomings of the other.

Mozc considers the conditional probability P(y|x) of

sentence y, given the input Hiragana string x. The input

prediction problem given a prefix x can be formulated as a

problem of deriving word y to maximize P(y|x). According to

Bayes’ theorem, this maximization problem can be expressed

as maximization of the product of a language model P(y) and a

Kana-Kanji model P(x|y). We write:

�̂� = argmax 𝑃(𝑦|𝑥) = argmax 𝑃(𝑦)𝑃(𝑥|𝑦) (1)

𝑃(𝑦) = ∏ 𝑃(𝑤𝑖|𝑐𝑖)𝑃(𝑐𝑖|𝑐𝑖−1)

𝑛

𝑖=1

 (2)

𝑃(𝑥|𝑦) = ∏ 𝑃(𝑟𝑖|𝑤𝑖)

𝑛

𝑖=1

 (3)

where ci is the language class (e.g. part-of-speech, inflected

forms) of word wi. P(wi|ci) is the probability of word

occurrence, P(ci|ci-1) is the probability of class transition, ri are

candidate readings of word wi, and finally P(ri|wi) is the

probability of reading word wi as ri.

As we mentioned before, both (i) the identification of the

word currently being typed and (ii) the prediction of the next

words that follow the current one are important for efficient

typing. Due to time/labor intensive input of Japanese, (ii), the

prediction of the next words is crucial. Mozc can handle both

problems. However, Mozc is weak in accurate prediction of

next words since this prediction depends on a sufficiently long

series of previous word inputs.

Alsharif et al. proposed a keyboard gesture decoding method

[3] using Long Short-Term Memory (LSTM) [22] and Finite

State Transducer [46]. While this method presupposes to use a

software keyboard having a conventional PC-like layout (e.g.

Qwerty), usually Japanese Kana layouts (e.g. 12 keys layout,

Godan layout) keyboard is not designed to input a word by a

single stroke. For this reason, their method is not suitable for

Japanese Kana layout keyboard. On the other hand, our

approach supports not only conventional PC-like layout but

also Japanese Kana layout. Additionally, this task is limited to

predict or complete the word currently input.

[20] proposed the mobile keyboard prediction using

federated learning, a decentralized learning technique to train

models such as neural networks on users’ devices, uploading

only ephemeral model updates to the server for aggregation,

and leaving the users’ raw data on their device. While this

method is based on the ethical doctrine that human nature is

fundamentally good, research like [5] has shown that inference

as well as poisoning attacks (injecting incorrect data) problem

by mischievous users taking part to the federation are possible.

Additionally, detecting poisoning attack from NNs’ parameter

is difficult because it is too large parameters to detect. Thus, our

approach does not consider the user’s feedback while learning a

language model.

[60] proposed the recurrent neural network based text input

prediction designed for mobile devices. It compacts RNN-LM

by knowledge distillation, shared matrix factorization, and

quantization. However, it sacrifices a word perplexity in

exchange for language model size. On the other hand, our

approach overcomes this tradeoff by putting the RNN-LM to

the server and communicating via WebSocket [61], which is an

interface to enable Web applications to maintain bidirectional

communications with server-side processes.

Among commercial software tools, SwiftKey
1
 seems to use a

neural network based predictive input. Nevertheless, there is no

technical paper describing its internals. To the best of our

knowledge, SwiftKey’s

algorithm and performance data have

not been made available to the research community.

B. Language Models

The n-gram model, which was first introduced in [53], has

been applied successfully to natural language processing. Here,

the conditional probability of the next word is calculated by a

(n-1)-th order Markov model with the previous (n-1) words as

states. If the total number of words in the vocabulary is V, the

number of possible states is therefore of the order of V
n-1

. When

n increases, however, the total number of states explodes

exponentially (curse of dimensionality).

For this reason, even for small vocabularies, practical values

of n range from 3 (trigrams) to about 5, and longer sequences

cannot be practically handled. Simple n-gram models also

suffer from the so-called zero frequency problem [50]

regarding the estimation of the likelihood of a word occurring

for the first time. Although several methods have been

proposed, their suitability has been based on empirical

evaluation rather than a well-founded model. [36] proposed a

cache model, which assumes that most recently used words are

often used again.

The application of Machine Learning to natural language

processing has been attempted many times.

For example, [44] proposed language models based on

recurrent neural networks (RNNs) [15]. The RNN language

model overcomes the curse of dimensionality problem by

treating word sequences as attribute vectors. This way, we do

not need one bit per word of vocabulary (multiplied by n) to

represent the n-gram sequence. Rather, with the vector

representation, we need one bit per attribute, where attributes

describe character sequences independently from the words

they contain (i.e., two different sequences may share part of the

attributes). Computing attribute vectors amounts to computing

a projection from the sparse space of word sequences to a

denser data space. This projection is adjusting itself during the

neural network training. It has been shown that it can capture

semantic information about words [42]. For example, words

represented by similar vector to the word “France” are “Spain”,

“Belgium”, “Netherlands”, “Italy” and so on.

[8] introduces an algorithm using machine learning which

trains itself using Neural Networks. Moreover, it proposes

1 https://swiftkey.com/

using it for the generation of replies, which is quite similar to

Google’s EMail reply by single tap suggestions.

[29] addresses the inefficiency issue by using long-term

memory-recursive neural networks to generate text sequences

in real-time conditions. It predicts a single data point at a time

by considering a likelihood for the many possible word

suggestions. Their system is able to generate the next real-time

word in a wide variety of styles.

Quite good results can be reached by narrowing the text

content subject as [7] shows. Moreover, this approach tries to

address the synonym problem, but in a narrowed text content

field of anamneses language.

However, current techniques focus on western languages.

Attempts to apply them one by one to Japanese language ended

up in the current poor text input systems for Japanese language

of today’s smartphones. In addition to the previously

mentioned problem with the non-isomorphism of “painted”

Kanji and their pronunciation and, moreover, with their

(context-dependent) meaning, Japanese language analysis

requests the consideration of (1) word separation (which does

not appear in the word sequence), (2) its above mentioned

mixture of Kanji, Hiragana, and Katakana symbols, and (3)

much longer phrases to analyze the nominal meaning of a

sentence due to its grammatical structure and, moreover,

topical and cultural context knowledge on how to express

intended meanings by nominal words, which is a bit different to

the western way of expressing meanings in a more direct way of

choosing words.

III. PROPOSED MODEL

A. Predictive Text Input by Hybrid Language Models

Predictive text input functions predict the next word based on

the context. For example, as shown in Fig.1., if “カレーを”

(curry wo) is input, then IME suggests “食べる” (eat), “作る”

(cook) and the like.

