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In the era of high-throughput molecular screening and personalized medicine, difficulty in 
determining whether cancer mutations are truly ‘actionable’ remains a gray zone in NSCLC. 
The most important prerequisite to perform such investigations is the tumor tissue retrieval 
via biopsy at diagnosis and after occurrence of resistance.  Blood-based liquid biopsy as 
circulating tumor cells, circulating tumor DNA and exosomes can offer a fast and non-invasive 
method to elucidate the genetic heterogeneity of patients, the screening and patient 
stratification and give a dynamic surveillance for tumor progression and monitor treatments 
response. Here we prospectively discuss the three main approaches in the blood-biopsy field 
of lung cancer patients and its clinical applications in patient management. We also outline 
some of the analytical challenges that remain for liquid biopsy techniques in demonstrating 
that it could represent a true and actionable picture in lung cancer management for the 
implementation into clinical routine.
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Practice points

 ●  Liquid biopsy qualifies different potential approaches for detection of body fluids carrying biomarkers in cancer 
patients. As well as a tissue biopsy, it is representative of the tumor tissue from which it is spread.

 ●  Blood-based liquid biopsy is a rapid blood-based and non-invasive way to obtain information on tumor-specific 
genetic alterations and tumor burden, and assess the dynamic tumor evolution during treatment of cancer patients.

 ●  Three main different sources of tumor DNA and RNA can be assessed in the circulation: cell-free circulating tumor 
DNA (ctDNA), circulating tumor cells (CTCs) and circulating extracellular vesicles (exosomes).

 ●  ctDNA represents a small fraction of total circulating free DNA and consists of small DNA fragments not associated 
with cells or cell fragments, originating from apoptotic and necrotic process and released into the bloodstream.

 ●  CTCs are intact, often viable cells shed into the bloodstream from primary and metastatic tumor sites and may 
constitute seeds for subsequent growth of tumor, self-seeding and additional tumors in distant organs.

 ●  Exosomes are membrane-encapsulated vesicles containing different types of nucleic acids and proteins from the 
cell they originate from, including cancer cells. Each subtype of lung cancer has its own DNA, RNA and/or protein 
signature in exosomes, dependent on its stage, metastatic power and drug sensitivity.

 ●  ctDNA, CTCs and exosomes have also currently been described in lung cancer as having potential application in 
early and advanced stages as prognostic, predictive markers or source of DNA for molecular profiling and tracking 
longitudinal resistance in patients.
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Lung cancer can be considered as a genetic 
disease with a patient’s specific mutational pro-
file. This molecular information is currently 
obtained from tissue biopsies or surgical speci-
mens that represent the gold standard source for 
diagnosis and in some cases are used to identify 
therapeutic options. Besides this, tumor staging 
and disease follow-up is currently assessed by 
clinical and radiological findings. However, it 
is not always possible to obtain enough biopsy 
material due to the invasive nature of the proce-
dure and the poor performance status of many 
advanced lung cancer patients.

In addition, available tumor samples rarely 
offer a dynamic picture of disease progression 
and frequently show heterogeneity both at 
the histological and genetic level. All this evi-
dence often makes a single, small biopsy less 
representative of the overall tumor.

The term ‘liquid biopsy’ is strictly referred to 
a blood test used for the isolation and characteri-
zation of circulating tumor cells (CTCs) based 
on their cytopathological features, by anal-
ogy to the definition of a ‘tissue’ biopsy. From 
a more general point of view, the term liquid 
biopsy indicates different potential approaches 
for detection of body fluids carrying biomarkers 
in cancer patients.

There are three main sources of tumor-
derived DNA and RNA that can be assessed 
in the circulation in a non-invasive approach: 
ctDNA, [1,2] CTCs and circulating extracellular 
vesicles (exosomes) [3,4]. The term ctDNA refers 
to circulating tumor DNA fragments detectable 
in the circulation as naked nucleic acids, whereas 
CTCs represent whole, often viable, cells charac-
terized by both physic-chemical properties and 
surface molecules which make them susceptible 
to isolation from blood. Exosomes are extracellu-
lar vesicles that contain RNA, DNA fragments, 
proteins and metabolites, and are released by 
several cell types (Figure 1).

