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Introduction

The Virtual Element Method (VEM, [10]) is a recent technology for the numerical approxima-

tion of Partial Differential Equations (PDEs) which can deal with computational grids of very

general polygonal/polyhedral shape. Effective VEM discretizations have been developed for sev-

eral PDEs; the interested reader should consult the recent special issue [9] and the book [5] for

further details. Regarding computational fluid dynamics, divergence-free VEM discretizations

of the Stokes, Navier-Stokes and Oseen equations have been proposed in [12–15]. The core idea

behind VEM is to use approximated discrete bilinear forms, whose computation requires only the

integration of polynomials on the element boundary and interior. The resulting discrete solution

is conforming and the accuracy guaranteed by such discrete bilinear forms turns to be sufficient

to achieve the correct order of convergence. The advantage of these methods is that they can

be applied on a wide choice of general polygonal meshes without the need to integrate complex

non-polynomial functions on the elements, keeping an high degree of accuracy. Due to the arbi-

trary shape of polytopal elements, the linear systems arising from VEM discretizations of PDEs

are generally worse conditioned than in case of Finite Element Methods (FEM) therefore, it is

fundamental to provide efficient and scalable preconditioners for these methods. Some recent

studies have proposed multigrid and domain decomposition preconditioners for scalar elliptic

equations in primal form: see [6, 7] for a multigrid preconditioner, [17, 18, 61, 62] for Balanc-

ing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing

and Interconnecting (FETI-DP) preconditioners, and [32, 33] for Overlapping Additive Schwarz

preconditioners.

A few works have investigated the efficient solution of VEM approximations for saddle point

problems. In [40, 41] parallel block algebraic multigrid preconditioners have been proposed for

three-dimensional VEM approximations of elliptic, Stokes, and Maxwell equations in mixed form.

BDDC preconditioners for three-dimensional scalar elliptic equations in mixed form have been

constructed and analyzed in [43]. To our knowledge, the development of effective non-overlapping

domain decomposition preconditioners for VEM discretizations of the Stokes equations is still

an open problem. Therefore the main goal of our thesis is to work in this direction developing

BDDC algorithm for these equations. We recall that BDDC preconditioners [44, 45] belong to

the class of non-overlapping domain decomposition methods and they can be regarded as an

evolution of Balancing Neumann Neumann preconditioners [49, 81, 91]. These methods perform
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a decomposition of the problems into independent, parallel local problems. Additionally, to

obtain scalability in the number of subdomains, a coarse space has to ensure global transport of

information. They have been extensively applied to solve linear systems that arise from finite

element discretizations of PDEs (see e.g. [46, 66, 67, 80, 99, 101]) and also extended to various

innovative discretizations techniques for PDEs, such as Mortar discretizations [59], discontinuous

Galerkin methods [35,47], isogeometric analysis [57,98], weak Galerkin methods [96] and, as we

said before, virtual element methods. In particular, regarding the Stokes equations, they have

been studied in [69,70]. Moreover, they have been extended to non-symmetric problems [95], such

as hybridizable discontinuous Galerkin (HDG) discretization for Oseen equations [97], and FEM

discretization of Navier-Stokes equations [52–54]. We also remark that BDDC presents several

features in common with the dual-primal finite element tearing and interconnecting (FETI-DP)

algorithm. In particular, the BDDC and FETI-DP operators share almost the same eigenvalues

[26,71], thus they exhibit analogous convergence properties.

The novelties of this study are to construct, analyze and numerically validate a BDDC pre-

conditioner for two and three dimensional divergence-free VEM discretizations of the Stokes

equations introduced in [14] and [12]. Our algorithm represents an extension to VEM of the

BDDC preconditioner proposed in [70] for FEM discretizations of the Stokes equations with

discontinuous pressure spaces. From the theoretical point of view, we prove the scalability and

quasi-optimality of the method in the case of a homogeneous fluid with piecewise constant vis-

cosity on the subdomains. We validate the theoretical estimates with several parallel numerical

tests, and we provide numerical evidence of the robustness of the preconditioner with respect to

the degree of approximation and the shape of the polyhedral elements. We also propose different

techniques to enrich the primal coarse space, already experimented in the FEM [64] and in the

VEM for linear diffusion and compressible elasticity [56, 62]. We confirm the robustness of our

approach on various configurations of high viscosity jumps and on a challenging multi-sinker

test case with heterogeneous viscosity [87]. Moreover we extended our algorithm to the resolu-

tion of non-symmetric saddle point problems, for which we provide the construction and several

numerical experiments both in two and three dimensions.

In Chapter 1 of the thesis we introduce the notations and we give a brief recap on the

Sobolev spaces we are going to use throughout our work. We give some geometry assumptions

that are needed for the VEM discretization exploiting also some advantages of these type of

methods and we introduce the projection operators that are the main ingredient of this type

of numerical approximation. We include here also the formulation, in classical and variational

form, of the Stokes and Oseen model problems.

In Chapter 2, we introduce the divergence-free VEM discretization that we use in our

analysis. We recall the construction of the discrete spaces both in two and in three dimensions,

also showing how to compute the polynomial projections, that usually are left to the reader

in the VEM papers. We also provide a proof for a Stokes optimal VEM interpolant in the

three dimensional framework. For sake of completeness we report some convergence tests for the
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numerical methods that we will use in the following section.

Chapter 3 contains the main novelties of our work. Here, we introduce the BDDC methods

applied to the saddle point problem that arises from the VEM discretization of the Stokes

equations described in Chapter 2. We give a quick introduction of the Domain Decomposition

technique and how to adapt it to the VEM methods. We provide the construction of these BDDC

methods and we prove a convergence rate estimate of the preconditioned system, independent

of the number of subdomains and polylogarithmic with respect to the ratio H/h, where H

denotes the subdomain size and h the mesh size. Such an estimate yields the scalability and

quasi-optimality of the resulting algorithm. We confirm the theoretical estimate and show the

robustness of the solver with respect to different polygonal and polyhedral meshes and different

mesh partitioning techniques with several numerical tests.

Chapter 4 is focused on the enrichment of the coarse space of our methods. We provide here

two adaptive approaches in two dimensions, and one in three dimensions, to construct a coarse

space that is able to keep the condition number below a fixed tolerance value. All the adaptive

coarse spaces are constructed solving eigenvalue problems on edges or faces of the subdomain

partition. We also introduce a new heuristical approach to enrich the coarse space that does

not require the solution of these eigenvalue problems. We tested the robustness of all these

algorithms on meshes that exhibit high viscosity jumps and with different configurations of the

coefficients.

Finally, in Chapter 5 we extend the BDDC algorithm applied to the non-symmetric saddle

point problem that arises from the VEM discretization of the Oseen problem. We also provide

some numerical simulations including scalability and optimality tests in both two and three

dimensions, confirming the good behavior of the preconditioner that is comparable with the

performance for the Stokes equations.

All the numerical simulations for the tests in two dimensions have been performed using

a MATLAB R2023A© serial code, therefore no CPU time analysis is provided. The parallel

code for our three dimensional simulations has been written in C++, exploiting the Vem++

library [39] for the VEM discretization, and the PETSc library [8] for our distributed memory

implementation. We refer to [100] for the details related to the BDDC implementation in PETSc.

All the numerical tests presented in the following have been performed on the Linux cluster IN-

DACO (www.indaco.unimi.it) of the University of Milan, constituted by 16 nodes, each carrying

2 INTEL XEON E5-2683V4 processors at 2.1 GHz, with 16 cores each.
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Chapter 1

Notations and Preliminaries

In this chapter we introduce some preliminary notations, that will be adopted in the rest of the

thesis and the model problem that we are going to study. We first recall some standard notation

on Sobolev spaces [1] and usual norms that are common in the domain decomposition framework

[91]. Then we recall some geometry assumptions that are needed for the VEM discretization

[12,14] and some polynomial projection operators [2] that cover a key role in these methods. We

conclude introducing the model problem we are going to study.

1.1 A brief recap on Sobolev spaces

Let Ω ⊆ Rd with d = 2, 3 be the computational domain and let be ω ⊆ Rd an open bounded

domain, with ω = Ω in some cases. We assume that the domain ω is a bounded open Lipschitz

set with Lipschitz continuous boundary according to:

Definition 1.1.1. The boundary ∂ω is Lipschitz continuous if there exists a finite number of

open sets Ui , i = 1, ...,m, that cover ∂ω such that, for every i, the intersection ∂ω ∩ Ui is the

graph of a Lipschitz continuous function and ω ∩ Ui lies on one side of this graph.

We recall for 1 ≤ p ≤ ∞ the spaces of p-summable functions

Lp(ω) =

{
u : ω → R |

∫
ω

|u|p <∞
}
,

with the norm, for 1 ≤ p <∞:

∥u∥pLp(ω) =

∫
ω

|u|p dx,

and, for p = ∞:

∥u∥L∞(ω) = inf{C ≥ 0 : |u(x)| ≤ C almost everywhere}.

1



CHAPTER 1. NOTATIONS AND PRELIMINARIES

A great importance has the particular case p = 2, that is the space of square-summable functions

on ω

L2(ω) =

{
u : ω → R |

∫
ω

|u|2 <∞
}
.

It is a Hilbert space with the scalar product

(u, v)L2(ω) =

∫
ω

u v dx

and the induced norm

∥u∥2L2(ω) = (u, v)L2(ω) =

∫
ω

|u|2 dx.

For any integer s ≥ 0, we recall the Sobolev spaces

W s,p(ω) =

{
u ∈ Lp(ω), Dαu ∈ Lp(ω), |α| ≤ s

}
,

where α := (α1, α2, ...αd) ∈ Nd is a multi-index, and:

Dαu :=
∂|α|u

∂xα1
1 ∂xα2

2 ...∂xαd

d

, with |α| = α1 + α2 + ...+ αd

are the weak derivatives taken in sense of distributions. On this space, we introduce a norm

∥u∥W s,p(ω) =
∑
|α|≤s

∥Dαu∥Lp(ω).

As before, we have a particular case for p = 2, we denote the Hilbert space Hs(ω) = W s,2(ω)

with the inner product and the induced norm

(u, v)Hs(ω) =
∑
|α|≤s

∫
ω

DαuDαv dx, ∥u∥2s,ω = (u, u)Hs(ω),

and the seminorm

|u|2Hs(ω) =
∑
|α|=s

∫
ω

DαuDαv dx.

Remark 1.1.1. We also recall the differential operators: ∆ and ∇ denote the Laplacian and the

gradient for scalar functions, ∆, ∇, ε, and div, denote the vector Laplacian, the gradient, the

symmetric gradient operator and the divergence operator for vector fields, whereas div denotes

the vector-valued divergence operator for tensor fields.

2



CHAPTER 1. NOTATIONS AND PRELIMINARIES

We note that, for s = 0, we obtain the space L2(ω) previously defined, and for s = 1 the

Sobolev space

H1(ω) =

{
u : ω → R |

∫
ω

|∇u|2 +
∫
ω

|u|2 <∞
}

with

|u|2H1(Ω) =

∫
Ω

|∇u|2, ∥u∥2H1(Ω) = ∥u∥2L2(Ω) + |u|2H1(Ω).

We define Hs
0(ω) as the closure of C

∞
0 (ω) in Hs(ω), where C∞

0 (ω) consists of functions in C∞(ω)

with compact support in ω.

We need also some trace and norms definitions. Since we assumed that ∂ω is Lipschitz

continuous, we can then define the space Hs(∂ω), s ≥ 0, consisting of functions on ∂ω, s.t.

∥u∥2Hs(∂ω) = ∥u∥2H[s](∂ω) + |u|2Hs(∂ω) <∞,

where [s] denotes the greater natural number smaller than s, and with the seminorm defined as

|u|2Hs(∂ω) =
∑

|α|=[s]

∫
∂ω

∫
∂ω

|Dαu(x)−Dαu(y)|2

|x− y|2σ+n−1
dSx dSx.