This feature can decrease typing effort, and most IMEs for

smartphones implement it. However, as discussed before, it is

difficult to accurately predict next words using an n-gram

approach, since the accuracy of this prediction depends on

Fig. 1. Text input prediction after inputting “カレーを” (curry wo)

considering a large 𝑛 , i.e. a sufficiently long sequence of

previous inputs. To cope with this problem, our IME, which we

call Flick, uses a hybrid language model. Basically, our hybrid

model adds an RNN-based language model [15] (generally

called RNN-LM [44]) for the next word prediction to the Mozc

[34] approach (i.e. integration of a unigram and bigram

language model) for the current input word conversion and

completion. The Japanese input method editor Mozc was

designed for the platform independent use and is adopted from

Google Japanese Input, but does not suffer from extensive word

conversion tables, which means, of course a slight loss of

performance, which is partly compensated by custom

directories.

While RNN-LM provides effective prediction considering

long contexts, dealing with large vocabulary (especially proper

nouns) by RNN-LM is difficult due to computational cost. By

contrast, while n-gram LMs are not suited for prediction

considering long context due to the exponentially

computational cost of building the language model, n-gram LM

can deal with large vocabulary via a lossless compression of

dictionary and language models [34]. In addition, manually

parameter adjustment to n-gram LM is relatively easier than to

RNN-LM. For compensating each weak point by each

advantage, we integrated RNN-LM (140K words vocabulary)

with n-gram LM (1.16M words vocabulary), using the

client-server model. The n-gram LM is used on mobile devices

since this LM requires a relatively small amount of

computational cost by limiting a word frequency model to

𝑛 = 1 (unigram) and a part-of-speech transition model to

𝑛 = 2 (bigram). By contrast, the RNN-LM is deployed on the

server due to the puny computational capacities of mobile

devices.

Zaremba et al. [63] compared word perplexity (see Section

IV for details) among various language models by using Penn

Treebank corpus [40]. These results show that models

combined with several models are better than single models.

However, rich models (e.g. a model taking average from 38

models) need high computational capacity. For this reason, we

need to consider the cost-performance of our model in practice.

In other words, considering the trade-off between quality of

prediction and cost of prediction (e.g. amount of numerical

computation and memory usage) is important. Accordingly, we

chose the hybrid model of our elaborated RNN-LM (details are

described in Section III-B) and n-gram LM.

B. Recurrent Neural Networks Language Model

RNNs are a variety of neural networks that make it possible

to model long-distance dependencies. Unlike feed-forward

neural networks, RNNs are effectively applicable to the

prediction of (usually long) sequences of words. As shown in

Fig. 2, we elaborate RNN-LM as follows:

1. The word of current time step is converted into a

one-hot-encoded sparse vector (𝒙𝑡). By using a continuous

bag-of-words model, the word-embedding layer converts a

one-hot-encoded sparse vector (𝒙𝑡) into dense vector (𝒉𝑡
0)

for dimensionality reduction aiming at an efficient

processing of RNN.

2. During training, Zaremba’s dropout masks randomly units

of hidden layers for LSTM’s input (𝒉𝑡
0, 𝒉𝑡

1) and linear

transformation’s input 𝒉𝑡
2 (see Section III, B, 1, for details).

3. In LSTM block, there are the memory cell state and various

gates. The memory cell state act as a transport highway that

transfers information all the way down the sequence chain.

The memory cell state, in theory, can carry relevant

information to any stage of sequence processing. So

information from the earlier time steps can make its way to

later time steps, reducing the effects of short-term memory.

As the cell state goes on its procedure, information is added

or removed to the memory cell state via gates. The gates are

small neural networks that decide which information is

allowed on the memory cell state. The gates can learn what

information is relevant to keep or forget during training.

4. For linear transformation to dimensions of the number of

vocabulary, the output of last LSTM layer (𝒉𝑡
2) is multiplied

by 𝑾𝑦ℎ, which is a weight matrix shaped by the number of

words in vocabulary × the number of hidden units.

5. The softmax function converts the output vector of arbitrary

real values (𝒚𝑡) to a vector of real values (𝒒𝑡) in the range

[0, 1] like a discrete probability distribution ranging over

different possible categories.

6. During training, Back Propagation Through Time (BPTT;

details are described in Section III, B, 1) updates the

weights (𝑾1, 𝑾2, 𝑾𝑦).

In classic feed-forward Neural Networks (NNs), each layer

feeds into the next layer in a chain connecting the inputs to the

outputs. At each iteration t, a new example xt is fed to the

network by setting the values of the input nodes. The NN feeds

the activation forward by successively calculating the

activations of each hidden layer. Finally, outputs can be read

from the network’s top-most layer. When the next example xt+1

is fed to the NN, new activations are computed, and all previous

activations get overwritten. If consecutive inputs to the NN are

unrelated to each other (say, images uploaded by different

users), this is a perfectly acceptable. However, in our case,

dependence between consecutive words must be considered.

We recall that predict text inputs, we use a Language Model

(LM) which decomposes the probability over input words by:

𝑃(𝑤1 , ⋯ , 𝑤𝑚) = ∏ 𝑃(𝑤𝑖 | 𝑤1, ⋯ , 𝑤𝑖−1)𝑚
𝑖=1 (4)

As outlined in the Introduction, LMs use known frequencies

of word co-occurrences to predict the probability of observing a

sentence. The probability of a sentence is computed as the

product of probabilities of each word, given the words that

came before it. For example, the probability of the sentence

“Let’s have coffee” is computed as the probability of finding in

Fig.2. Structure of our RNN-LM (X indicates a unit masked by dropout)

a reference dataset of sentences the word “coffee” given “Let’s

have”, multiplied by the probability of finding “have” given

“Let’s”.

LMs have been successfully used as scoring mechanisms,

e.g. in speech recognition systems, which generating multiple

candidate sentences for a given utterance and then use the

language model to pick the most probable one [39]. Given an

existing sequence of words, we generate candidate next words

and their predicted probabilities, and repeat the process until we

have a full sentence. On the other hand, RNNs provide a way to

implement sequential structures showing long-term

dependencies, such as LMs. At each time step t, each hidden

layer 𝒉𝑡
𝑙 of an RNN receives input from the previous hidden

layer 𝒉𝑡
𝑙−1and from the same hidden layer at the previous time

step (𝒉𝑡−1
𝑙). While the basic idea looks simple enough, applying

it to predicting the next word(s) that will be input by a user

typing a text message is not straightforward.