The evolution of scientific findings clari-
fies that as methods using CTC, ctDNA and 
exosomes evolve, they will likely have similar 
but also distinct clinical applications, reflecting 
their relative biologic and technologic strengths 
and limits.

Circulating tumor cells
CTCs represent a subset of tumor cells that leave 
the primary and metastatic tumor site, and are 
transported through the circulation to distant 
organs. Hence, CTCs emerge as fundamental 

prerequisites for subsequent metastasis develop-
ment [5]. This hypothetical vision was first pro-
posed in the early 1990s by Thomas Ashworth, 
who first described the ‘seed versus soil’ theory 
of tumor invasion and dissemination to explain 
the non-random formation of metastasis.

From a biological point of view, CTCs are 
typically defined as cells containing an intact 
viable nucleus, and that are cytokeratin posi-
tive, epithelial cell adhesion molecule (EpCAM) 
positive and not expressing CD45. Nevertheless, 
EpCAM and other markers are not always 
expressed on CTCs and are downregulated 
by processes such as epithelial–mesenchymal 
transition [6]. CTCs have been described in a 
wide range of epithelial cancers and the studies 
concerning their isolation and characterization 
improved the knowledge into the pathophysiol-
ogy of the natural history of lung cancer [7–14]. 
Importantly, scientific evidences support the idea 
that, along with their role in promoting metasta-
ses, CTCs may be also found within the primary 
tumor and support its progression, through the 
so-called tumor self-seeding mechanism [15,16].

Besides the biological studies on CTCs, clini-
cal studies and first trials using CTCs have been 
performed, also indicating promising advance-
ments for patients’ care. Practical clinical appli-
cations of CTCs include the identification of 
prognostic, predictive and pharmacokinetic 
biomarkers. Moreover, such real-time longitu-
dinal monitoring of CTC-derived genotypes 
may also mean CTCs can provide a novel non-
invasive approach to identify drug sensitivity and 
resistance associated markers, thereby guiding 
therapeutic decisions (Figure 2).

A correlation between the number of CTCs 
and prognosis in patients with metastatic dis-
ease has been currently extensively demonstrated 
in both patients with NSCLC and SCLC, in 
terms of progression-free survival and overall 
survival [17–20].

In a preliminary study by Dorsey et al., CTC 
counts also appear to reflect response to radio-
therapy in patients with localized NSCLC and 
suggest a possible way for complementing stand-
ard radiographic imaging [21]. Enumeration of 
CTCs in early-stage cancer patients is more 
challenging than in metastatic disease, and some 
evidences exist suggesting that CTC counts 
can also help to predict prognosis in early-stage 
patients and post-surgery lung cancer to risk 
stratification [22,23]. Therefore, not only enumer-
ation but also characterization of CTCs should 
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be performed at different moments along the 
follow-up, thus contributing to the identifica-
tion of different tumor cell subpopulations with 
different possible implications in patient prog-
nosis [24]. Molecular and genetic characteriza-
tion of CTCs can be additionally suggested as a 
form of non-invasive ‘liquid biopsy’. CTCs pro-
filing could provide dynamic information about 
genotypic and phenotypic features of a tumor 
without the need of an invasive biopsy. In this 
context, a clear correlation has been observed 
between the molecular profile of the primary 
tumor with those of captured CTCs [25,26]. 
For instance, EGFR mutations have been suc-
cessfully detected in CTCs from patients with 
advanced NSCLC using different molecular 
techniques with a variable but high concord-
ance with results on primary tissues [27,28]. 
More interestingly, besides the detection of 

pre-existing mutations for diagnosis, the analy-
sis of CTCs has been demonstrated to allow the 
monitoring of drug resistance over the course of 
treatment by revealing the emergence of drug 
resistance mutations.