We have two lemmas from [51]:

Lemma 1.1.1. Let ω be a Lipschitz region and let s > 1/2. Then the operator γ0 : C∞(ω̄) →
C∞(∂ω), mapping a function into its restriction on the boundary, can be extended continuously

to an operator γ0 : Hs(ω) → Hs−1/2(∂ω).

Lemma 1.1.2. With the same assumptions as in Lemma 1.1.1, there exist a continuous lifting

operator R0 : Hs−1/2(∂ω) → Hs(ω), s.t. γ0(R0u) = u, u ∈ Hs−1/2(∂ω).

In the analysis developed in the following chapters, we are interested into proper subsets of

∂Ω. we then recall that these previous definitions and properties can be generalized to a proper

subset Γ ⊆ ∂ω with non-vanishing (n-1)-dimensional measure and which is relatively open with

respect to ∂ω.

Let Γ be a proper subset of ∂ω. Then Hs
0(Γ) (defined as the kernel of γ0) coincides with H

s(Γ)

for s ≤ 1/2. However the extensions by zero of functions in H
1/2
0 (Γ) do not, in general, belong

to H1/2(∂ω). For this reason we define the space:

H
1/2
00 (Γ) =

{
u ∈ H1/2(Γ) | Eu ∈ H1/2(∂ω)

}
,

3



CHAPTER 1. NOTATIONS AND PRELIMINARIES

where Eu is the extension by zero of u to ∂ω. This space coincides with the interpolation space:

[H1
0 (Γ, L

2(Γ))]1/2 =

{
u ∈ L2(Γ)| t−1K(t, u;H1

0 (Γ), L
2(Γ)) ∈ L2(0,∞)

}
where

K(t, u;H1
0 (Γ)

2 = infu0+u1=u{∥u0∥2L2(Γ) + t2∥u1∥2H1
0 (Γ)

},

and it is equipped with the norm:

∥u∥2
H

1/2
00 (Γ)

= ∥u∥2L2(Γ) +

∫ ∞

0

t−2K(t, u;H1
0 (Γ)

2dt.

Remark 1.1.2. If u ∈ H1/2(∂ω) vanishes almost everywhere on ∂ω \Γ, then one can prove that

the two norms ∥u∥H1/2(∂ω) and ∥u∥
H

1/2
00 (Γ)

are equivalent.

Remark 1.1.3. This spaces, norms and seminorms are naturally extendable for vector spaces

[Hs(ω)]d with s ≥ 0 and d = 2, 3. Also, with an abuse of notation we will write ∥ · ∥s,ω instead

of ∥ · ∥[Hs(ω)]d , | · |s,ω instead of | · |[Hs(ω)]d and (·, ·)s,w instead of (·, ·)[Hs(ω)]d , with d = 1, 2, 3,

when no confusion can arise. Moreover we will omit the subscript ω when it corresponds to the

whole computational domain Ω.

1.2 Geometry definitions

With an abuse of notation, we will denote by K a general polygon or polyhedron depending if

we are in a 2D or 3D context (the framework considered will be always clear throughout the

thesis, thus no confusion can arise).

For a general polygon/polyhedron K we denote by V one of the NV vertices, by e one of the Ne

edges and in three dimensions, by f one of the Nf faces of K. In a 2D context we simply denote

by ne
K (respectively, nK) the unit outward normal vector to e (respectively, to ∂K), while in 3D

for each polyhedron P , each face f of K and each edge e of f we denote by:

• nf
K (respectively, nK) the unit outward normal vector to f (respectively, to ∂K);

• nf
e (respectively, nf ) the unit vector in the plane of f that is normal to the edge e (respec-

tively, to ∂f ) and outward with respect to f ;

• nf
K (respectively, nK) the unit outward normal vector to f (respectively, to ∂K);

• tef (respectively, tf ) the unit vector tangent to e (respectively, to ∂f ) counterclockwise

with respect to nf
K ;

• τ f
1 and τ f

2 two orthogonal unit vectors lying on f and such that τ f
1 ∧ τ f

1 = nf
K , i.e. τ f

1

and τ f
2 constitute the axis of a local coordinate system on f;

4



CHAPTER 1. NOTATIONS AND PRELIMINARIES

• τe a unit vector tangent to the edge e.

Remark 1.2.1. The vectors tef , tf , τ
f
1 and τ f

2 depend on K but we omit the subscript for

lightening the notation.

1.2.1 Mesh assumptions

Let {Th}h be a sequence of decompositions of Ω into general NK polyhedral elements K with a

mesh size:

h := sup
K∈Th

hK ,

where hK is the diameter of K. We denote with nK , nE , nV andnF respectively the total number

of elements, edges, vertices and faces in Th.

Mesh assumptions in 2D. As in [14], we suppose that, for all h, each element K ∈ Th
satisfies the following assumptions:

• (A1) K is star-shaped with respect to a ball of radius ≥ γhk,

• (A2) the distance between any two vertices of K is ≥ chK ,

where γ and c are positive constants.

Mesh assumptions in 3D. As in [12] we suppose that, for all h, each element K ∈ Th
satisfies the following assumptions:

• (A1) K is star-shaped with respect to a ball BK of radius ≥ γhK ,

• (A2) every face f of K is star-shaped with respect to a disk Bf of radius ≥ γ hK ,

• (A3) every edge e of K satisfies he ≥ γhK ,

where γ is a uniform positive constant.

Remark 1.2.2. These hypotheses both in two and three dimension could be weakened as in [10],

for example assuming that every K is a union of a finite (and uniformly bounded) number of

star-shaped domains, each satisfying (A1).

The mesh assumptions described above are very general and allows to treat mesh discretiza-

tions and configurations that can be challenging or not allowed in a FEM context. Firstly, we

point out that two or more consecutive edges are allowed to form a straight angle. For example,

a square with four extra point on an edge is simply regarded as an octagon (Figure 1.1a). This

means that hanging nodes are allowed geometrically in the mesh, but in practice they are not.

Adaptive mesh refinements are then easily applicable, since we do not have to worry about this

type of configurations. There are several other advantages working with these mesh hypothesis

since we can handle fractures or mesh deformations (Figure 1.1b) and moreover we can glue

them up together mesh derived from different decomposition (Figure 1.1c). As a representative

sample of the increasing list of technologies that make use of polygonal/polyhedral meshes, we

refer to these papers and monographs [22,24,28,29,34,37,38,72,78,79,84–86].
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CHAPTER 1. NOTATIONS AND PRELIMINARIES

1.3 Polynomial spaces and projections

We denote with O a generic geometrical entity (element, face, edge) having diameter hO, bari-

center xO and we introduce for any O and n ∈ N the spaces:

• Pn(O) the set of polynomials on O of degree ≤ n (with P−1(O) := {0}),

• P̂n\m(O) := Pn(O) \ Pm(O) for n > m, denotes the space of polynomials in Pn(O) with

monomials of degree strictly greater than m.

A natural basis associated with the space Pn(O) is the set of scaled monomials:

Mn(O) := {mα, with |α| ≤ n}

where, for any multi-index α = (α1, ..., αd) ∈ N d:

mα :=
d∏

i=1

(
xi − xO,i

hO

)
and |α| :=

d∑
i=1

αi. (1.1)

We denote with x = (x1, ..., xd) the independent variable. We also introduce the following

useful polynomial decompositions [41,42]:

[Pn(O)]2 = ∇Pn+1(O)⊕
(
x⊥Pn−1(O)

)
if dim(O) = 2,

[Pn(O)]3 = ∇Pn+1(O)⊕
(
x ∧ [Pn−1(O]3)

)
if dim(O) = 3,

(1.2)

where x⊥ := (x2,−x1).
Now we define some suitable projection operators that will cover a fundamental role into

the VEM context. Their purpose is to project the unknowns virtual functions on to the space

of polynomials. The idea is to choose accurate the degrees of freedom (DoFs) for the discrete

(a) ”Hanging” nodes. (b) Fracture. (c) Gluing mesh.

Figure 1.1: General mesh decomposition that can be easily handled by the Virtual Element
Methods.
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space in a way that these operators can be directly computable from them. These projection

operators play a central role in the VEM being used to define the discrete bilinear forms and

to approximate the errors. For any n ∈ N and each geometric entity O (element or face), we

introduce the following polynomial projections:

• the L2-projection Π0,O
n : L2(O) → Pn(O), defined for any v ∈ L2(O) by:∫
O
qn(v −Π0,O

n v) dO = 0 for all qn ∈ Pn(O), (1.3)

with obvious extension for vector functions Π0,O
n : [L2(O)]d → [Pn(O)]d and tensor func-

tions Π0,O
n : [L2(O)]d×d → [Pn(O)]d×d,

• the H1-seminorm projection Π∇,O
n : H1(O) → Pn(O), defined for any v ∈ H1(O) by:

∫
O
∇qn · ∇(v −Π∇,O

n v) dO = 0 for all qn ∈ n(O),∫
∂O

(v −Π∇,O
n v) dσ = 0,

(1.4)

with obvious extension for vector functions Π∇,O
n : [H1(O)]d → [Pn(O)]d. We make note

that the second condition in (1.4) is needed to fix the constant part.

1.4 Model problems

We now introduce the model problems that we are going to study. We firstly recall the Stokes

model that will be the core of our work and it will be used in the Chapters 2,3 and 4. Then we

also introduce the Oseen model, a non-symmetric problem that will be analyzed in Chapter 5.

1.4.1 Stokes Equation

Let Ω ⊆ Rd with d = 2, 3 be a bounded Lipschitz domain, with Γ = ∂Ω, and consider the

stationary Stokes problem on Ω with homogeneous Dirichlet boundary conditions:

Find (u, p) such that

−ν div ε(u)−∇p = f in Ω

divu = 0 in Ω

u = 0 on Γ ,

(1.5)

where u and p are respectively the velocity and the pressure fields, f ∈ [H−1(Ω)]d represents the

external force and ν ∈ L∞(Ω) uniformly positive in Ω is the viscosity. We assume that the scalar

viscosity field ν is piece-wise constant with respect to the decomposition Th, i.e., ν is constant

7
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on each polyhedron K ∈ Th. Let us consider the spaces:

V := [H1
0 (Ω)]d, Q := L2

0(Ω) =

{
q ∈ L2(Ω) s.t.

∫
Ω

q dΩ = 0

}
(1.6)

with the norms previously introduced.

Let the bilinear forms a(·, ·) : V ×V → R and b : V ×Q→ R be defined as:

a(u,v) :=

∫
Ω

ν∇u : ∇v dΩ for all u,v ∈ V (1.7)

b(v, q) :=

∫
Ω

div vq dΩ for all u ∈ V, q ∈ Q. (1.8)

Then a standard variational formulation of problem (1.5) reads:
find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) = (f ,v)0 for all v ∈ V,

b(u, q) = 0 for all q ∈ Q.

(1.9)

It is well-known that:

• a(·, ·) and b(·, ·) are continuous, i.e.

|a(u,v)| ≤ ∥a∥∥u∥1∥v∥1 for all u,v ∈ V,

|b(v, q)| ≤ ∥b∥∥v∥1∥q∥0 for all v ∈ Vand q ∈ Q,

where ∥a∥ and ∥b∥ are the usual norms of the two bilinear forms;

• a(·, ·) is coercive i.e., there exists a positive constant α such that

|a(v,v)| ≥ α∥v∥21 for all v ∈ V;

• the bilinear form b(·, ·) satisfies the inf-sup condition [23], i.e.

∃β > 0 such that sup
v∈V,v ̸=0

|b(v, q)|
∥v∥1

≥ β∥q∥0 for all q ∈ Q. (1.10)

Therefore, problem (1.9) has a unique solution (u, p) ∈ V ×Q such that

||u||1 + ||p||0 ≤ C||f ||H−1(Ω), (1.11)

where the constant C depends only on Ω and ν; see [23].