To take a closer look to basic RNN operation, we start from

the hidden layer update of an ordinary NN, namely

𝒉 = 𝜙(𝒙𝑾 + 𝒃) (5)

where x is the input vector, W is the weight array and b is the

bias, while 𝜙 is a standard activation function like tanh(). The

output of the RNN hidden layer has the form

𝒉𝑡
𝑙 = 𝜙(𝒉𝑡

𝑙−1𝑾ℎ
𝑙 + 𝒉𝑡−1

𝑙 𝑾ℎ
𝑙 + 𝒃𝑙) (6)

The estimated probability distribution is computed by

𝒚�̂� = 𝒉𝑡
𝐿𝑾𝑦 + 𝒃𝑦

(7)
𝒒�̂� = softmax(𝒚�̂�)

Here, L is the number of hidden layers, softmax() is the

normalized exponential function [4], [21], i.e. a generalization

of the logistic function that converts the output vector of

arbitrary real values to a vector of real values in the range [0, 1].

The output of the softmax() function is used to represent a

categorical distribution - that is, a discrete probability

distribution ranging over different possible categories.

When our RNN predicts the upcoming word, the hidden

layer has access to the current word and the activation vector of

the previous one, and by extension, to the previous input(s).

Also, even though the RNN in Fig.2 technically contains a loop

(the hidden layer is connected to itself), this connection spans a

time step. Thus, our RNN is still a feedforward network like the

Locally Recurrent Globally Feedforward networks [59] and we

can train it by back-propagation similar to classic NNs.

For our RNN, we used the Long Short-Term Memory

(LSTM) technique for updating the hidden layer in lieu of

direct update, because the LSTM is known to be more robust in

training w.r.t. the vanishing gradient problem [4], [6], [21]. We

will discuss the problem of RNN-LM training in the next

section. The LSTM technique “memorizes” information from

multiple time steps. As shown in Fig. 3, we use an LSTM block

with the following transformations that map inputs to outputs

across blocks at consecutive layers and consecutive time steps:

𝒛𝑡 = tanh(𝒉𝑡
𝑙−1𝑾𝑥𝑧

𝑙 + 𝒉𝑡−1
𝑙 𝑾𝑦𝑧

𝑙 + 𝒃𝑧
𝑙),

(8)
𝒊𝑡 = σ(𝒉𝑡

𝑙−1𝑾𝑥𝑖
𝑙 + 𝒉𝑡−1

𝑙 𝑾𝑦𝑖
𝑙 + 𝒃𝑖

𝑙),

𝒇𝑡 = σ(𝒉𝑡
𝑙−1𝑾𝑥𝑓

𝑙 + 𝒉𝑡−1
𝑙 𝑾𝑦𝑓

𝑙 + 𝒃𝑓
𝑙),

𝒐𝑡 = σ(𝒉𝑡
𝑙−1𝑾𝑥𝑜

𝑙 + 𝒉𝑡−1
𝑙 𝑾𝑦𝑜

𝑙 + 𝒃𝑜
𝑙),

𝒄𝑡
𝑙 = 𝒇𝑡 ⊙ 𝒄𝑡−1

𝑙 + 𝒊𝑡 ⊙ 𝒛𝑡 ,

𝒉𝑡
𝑙 = 𝒐𝑡 ⊙ tanh(𝒄𝑡

𝑙),

where 𝒉𝑡
𝑙 is a vector of l-th hidden layer at time step 𝑡, z is block

input, i is input gate, y is block output, f is forget gate, o is

output gate, 𝒄 is memory cell, ⊙ is the element-wise

multiplication operator, and 𝜎 is a short-hand for the sigmoid()

function introduced above.

LSTM has the input gate to update the memory cell state.

First, the previous hidden state and current input are passed into

a sigmoid function to decide which values will be updated by

transforming the values to be in the range [0, 1]. A value nearly

0 means not important and nearly 1 means important. The

hidden state and current input are also passed into the tanh

function to squish values in the range [-1, 1] to help regulating

the network. Then the tanh output is multiplied with the

sigmoid output. The sigmoid output will decide which

information is important to keep from the tanh output. LSTM

should have enough information to calculate the memory cell

state. First, the memory cell state gets pointwise multiplied by

the forget vector. This has a possibility of dropping values in

the memory cell state if it gets multiplied by values near 0.

Then LSTM takes the output from the input gate and do a

pointwise addition which updates the memory cell state to new

values that the neural network finds relevant. That gives LSTM

to new memory cell state. The output gate decides the next

hidden state. The hidden state contains information on previous

inputs. The hidden state is also used for predictions. First,

LSTM passes the previous hidden state and the current input

into a sigmoid function. Then the newly modified memory cell

state is passed to the tanh function. The tanh output is

multiplied with the sigmoid output to decide what information

the hidden state should carry. The output is the new hidden

state. Then the new memory cell state and the new hidden state

are carried over to the next time step. And also, the block output

is recurrently connected back to the block input and all of the

gates.

Fig. 3. Structure of LSTM block

1) Training RNN-LM

Training RNN-LM for our specific problem requires caution.

At every time step, our task is to predict the next word, given

the word sequence up to that point. Classically, in the RNN

training phase, a backpropagation technique (BP) is used to

update the weights based on a loss function, which is an

average of the losses at each time step. We rely on a standard

loss function, cross-entropy, is computed as following:

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥𝑡+1
(𝑛)

) log 𝑞(𝑥𝑡+1
(𝑛)

|𝑥𝑡
(𝑛)

)

|𝑽|

𝑛

 (9)

where 𝑝 denotes empirical distribution of the test sample, 𝑞

denotes estimated probability distribution by language model,

V denotes the vocabulary, 𝑥𝑡
(𝑛)

 denotes 𝑛 -th word in the

vocabulary at the position 𝑡 in the training data sequence.

When trying to back-propagate across many steps, the

following problems arise: (1) The time it takes to compute a

single update may be long (2) The gradient across many

recurrent steps may vanish.

To prevent these problems, we feed data to our RNN in short

sequences so that at every time step, our input is a single vector.

Because our RNN must provide multiple outputs (one at each

time step) we calculate the loss at every time step. The weights

W of the RNN at time step 𝑡 influence both the loss at time step

t and the loss at time step 𝑡 + 1. To combine our losses into a

single global loss, we take the average of the losses at each time

step. This technique for accurate training is known as BPTT

(Back Propagation Through Time) [62]. Different from BP,

procedure of BPTT is as follows: (1) Present a sequence of time

steps of input-output pairs to the network, (2) Unfold a

recurrent layer, (3) Calculate losses across each time step by

loss function, (4) Accumulate losses into a single global loss,

(5) Take the average of losses at each time step, (6) Update all

weights of recurrent layers and feed-forward layers, and (7)

The state of memory cells after processing each time step is

saved for the next time step.

This way, the training of the hidden layer consists of

matrix-vector multiplications, which can be done efficiently

off-line.

To update weights in BPTT, the Adam optimizer [30] is used.