A multi-institutional Stand-Up-To-Cancer 
collaboration reported an exploratory analy-
sis on patients with EGFR-mutant tumors 
progressing on EGFR tyrosine kinase inhibi-
tor (TKI) [2] therapy, comparing the T790M 
genotype from tumor biopsies with analysis of 
simultaneously collected CTCs and ctDNA. 
Despite not particularly exciting concordance 
of results, genetic assessment in liquid biopsy 
leads to the identification of a consistent frac-
tion of patients in whom the concurrent tissue 
biopsy was negative or indeterminate. Moreover, 
in the recent work of Hata et al. it was observed 
that acquired resistance caused by the EGFR 

Figure 1.  The primary tumors or metastasis are a composite of genetically heterogeneous cancer and stromal cells that can 
generate biomarkers detectable by liquid biopsy. Tumors can shed circulating tumor cells into the bloodstream; apoptotic and 
necrotic process can instead originate cfDNA, released into the bloodstream. In addition, all cells from tumors can release exosomes, 
membrane-encapsulated vesicles containing different types of nucleic acids and proteins from the cells. All these elements (circulating 
tumor cells, cfDNA, exosomes) can be isolated from blood for molecular analysis. 
cfDNA: Circulating-free DNA.
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T790M gatekeeper mutation can occur either by 
selection of pre-existing mutated drug-resistant 
cancer cells or via genetic evolution of initially 
EGFRT790M-negative, drug-tolerant cells, with 
a high impact in the modulation of therapeutic 
opportunities to prevent or overcome resistance 
in the clinic [29]. The ability recently described 
to diagnose EML4–ALK gene rearrangement in 
CTCs shows that these cells could also have a 
clinical utility in ALK-positive NSCLCs to guide 
therapeutic management with ALK inhibitors. 
Moreover, ALK rearrangements found in CTCs 

reveal a strong correlation with a mesenchy-
mal phenotype, in contrast to the heterogene-
ous epithelial–mesenchymal phenotypes in the 
patient’s tumors, with migratory and invasive 
properties, and possibly a higher metastatic 
potential. These findings also underlay the role 
of CTCs as a unique compartment to identify 
tumor clones to clarify their role in the process 
of metastasis [30].

Besides all of these advantages, it is also 
important to consider that tumor cells in cir-
culation have an heterogeneous nature and may 

Figure 2.  Main aspects of conventional tissue biopsy and liquid biopsy. Tumor tissue represents the gold standard for molecular 
investigations but some problems exist regarding its obtainment and utility. In fact, apart from the invasiveness of the practice, tissue 
biopsy can give molecular information just at the diagnosis time and does not permit the detection of cancer heterogeneity and 
molecular cancer evolution. A valid non-invasive approach to assess the molecular profile of patients is through a liquid biopsy, where 
cancer biomarkers can be analyzed through a biofluid sample. CTCs, ctDNA and exosomes can offer a fast and non-invasive method 
to elucidate the genetic heterogeneity of patients and patients can give a dynamic surveillance for tumor progression and monitor 
treatments response. 
cfDNA: Circulating-free DNA; CTC: Circulating tumor cell; ctDNA: Circulating tumor DNA; ncRNA: Non-coding RNA. 
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exist as individual cells, some as clumps of tumor 
cells [31], some associated with blood cells such 
as platelets [32], and many if not most may be 
dead, non-viable cells [33–36]. Thus, although the 
potentialities of CTCs as prognostic and predic-
tive cancer biomarkers, several issues concern-
ing the technologies and methods of recognition 
and isolation from the more abundant blood cell 
populations have limited their broad translation 
into the clinical setting. It is only in recent years 
that technology has become available to reliably 
identify CTCs in peripheral blood.

To separate CTCs from normal cells, two 
main isolation approaches based on biological 
or physical properties are available in laboratory 
practice. The first one chooses molecular bio-
markers that are exclusively expressed in tumor 
cells [37]. Currently, EpCAM expression is the 
most commonly used biomarker for distinction 
and subsequent purification of CTCs. Among 
these, the CellSearchTM System (Veridex LLC) 
method is the most used and US FDA approved 
for monitoring cancer patients [38].

Despite the major advantage of being semi-
automated and highly reproducible, all the 
immunological-based methods have the limita-
tion of the intrinsic variability of common epi-
thelial specific markers used that are expressed 
at different levels and disease-related stages in 
CTCs and may be downregulated as a result of 
epithelial–mesenchymal transition as previously 
described [39]. These limitations can be partially 
addressed by using cocktails of antibodies or by 
negative filtration to remove blood cells from 
a sample and leave behind tumor cells, as for 
the CTC-iChip platform [40]. However, these 
new CTCs microfluidic devices have not been 
fully validated to date in terms of specificity, 
reproducibility and clinical relevance.