Symmetric gradient formulation. In our work, the previous definition of the bilinear form

a (1.7) has been used into the two dimensional context. When we analyze the three-dimensional

8
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problem we exploit an equivalent definition that involves the symmetric gradient, we define:

a(u,v) :=

∫
Ω

νε(u) : ε(v) dΩ for all u,v ∈ V. (1.12)

The bilinear forms (1.7) and (1.12) are equivalent as it is shown by the following (see [66] Section

2):

Lemma 1.4.1. There exists a constant c > 0 such that:

c∥∇u∥0 ≤ ∥ε(u)∥0 ≤ ∥∇u∥0 ∀u ∈ [H1(Ω)]3,u ⊥ ker(ε),

where ker(ε) is the space of the rigid body modes of the elasticity problem.

Remark 1.4.1. We recall here the usual base for the space of the rigid body modes. Given a

domain Ω̂ with diameter H we have the three translations:

r1 :=

 1

0

0

 , r2 :=

 0

1

0

 , r3 :=

 0

0

1

 , (1.13)

and the three rotations:

r4 :=
1

H

 x2 − x̂2

−x1 + x̂1

0

 , r5 :=
1

H

 −x3 + x̂3

0

x1 − x̂1

 , r6 :=
1

H

 0

x3 − x̂3

−x2 + x̂2

 , (1.14)

where x̂ ∈ Ω̂. The shift of the origin makes this basis for the space of rigid body modes well

conditioned, and, thanks to the scaling and shift, the L2-norms of these six functions scale in

the same way with H.

We also recall here a Korn-type inequality that will be useful in Chapter 3.

Lemma 1.4.2. Let Ω ⊂ R3 be a Lipschitz domain of diameter H and Σ ⊂ ∂Ω be an open subset

with positive surface measure. There exists a positive constant C, independent of H such that:

inf
r∈ker(ε)

∥u− r∥20 ≤ CH|u|E(Σ) ∀u ∈ [H1/2(Σ)]3,

where |u|E(Σ) := infu∈[H1(Ω)]3,v|Σ=u ∥ε(u)∥0.

9
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1.4.2 Oseen Equation

Let Ω ⊆ Rd with d = 2, 3 be a bounded Lipschitz domain, with Γ = ∂Ω, and consider the

stationary Oseen problem on Ω with homogeneous Dirichlet boundary conditions:

Find (u, p) such that

−ν div ε(u) + (∇u)β + σu−∇p = f in Ω

divu = 0 in Ω

u = 0 on Γ .

(1.15)

where again, u and p are respectively the velocity and the pressure fields, f ∈ [H−1(Ω)]d repre-

sents the external force and ν, σ ∈ R+ are respectively the viscosity diffusive coefficient and the

reaction coefficient. β ∈ [W 1,∞(Ω)]d with divβ = 0 is the transport advective field.

Again, we consider the spaces V and Q as in (1.6), and the bilinear forms A(·, ·) : V ×V → R,
b : V ×Q→ R and c(·, ·) : V ×V → R be defined as:

A(u,v) := ν

∫
Ω

ε(u) : ε(v) dΩ + σ

∫
Ω

u · v dΩ for all u,v ∈ V (1.16)

b(v, q) :=

∫
Ω

divv q dΩ for all u ∈ V, q ∈ Q. (1.17)

c(u,v) :=

∫
Ω

[(∇u)β] · v dΩ for all u,v ∈ V. (1.18)

Since div β = 0, one can check that the bilinear form c(·, ·) is skew symmetric, that means

c(u,v) = −c(v,u) for all u,v ∈ V. Therefore c(·, ·) it is equal to its skew-symmetric part,

defined as:

cskew(u,v) =
1

2

(
c(u,v)− c(v,u)

)
for all u,v ∈ V, (1.19)

in general, at discrete level they lead to different bilinear forms. Then a standard variational

formulation of problem (1.5) reads:
find (u, p) ∈ V ×Q such that

A(u,v) + c(u,v) + b(v, p) = (f ,v)0 for all v ∈ V,

b(u, q) = 0 for all q ∈ Q.

(1.20)

This problem can be written in the equivalent kernel form:find (u, p) ∈ Z such that

A(u,v) + c(u,v) = (f ,v)0 for all v ∈ Z,
(1.21)

10
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where Z = {v ∈ V s.t. divv = 0}.
This problem is well-posed and the unique solution u ∈ Z is such that:

ν∥ε(u)∥0 + σ∥u∥0 ≤ c ∥f∥0,

where c > 0 depends on the Korn inequality constant.
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Chapter 2

Divergence-free Virtual Element

Methods

In this chapter we will recall the Divergence-free Virtual Element Methods, originally introduced

in [12, 14], that we will use in the next chapters to discretize the Stokes problem (1.9). Since a

complete book of these methods to which refer to does not exist yet, here we will briefly recall

their formulations and we complete the proofs that usually are skipped in the papers. We also

give a proof for an optimal VEM interpolant for the three dimensional Stokes case.

The outline of this chapter is the following: we firstly introduce the space of functions for the

VEM methods and the discrete bilinear forms (in two and three dimension), then we define the

discrete problem and finally we give the convergence theorem.

2.1 Virtual Element spaces and bilinear forms

As usual, the idea is to define two discrete spaces of function to approximate the two continuous

ones V and Q. Like in the FEM context the idea is to define locally some space of functions and

then glow them up together to construct the global spaces.

2.1.1 Virtual Elements in 2D

We start giving a look on how the VEM space are defined in two dimension.

Pressure space. To construct the local discrete space for the pressure Qh we simply define:

QK
h := Pk−1(K), (2.1)

13
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and it is easy to see that:

dim(QK
h ) = dim(Pk−1(K)) =

(k + 1)k

2
. (2.2)

Velocity space. We define now the discrete space for the velocity functions. To do so we

need to introduce other space of polynomials. For k ∈ N, other than Pk(K), let us define the

spaces:

• Bk(K) := {v ∈ C0(∂K) s.t. v|e ∈ Pk(e) ∀ edge e ∈ ∂K},

• Gk(K) := ∇(Pk+1(K)) ⊆ [Pk(K)]2,

• Gk(K)⊥ ⊆ [Pk(K)]2 the L2-orthogonal complement to Gk(K).

On each element K ∈ Th we define, for k ≥ 2, the following finite dimensional local virtual

element spaces:

VK
h :=

{
v ∈ [H1(K)]2 s.t. v|∂K ∈ Bk(∂K)]2,−ν∆v −∇s ∈ Gk−2(K)⊥,

div v ∈ Pk−1(K),
for some s ∈ L2(K)

} (2.3)

Remark 2.1.1. We note that all the operators and equations above have to be interpreted in

the distributional sense. In particular, the definition of VK
h above is associated to a Stokes-like

variational problem on K. We note that [Pk(K)]2 ⊆ VK
h , this is a crucial property of these

space because as we will see it leads to an exactly divergence-free discrete velocity. We mention

that one can use different definitions of the velocity local space, like using the natural vector

extension of the standard Poisson space used in [10]. In this case we would not able to recover

the divergence-free property.

We have (see the proof in [14]):

dim(VK
h ) = dim([Bk(∂K)]2) + dim(Gk−2(K)⊥) + (dim(Pk−1(K))− 1)

= 2Nek +
(k − 1)(k − 2)

2
+

(k + 1)k

2
− 1.

(2.4)

Degrees of freedom. Once we have defined the local space for the velocity and pressure

and we know their dimension, we need to introduce suitable sets of DoFs to be able to handle

these functions. Given a function v ∈ VK
h we take the following linear operators DV, split into

four subsets (Figure 2.1):

• D1
V: the values of v at the vertices of the polygon K,

• D2
V: the values of v at k− 1 distinct points of every edge e ∈ ∂K (for the implementation

we will take the k − 1 internal points of the (k + 1)-Gauss-Lobatto quadrature rule in e),
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CHAPTER 2. DIVERGENCE-FREE VIRTUAL ELEMENT METHODS

Figure 2.1: DoFs for k = 2, k = 3 for a velocity function v ∈ Vk
h. We denote D1

V with the red
dots, D2

V with the yellow dots, D3
V with the green triangles, D4

V with the blue square inside the
elements.

• D3
V: the moments of the values of v∫

K

v · g⊥
k−2dK for all g⊥

k−2 ∈ Gk−2(K)⊥,

• D4
V: the moments up to order k − 1 and greater than zero of divv in K, i.e.∫

K

(div v)qk−1dK for all qk−1 ∈ Pk−1(K)/R.

Furthermore, for the local pressure, given q ∈ QK
h , we consider the linear operators DQ:

• DQ: the moments up to order k − 1 of q, i.e.∫
K

q pk−1dK for all pk−1 ∈ Pk−1(K).

Since DV and DQ are unisolvent respectively of VK
h and QK

h (see [14]), we can define the

global virtual element spaces:

Vh := {v ∈ [H1(Ω)]2 s.t. v|K ∈ VK
h for all K ∈ Th} (2.5)

and

Qh := {q ∈ L2(Ω) s.t. q|K ∈ QK
h for all K ∈ Th}, (2.6)
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with obvious associated sets of global DoFs. A computation shows that:

dim(Vh) = nK

(
(k + 1)k

2
− 1 +

(k − 1)(k − 2)

2

)
+ 2(nV + (k − 1)nE) (2.7)

and

dim(Qh) = nK
(k + 1)k

2
− 1. (2.8)

We can now define the polynomial projections that we need to discretize the bilinear forms.

Proposition 2.1.1 (Polynomial Projection). The dofs DV allow us to compute exactly (with

reference to (1.3) and (1.4)):

Π∇,K
k : VK,k

h → [Pk(K)]2

Π0,K
k−2 : VK,k

h → [Pk−2(K)]2

Π0,K
k−1 : ∇VK,k

h → [Pk−1(K)]2×2.

(2.9)

Proof. We start from the first operator. By definition of H1 projection, to determine the poly-

nomial Π∇,K
k for any v ∈ VK,k

h we need to compute:∫
K

∇v : ∇pk for allpk ∈ [Pk(K)]2.

Integrating twice by parts and using the decomposition in (1.2), that allows us to write ∆pk =

∇pk−1 + g⊥
k−2 with ∆pk ∈ [Pk−2(K)]2, pk−1 ∈ Pk−1(K) and g⊥

k−2 ∈ Gk−2(K)⊥:∫
K

∇v : ∇pk = −
∫
K

v ·∆pk +

∫
∂K

v ·
(
∇pk nK

)
=

∫
∂K

v ·
(
∇pk nK

)
−
∫
K

v · g⊥
k−2 −

∫
K

v · ∇pk−1

=

∫
∂K

v ·
(
∇pk nK − qk−1 nK

)
−
∫
K

v · g⊥
k−2 +

∫
K

pk−1 div v.

(2.10)

We see that the first term of the latter line of (2.10) is computable from the D1
V and D2

V, the

second by D3
V and the last by the D4

V.

For the second operator, for any v ∈ VK,k
h and for all pk−2 ∈ [Pk−2(K)]2, using the decomposition

pk−2 = ∇pk−1 + g⊥
k−2 with pk−1 ∈ Pk−1(K) and g⊥

k−2 ∈ Gk−2(K)⊥ and integrating by parts,

we can compute: ∫
K

v · pk−2 =

∫
K

v · g⊥
k−2 +

∫
K

v · ∇pk−1

=

∫
K

v · g⊥
k−2 +

∫
∂K

v ·
(
qk−1 nK

)
−
∫
K

pk−1 div v.

(2.11)
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It is easy to see that the terms of the right hand side of the latter equation can be computed by

the DV.

The third operator is obtained in the same way as the first, for any v ∈ VK,k
h and for all

p
k−1

∈ [Pk−1(K)]2×2, computing:

∫
K

∇v : p
k−1

, (2.12)

this is done integrating twice by part and using the decomposition div
(
p
k−1

)
= ∇pk−1 + g⊥

k−2

with div
(
p
k−1

)
∈ [Pk−2(K)]2, pk−1 ∈ Pk−1(K) and g⊥

k−2 ∈ Gk−2(K)⊥.