Adam combines the advantages of AdaGrad [13] and RMSProp

[58], which are extensions of stochastic gradient descent. It

maintains learning rates per parameter that improves

performance on problems with sparse gradients. RMSProp also

maintains learning rates per parameter that are adapted based

on the average of recent magnitudes of the gradients for the

weight (e.g., how quickly it is changing). This means the

algorithm works well on online and noisy gradients (e.g.,

applying dropout). Adam uses learning rates based on the

average first moment (the mean) as in RMSProp, and uses also

the average of the second moments of the gradients (the

uncentered variance) as in AdaGrad. To determine the

appropriate learning rate, Adam updates exponential moving

averages of the gradient and the squared gradient. The moving

averages themselves are estimates of the first and the second

moments of the gradients. While these moving averages are

initialized as (vectors of) zero, which leads to moment

estimates that are biased towards 0, this initialization bias can

be easily counteracted, resulting in bias-corrected estimates.

A flow of updating parameters by Adam is as follows:

1. Compute gradients 𝑔 by loss function.

2. Update biased first moment estimate 𝑚 and biased second

raw moment estimate 𝑣 with exponential decay rates

𝛽1, 𝛽2:

𝑚 = 𝛽1𝑚 + (1 − 𝛽1)𝑔 (10)

𝑣 = 𝛽2𝑣 + (1 − 𝛽2)𝑔 (11)

3. Compute bias-corrected first moment estimate �̂� and

bias-corrected second raw moment estimate �̂�:

�̂� = 𝑚 / (1 − 𝛽1) (12)

�̂� = 𝑣 / (1 − 𝛽2) (13)

4. Update parameter vector 𝜃 with step size 𝛼:

𝜃 = 𝜃 − 𝛼�̂�/(√�̂� + 𝜀) (14)

Kingma’s work [30] shows that Adam is robust and

well-suited to a wide range of non-convex optimization

problems such as multi-layer neural network. Its performance

gain outweighs the computational costs of building it in. Since

the next word prediction task has the problems of sparse/noisy

gradients and non-convex optimization, we applied Adam

optimizer to update weights of our elaborated RNN-LM.

In addition, we exploit the gradient norm scaling technique,

which has been proposed in [49] to prevent exploding gradient

[6]. The gradient norm scaling involves changing the

derivatives of the loss function to have a given vector norm

when the L2 vector norm (sum of the squared values) of the

gradient vector exceeds a threshold value. For example, a norm

of 5 is specified, meaning that if the vector norm for a gradient

exceeds 5, then the values in the vector will be rescaled so that

the norm of the vector equals 5. This is formulated as follows:

𝑔 = {

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

‖𝑔‖
𝑔 (if ‖𝑔‖ ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝑔 (otherwise)

 (15)

where 𝑔 indicates gradient.

Furthermore, as mentioned before, we applied Zaremba’s

dropout technique [63] to train the LSTM for reducing

overfitting. The dropout operator corrupts or forgets the

information carried by the units, forcing them to perform their

intermediate computations more robustly and/or efficiently. At

the same time, we do not want to erase all the information from

the units. It is especially important that the units remember

events that occurred many time steps in the past.

Standard dropout technique [55] temporarily and

dynamically removes units from the network, along with all its

incoming and outgoing connections. Amount of removing units

is determined probabilistically or randomly. This technique

works well as the Restricted Boltzmann Machine model [54].

Unfortunately, standard dropout as it is does not work well

for RNNs. Standard dropout perturbs the recurrent connections

by means of random determination to dynamically remove

units, which makes it difficult for the LSTM to learn to store

information for long periods of time. For this reason, our

implementation exploits Zaremba’s dropout technique, which

does not use dropout on the recurrent connections. In order not

to randomly remove/forget in LSTM block but to remember

events that occurred on many significant time steps in the past,

we used dropout outside LSTM. Moreover, according to our

experiments, this particular dropout technology provides a

reasonable trade-off between the additional complexity cost

and the resulting performance gain.

As shown in Fig. 2, dropout is applied to only input of LSTM

blocks (𝒉𝑡
0, 𝒉𝑡

1) and linear transformation (𝒉𝑡
2). Therefore, our

LSTM can benefit from dropout regularization without

sacrificing its valuable memorization ability.

2) Generating the next word

We have just described an RNN model that takes sequences

of words from our training data and tries to predict the next

word at every time step. After training, RNN-LM can be

deployed as a service to generate plausible sentences on behalf

of applications. The generation procedure works as follows: say

our word sequence begins with the word “Reserve”. We feed

the word “Reserve” to the RNN-LM and get a conditional

probability distribution over the next words

P(x2|x1=”Reserve”). We can then sample from this

distribution, e.g. producing a token “table”, and then assign

x2=”table”, feeding this to the network at the next time step.

We use a word encoding algorithm, continuous bag-of-words

model [42] to represent words as vectors, making highly

dimensional and sparse word vectors to become dense.

IV. IMPLEMENTATION AND EVALUATION

We implemented our hybrid approach as an IME called

Flick. Flick integrates the RNN-LM-based predictive function

described in the previous section with the n-gram processing

function of the conventional tool Mozc. In this section, Flick is

evaluated by comparing it to Mozc.

A. Flick Implementation

Flick is composed of three parts: a text input/output part, the

n-gram LM part, and the RNN-LM part. The former two parts

are deployed on the mobile application at the client side. The

𝑛-gram LM is used to predict/convert a current intended word

being input with checking syntactical aspects such as a

part-of-speech. The text input/output part and the n-gram LM

part of Flick use Mozc and run at the client-side. The RNN-LM

part of Flick is deployed and processed at the server-side due to

client-side limitation of computational capacities. The

RNN-LM part of Flick has input nodes and output nodes. Input

nodes receive the past word sequence inputted by the user.

Output nodes show a sequence of predicted words in the order

of probability.

To train our RNN-LM, about 4,000,000 sentences from

Twitter’s posts (tweets) were used. And 280,000 tweets, which

do not contain in the training dataset, were used as the test

dataset. We used MeCab [35] as Japanese word segmentation

(token reader). MeCab is an open source word segmentation

library for Japanese text. MeCab can analyze and segment a

Japanese sentence into its parts of speech. In this work, the

mecab-ipadic is used as MeCab’s dictionary. The vocabulary

size of our RNN-LM is about 140,000 words.

Hyper-parametrization is an important issue. To address it,

comparison about hyper-parameters for NN architectures was

newly done. As criteria, neither the prediction accuracy nor

error is appropriate to express the prediction capability since

this task is that user choices the next word from some

candidates and also there are too many classes (vocabulary size

≈ 140,000) as classification problem. Thus the prediction

capability of our language model is expressed by its word

perplexity (PPL). PPL is the common evaluation metric for a

language model. Since we evaluate the language model and not

just the correctness of the prediction, this metrics is more

appropriate than the recall metrics. Generally, PPL measures

how well the proposed probability model 𝑞(𝑿) represents the

target data 𝑞∗(𝑿). Let a validation dataset be 𝑫 = {𝑿(𝒏)}𝑛=1
|𝐷|

,

which is a set of sentences, where the 𝑛-th sentence length is

𝑇(𝑛)
, and the vocabulary size of this dataset is |𝑉|, the word

perplexity is represented as follows:

𝑤𝑜𝑟𝑑 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = −
1

|𝑉|
∑ ∑ log𝑏 𝑞(𝑿𝑡

(𝑛)
)

𝑇(𝑛)

𝑡=1

|𝐷|

𝑛=1

 (16)

We usually assign base 𝑏 = 2 or 𝑏 = 𝑒. The PPL shows how

much varied the predicted distribution for the next word is.