The simplest CTC selection method is prob-
ably size-based membrane filters, a method 
based on the assumption that CTCs are larger 
than blood cells [41]. The cytometric CTC isola-
tion technique was first described by Vona and 
colleagues, and has since been used successfully 
to identify CTCs in NSCLC [42]. The main 
advantage of using the membrane filtration 
approach is that it does not require a reliance 
on antiepithelial antigen expression to capture 
cells, thus avoiding the lack of CTC detection 
because of epithelial–mesenchymal transition 
and tumor heterogeneity expression variabil-
ity. However, recent studies have reported a 
considerable size overlap between CTCs and 

leucocytes, with a probable missing of a portion 
of CTCs [43].

In general, it is reasonable to comment that 
actually all CTCs separation strategies will miss 
some cancer cells, and a particular challenge 
will be in this context to answer the question of 
whether the cells collected are the ones that can 
seed new tumors.

Circulating-free DNA
Circulating cell-free DNA (cfDNA) was first 
described in 1948 by Mandel and Metais [44]. 
Despite this early finding, it has been clarified 
only 30 years later that cancer patients have 
extremely higher levels of circulating cfDNA as 
compared with healthy individuals as a conse-
quence of the tumor growth and it has taken 
more than 20 years to corroborate evidence 
that cfDNA correlates with tumor stage and 
are frequently elevated in patients with meta-
static cancers [45–49]. ctDNA represents only 
a small portion (0–10%) of total cfDNA and 
data regarding the origin, mechanism and rate 
of release into the blood are contradictory. The 
main hypothesis is that along the increment of 
tumor volume, an increased cell turnover occurs, 
enhancing apoptosis and cell necrosis processes, 
leads the accumulation of cellular debris within 
the tumoral mass, and DNA cross-over and 
releases into the circulation [50]. Thus, tumor 
DNA shedding essentially seems to be a pas-
sive phenomenon. It is a shared opinion that the 
apoptotic process inside primary tumor mass 
represents the most important source of the frac-
tion of ctDNA in circulation. Such hypothesis is 
supported by the observation that the major part 
of circulating ctDNA discloses fragments that 
are multiples of 180–185 base pairs in length, 
typical of the apoptotic process [51].

The amount of ctDNA is inf luenced by 
tumor progression, turnover of tumor and 
tumor size, as well as clearance, degradation, 
and filtering by the blood and lymphatic circu-
lation. Additionally, half-life could be different 
depending on mechanism of release [52].

The main advantage of ctDNA is that its 
extraction from blood is easier than CTCs 
isolation and requires no specific instrumental 
facilities. Analysis from bio-banked biofluids, 
such as frozen plasma, can be assessed. The 
most common published extraction methods 
for ctDNA are the commercially available spin 
column extraction kits [53]. Other reported 
methods of extraction include magnetic beads, 
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phenol/chloroform extraction and alkaline salt-
ing [54–56]. The efficiency of ctDNA extraction 
remains technically challenging because tumor-
derived ctDNA levels are often extremely low 
and can directly impact the outcome of muta-
tion detection. In addition, methods to accu-
rately determine the quantity and quality of total 
cfDNA are crucial to reliably compare and nor-
malize the cfDNA for its use as a biomarker [57]. 
Moreover, it can be taken into account the 
instability of white blood cells after collection 
that breaks down post-blood draw, leading to 
an increase in total cfDNA with a consequent 
dilution of ctDNA fraction and more difficulties 
for mutation detection and decrease in sensitiv-
ity [58–62]. Current recommendations for assess-
ing cfDNA include: plasma rather than serum 
samples, use of ethylenediaminetetraacetic 
acid or cfDNA collection tubes with process-
ing within 4 h, double centrifugation and no 
more than three freeze–thaw cycles of plasma 
specimens [60].