Remark 2.1.2. For sake of clarity, we just point out that the first and the latter operators in

(2.11) are obtained combining the contributes computed in (2.10) and (2.12) with the orthogo-

nality condition to fix the constant part as in (1.4). These projection operators are obtained by

testing against the monomial basis functions (1.1) and they are expressed as matrices. We refer

to [11] for a complete example on how to compute these operators.

Remark 2.1.3. Although we proved this projection here for a general degree k, in our 2D

work we only use the polynomial projection for k = 2. We also mention that we proved the

computability of the projection operator of the gradient of a virtual function since it is used to

analyse the H1 error and it is needed to discretize the c(·, ·) bilinear form in Chapter 5.

Discrete bilinear forms.

With these ingredients we are able to define two discrete versions of the bilinear forms a(·, ·)
as in (1.7), and b(·, ·) as in (1.8). For what concerns b(·, ·) we do not need to introduce any

approximation of the bilinear form, so we simply set:

b(v, q) :=
∑

K∈Th

bK(v, q) =
∑

K∈Th

∫
K

divv q dK for all u ∈ Vh, q ∈ Qh. (2.13)

Since q is a polynomial in each element K ∈ Th, we notice that (2.13) is computable from the

DoFs DV1, DV2 and DV4.

The approximation of the bilinear form a(·, ·) on the virtual space Vh, is more involved. In

fact, for an arbitrary couple (w,v) ∈ VK
h × VK

h , the quantity aK(w,w) is not computable.

Following [14], we now define a computable discrete local bilinear form

aKh (·, ·) : VK
h ×VK

h → R (2.14)

approximating the continuous form aK(·, ·), and satisfying the usual properties requested in the

VEM framework [10]:

• k− consistency: for all qk ∈ [Pk(K)]2 and v ∈ VK
h

aKh (qk,vh) = aKh (qk,vh); (2.15)
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• stability: there exist two positive constants α∗ and α∗, independent of h and K, such

that, for all v ∈ VK
h , it holds

α∗a
K(vh,vh) ≤ aKh (vh,vh) ≤ α∗aK(vh,vh). (2.16)

In the same way as in (2.10), we are able to show that aK(qk,vh) is computable in terms of the

DoFs DV. At this point it is sufficient to take aKh (wk,vh) = aK(Π∇,K
k wk,Π

∇,K
k vh) to ensure

the property (2.15), but in general (2.16) would not be verified. So, we introduce a symmetric

positive definite bilinear form (stabilizing-term) SK : VK
h ×VK

h → R, that satisfies

c∗a
K(vh,vh) ≤ SK(vh,vh) ≤ c∗aK(vh,vh) for all vh ∈ Vh such that Π∇,K

k vh = 0, (2.17)

where c∗ and c∗ are two positive constants independent of h and K.

Setting

aKh (wk,vh) = aK(Π∇,K
k wk,Π

∇,K
k vh) + SK((I −Π∇,K

k )wh, (I −Π∇,K
k )vh) (2.18)

for all wh,vh ∈ VK
h , we can prove the:

Lemma 2.1.1. The bilinear form (2.18) satisfies the k-consistency property (2.15) and the sta-

bility property (2.16).

Proof. Property (2.15) follows immediately from the definition of the projection operators: for

q ∈ [Pk(K)]2 we have SK((I−Π∇,K
k )q, (I−Π∇,K

k )v) = 0 for all v ∈ VK
h . Hence, for all v ∈ VK

h

it holds

aKh (q,v) = aK(Π∇,K
k q,Π∇,K

k v) = aK(q,v). (2.19)

Property (2.16) follows from (2.17): for all v ∈ VK
h

aKh (v,v) ≤ aK(Π∇,K
k v,Π∇,K

k v) + c∗aK((I −Π∇,K
k )v, (I −Π∇,K

k )v)

≤ max{1, c∗}(aK(Π∇,K
k v,Π∇,K

k v) + aK(v −Π∇,K
k v,v −Π∇,K

k )v)

= α∗aK(v,v).

(2.20)

Similarly, for all v ∈ VK
h ,

aKh (v,v) ≥ min{1, c∗}(aK(Π∇,K
k v,Π∇,K

k v) + aK(v −Π∇,K
k v,v −Π∇,K

k )v)

= α∗a
K(v,v).

(2.21)

Remark 2.1.4. The choice of the bilinear form SK in general depend on the problem and on

the DoFs. Condition (3.27) states that the stabilizing term SK(v,v) scales as aK(v,v) on the

18



CHAPTER 2. DIVERGENCE-FREE VIRTUAL ELEMENT METHODS

kernel of Π∇,K
k . In our numerical tests we denote with ṽh, w̃h ∈ RNK the vectors containing the

values of NK local DoFs associated to vh,wh ∈ VK
h ; and we set

SK(vh,wh) = αK ṽT
h w̃h, (2.22)

with αK a suitable positive constant independent of the element size.

Finally we define the global approximated bilinear form ah(·, ·) : VK
h ×VK

h → R by simply

summing the local contributions:

ah(wh,vh) =
∑

K∈Th

aKh (wh,vh) for all wh,vh ∈ Vh. (2.23)

Load term approximation Now we present a computable approximation of the right-hand

side (f ,v) in (1.9). Let K ∈ Th, we define the approximate load term fh as

fh := Π0,K
k−2fh for all K ∈ Th, (2.24)

and consider:

(fh,vh) =
∑

K∈Th

∫
K

fh · vhdK =
∑

K∈Th

∫
K

Π0,K
k−2f · vhdK =

∑
K∈Th

∫
K

f ·Π0,K
k−2vhdK . (2.25)

We observe that (2.25) can be exactly computed for all vh ∈ Vh. In fact, Π0,K
k−2vh is computable

in terms of the DoFs DV: for all qh ∈ [Pk−2(K)]2 we have∫
K

Π0,K
k−2vh · qk−2dK =

∫
K

vh · qk−2dK =

∫
K

vh · ∇qk−1dK +

∫
K

vh · g⊥
k−2dK (2.26)

for suitable qk−1 ∈ Pk−1(K) and g⊥
k−2 ∈ Gk−2(K)⊥. As a consequence, we get∫

K

Π0,K
k−2vh · qk−2dK = −

∫
K

div vh · qk−1dK +

∫
∂K

qk−1vh · ndK +

∫
K

vh · g⊥
k−2dK , (2.27)

and the right-hand side is directly computable from DV.

We have the following lemma [10]

Lemma 2.1.2. Let fh be defined as in (2.24), and let us assume f ∈ Hk−1(Ω). Then for all

vh ∈ Vh, it holds

|(fh − f ,vh)| ≤ Chk|f |k−1∥vh∥1. (2.28)
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2.1.2 Virtual Elements in 3D

Pressure space. We start by constructing the discrete space Qh. This is a natural extension

of the two-dimensional space [14] and, following [12], we define:

QK
h := Pk−1(K), (2.29)

therefore the corresponding dofs are chosen defining for each q ∈ QK
h the following linear operator:

• DQ: the moments up to order k − 1 of q:∫
K

qpk−1 dK for any pk−1 ∈ Pk−1(K).

The global space is given by:

Qh := {q ∈ L2(Ω) s.t. q|K ∈ QK
h for all K ∈ Th}. (2.30)

Velocity space. The space Vh, as defined in [12], is the three-dimensional extension of the

two-dimensional velocity space introduced in [14], where the extensive use of the enhancement

technique [2] is needed to achieve the computability of suitable polynomial projection operators.

We start by considering each face f of a polyhedral element K, then we define:

B̂k(f) := {v ∈H1(f) s.t. (i) v|f ∈ C0(∂f), v|e ∈ Pk(e) for all e ∈ ∂f,

(ii) ∆fv ∈ Pk+1(f),

(iii) (v −Π∇,f
k v, p̂k+1)f = 0 for all p̂k+1 ∈ P̂k+1\k−2(f)}

(2.31)

and the boundary space:

B̂k(∂K) := {v ∈ C0(∂K) s.t. v|f ∈ B̂k(f) for any f ∈ ∂K}. (2.32)

Then on the polyhedron K we first define the virtual element space:

ṼK
h := {v ∈[H1(K)]3 s.t. (i) v|∂K ∈ [B̂k(∂K)]3,

(ii) ∆v +∇s ∈ x ∧ [Pk−1(K)]3 for some s ∈ L2
0(K),

(iii) divv ∈ Pk−1(K)},

(2.33)

being x = (x1, x2, x3) the independent variables and ∧ the cross product. The velocity space is

then defined as:

VK
h := {v ∈ ṼK

h s.t. (v −Π∇,K
k v,x ∧ p̂k−1)K = 0

∀p̂k−1 ∈ [P̂k−1\k−3(K)]3}.
(2.34)
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Remark 2.1.5. The ”super-enhanced” constraints (iii) in (2.31) and in (2.34) are necessary

to achieve the computability of the polynomial projection operators Π0,f
k+1 and Π0,K

k (see Prop.

2.1.2 ).

Remark 2.1.6. Note that the approximation property is again guaranteed by the fact that the

spaces VK
h and QK

h contain [Pk(K)]3 and Pk−1(K), respectively.

Degrees of freedom Given v ∈ VK
h , the dofs of the local velocity space VK

h are defined by

means of the following set of linear operators:

• D1
V: the values of v at the vertices of K;

• D2
V: the values of v at k − 1 distinct points of every edge e of K;

• D3
V: the face moments of v (split into normal and tangential components):∫

f

(v · nf
K)pk−2 df,

∫
f

vτ · pk−2 df, (2.35)

for all pk−2 ∈ Pk−2(f) and pk−2 ∈ [Pk−2(f)]
2, where nf

K is the normal vector associated

to the face f and vτ is the 2D vector field defined on ∂K, s.t. on each face f ∈ ∂K:

vτ := v − (v · nf
K)nf

K ;

• D4
V: the volume moments of v:∫

K

v · (x ∧ pk−3) dK for all pk−3 ∈ [Pk−3(K)]3; (2.36)

• D5
V: the volume moments of divv:∫

K

divv p̂k−1 dK for all p̂k−1 ∈ P̂k−1\0(K). (2.37)

The global space Vh is obtained by gluing the local spaces:

Vh := {v ∈ [H1(Ω)]3 s.t. v|K ∈ VK
h for all K ∈ Th}. (2.38)

Recalling Proposition 5.1 in [12], we now show how to compute some useful projection operators

as we have done before in the two dimensional case. We want to do so, since this aspect is

not usually covered in the papers and it is left to the reader. Moreover the first two projection

operators in Prop. 2.1.2 show the importance of having defined a super-enhanced VEM space

for the velocity in (2.31) and (2.34).
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Proposition 2.1.2 (Polynomial projections). The DoFs DV allow us to compute exactly the

face projections

Π∇,f
k : [B̂k(f)]

3 → [Pk(f)]
3, Π0,f

k+1 : [B̂k(f)]
3 → [Pk+1(f)]

3

for any f ∈ ∂K of an element K, and the element projections:

Π∇,K
k : Vh(K) → [Pk(K)]3,

Π0,K
k−1 : ∇(Vh(K)) → [Pk−1(K)]3×3,

Π0,K
k : Vh(K) → [Pk(K)]3

in the sense that, given any vh ∈ Vh(K), we are able to compute the polynomials Π∇,f
k vh,

Π0,f
k+1vh, Π

∇,Kvh, Π
0,K
k (∇vh) and Π0,K

k vh using only, as unique information, the DoFs values

DV of vh.

Proof. The projection operator Π∇,f
k is determined once we have computed the contributes:∫

f

∇vh : ∇pk ∀pk ∈ [Pk(f)]
3. (2.39)

By simply integrating by part we obtain:∫
f

∇vh : ∇pk = −
∫
f

∆pk · vh +

∫
∂f

(∇pk nf ) · vh. (2.40)

Since ∆pk ∈ [Pk−2(f)]
3, the first term is computable from D3

V (after having properly splitted

into normal and tangential component) and the latter from D1
V and D2

V.