When a language model represents the dataset well, it should

show a high probability only for the correct next word, so that

the entropy should be high. In the above equation, the sign is

reversed, so that smaller perplexity means better model.

Finally, our model combines the advantages of several

techniques within hybrid language model by integrating a

Recurrent Neural Network (RNN) with a n-gram model. RNNs

perform best for learning long sequences for next word

prediction. On the other hand, n-gram models are best at current

word completion. Not just the chosen combination of learning

techniques, but also the architecture supports an efficient word

prediction by running the cost intensive part of RNN-LM on the

sever and the n-gram model on the client. Our RNN-LM

consists of an input layer equipped with word embedding, an

output layer, and hidden layers connected with LSTMs (Long

Short-Term Memories). Training is done via BPTT (Back

Propagation Through Time). For robust training, BPTT is

elaborated by learning rate refinement and gradient norm

scaling. Additionally, we avoid overfitting by a dropout

technique. Experimentally, we figured out that dropout rates

between 3% and 6% are appropriate for avoiding overfitting.

To limit the computational complexity, our model is compact.

It consists of two LSTMs and 650 units per layer). Due to

synergetic effects, it shows 10% lower perplexity than

TABLE IV

ELAPSED TIME FOR EACH PERSON ON THE REAL USER TEST (IN SEC.)

Person No. 1 2 3 4 5 6 7 8

Mozc 1795 1258 1418 1202 1416 1248 1260 1229

Flick (Mozc + RNN-LM) 1477 1208 1197 986 1217 933 1208 1137

TABLE I
COMPARISON OF PPL AMONG DIFFERENT HYPER PARAMETERS ON

JAPANESE TWITTER DATASET (LOWER IS BETTER)

Hyper parameters PPL
Parameters

to be trained

Hidden unit 100 226.98 28,300,800

Hidden unit 200 205.68 56,781,600

Hidden unit 600 176.83 173,904,800

Hidden unit 600 with dropout 159.9 173,904,800

Hidden unit 650 169.22 188,905,200

Hidden unit 650 with dropout 158.28 188,905,200

Hidden unit 700 166.85 203,985,600

Hidden unit 700 with dropout 157.91 203,985,600

Zaremba’s excellent conventional models in our Japanese text

prediction experiment. Our model has been incorporated into

IME (Input Method Editor). On the Japanese text input

experiment, Flick outperforms Mozc (Google Japanese Input)

by 16% in time and 34% in the number of key strokes.

Some of the particular experimentation results are as follows.

In comparison among hyper-parameters, the condition is fixed

to learning epoch = 3, 2 LSTM, threshold for gradient norm

scaling = 5 and dropout rate = 0.5 (if any). The result is shown

in TABLE I.

This result shows PPLs of applied dropout models are lower

than the others. Comparing hidden unit = 650 (with dropout)

with hidden unit = 700 (with dropout), although the PPL differs

by only 0.4, the difference in the number of parameters to be

trained is large. Thus, hidden unit = 650 with dropout is used.

Though the language is not Japanese but English, TABLE II,

which is based on Mikolov’s work [43], shows the comparison

among different neural network models/architectures on the

Penn Treebank corpus (1M words) [40]. KN5 denotes the

baseline: interpolated 5-gram model with modified Kneser-Ney

smoothing [31] and no count cutoffs. While models applied

modified Kneser-Ney smoothing is often used in n-gram

language models, this evaluation result shows that NN-LMs

(including RNN and LSTM) outperform the n-gram model in

terms of PPL. This evaluation shows also that BPTT provides a

more positive effect than BP because the word perplexity of

BPTT is lower than BP.

Coming to Japanese, TABLE III shows the comparison

among our proposed RNN-LM and the other language models,

using the same Japanese Twitter dataset as used in TABLE I.

While TABLE II shows our elaborated RNN-LM is not the best

model on the English small dataset, TABLE III shows our

elaborated RNN-LM is the best model on the Japanese large

dataset. And also these comparison results proved RNN-LM is

over 20-30% better than the n-gram approach in the prediction

capability expressed by PPL.

As shown in TABLE I, increasing the hidden unit number

from 100 to 650 decreased the word perplexity around 25%

(from 227 to 169). Though this hyper parameterization effect is

quite straightforward, this also shows that describing the

practical engineering technique is important, due to its leading

to practically beneficial methodologies such as dropout.

Indeed, in TABLE I, hidden unit 650 without dropout and

hidden unit 650 with dropout are close (only 6% different) each

other in word perplexity. But, the quality of prediction is

significantly different. The one without dropout is much

inferior. Perplexity in the Japanese twitter dataset decreases just

around 6% (from 169 to 158) due to the dropout over LSTM as

TABLE I shows. But, as the example shows, the one with

dropout clearly suggests the word much more related to the

context than that without dropout.

Despite using BPTT, going back too many time steps leads

the gradient to vanish/explode. However, the length of tweets

used in this experiment is limited up to 140 characters.

Additionally, the average number of characters in Japanese

tweets is 45.28 characters, i.e. the average number of time steps

to learn is less than 45.28 since this task is not character-level

prediction but word-level prediction. Thus, we do not truncate

the number of time steps in BPTT. In conclusion, by virtue of

scientific experimental experience for increasing prediction

performance, our RNN-LM was elaborated as follows: (1)

having 650 hidden units to decrease word perplexity and Long

Short-Term Memory (LSTM) for robust training (2) using

Zaremba’s dropout to reduce overfitting. This elaborated

RNN-LM combined with Mozc’s n-gram is evaluated as to the

Japanese input time and the number of key strokes.

B. Evaluation Method

To evaluate the effectiveness of our method using the

above-mentioned elaborated RNN-LM together with the

n-gram technique, we performed tests involving users of

texting applications and compared our results with those of

Mozc. Mozc, which uses a word n-gram language model only,

provided an ideal benchmark for this analysis. Hereby, we

considered two performance parameters:

1. the time, which required to enter texts using our Flick with

the time needed when using Mozc, and

2. the number of key strokes (finger actions) to enter texts.

Since our system’s language model need not to be frequently

updated, training is done once-for-all and offline. Therefore,

the comparison with the time required for training is not

relevant for the application (after training). In particular, we put

more attention to time and keystroke reduction for users.