Circulating ctDNA-based non-invasive meth-
ods show many potential clinical applications in 
oncology and can be used to detect and monitor 
specific and predictive biomarkers that are rec-
ommended for the proper treatment of cancer 
patients according to the molecular characteriza-
tion of the specific cancer (Figure 2). Up to now, 
a lot of retrospective studies have indicated that 
detection of driver gene mutations in ctDNA 
of patients with NSCLC is feasible and relia-
ble [63–66] and can represent a good predictor of 
clinical response with relevant implications for 
patient management. In particular for advanced 
NSCLCs, detection of EGFR L858R mutations 
in cfDNA can be performed using several plat-
forms with a high sensitivity [67]. An additional 
recent study from Marchetti et al. provides the 
first strong correlation between the EGFR copy 
number mutation detection in the first days of 
treatment and clinical response to TKI treat-
ments with relevant implications for NSCLCs 
management [68].

All these positive results close to many evi-
dences of a match between ctDNA molecular 
profile and tumor site, led to the approval for the 
use of ctDNA analysis for EGFR mutation analy-
sis for gefitinib in Europe in patients in whom a 
tumor sample was not evaluable, making it the 
first EGFR-TKI inhibitor for which ctDNA test-
ing is included in the label [69–71]. cfDNA could 
represent a useful source for molecular profil-
ing in patients with ALK-positive NSCLC who 

had tumors that had progressed during treat-
ment with crizotinib. Two different groups of 
investigators recently reported that the variations 
in levels of ALK mutations in patients treated 
with different ALK inhibitors showed a good 
correlation with the course of disease and offer 
a valid alternative to serial tumor biopsy to study 
the evolution of resistance [72,73]. Ubiquitous 
and heterogeneous somatic mutations could be 
detected in ctDNA from early-stage NSCLCs by 
different techniques [74] and can be used to reveal 
clonal heterogeneity mechanisms and genetic 
processes of cancer evolution in individual 
patients.

Epigenetic alterations are a common phenom-
enon in NSCLC that can also be detected using 
several techniques in the ctDNA fragments [75,76], 
with a good agreement with methylation status 
in tumor itself [77]. The results of studies on 
methy lated gene alterations in ctDNA of NSCLC 
patients indicated that hypermethylation of mul-
tiple genes played important roles in NSCLC 
pathogenesis and that the methylated genes in 
ctDNA might be potential candidate epige-
netic biomarkers for NSCLC detection [78–82]. 
However, DNA methylation measurement 
shows lower specificity than genomic altera-
tions detection, due to the methylation changes 
often detected in tumor surrounding normal 
tissues [83]. Here comes the question about the 
real clinical utility of these determinations in 
practical management of cancer patients.

Currently, we still lack the effective methods 
to predict which patients are disease free after 
surgery from those who have residual disease, 
depending largely on TNM staging system 
that stratifies patients by risk of recurrence and 
possible benefit from adjuvant therapy without 
addressing if residual tumor is present or not 
after surgical resection. However, evidences of 
future possible utility of monitoring ctDNA 
levels as personalized markers for the adjuvant 
therapy were provided [84]. Indeed, it has been 
reported that the amount of ctDNA in the blood 
of NSCLC patients may change depending on 
the evolution of the disease after surgery, there-
fore resected patients who experienced disease 
recurrence had detectable post-operative levels 
of ctDNA than patients who remained disease 
free with completely undetectable postoperative 
ctDNA levels.

Mutation testing of plasma also offers a mini-
mally invasive option to characterize metastatic 
and/or resistant disease mechanisms when tissue 
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or re-biopsy is unavailable and offers a feasible 
way for longitudinal and dynamic monitor-
ing and tracking molecular resistance [85–87]. 
Clarification of the mechanisms of acquired 
resistance could help to determine an alter-
nate therapy before clinical resistance happens. 
T790M can be detected in serial plasma samples 
from NSCLC patients receiving TKI before and 
after progression disease as a poor prognostic fac-
tor [88]. Moreover, ctDNA has also been applied 
to explore the novel mechanism of acquired 
resistance to third-generation EGFR-TKI, 
thus overcoming the major limitation of tumor 
re-biopsy. Thress et al. used next-generation 
sequencing to investigate the potential mecha-
nism in ctDNA from lung cancer patients whose 
tumor had developed resistance to AZD9291, 
revealing the EGFR C797S as new mutation 
resistance in this pharmacological context [89].