For what concerns the operator Π0,f
k+1 we need to compute:∫

f

vh · pk+1 ∀pk+1 ∈ [Pk+1(f)]
3. (2.41)

We can note that, for any p ∈ [Pk−2(f)]
3 we have exactly the D3

V as before. When p ∈
[Pk+1\k−2(f)]

3 instead we do not have any information from the dofs. The help is given by the

operator Π∇,f
k that now we know explicitly, and that, due to the definition of our spaces B̂k(f)

(2.31), allows us to compute (2.41).

The operator Π∇,K
k is determined by computing:∫

K

∇vh : ∇pk ∀pk ∈ Pk(K). (2.42)

Firstly integrating by parts, using the second polynomial decomposition in (1.2) that allows

us to write ∆pk ∈ [Pk−2(K)]3 as ∆pk = x ∧ pk−3 + ∇p̂k−1 for some p̂k−1 ∈ Pk−1\0(K) and
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pk−3 ∈ [Pk−3(K)]3, we obtain:∫
K

∇vh : ∇pk =−
∫
K

∆pk · vh +

∫
∂K

(∇pk nK) · vh =

−
∫
K

∇p̂k−1 · vh −
∫
K

(x ∧ pk−3) · vh +

∫
∂K

(∇pk nK) · vh

(2.43)

The second term is directly computable fromD3
V and the third term, since∇pk·n ∈ [Pk−1(∂K)]3,

is computable in the same way as in (2.41) from D4
V. The first term is obtained integrating by

parts:

−
∫
K

∇p̂k−1 · vh =

∫
K

divvh p̂k.1 +

∫
∂K

(p̂k−1 nK) · vh, (2.44)

where the first came directly from D5
V and the second as the last term of the previous equation.

We only give a hint for the operator Π0,K
k−1, since the procedure is really similar to the previous

one. In this case we integrate by parts, ∀p
k−1

∈ [Pk−1(K)]3×3:

∫
K

∇vh : p
k−1

= −
∫
K

vh · div p
k−1

+

∫
∂K

(p
k−1

nK) · vh, (2.45)

then we use the split div p
k−1

= x ∧ pk−3 + ∇p̂k−1 for some pk−3 ∈ [Pk−3(K)]3 and p̂k−1 ∈
Pk−1(K) and we proceed as before.

The proof for the latter operator could be found in [12].

Discrete bilinear forms and load term approximation. We can now discuss the dis-

cretization of the bilinear forms defined in (1.9). First, we decompose into local contribution the

bilinear forms a(·, ·) and b(·, ·) and the load term f :

a(u,v) :=
∑

K∈Th

aK(u,v), b(v, p) :=
∑

K∈Th

bK(v, p), (f ,v) :=
∑

K∈Th

(f ,v)K , (2.46)

for all u,v ∈ [H1(Ω)]3.

As previously, we note that we do not need any approximation for the divergence bilinear

form since we can compute exactly b(vh, qh) for all vh ∈ Vh and qh ∈ Qh directly form the

D1
V,D

2
V and D5

V.

Instead, the bilinear form a(·, ·) is not directly computable from the dofs when both entries

are ”virtual”. Following [12], we define the approximation:

aKh (u,v) :=

∫
K

(Π0,K
k−1ε(u)) : (Π

0,K
k−1ε(v)) dK + SK((I −Π∇,K

k )u, (I −Π∇,K
k )v), (2.47)

23



CHAPTER 2. DIVERGENCE-FREE VIRTUAL ELEMENT METHODS

for all u,v ∈ VK
h , where:

Π0,K
k−1ε(u) =

Π0,K
k−1∇u+ (Π0,K

k−1∇u))T

2
.

The approximate bilinear form (2.47) is obtained as the sum of the first contribute, the consis-

tency part and the second one, the stabilization part, where SP : VK
h ×VK

h → R is a suitable

symmetric bilinear form that has to scale like the H1-seminorm.

Remark 2.1.7. For the numerical experiments in Section 3.4.2 and 4.4, we use, instead of Π∇,K
k ,

a different projection operator ΠD,K
k since it is nothing but a Euclidean projection with respect to

the DoF vectors and it is easier to implement. This dof-based stabilization has been introduced

in Section 6 of [12], and we remand there for further details.

The load term is approximated by taking:

(fh,v)K :=

∫
K

Π0,K
k f · v dK. (2.48)

Finally, the global forms are obtained by simply gluing elements’ contributions:

ah(u,v) :=
∑

K∈Th

aKh (u,v), (fh,v) :=
∑

K∈Th

(fh,v)K , (2.49)

for all u,v ∈ Vh.

2.2 Discrete problem and theoretical results

Using the discrete spaces (2.5) and (2.6) in 2D, and (2.38) and (2.30) in 3D and the respectively

discrete linear and bilinear forms previously introduced, the discrete Stokes problem reads as

follows: 
find (uh, ph) ∈ Vh,0 ×Qh,0 such that

ah(uh,vh) + b(vh, ph) = (fh,vh) for all vh ∈ Vh,0,

b(uh, qh) = 0 for all qh ∈ Qh,0,

(2.50)

where Vh,0 := Vh ∩ [H1
0 (Ω)]

d and Qh,0 := Qh ∩ L2
0(Ω).

The convergence theorem is given by the fact that we have an optimal interpolation Stokes-like

operator (Lemma 2.2.1) and that the pair (Vh, Qh) is inf-sup stable with βh > 0 (Prop. 2.2.1).

The proof for the bidimensional case can be found in [14], while for the three dimensional case

we need to combine the arguments in [14], [15] and [27]. To give an idea on how to combine

these techniques we prove here the Stokes optimal interpolant.
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Lemma 2.2.1. Let v ∈ [H1+s(K)]3, 0 ≤ s ≤ 1, there exists vI ∈ Vh(K) s.t.:

∥v − vI∥0,K + |v − vI |1,K ≤ h1+s|v|1+s,K̃ .

Proof. The proof of this lemma is divided into three steps.

Step 1. Interpolant on faces.

Let K be an element of the VEM tassellation and f a face with f ∈ ∂K. We consider T̃h a sub-

triangulation of Th and let vc be the Clement interpolant of v relative to the sub-triangulation.

We have that: ∥v − vc∥0 + |v − vc|1 ≤ h|v|1,f . Now we interpolate vc on the larger face space:

Bk(f) := {v ∈H1(f) s.t. (i) v|e ∈ C0(∂f), v|e ∈ Pk(e) for all e ∈ ∂f,

(ii) ∆fv ∈ Pk+1(f)}
(2.51)

and we define wI ∈ [Bk(f)]
3 as the solution of:−∆wI = −∆Π0

k+1vc on f

wI = wc on ∂f.
(2.52)

We see that ∆Π0
k+1vc ∈ [Pk−2(f)]

3 ⊂ [Pk+1(f)]
3, vc is continuous by definition on Ω and

vc|e ∈ [Pk(e]
3) ∀e ∈ ∂f , so we conclude wI ∈ [Bk(f)]

3. Subtracting Π0
k+1vc in the second

equation: −∆wI = −∆Π0
k+1vc on f

wI −Π0
k+1vc = wc −Π0

k+1vc on ∂f,
(2.53)

we have:

|wI −Π0
k+1vc|1,f ≤ inf{|z|1,f , z ∈ [H1(f)]3 : z = vc −Π0

k+1vc on ∂f}

≤ |vc −Π0
k+1vc|1,f .

(2.54)

Now using the triangular inequality:

|vc −wI |1,f ≤ |vc −Π0
k+1vc|1,f + |Π0

k+1vc −wI |1,f ≤ 2|vc −Π0
k+1vc|1,f . (2.55)

Sofar we have wI ∈ [Bk(f)]
3, but we are looking for vI ∈ [B̂k(f)]

3. To construct vI we set

vI = wI on ∂f and: ∫
f

vI · p =

∫
f

wI · p ∀p ∈ [Pk−2]
3∫

f

vI · p =

∫
f

Π∇,f
k wI · p ∀p ∈ [Pk+1\k−1]

3,

(2.56)
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Remembering that vI = wI on ∂f and integrating by parts:

|wI − vI |21,f =

∫
f

|∇(wI − vI)|2 = −
∫
f

∆(wI − vI)(wI − vI). (2.57)

By definition wI −vI ∈ [Bk(f)]
3, so ∆(wI −vI) ∈ Pk+1(f) =⇒ ∆(wI −vI) = p+Π0,f

k−2∆(wI −
vI) for some p ∈ [Pk+1\k−2(f)]

3. In this way we can write p = −∆(wI−vI)+Π0,f
k−2∆(wI−vI) =

−(I −Π0,f
k−2)∆(wI − vI).

Now using (2.57), the equivalence for the moments up to degree k − 2 in (2.56) and an inverse

estimate in [18]:

|wI − vI |21,f = −
∫
f

p · (wI − vI)−
∫
f

(wI − vI) ·Π0,f
k−2∆(wI − vI) =

−
∫
f

p · (wI − vI) = −
∫
f

p · (wI −Π∇,f
k wI) ≤ ∥p∥0,f · ∥wI −Π∇,f

k wI∥0,f =

∥I −Π0,f
k−2∥∥∆(wI − vI)∥0,f∥wI −Π∇,f

k wI∥0,f
≤ c · h−1|wI − vI |1,f · ∥wI −Π∇,f

k wI∥0,f

(2.58)

Now using a triangular inequality, the fact that Π0,f
k wI = Π∇,f

k (Π0,f
k wI) and a Poincaré estimate:

|wI − vI |1,f =≤ c · h−1∥wI −Π∇,f
k wI∥0,f ≤ c · h−1(∥wI −Π0,f

k wI∥0,f
+∥Π0,f

k wI −Π∇,f
k wI∥0,f ) ≤ c(1 + c∆) · h−1∥wI −Π0,f

k wI∥0,f ≤

c2|wI −Π0,f
k wI |1,f .

(2.59)

Using a triangular inequality, by the stability of the projection Π0,f
k , (2.55) and (2.54):

|wI − vI |1,f ≤ c2(|wI −Π0,f
k vc|1,f + |Π0,f

k vc −Π0,f
k wI |1,f )

≤ c2(1 + c0)|vc −Π0,f
k vc|1,f .

(2.60)

We can also estimate:

|vc − vI |1,f ≤ |vc −wI |1,f + |wI − vI |1,f ≤ c|vc −Π0,f
k vc|1,f (2.61)

and

|vc −Π0,f
k vc|1,f ≤ |vc − v|1,f + |v −Π0,f

k v|1,f + |Π0,f
k v −Π0,f

k vc|1,f
≤ (1 + c0)|vc − v|1,f + |v|1,f ≤ c3|v|1,f .

(2.62)

Combining the estimates obtained and by triangular inequality we have:

|v − vI |1,f ≤ |v − vc|1,f + |vc − vI |1,f ≤ c|v|1,f (2.63)
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Remembering that vI −vc|∂f = 0 and using a Poincaré-Friedrichs type inequality we can obtain

an L2 estimate and gain a power h.

Step 2. Interpolant on enriched element space.

∀f ∈ ∂K we consider wf
I and vf

I and let be w∂K
I and v∂K

I their gluing (continuous by construc-

tion). Again we consider the 3D Clement interpolant of v relative to the sub-tassellation T̂ made

by tetrahedron of T and let be vπ := Π0,K
k vc. Now ∆vπ ∈ [Pk(K)]3 =⇒ ∆vπ = ∇qπ + ĝ with

qπ ∈ Pk+1(K) and ĝ ∈ x ∧ [Pk−1(K)]3.