Eight people (5 females and 3 males) participated in our

experiment. The order of using methods (Mozc and Flick) is

TABLE II
COMPARISON OF PPL AMONG DIFFERENT LANGUAGE MODELS ON PENN

TREEBANK (1M WORDS).

Model PPL

KN5 (baseline) [31] 186

feedforward NN 141

RNN trained by BP 137

RNN trained by BPTT 123

Zaremba’s medium regularized LSTM [63] 82

Our elaborated RNN 109

TABLE III

COMPARISON OF PPL AMONG PROPOSED RNN-LM AND THE OTHER

MODELS ON THE SAME JAPANESE TWITTER DATASET AS IN TABLE I.

Model PPL

KN5 (baseline) [31] 247

Feedforward NN 334

Zaremba’s medium regularized LSTM [63] 174

Our elaborated RNN 158

randomly changed in every particular experiment. Also, the

order of example texts to input is shuffled every experiment.

We used 8 different texts, each one originated from a different

source: a currently best-seller book, a magazine, a newspaper, a

governmental paper, an internet bulletin-board, a blog, a school

textbook on history, and a current newsletter of the local

government. Each person had to type all these 8 texts of about

half a page each, four of them by using Mozc and four of them

by using Flick. Each person typed 4 texts by using Mozc and 4

texts by using Flick. Which person using which method (Mozc

or Flick) was randomly changed. For each text, we gained 4

typing examples of using Mozc and 4 examples of using Flick.

Finally, in the experiment we gained 64 typing examples.

C. Corpus

As to the corpus for the user test and evaluation, we used the

core data of the Balanced Corpus of Contemporary Written

Japanese (BCCWJ) [38], which contains various domain text

data and is manually annotated with word segmentation and

pronunciations.

The BCCWJ is a 100 million words balanced corpus. It

consists of three subcorpora (1) a publication subcorpus, a (2)

library subcorpus, and (3) a special-purpose subcorpus). It

covers a wide range of text source types: books in general,

magazines, newspapers, governmental white papers,

best-selling books, an internet bulletin-board, a blog, school

textbooks, minutes of the national diet, publicity newsletters of

local governments, laws, and poetry verses. A random

sampling technique has been used to improve the

representativeness of the corpus. It consists of two types of

data: the balanced sampling data and the single domain data.

The BCCWJ balanced sampling data is a single file that

contains equal amounts of text from various domains

mentioned above (poems, magazine articles, blogs, government

documents, and others). On the assumption that people will use

the proposed method in various scenarios, we selected

sentences fitting to different contexts.

D. Results

TABLE IV shows the results of the user test. Every user

using our method (Flick: Mozc + elaborated RNN-LM) shows

faster text input compared with Mozc.

TABLE V shows the average and standard deviation of

elapsed times for both methods. To test whether our result is

statistically significant, we performed a t-test, which gave a

significant result: t (7) = 4.7; p < .01. The results show that our

predictive text input based on n-gram (Mozc) enhanced by our

scientifically elaborated RNN-LM exploiting 2 layers LSTM,

which have 650 hidden units per layer, and Zaremba’s dropout

is significantly effective for Japanese text input prediction.

Especially, since such RNN-LM correctly suggests the next

word reflecting the context, our elaborated RNN-LM

contributes to reducing text input time. And also, TABLE VI

shows the standard deviation of Flick is lower than Mozc. This

means a difference of input time between peoples, which

familiar with mobile devices, with peoples, unfamiliar with

mobile devices, is reduced by using Flick. In addition, TABLE

VI shows the results of the comparison of the numbers of

keystrokes to enter texts, which same as user test, by Japanese

Kana-layout keyboard such as Fig. 1. Flick is less than Mozc in

terms of the number of keystrokes. Compared with the directly

inputting, Flick saved about 42% of the number of keystrokes.

Thus, it leads that the Flick user’s fingers are less tired and the

time to input text is decreased.

V. CONCLUSION

This paper proposed a novel hybrid approach to develop a

smartphone IME for Japanese. It can predict the current input

words by traditional n-gram based text prediction model on the

client but the next word. Particular contributions and results are

summarized here are:

 A hybrid language model, integrates a Recurrent Neural

Network (RNN) with an n-gram model and combines the

advantages both,

 Its “price” with respect to complexity issues has been

limited by a client-server architecture, that turn out to have

the best performance in terms complexity. The very

complex RNN-LM deploys on the server while the n-gram

model on the client.

 We developed an elaborated RNN-LM equipped with

word embedding, an output layer, and hidden layers

connected with LSTMs (Long Short-Term Memories).

 We performed the training with Training via BPTT (Back

Propagation Through Time). For a more robust training,

BPTT is elaborated by learning rate refinement and

gradient norm scaling. To avoid overfitting in the training

process, the dropout technique is applied.

 To increase prediction performance, our RNN-LM is

equipped with 2 LSTMs among hidden layers each having

650 units. The LSTMs use BPTT elaborated for more

robust training by learning rate refinement and gradient

norm scaling.

 To avoid overfitting, we took Zaremba’s dropout only for

hidden layers outside (except) LTSM. Considering

cost-performance for practical use on mobile devices, our

TABLE VI
NUMBER OF KEYSTROKE BY KANA-LAYOUT KEYBOARD

 Average Sum (all sentences)

Direct input

(no input prediction)
26.97 1160

Mozc 21.27 915

Flick (Mozc + RNN-LM) 15.87 682

TABLE V

AVERAGE AND STANDARD DEVIATION OF ELAPSED TIME (IN SEC.)

 Average
Standard

deviation

Mozc 1353.3 183.8

Flick (Mozc + RNN-LM) 1170.4 154.6

novel model was rather compact (2 LSTMs, 650 units per

layer, which run in the sever and are not related to mobile

devices), indeed.

 However, due to such synergetic elaboration, our model

experimentally showed an about 10% lower perplexity

than the excellent conventional models such as Zaremba’s.

 Our technique was applied by implementing a novel IME

called Flick. It is really used as a smartphone application.

Compared with conventional IME without RNN, Flick

experimentally outperformed a conventional Japanese

IME (Mozc) in the input time (saved 16%) and the number

(saved 34%) of keystrokes.

Since the functional performance seems to be close to objective

limitations, our work will be focused on complexity issues of

the calculation by simplifying the model without a detectable

loss of functional performance, for example by reducing the

number of units per layer. We try to find the best trade-off

between simplicity and performance experimentally.

Moreover, we think about a technology of “dynamic training”

(some sort of learning) as well as that of “contrastive learning”

(both, some sorts of machine learning). The former, during the

system’s application by finding out frequent patterns with the

objective to come up with a prediction in shorter time and with

less keystrokes. The latter [45] is one of recent technologies to

aim at extending our work to Asian languages that share more

similarities with Japanese.