Finally, ctDNA assessment can be used to 
reveal clonal heterogeneity mechanisms and 
genetic processes of cancer evolution in individ-
ual patients. It has been observed, for instance, 
that the only presence of the T790M mutation 
may be insufficient to confer EGFR-TKI resist-
ance to tumor cells, suggesting that such muta-
tion does not necessarily confer an EGFR-TKI 
resistance phenotype of tumor cells [90].

exosomes
Exosomes are active extracellular membrane-
encapsulated vesicles ranging in size from 40 to 
140 nanometers in diameter, and contain dif-
ferent types of biological constituents released 
by all cell types [91–93]. Exosomes are highly 
heterogeneous [94] and likely reflect the phe-
notypic state of the cell that generates them. 
Similarly to cells, exosomes are composed of a 
lipid bilayer and, at any given point, can con-
tain well known molecular constituents of a cell, 
including signal proteins and/or peptides, RNA, 
DNA and lipids [95,96]. The RNA includes miR-
NAs, mRNAs, and additional structural and 
non-coding RNAs [97,98]. The precise role of 
exosomes remains unknown. Early hypotheses 
suggested that exosomes may function both as 
cellular trashbags that expel excess and/or non-
functional cellular components and extracellular 
mediators in cell-to-cell signaling by direct acti-
vation of surface-expressed ligands on the dis-
tant cells they may reach [99]. Owing to the fact 
that exosomes deliver information both to their 
close environment and distant organs, they are 
detectable in many biological fluids including 

plasma, serum and saliva, thus making them 
easily accessible for research [100].

Besides their physiological role, exosomes 
have been demonstrated to increase in quantity 
and heterogeneity when a pathological insult 
and condition occur. Indeed, blood of cancer 
patients is estimated to contain about 4000 tril-
lion heterogeneous exosomes, compared with the 
2000 trillion detected in normal individuals [101].

Exosomes were initially isolated from the 
peripheral blood circulation of cancer patients 
in 1979 [102] and they have been progressively 
reported as elevated in the systemic circulation of 
patients with breast, pancreatic and colon cancer. 
Experimental evidences support that exosomes 
play a bimodal role in cancer: they may either 
manipulate the local and systemic environment 
allowing cancer growth and dissemination or 
modulate the immune system to elicit or sup-
press the antitumor response [103–106], leading 
to tumor progression and metastases (Figure 2).

In the light of these data, the potential of 
tumor derived exosomes fraction isolated from 
the bloodstream of cancer patients as novel bio-
markers has grown exponentially in the last few 
years. In this regard, many methodologies have 
been used to isolate and analyze exosomes but, 
to allow exosomes to enter the clinic, techni-
cal standardization is of primary importance. 
Biologic molecules into the exosomes are pro-
tected by a lipid bilayer membrane that confers 
high degree of stability and can be isolated and 
analyzed quite simply. Moreover, exosomes carry 
surface markers from the cells of origin, which 
can be used for enriched strategies, similar to 
CTCs [107]. Immunoaffinity bead-based cap-
ture methods, microfluidic chip methods and 
antibody-based exosome arrays using both label 
and label-free detection platforms have suc-
cessfully been used to identify, separate, sort 
and enrich exosomes originating from differ-
ent cell sources [108,109]. Following isolation, a 
variety of techniques have been employed to 
purify and detect the harbored biomarkers [110]. 
Nevertheless, the influence of disparate tech-
niques on the results of downstream extracellular 
nucleic acid sequencing and profiling remains 
unclear, raising the need to provide a definition 
of standardization [111,112].

The first main potential in clinical oncology 
is based on the fact that exosomes reflect protein 
expression and DNA mutations of their originat-
ing diseased tissue. Moreover, being extremely 
abundant in plasma of patients, DNA and RNA 
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packaged inside exosomes can easily be used 
to detect gene amplifications as well as muta-
tions [113]. Whole genome sequencing revealed 
that exosomes in the serum of cancer patients 
contained the entire genomic double-stranded 
DNA, defined as exosomic DNA that is rep-
resentative for the whole genomic DNA [113]. 
Additionally, driver mutations associated with 
tumors were identified in the exosomal DNA. 
Activated receptors of the EGFR family in 
NSCLC and cell adhesion molecules such as 
EpCAM in epithelial tumors can be detected as 
well [114,115]. A recent study reported by Nilsson 
et al. also demonstrated that exosomes released 
by cancer cells are vehicles capable of transfer-
ring tumor-derived EML4–ALK rearranged 
RNA into platelets that can easily be isolated 
from patients as a possible way for monitoring 
the patient response to crizotinib throughout the 
course of treatment [116].