We now define wI ∈ Ṽh as the solution of:
−∆wI −∇s = ĝ in K

div wI = Π0,K
k−1(div vc) in K

wI = v∂K
I on ∂K,

(2.64)

and ṽ the solution of the auxiliary problem:
−∆ṽ −∇s̃ = ĝ in K

div ṽ = div vc in K

ṽ = v∂K
I on ∂K,

(2.65)

Adding and subtracting ∆vπ at the first equation of (2.65) and vπ at the other two:
−∆(vπ − ṽ)−∇(−qπ − s̃) = 0 in K

div (vπ − ṽ) = div (vπ − vc) in K

ṽ − vπ = v∂K
I − vπ = (v∂K

I − vc)|∂K + (vc −Π0,K
k vc)|∂K on ∂K,

(2.66)

we have ∀f ∈ ∂K (v∂K
I −vc)|∂f = 0. Let be Pf a regular pyramid Pf ⊂ K, by the trace theorem

on f =⇒ ∃ψf ∈ [H1(Pf )]
3, ψf |∂Pf\f = 0 and c > 0 s.t. |ψf |1,Pf

≤ cf∥vf
I − vc∥1/2,f . Let be

ψ :=
∑

f∈∂P ψf + vc −Π0,E
k vc. Now:

|vπ − ṽ|1,K ≤ inf{|z|1,K , z ∈ [H1(K)]3 : divz = div (vπ − vc) in K,

z = v∂K
I − vπ on ∂K} ≤ |ψ|1,K ≤

∑
f∈∂K

|ψf |1,Pf
+ |vc −Π0,K

k vc|1,K ≤

cf
∑

f∈∂K

∥vf
I − vc∥1/2,f + |vc −Π0,K

k vc|1,K

(2.67)

We estimate now the first term of the last inequality using the Gagliardo Niremberg estimate,
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the standard interpolation, the fact ∀a, b ∈ R ab ≤ h−1a2 + hb2 and a Poincare inequality:

∥vf
I − vc∥1/2,f ≤ ∥vf

I − vc∥20,f + cGN∥vf
I − vc∥0,f |vf

I − vc|1,f ≤

∥vf
I − vc∥20,f + cGN (h−1∥vf

I − vc∥0,f + h|vf
I − vc|1,f ) ≤

ch(1 + h)|vf
I − vc|1,f ≤ ch|vc −Π0,P

k vc|21,f
≤ ch|v|21,f ≤ c|v|21,K ,

(2.68)

and we conclude |vπ − ṽ|1,K ≤ c|v|1,K . Subtracting the system (2.65) at (2.64), we have:
−∆(ṽ −wI)−∇(s̃− s) = 0 in K

div (ṽ −wI) = divvc −Π0,K
k−1divvc in K

ṽ − vI = 0 on ∂K,

(2.69)

By the standard theory of saddle point problem [23]:

|ṽ −wI |1,K ≤ c(α)

β
∥divvc −Π0,K

k−1divvc∥0,K ≤ c(α)

β
(∥(I −Π0,K

k−1)divv∥0,K

+∥(I −Π0,K
k−1)(divv − divvc)∥0,K) ≤ c(α)

β
|v|1,K̃ ,

(2.70)

then

|v −wI |1,K ≤ |v − vπ|1,K + |vπ − ṽ|1,K + |ṽ −wI |1,K ≤ |v|1,K . (2.71)

It left to estimate |vI −wI |1,K with the norm of |v|1,K , and then we can conclude.

Step 3. Interpolant on the VEM space.

Let be vI ∈ VK
h interpolant in sense of the Dofs, we have:

• vI = wI on ∂K (it means that they have the same Dv1,Dv2 and Dv3);

• Dv5 are equals (vI −wI = 0 on ∂K =⇒
∫
K
div (vI = wI) = 0);

• ∀g ∈ [Pk−3(K)]3
∫
K
vI(x ∧ g) =

∫
K
wI(x ∧ g);

∀g ∈ [Pk−1\k−3(K)]3
∫
K
vI(x∧g) =

∫
K
Π

(
k∇,K)wI(x∧g) =⇒

∫
K
(vI −wI)(x∧g) =∫

K
Π(Π

(∇,K)
k wI − wI)(x ∧ g) ∀g ∈ [Pk−1(K)]3 where Π is the L2 projection on the

space [Pk−1\k−3(K)]3.

Defining dI := vI − wI , we have ∆dI + ∇s̃ = ĝ for some s̃ ∈ L2
0(K), ĝ ∈ [Pk−1(K)]3. We

consider the problem:

−∆dI −∇s̃ = ĝ in K

divdI = 0 in K

dI = 0 on ∂K∫
K
dI(x ∧ g) =

∫
K
Π(Π

(∇,K)
k wI −wI)(x ∧ g) ∀g ∈ [Pk−1(K)]3,

(2.72)
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after providing an inf-sup condition (same technique in [15] Sec. 4), this problem is well-posed

and we have the stability estimate:

h|dI |1,K + ∥s̃∥0,K + ∥g∥0,K ≤ ∥Π(Π
(∇,K)
k wI −wI)∥0,K , (2.73)

and then by the stability of Π and by the triangular inequality:

|dI |1,K ≤ h−1∥Π(Π
(∇,K)
k wI −wI)∥0,K ≤ |Π(∇,K)

k wI −wI |1,K
≤ 2|wI − v|1,K + |Π(∇,K)

k v − v|1,K ≤ c|v|1,K .
(2.74)

We conclude by triangular inequality combining (2.71) and (2.74) The | · |0,K estimate can be

recovered again using a Poincare-Friedrichs type inequality.

Proposition 2.2.1. Given the discrete spaces Vh and Qh defined in (2.5) and (2.6) in 2D and

(2.38) and (2.30) in 3D, there exists a positive β̃, independent of h, such that:

sup
vh∈Vh vh ̸=0

b(vh, qh)

∥vh∥1
≥ β̃∥qh∥0 for allqh ∈ Qh. (2.75)

We have the following existence and convergence theorem (for the proof see [14], for the 2D

and [12] for the 3D).

Theorem 2.2.1. Under the Assumptions (A1) − (A3), let (u, p) ∈ [H1
0 (Ω)] × L2

0(Ω) be the

solution of the problem (1.5) and (uh, ph) ∈ Vh,0 × Qh,0 be the unique solution of the problem

(2.50). Assuming moreover u, f ∈ [Hs+1(Ω)]d and p ∈ Hs(Ω), 0 < s ≤ k, then:

|u− uh|1 ≲ hsF(u, ν) + hs+2H(f , ν),

∥p− ph∥0 ≲ hs|p|s + hsK(u, ν) + hs+2|f |s+1,
(2.76)

for suitable functions F ,H,K independent of h.

Remark 2.2.1. Since the error of the velocity in (2.76) does not depend on the pressure, one can

design a reduced scheme with a smaller number of dofs as for the two-dimensional case (Section

5.3 in [12]).

We write here the discrete variational problem (2.50) in matrix form:[
A BT

B 0

][
u

p

]
=

[
f

0

]
, (2.77)

where the matrices A and B are associated with the discrete bilinear forms ah(·, ·) and bh(·, ·).

Remark 2.2.2. In the next two chapters, we omit the underscore h since we will always refer

to the finite-dimensional space. We also write V̂×Q instead of V̂h,0 ×Qh,0, only for the sake of

simplifying the notation.
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(a) QUAD mesh. (b) CVT mesh. (c) RAND mesh.

(d) CUBE mesh (e) CVT mesh (f) OCTA mesh

Figure 2.2: Example of VEM mesh discretizations in two and three dimensions.

2.3 Numerical Error and convergence test

We will now shortly analyze the convergence error of the VEM methods we use in our work, for

more details we remand to [12,14].

Remark 2.3.1. As we will see in the next chapter, the scope of our work is focused on the

iterative resolution of a saddle point problem (3.9) that arise from a reduce scheme using a Schur

complement technique. We will study the parallel resolution of that problem with an iterative

method without analyzing the error since it is out of the scope. For sake of completeness, we

briefly recall here how to compute the error in the VEMs and we just show some results of

convergence.

The VEM solution uh is not explicitly known point-wise inside the elements. Therefore, even

when the analytical solution u is available the method error is not computable. We then compute

the method error comparing u with a suitable polynomial projection of uh. To do so, we exploit

the polynomial projection Π0,K
k previously introduced in Prop. 2.1.1 and 2.1.2 and we compute
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Figure 2.3: Velocity field (left) and pressure (right) discrete solutions for a CVT mesh discretiza-
tion in two (up) and three (down) dimensions.

quantities:

δ(u) :=

( ∑
K∈Th

∥∇u−Π0,K
k ∇uh∥20,K

)1/2

and δ(p) = ∥p− ph∥0. (2.78)

Remark 2.3.2. All the numerical test in two dimension are performed in MATLAB R2023A©,

while for the three dimensional extension we use the Vem++ library [39] a new C++ library

specifically written to handle Virtual Element Methods.

2D. In two dimension we solve the Stokes equations on the unit square domain Ω = [0, 1]×
[0, 1], applying homogeneous Dirichlet boundary conditions on the whole ∂Ω and we use two

different type of mesh discretization as in Figure 2.2, with viscosity coefficient ν = 1 for all the

domain Ω.

We choose the load term f in such a way that the analytical solution is (Figure 2.3):

u(x, y) =

(
− sin(πx) sin(πx) sin(2πy)

sin(πy) sin(πy) sin(2πx)

)
, p(x, y) = sin(πx)− sin(πy).
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Figure 2.4: Velocity (left) and pressure (right) convergence plots for QUAD, CVT and RAND
mesh in 2D for VEM discretization of degree k = 2.
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Figure 2.5: Velocity (left) and pressure (right) convergence plots for CUBE, CVT and OCTA
mesh in 3D for VEM discretization of degree k = 2, 3.

We reported in Figure 2.4 the plot of the two errors for the 2d VEM discretization of degree

k = 2. As we can see, the convergence rate is of the order 2 for both velocity and pressure for

all the different type of mesh considered.

3D. In three dimension we solve the equations on the unit cube domain Ω = [0, 1] × [0, 1],

applying homogeneous Dirichlet boundary conditions on the whole ∂Ω. In this case we use three

different type of mesh discretizations as in in Figure 2.2.

We choose the load term f in such a way that the analytical solution is (Figure 2.3):

u(x, y, z) =

 sin(πx) cos(πy) cos(πz)

cos(πx) sin(πy) cos(πz)

−2 cos(πx) cos(πy) sin(πz)

 , p(x, y, z) = −π cos(πx) cos(πy) cos(πz).

In Figure 2.5 we reported the plot of the two errors for the 3d VEM discretization of degree k =

2, 3. The convergence rate is of the order 2 for both velocity and pressure for the discretization
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of degree k = 2 and order 3 for the case k = 3, for all the mesh considered.
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Chapter 3

BDDC Algorithm for Virtual

Element methods

In this chapter we introduce the BDDC methods applied to the saddle point problem that arises

from the VEM discretization of the Stokes equations described in Chapter 2. We start giving a

brief introduction of the Domain Decomposition procedure and how it is adapted to the VEM

context. We then recall how these BDDC methods are constructed and assembled and we analyze

their convergence rate. We provide several numerical results to validate the theoretical estimates.

For sake of simplicity the formulation of the method is given in three dimensions, making some

observations related to the two dimensional case showing the differences when it is relevant.

3.1 Domain decomposition for VEM spaces

We decompose Th into N non-overlapping subdomains Ωi with characteristic size Hi:

T̄h =

N⋃
i=1

Ω̄i, Γ =
⋃
i ̸=j

∂Ωi ∩ ∂Ωj , (3.1)

where each Ωi is the union of different polyhedral of the tassellation Th and Γ is the interface

(skeleton) among the subdomains. Each local interface is defined as Γi = ∂Ωi ∩ Γ and it is

constituted by:

• macro faces F , two dimensional open sets shared by two subdomains;

• macro edges E , monodimensional open sets shared by more than two subdomains;

• vertices V, the end points of the macro edges.

We let EH , and FH denote, respectively, the set of macro edges E and of macro faces F of the

subdomain decomposition interior to Ω, and F i
H and E i

H denote the set of, respectively, macro
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faces and macro edges of the subdomain Ωi. We identify with Ek one of the NE total macro

edges of the interface Γ, with k = 1, ...,NE and with Fl one of the NF total macro faces of the

interface Γ, with l = 1, ...,NF . Sometimes we will use the notation Ek(Fl) to underline that the

edge Ek belongs to the face Fl. We denote with Vi one of the NV vertices.