DECLARATIONS

Ethical Approval

not applicable

Competing interests

not applicable

Authors' contributions

Introduction and related work: YI, ST, RK, ED

Proposed model: YI

Implementation and Evaluation: YI

Conclusion: ST, RK

Funding
This work was supported by

 the JSPS Fund KAKENHI, grant number 15K00349

 the European Commission Fund HORIZON under the

project TOREADOR, grant number H2020-688797

Availability of data and materials

not applicable

REFERENCES

[1] Alex B (2005) An unsupervised system for identifying English inclusions
in German text. Proc. of the ACL Student Research Workshop,

Association for Computational Linguistics, pp. 133-138.

[2] Alex B, Dubey A, Keller F (2007) Using foreign inclusion detection to
improve parsing performance. Proc. of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Computational

Natural Language Learning, EMNLP-CoNLL, pp. 151-160.
[3] Alsharif O, Ouyang T, Beaufays F, Zhai S, Breuel T, Schalkwyk J (2015)

Long short term memory neural network for keyboard gesture decoding.

Proc. of the 2015 IEEE International Conference on Acoustics, Speech

and Signal Processing, ICASSP 2015, pp. 2076-2080.
[4] Angeline PJ, Saunders GM Pollack JP (1994) An evolutionary algorithm

that constructs recurrent neural networks. IEEE Transactions on Neural

Networks, vol. 5, no. 1, pp. 54-65.
[5] Ateniese A, Mancini LV, Spognardi A, Villani A, Vitali D, Felici G

(2015) Hacking smart machines with smarter ones: How to extract

meaningful data from machine learning classifiers. International Journal
of Security and Networks, vol. 10, issue 3, pp. 137-150.

[6] Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies

with gradient descent is difficult. IEEE Transactions on Neural Networks,
vol. 5, issue 2, pp. 157-166.

[7] PBarman PP, Boruaha A (2018) A RNN based Approach for next word

prediction in Assamese Phonetic Transcription. Procedia Computer
Science, vol. 143, 2018, pp. 117-123.

[8] Bindu KR, Aakash C, Orlando B, Parameswaran (2018) An Algorithm

for Text Prediction Using Neural Networks. Hemanth D., Smys S. (eds):
Computational Vision and Bio Inspired Computing. Lecture Notes in

Computational Vision and Biomechanics, vol. 28, Springer, pp. 186-192.

[9] Cavnar WB Trenkle JM (1994) N-gram-based text categorization. Proc.
of the SDAIR’94, pp. 161-175.

[10] Chen Z, and Lee K (2000) A new statistical approach to Chinese Pinyin

input. Proc. of the 38th annual meeting on association for computational
linguistics, pp. 241-247.

[11] Damiani E, Vimercati SC, Paraboschi S, Samarati P (2004) An Open

Digest-based Technique for Spam Detection. Proc. of the 2004
International Workshop on Security in Parallel and Distributed Systems,

pp. 559-564.
[12] Davies M (2009) The 385+ million word corpus of contemporary

American English (1990-2008+): design, architecture, and linguistic

insights. Int’l journal of corpus linguistics, vol. 14, no. 2, pp. 159-190.
[13] Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for

online learning and stochastic optimization. The Journal of Machine

Learning, vol. 12, pp. 2121-2159.
[14] Ehara Y Tanaka-Ishii K (2008) Multilingual text entry using automatic

language detection. Proc. of the Third International Joint Conference on

Natural Language Processing: Volume I, pp. 441-448.
[15] Elman JL (1990) Finding structure in time. Cognitive Science. vol. 14, no.

2, pp. 179-211.

[16] Elumeze N, Nishimoto K (2006) Intelligent Predictive Text Input System

using Japanese Language. Final Report for CSCI 5832: Natural

Language Processing.

[17] Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLINEAR: a
library for large linear classification. The Journal of Machine Learning

Research, vol 9. pp. 1871-1874.

[18] Hakkani-Tur DZ, Oflazer K, Tur G (2002) Statistical morphological
disambiguation for agglutinative languages. Computers and the

Humanities, vol. 36, no. 4, pp. 381-410.

[19] Halevy A, Norvig P, Pereira F (2009) The unreasonable effectiveness of
data. Intelligent Systems, vol. 2, issue 24, IEEE, pp. 8-12.

[20] Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augenstein S,

Eichner H, Kiddon C, Ramage D (2018) Federated Learning for Mobile
Keyboard Prediction. arXiv preprint arXiv:1811.03604v2.

[21] Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J (2001) Gradient flow

in recurrent nets: the difficulty of learning long-term dependencies. A
field guide to dynamical recurrent neural networks, IEEE Press, vol. 1,

pp. 1-15.

[22] Hochreiter S, Schmidhuber J (1997) LSTM: Long Short-Term Memory.

Neural computation, vol. 9, no. 8, MIT Press, pp. 1735-1780.

[23] Ikegami Y, Sakurai Y, Tsuruta S. (2012) Modeless Japanese input method

using multiple character sequence features. Proc. of the 8th Internat.
conference on signal image technology and Internet based systems, IEEE

Computer Society, pp. 613-618.

[24] Ikegami Y, Tsuruta S (2015) Hybrid method for modeless Japanese input
using N-gram based binary classification and dictionary. Multimedia

Tools and Applications, vol. 74, no. 11, pp. 3933-3946.

[25] Japanese Ministry of Internal Affairs and Communications (2017) 2017
WHITE PAPER Information and Communications in Japan.

http://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2017/2017-i

ndex.html [Accessed 28 August 2019].
[26] Joachims T (2006) Training linear SVMs in linear time,” Proc. of the 12th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 217-226.
[27] Kasahara S, Komachi M, Nagata M, Matsumoto Y (2011) Error

correcting Romaji-kana conversion for Japanese language education.

Proc. of the workshop on advances in text input methods, WTIM 2011, pp.

38-42.
[28] Kerkhofs R, Dijkstra T, Chwilla DJ, Bruijn ER (2006) Testing a model

for bilingual semantic priming with interlingual homographs: RT and

N400 effects,” Brain research, Elsevier, vol. 1068, pp. 170-813.
[29] Khare A, Gupta A, Mittal A, Jyoti A (2021) Text Sequence Prediction

Using Recurrent Neuronal Network. Advances and Applications in

Mathematical Sciences, vol. 20, issue 3, pp. 377-382.
[30] Kingma DP, Ba JL (2015) Adam: A Method for Stochastic Optimization.

3rd Internat. Conf. on Learning Representations, ICLR 2015.

[31] Kneser R, Ney H (1995) Improved backing-off for M-gram language
modelling. International Conference on Acoustics, Speech, and Signal

Processing, ICASSP 1995, vol. 1, pp. 181-184.