Enriched and specific miRNAs in exosomes 
may also favor diagnosis and serve to monitor 
the progression of lung cancer. Exosome miRNA 
profile accurately reflects the tumor’s profile. 
Overexpression of specific sets of miRNAs has 
been revealed comparing the miRNA expres-
sion profile of lung cancer samples with miRNA-
derived circulating exosomes in NSCLCs and 
showed clinical associations and prognostic and 
predictive potential values with lung cancer 
stages [117].

The new proteomic technologies have signifi-
cantly contributed to better clarify the protein 
profiling of exosomes. Analysis from cultured 
cells and body fluids demonstrates that tumor-
derived exosomes express many proteins spe-
cifically related to the tumor cell proliferation, 
migration and invasion that can be purpose as 
prognostic and diagnostic markers [118].

Finally, in addition to the molecular infor-
mation exosomes may provide for a better 
understanding of lung cancer pathology and 
progression, a further interesting application 
is represented by the possibility to ‘customize’ 
exosomes by reprogramming their produc-
tion and manipulating their content to make 
them vehicles for cancer drugs, thus enhancing 
the development of novel diagnostic tools for 
NSCLC cure [119].

Conclusion
Liquid biopsies represent a new generation of 
biomarkers. While there remain significant 
obstacles to overcome in the methodologies used 

to capture, enumerate and molecularly analyze 
CTCs, cfDNA and exosomes, there is an abuan-
dance of promising data to suppose that liquid 
biopsy are very promising and include early 
detection, assessment of molecular heterogene-
ity of the tumor, monitoring of tumor dynam-
ics, identification of genetic determinants for 
targeted therapy, evaluation of early treatment 
response and monitoring of minimal residual 
disease to assessment of evolution of resistance 
in real-time. Future implementation of liquid 
biopsy approach will answer to a real question 
about the efficiency of these three different non-
invasive sources of nucleic acid in presenting a 
true and actionable picture of patient’s care arise 
in particular in the area of personalized medicine

Future perspective
The majority of patients treated with targeted 
therapies develop resistance, metastasis or recur-
rence. The most important prerequisite to per-
form molecular analysis is the acquisition of 
tumor tissue via biopsy at diagnosis and after 
the occurrence of resistance. To allow personal-
ized medicine and overcoming the limitations of 
tissue sampling, a more accessible and minimally 
invasive way is needed.

Three major challenges are ongoing in cur-
rent management of cancer patients treated with 
precision therapy.

●● Biological material sampling 
& preservation
Tumor tissue unquestionably represents the gold 
standard for molecular investigations but some 
problems exist regarding its obtainment and util-
ity. Biopsies increase the cost of patient care and 
are yet invasive procedures for patients despite 
often having no impact on disease outcome. 
Sampling also remains difficult and resulted in 
an inadequate amount of tissue for molecular 
analysis, especially for patients with advanced or 
metastatic NSCLC. Furthermore, the amount of 
cancer cells in each sample varies and is largely 
dependent on the tumor cellularity and size of 
resected tissue. This is further compounded by 
small tissue amounts from fine-needle aspirates 
or core needle biopsies, which often results 
in smaller amounts of material from molecu-
lar investigations if compared with surgically 
resected tissues. Classical storage of tissues also 
induces some molecular artifacts. The major 
part of tumor tissue is preserved in formalin-
fixed paraffin-embedded (FFPE) blocks, which 
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crosslink DNA and in some case result in FFPE 
samples inadequate for molecular analysis. In 
addition, formalin fixation can cause C>T tran-
sitions through deamination of cytosine, poten-
tially leading to false positive results for genetic 
tests.

●● Tumor heterogeneity
In addition to the critical aspects of tissue sam-
pling, the most important limitation of tissue 
biopsy is probably the molecular heterogeneity 
of most advanced cancers. Cancers are highly 
heterogeneous; they show different areas of 
the same tumor displaying different genetic 
fingerprints. Similarly, heterogeneity can exist 
between different metastases of the same patient. 
Hence, with the biopsy from the primary tumor 
the loss of molecular information due to tumor 
heterogeneity is really possible.