We note that, in two dimension we keep the same notation using only edges and vertices.

We assume that the decomposition (3.1) is shape-regular in the sense of [18]:

There exist constant γ⋆ > 0 and N⋆ > 0 such that the subdomain decomposition satisfies the

following properties:

• it is geometrically conforming, that is, for all i = 1, .., N , if a vertex, edge, or face of Ωi is

contained in ∂Ωi ∩ ∂Ωj with j = 1, ..., N and j ̸= i, it is also, respectively, a vertex, edge,

or face of Ωj ;

• the subdomains Ωi are shape regular of diameterHi with constants γΩi
> γ⋆ andNΩi

< N⋆;

• for all i , there exists a scalar νi > 0 such that ν|Ωi
≃ νi;

• the decomposition is quasi-uniform: there exists an H such that for all i we have Hi ≃ H.

We introduce now a splitting for the velocity components’ DoFs. To do so, we identify each

DoF with a natural geometrical position, e.g. D1
V , D

2
V are clearly located in the coordinates of

their evaluation. The moments D3
V are placed ideally in the center of the faces of the elements,

while the moments D4
V and D5

V are placed into the baricenter of the elements. We then denote

as:

• boundary DoFs, the DoFs that live on the interface Γ. The DoFs that belong to this set

are the subset of D1
V , D

2
V and D3

V that have a geometrical position placed on Γ;

Figure 3.1: 2D and 3D interface of the subdomains (excluding ∂Ω): in red the points that indicate
the vertices of the subdomains, in black the macro edges and in light blue the macro faces.
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• interior DoFs, the DoFs that live inside of a subdomain (that do not intersect Γ). All the

D4
V and D5

V belongs to this set, plus the D1
V , D

2
V and D3

V that do not live on the interface.

Remark 3.1.1. With the same concept, in two dimension, we classify the DoFs of the velocity

components (DV3 and DV4) as interior DoFs, since they are placed in the baricenter of each

element. Instead, we split the DV1 and DV2 DoFs into boundary and interior, since they are

pointwise evaluation and some of them live on the interface Γ.

Following the notations introduced in [70] and [21], we decompose the discrete velocity and

pressure space V̂ and Q into:

V̂ = VI

⊕
V̂Γ, Q = QI

⊕
Q0, (3.2)

with Q0 :=
∏N

i=1{q ∈ Ωi|q is constant in Ωi}.
V̂Γ is the continuous space of the traces on Γ of functions in V̂ (Figure 3.2.1 (a)). VI and QI are

direct sums of subdomain interior velocity spaces V
(i)
I , and subdomain interior pressure spaces

Q
(i)
I , respectively, i.e.,

VI =

N⊕
i=1

V
(i)
I , QI =

N⊕
i=1

Q
(i)
I . (3.3)

The elements of V
(i)
I have support in the subdomain Ωi and vanish on its interface Γi, while the

elements of Q
(i)
I are restrictions of elements in Q to Ωi which satisfy

∫
Ωi
q
(i)
I = 0. We also define

the space of interface velocity variables of the subdomain Ωi by V
(i)
Γ , and the associated product

space by VΓ =
∏N

i=1 V
(i)
Γ . Generally functions in VΓ are discontinuous across the interface (see

Figure 3.2.1 (c)).

Here we define R
(i)
Γ : V̂Γ → V

(i)
Γ , the operator which maps functions in the continuous interface

velocity space V̂Γ to their subdomain components in the space V
(i)
Γ . We denote the direct sum

of the R
(i)
Γ with RΓ.

With the decomposition of the solution space given in (3.2), the global saddle-point problem

(2.77) can be written as: find (uI , pI ,uΓ, p0) ∈ (VI , QI , V̂Γ, Q0), such that:
AII BT

II ÂT
ΓI 0

BII 0 B̂IΓ 0

ÂΓI B̂T
IΓ ÂΓΓ B̂T

0Γ

0 0 B̂T
0Γ 0




uI

pI

uΓ

p0

 =


fI

0

fΓ

0

 . (3.4)

The blocks related to the continuous interface velocity are assembled by summing the corre-

sponding subdomain submatrices, e.g., ÂΓΓ =
∑N

i=1R
(i)
Γ

T
Â

(i)
ΓΓR

(i)
Γ and B̂0Γ =

∑N
i=1 B̂

(i)
0ΓR

(i)
Γ .

Correspondingly, the right-hand side vector fI consists of subdomain vectors f
(i)
I , and fΓ is as-

sembled from the subdomain components f
(i)
Γ ; we denote the spaces of the right-hand side vectors

fI and fΓ by FI and FΓ respectively.

Remark 3.1.2. The lower left block of (3.4) is zero because the bilinear form b(uI , q0), by the
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divergence theorem, vanishes for any vI ∈ VI and q0 ∈ Q0.

3.1.1 Schur Complement and System Reduction

By employing a symmetric permutation, the leading two by two blocks in the coefficient matrix

can be rewritten as a block diagonal matrix with blocks corresponding to independent subdomain

problems: 

A
(1)
II B

(1)
II

T
A

(1)
ΓI

T
0

B
(1)
II 0 B

(1)
IΓ 0

. . .
...

A
(1)
ΓI B

(1)
IΓ

T
. . . ÂΓΓ B̂T

0Γ

0 0 B̂0Γ 0





u
(1)
I

p
(1)
I
...

uΓ

p0


=



f
(1)
I

0
...

fΓ

0


. (3.5)

We proceed eliminating, by static condensation, the independent subdomain variables (u
(i)
I , p

(i)
I )

in the system (3.5). To do so, we solve independent Dirichlet problems:[
A

(i)
II B

(i)
II

T

B
(i)
II 0

][
u
(i)
I

p
(i)
I

]
+

[
A

(i)
ΓI

T
0

B
(i)
IΓ 0

][
uΓ

p0

]
=

[
F

(i)
I

0

]
, (3.6)

thus [
u
(i)
I

p
(i)
I

]
=

[
A

(i)
II B

(i)
II

T

B
(i)
II 0

]−1([
F

(i)
I

0

]
−

[
A

(i)
ΓI

T
0

B
(i)
IΓ 0

][
uΓ

p0

])
. (3.7)

Then, substituting the solutions of (3.7) in

N∑
i=1

[
A

(i)
ΓI B

(i)
IΓ

T

0 0

][
u
(i)
I

p
(i)
I

]
+

[
ÂΓΓ B̂T

0Γ

B̂0Γ 0

][
uΓ

p0

]
=

[
FΓ

0

]
(3.8)

we obtain the global interface saddle point problem:

Ŝ û =

[
ŜΓ B̂T

0Γ

B̂0Γ 0

][
uΓ

p0

]
=

[
gΓ

0

]
= ĝ, (3.9)

where the right-hand side ĝ ∈ FΓ × F0 is given by

ĝ =

N∑
i=1

R
(i)
Γ

T
{[

f
(i)
Γ

0

]
−

[
A

(i)
ΓI B

(i)
IΓ

T

0 0

][
A

(i)
II B

(i)
II

T

B
(i)
II 0

]−1 [
f
(i)
I

0

]}
, (3.10)
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ŜΓ is assembled from the subdomain Stokes Schur complements S
(i)
Γ , which are defined by: given

w
(i)
Γ ∈ V

(i)
Γ , determine S

(i)
Γ w

(i)
Γ ∈ F

(i)
Γ such that A

(i)
II B

(i)
II

T
A

(i)
ΓI

T

B
(i)
II 0 B

(i)
IΓ

A
(i)
ΓI B

(i)
IΓ

T
A

(i)
ΓΓ


 w

(i)
I

q
(i)
I

w
(i)
Γ

 =

 0

0

S
(i)
Γ w

(i)
Γ

 , (3.11)

These Schur complements are symmetric and positive definite. By the coercivity of a(·, ·), we
know that the matrices [

A
(i)
II A

(i)
ΓI

T

A
(i)
ΓI A

(i)
ΓΓ

]

are symmetric and positive definite and so the left two by two upper block of the left-hand-side of

(3.11) has the same number of negative eigenvalues of the all matrix. The left-hand-side matrices

of (3.11) are congruent to:  A
(i)
II B

(i)
II

T
0

B
(i)
II 0 0

0 0 S
(i)
Γ


and so, the positive definiteness of (3.11) follows by the Sylvester’s law of inertia.

We define by SΓ the direct sum of the S
(i)
Γ , then ŜΓ is given by

ŜΓ = RT
ΓSΓRΓ =

N∑
i=1

R
(i)
Γ

T
S
(i)
Γ R

(i)
Γ , (3.12)

and then we set

R =

[
RΓ 0

0 I

]
, R(i) =

[
R

(i)
Γ 0

0 I

]
. (3.13)

We see from (3.11) that the action of S
(i)
Γ on a vector can be evaluated by solving a Dirichlet

problem on the subdomain Ωi as in (3.6). These problems defined on the subdomains are

independent and since only the action of ŜΓ on a vector is required we do not need to assemble

all the matrices.

We see that Ŝ is symmetric and indefinite, so one can use the generalized minimal residual

method to solve the problem (3.9), with usually a positive definite block preconditioner. The

BDDC preconditioner, that we will introduce in the next Section, makes the operator of the

preconditioned problem (3.9) symmetric and positive definite, so the preconditioned conjugate

gradient (CG) method can be used to accelerate the solution. However, as we will see in the

following, this property is achieved only under particular conditions and only on proper defined

subspaces of V̂ ×Q0.
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Remark 3.1.3. We just make note that once we have solved the problem (3.9), we can use direct

solvers on the independent local problems (3.7) on each subdomain and then assemble the global

solution. These systems are, indeed, significantly smaller and they can be solved in parallel. For

this reason the convergence rate theory and our numerical simulation are only focused on the

global saddle point problem (3.9).

3.2 Construction of the BDDC preconditioner

Following the standard BDDC framework for the FEM in [70] we mainly need two ingredients

to handle this type of algorithms.

Before entering into the definition of the function space used to construct the BDDC precondi-

tioner, we briefly justify the choice of our notation. The subscript Γ indicates DoFs living on the

interface, Π and ∆ are instead used to distinguish DoFs of Γ that belong to the primal and dual

spaces, respectively, defined here below. Two other subscripts are used: C indicates an operator

referred to the coarse space and D is instead used to highlight that an operator has been rescaled

by suitable scaling functions, defined later. The hat ·̂ refers to a continuous space, the ·̃ means

that the space is continuous on primal interface DoFs and discontinuous on the dual ones and

finally no hat is used for the product of local spaces, which is discontinuous at all interface DoFs.

3.2.1 The partially assembled space

The first ingredient is a partially assembled interface velocity space, namely ṼΓ (see Figure 3.2.1

(b)):

ṼΓ = V̂Π

⊕
V∆ = V̂Π

⊕( N∏
i=1

V
(i)
∆

)
. (3.14)

Here, V̂Π is the continuous coarse-level primal velocity space typically spanned by subdomain

vertex nodal basis functions and/or interface edge or face basis with constant values, or with

values of weight functions. We will always assume that the basis has been changed so that each

primal basis function corresponds to an explicit degree of freedom (see A). In other words, we

will have explicit primal unknowns corresponding to the primal continuity constraints on edges

or faces. The primal DoFs are shared by neighboring subdomains. The complementary space

V∆ is the direct sum of the subdomain dual interface velocity spaces V
(i)
∆ , which correspond to

the remaining interface velocity DoFs and are spanned by basis functions which vanish at the

primal DoFs. Thus, an element in the space ṼΓ has a continuous primal velocity and typically

a discontinuous dual velocity component. We now introduce several restriction, extension, and

scaling operators between a variety of spaces. As in [70], R
(i)
Γ is the operator which maps a

function in the space V̂Γ to its component in V
(i)
Γ . We define R

(i)
∆ as the operator which maps

the space V̂Γ to its dual component in the space V
(i)
∆ . RΓΠ is the restriction operator from the

space V̂Γ to its subspace V̂Π; R
(i)
Π is the operator which maps V̂Π into its Γi-component. R̃Γ is
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(a) V̂Γ (b) ṼΓ := V̂Π
⊕

V∆ (c) VΓ

Figure 3.2: Representation of the three velocity interface spaces.

the direct sum of RΓΠ and the R
(i)
∆ , and it is a map from V̂Γ into ṼΓ. Finally, RΓ is the operator

that maps the space ṼΓ into the product space VΓ associated with the set of subdomains.