[32] Komachi M, Kida Y (2011) Smartphone ni okeru nihongo nyuuryoku no
genjou to kadai (in Japanese). Proc. of the 17th Annual Meeting of the

Association for Natural Language Processing, pp. 1095-1098.

[33] Komatsu H, Takabayashi S, Masui T (2005) Corpus-based predictive text
input. Proc. of the 2005 International Joint Conference on Active Media

Technology, AMT 2005, pp. 75-80.

[34] Kudo T, Hanaoka T, Mukai J, Tabata Y, Komatsu H (2011) Efficient
dictionary and language model compression for input method editors.

Proc. of the Workshop on Advances in Text Input Methods, WTIM 2011,

pp. 19-25.
[35] Kudo T, Komatsu H, Hanaoka T, Mukai A, Tabata Y, Yamamoto K,

Matsumoto Y (2004) Applying Conditional Random Fields to Japanese

Morphological Analysis. Proc. of the 2004 conference on empirical
methods in natural language processing, EMNLP 2004, pp. 230-237.

[36] Kuhn R, Mori R (1990) A cache based natural language model for speech
recognition. IEEE transactions on pattern analysis and machine

intelligence, vol. 12, no. 6, pp. 570-583.

[37] MacKenzie IS (2002) KSPC (keystrokes per character) as a characteristic
of text entry techniques. Proc. of the Internat. Conf. on Mobile

Human-Computer Interaction, pp. 195-210.

[38] Maekawa K, Yamazaki M, Ogiso T, Maruyama T, Ogura H, Kashino W,
Koiso H, Yamaguchi M, Tanaka M, Den Y (2014) Balanced corpus of

contemporary written Japanese. Language Resources and Evaluation,

vol. 48, no. 2, pp. 345-371.
[39] Manning CD, Schütze H (1999) Foundations of statistical natural

language processing, Springer.

[40] Marcus M, Santorini B, Marcinkiewicz MA (1993) Building a large

annotated corpus of English: The Penn Treebank. Computational

Linguistics, vol. 19, no. 2, pp. 313-330.

[41] Masui T (1999) POBox: An efficient text input method for handheld and
ubiquitous computers. Internat. Symposium on Handheld and Ubiquitous

Computing, pp. 289-300.

[42] Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient Estimation of
Word Representations in Vector Space. arXiv preprint arXiv:1301.3781

v3 [cs.CL].

[43] Mikolov T, Kombrink S, Burget L, Černocký J, Khudanpur S (2011)
Extensions of recurrent neural network language model. Proc. of the 2011

IEEE International Conference on Acoustics, Speech and Signal

Processing, ICASSP 2011, pp. 5528-5531.
[44] Mikolov T, Karafiat M, Burget L, Cernocky JH and Khudanpur S (2010)

Recurrent neural network based language model. Proc. of the 11th annual

conf. of the international speech communication association,
INTERSPEECH 2010, pp. 1045-1048.

[45] Mohamed O, Tamer N, Ghada K (2023) Towards Generalizable SER:

Soft Labeling and Data Augmentation for Modeling Temporal Emotion

Shifts in Large-Scale Multilingual Speech, NeurIPS 2023,

arXiv:2311.08607
[46] Mohri M (1997) Finite-state transducers in language and speech

processing Computational linguistics, vol. 23, no. 2, pp. 269-311.

[47] Neubig G, Duh K (2013) How much is said in a tweet? A multilingual,
in-formation-theoretic perspective. AAAI’13 spring symposium on

analyzing micro-text.

[48] Neubig G, Nakata Y, Mori S (2011) Pointwise prediction for robust,
adaptable Japanese morphological analysis. Proc. of the 49th annual

meeting of the association for computational linguistics: human language

technologies: short papers, vol. 2, pp. 529-533.
[49] Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training

recurrent neural networks. Proc. of the Internat. Conf. on machine

learning, ICML 2013, pp. 1310-1318.
[50] Pigeon S (2014) The Zero Frequency Problem (Part I).

https://hbfs.wordpress.com/2014/09/23/the-zero-frenquency-problem-pa

rt-i/ [Accessed 28 August 2019].
[51] Pouliquen B, Steinberger R, Ignat C (2006) Automatic annotation of

multilingual text collections with a conceptual thesaurus arXiv preprint

cs/0609059.
[52] Roeber H, Bacus J, Tomasi C (2003) Typing in thin air: the canesta

projection keyboard - a new method of interaction with electronic devices

Proc. of the CHI ‘03 Extended Abstracts on Human Factors in Computing
Systems, pp. 712-713.

[53] Shannon CE (1948) A mathematical theory of communication. Bell

System Technical Journal, vol. 27, no. 3, pp. 379-423.
[54] Smolensky P (1986) Information processing in dynamical systems:

Foundations of harmony theory. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol. 1, pp. 194-281.

[55] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R

(2014) Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, vol. 15, pp.

1929-1958.

[56] Sak H, Senior A, Beaufays F (2014) Long short-term memory based
recurrent neural network architectures for large vocabulary speech

recognition. arXiv preprint arXiv:1402.1128 [cs.NE].

[57] Suzumegano F, Amano J, Maruyama Y, Hayakawa F, Namiki M,
Takahashi N (1995) The evaluation environment for a Kana to Kanji

transliteration system and an evaluation of the modeless input method (in

Japanese) In IPSJ SIG technical report, vol. 1995-HI-42, pp. 9-16.

[58] Tieleman T, Hinton G (2012) Lecture 6.5-RMSProp: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural

Networks for Machine Learning. pp. 26-30.
[59] Tsoi AC, Back AD (1994) Locally recurrent globally feedforward

networks: a critical review of architectures. IEEE Transactions on Neural

Networks, vol. 5, issue 2, pp. 229-239.
[60] Yu S, Kulkarni N, Lee H, Kim J (2018) On-device neural language model

based word prediction. Proc. of the 27th Internat. Conf. on Computational

Linguistics: System Demonstrations, pp. 128-131.
[61] Web Hypertext Application Technology Working Group (2018) HTML

Standard 9.3 Web sockets. 2018.

https://html.spec.whatwg.org/multipage/web-sockets.html [Accessed 28
August 2019].

[62] Werbos PJ (1974) Beyond Regression: new tools for prediction and

analysis in the behavioral sciences. Ph.D. dissertation, Harvard
University.

[63] Zaremba W, Sutskever I, Vinyals O (2015) Recurrent Neural Network

Regularization. arXiv preprint arXiv:1409.2329v5 [cs.NE].

Declaration of interests

☐ The authors declare that they have no known
competing financial interests or personal relationships
that could have appeared to influence the work
reported in this paper.

☒ The authors declare the following financial
interests/personal relationships which may be

considered as potential competing interests:

Setsuo Tsuruta reports financial support was provided
by Japan Society for the Promotion of Science. Ernesto
Damiani reports financial support was provided by
Horizon Europe.