●● Longitudinal monitoring of cancer 
patients
The majority of patients treated with tar-
geted therapies ultimately develop resistance, 

metastasis or recurrence. Longitudinal moni-
toring of patients with serial tissue sampling 
is not clinically practical with current invasive 
tissue biopsy techniques. A minimally invasive 
way to characterize and follow the molecular 
profile of the patient is needed, and especially 
capable of capturing molecular changes cancer 
cells undergo during the treatment.

●● The potential of the blood-based liquid 
biopsy
Nucleic acid from ctDNA, exosomes and CTCs 
can provide the same genetic information of 
the primary tumor and, obviously, the access 
to the bloodstream has notable advantages. The 
first is the blood sampling is devoid of poten-
tial complications characterizing the biopsies. 
Liquid biopsy can also go beyond the problem 
of the cancer molecular heterogeneity because 
by blood sampling it is possible to collect cir-
culating ctDNA from all patients’ tumors. In 
addition, it can be collected at any time during 
the course of the treatment to monitor genetic 
changes over time if compared with biopsy that 

Table 1. Overview and comparison of the main viable analysis on circulating tumor cells, 
circulating-free DNA and exosomes in lung cancer.

Research field Applications CTCs cfDNA exosomes

Mutations Detection of point mutation, translocations, 
deletions, amplifications

Yes Yes Yes

Chromosomal 
abnormalities

FISH analysis Yes No No

Epigenetic modifications DNA methylation profiling Yes Yes Yes
RNA transcription 
profiles

Determination of mRNA, ncRNA and RNA splice 
variant level

Yes No Yes

Protein profiles Expression, phosphorylation and localization 
studies

Yes No Yes

Basic metastasis research Cell morphology and clonality investigation, 
analysis in animal models

Yes No No

cfDNA: Circulating-free DNA; CTC: Circulating tumor cell; ncRNA: Non-coding RNA.

Table 2. The principal key characteristic specific or shared among conventional tissue biopsy, circulating tumor cells,  
circulating-free DNA and exosomes.

Key characteristics Tissue biopsy CTCs cfDNA exosomes

Invasiveness Yes No No No
Availability of the sample 
throughout the disease process

Re-biopsy needed Yes Yes Yes

Equipment Special instrumentation Special instrumentation 
for cell identification

Simple blood collection Simple

Isolation and processing Complex and time 
consuming

Complex and time 
consuming

No isolation required, time 
saving

Easy-to-perform isolation, 
time consuming

Clinical utility Early detection; targeted 
therapy; resistance

Early detection; targeted 
therapy

Early detection; targeted 
therapy resistance

Early detection targeted 
therapy drug delivery

cfDNA: Circulating-free DNA; CTC: Circulating tumor cell.
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only inform of the tumor genotype at the time 
point (Tables 1 & 2).

●● overcoming the limits of liquid biopsy
The main important limit of the liquid biopsy 
could be the sensitivity that is limited by the fact 
that PCR-based methods are collectively capable 
of detecting rare sequence variants whose abun-
dance is between 1000- and 10,000-fold lower 
than the most abundant background sequence. 
Hence, liquid biopsy could reasonably be negative 
in case of circulating cfDNA lower of such range. 
The potential of the liquid biopsy in patients’ can-
cer management is being clearly recognized and 
now often embedded in the planning of many 
clinical trials. The correct use of such method-
ology in a routinely clinical practice will need 
firstly a strong standardization of standardized 
workflow of analysis, including blood sampling, 
storage, processing and DNA/CTC extraction 
and quantification. Moreover, validation in large 
patients cohorts are demanded.

The values and limitations of CTCs and 
ctDNA tests might have different meaning 

during treatment and the usefulness of serial 
tests for lung cancer surveillance has to be still 
clarified. Data from large-scale, multi-insti-
tutional studies are needed to answer a real 
question about the efficiency of ‘liquid biopsy’ 
in presenting a true and actionable picture of 
lung patient’s care in the area of personalized 
medicine.
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