The relationships among the previous spaces and operators are summarized in the following

diagram:

VΓ ṼΓ

V
(i)
Γ V̂Γ V

(i)
∆

V̂Π V̂
(i)
Π

RΓ

R
(i)
Γ R

(i)
∆

RΠΓ

R̃Γ

R
(i)
Π

Remark 3.2.1.

3.2.2 Scaling and average operators

The second main tool in this algorithm are the scaling operators. They are obtained by mul-

tiplying the previous ones with suitable matrix D(i) defined on each subdomain. The matrices

D(i) can be chosen in different ways and can be either diagonal or not, but they always must

provide a partition of unity, i.e.:

R̃T
D,ΓR̃Γ = R̃T

Γ R̃D,Γ = I, (3.15)

where R̃D,Γ is a map from V̂Γ to ṼΓ and it is obtained as the direct sum of RΓ,Π and the

R
(i)
D,∆ := D(i)R

(i)
∆ . In this thesis we use diagonal matrices D(i) that define two different scaling

namely multiplicity-scaling and ν-scaling, and a non-diagonal one namely deluxe-scaling.

Diagonal scalings. In order to construct these matrices, we introduce a positive scaling

factor δ†i (x) for the nodes on the interface Γi of each subdomain Ωi. For the multiplicity scaling,
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we simply define the δ†i (x) as the pseudoinverse counting functions, so:

δ†i (x) := 1/Nx, x ∈ Γi (3.16)

where Nx = card(Ix) is the number of the subdomains which have x on their boundaries and Ix

is the set of indices of these subdomains. This mean that a node that lives on a macro edge in

two dimension or a macro face in three it is shared by two subdomains, while a node that lives

on a macro edge in three dimension it is shared by more than three subdomains. The scaled

restriction operators R
(i)
D,∆ are obtained by simply multiplying each non-zero element of R

(i)
∆ ,

only one for row, by the corresponding scaling factor δ†i (x). The ν-scaling it is obtained by using

δ̂†i (x), a weighted version of the scaling factor δ†i (x). For some γ ∈ [1/2,∞], we define:

δ̂†i (x) :=
νγi (x)∑

j∈Nx
νγj (x)

, x ∈ Γi, (3.17)

the scaled restriction operators are obtained as before.

Remark 3.2.2. Since when νi(x) = 1 for all the subdomains the two scalings are equivalent,

in two dimension we prove the theoretical result by applying the ν-scaling. In three dimensions,

for sake of simplicity, we limit to prove the results for the multiplicity scaling.

Deluxe scaling. We take a subdomain Ωk and for a geometrical entity O, that can be

an edge or a face shared by two or more subdomains, we consider the principal minors of the

subdomain matrices S
(k)
T :

S
(k)
OO := R

(k)
O S

(k)
T R

(k)
O

T
, (3.18)

where R
(k)
O maps V

(k)
Γ to the DoFs located on O. Then we split the matrices as follows

S
(k)
OO =

[
S
(k)
O′O′ S

(k)
O′O∆

S
(k)T

O′O∆
S
(k)
O∆O∆

]
, (3.19)

where O∆ is the dual set of the DoFs associated to the entity O and O′ := Γi\O∆. We introduce

the Schur complements:

S̃
(k)
O∆O∆

= S
(k)
O∆O∆

− S
(k)T

O′O∆
S
(k)−1

O′O′ S
(k)
O′O∆

. (3.20)

Identifying with L the subset of indices that share the entity O we define the following scaling

matrices by:

D
(k)
O :=

(∑
i∈L

S̃
(k)
O∆O∆

)−1

S̃
(k)
O∆O∆

(3.21)

42



CHAPTER 3. BDDC ALGORITHM FOR VIRTUAL ELEMENT METHODS

and the subdomain (deluxe) scaling matrices by:

D(k) :=
∑
O⊂Γi

R
(k),T
O D

(k)
O R

(k)
O (3.22)

Remark 3.2.3. It is easy to see that all the scaling matrices defined previously are a partition

of unity, in the sense: ∑
i∈L

D
(i)
O = I, (3.23)

where I is the identity matrix.

Average operator. In order to analyze the convergence rate of the BDDC method, we

define an average operator ED = R̃R̃T
D, which maps ṼΓ × Q0, with generally discontinuous

interface velocities, to elements with continuous interface velocities in the same space. For any

v = (vΓ, q0) ∈ ṼΓ,B ×Q0,

ED =

[
vΓ

q0

]
=

[
R̃Γ 0

0 I

][
R̃D,Γ 0

0 I

][
vΓ

q0

]
=

[
ED,ΓvΓ

q0

]
(3.24)

where ED = R̃R̃T
D,Γ, provides the average of the interface velocities across the interface Γ.

Recalling that we can split v = vΠ ⊕ v∆, we have EDv = vΠ ⊕ ED,∆v∆, where ED,∆v∆ is

the dual part of the averaged vector. Sometimes, especially in the FETI-DP framework, it is

convenient work on PD = I − ED, the complementary projector operator of ED.

3.2.3 Schur complement and BDDC preconditioner

The interface velocity Schur complement S̃Γ is defined on the partially assembled interface ve-

locity space ṼΓ by: given vΓ ∈ ṼΓ, S̃ΓvΓ ∈ F̃Γ satisfies:

A
(i)
II B

(i)T

II A
(i)T

∆I Ã
(i)T

ΠI

B
(i)
II 0 B

(i)
I∆ B̃

(i)
IΠ

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆ Ã

(i)T

Π∆

. . .
...

Ã
(i)
ΠI B̃

(i)T

IΠ Ã
(i)
Π∆ . . . ÃΠΠ





v
(i)
I

p
(i)
I

v
(i)
∆
...

v
(i)
Π


=



0

0

(S̃ΓvΓ)
(i)
∆

...

(S̃ΓvΓ)
(i)
Π


(3.25)

Here ÃΠΠ =
∑N

i=1R
(i)
Π

T
A

(i)
ΠΠR

(i)
Π , Ã

(i)
ΠI = R

(i)
Π

T
A

(i)
ΠI , Ã

(i)
Π∆ = R

(i)
Π

T
A

(i)
Π∆ and B̃

(i)
IΠ = B

(i)
IΠR

(i)
Π .

S̃Γ can than be obtained from the Schur complements S
(i)
Γ by assembling only the primal

interface velocity part, i.e. as

S̃Γ = RΓ
T
SΓRΓ. (3.26)

As we saw before (3.11) the global interface Schur operator ŜΓ is obtained by fully assembling
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the S
(i)
Γ across the subdomain interface, therefore it can be also obtained from S̃Γ by further

assembling the dual interface velocity part, ŜΓ = R̃T
Γ S̃ΓR̃Γ. So we need to define an operator

B̃0Γ, which maps the partially assembled interface velocity space ṼΓ into F0, the space of right

hand sides corresponding to Q0, and it is obtained from B̃0Γ by assembling the dual interface

velocity part on the subdomain interfaces, i.e. B̂Γ = B̃ΓR̃Γ.

Introducing

R̃ =

[
R̃Γ 0

0 I

]
, S̃ =

[
S̃Γ B̃T

0Γ

B̃0Γ 0

]
, (3.27)

we can write Ŝ, the operator of the global interface problem (3.9), as

Ŝ =

[
ŜΓ B̂T

0Γ

B̂0Γ 0

]
=

[
R̃T

Γ S̃ΓR̃Γ R̃T
Γ B̃

T
0Γ

B̃0ΓR̃Γ 0

]
= R̃T S̃R̃. (3.28)

The preconditioner for solving the global saddle-point problem (3.9) is

M−1 = R̃T
DS̃

−1R̃D, (3.29)

where we have defined

R̃D :=

[
R̃D,Γ 0

0 I

]
, (3.30)

and so we have the BDDC preconditioned problem: find (uΓ, p0) ∈ V̂Γ ×Q0, such that

R̃T
DS̃

−1R̃DŜ

[
uΓ

p0

]
= R̃T

DS̃
−1R̃D

[
gΓ

0

]
. (3.31)

What we need in our implementation is to determine the action S̃−1q for any given q = (qΓ, q0) ∈
F̃Γ × F0, so we have to solve the linear system[

S̃Γ B̃T
0Γ

B̃0Γ 0

][
uΓ

p0

]
=

[
qΓ

q0

]
. (3.32)

Given the definition of S̃Γ in (5.3), we have that solving (5.10) is equivalent to solve
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A
(i)
II B

(i)T

II A
(i)T

∆I Ã
(i)T

ΠI 0

B
(i)
II 0 B

(i)
I∆ B̃

(i)
IΠ 0

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆ Ã

(i)T

Π∆ B
(i)T

0∆

. . .
...

Ã
(i)
ΠI B̃

(i)T

IΠ Ã
(i)
Π∆ . . . ÃΠΠ B̃T

0Π

0 0 B
(i)
0∆ B̃0Π 0





u
(i)
I

p
(i)
I

u
(i)
∆
...

uΠ

p0


=



0

0

q
(i)
∆
...

qΠ

q0


(3.33)

where B̃0Π =
∑N

i=1B
(i)
0ΠR

(i)
Π . Now using a block factorization we obtain

S̃−1 =

N∑
i=1

[
0 0 RT

∆,i

] A
(i)
II B

(i)T

II A
(i)T

∆I

B
(i)
II 0 B

(i)
I∆

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆


−1  0

0

R∆,i

+ΦS−1
CCΦ

T , (3.34)

where R∆,i maps F̃Γ×F0 into F
(i)
∆ , the set of right hand sides corresponding to V

(i)
∆ . The matrix

SCC , relatively to the primal constraints, has to be completely assembled in this way

SCC =

N∑
i=1

R
(i)T

C

{[
A

(i)
ΠΠ B

(i)T

0Π

B
(i)
0Π 0

]
−

[
A

(i)
ΠI B

(i)T

IΠ A
(i)
Π∆

0 0 B
(i)
0∆

]
 A

(i)
II B

(i)T

II A
(i)T

∆I

B
(i)
II 0 B

(i)
I∆

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆


−1  A

(i)T

ΠI 0

B
(i)
IΠ 0

A
(i)T

Π∆ B
(i)T

0∆

}R(i)
C ,

(3.35)

where we have defined

R
(i)
C :=

[
R

(i)
Π 0

0 I

]
, (3.36)

the maps from V̂Π ×Q0 to V
(i)
Π ×Q0. Finally we define the matrix

Φ = RT
Π0 −

N∑
i=1

[
0 0 RT

∆,i

] A
(i)
II B

(i)T

II A
(i)T

∆I

B
(i)
II 0 B

(i)
I∆

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆


−1  A

(i)T

ΠI 0

B
(i)
IΠ 0

A
(i)T

Π∆ B
(i)T

0∆

R(i)
C , (3.37)

where RΠ0 is the map between the space F̃Γ × F0 and F̂Π × F0.

Remark 3.2.4. As we said before the SCC matrix has to be explicitly assembled. Although

it is typically dense, in general the dimension of this matrix it is quite small and the inversion

is computed by direct methods. However, in some contexts, when enriching the coarse space
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using adaptive technique or simply when the coarse space is too large it could be convenient

exploit a multilevel formulation of the BDDC preconditioner. The idea consists in considering

a subdomain at a finer level as an element of a coarser mesh and applying again the BDDC

technology. We do not enter into the details of this and we remand to [92,93] where it has been

first presented and to [75] for the a multilevel extension. Several works have been done in this

direction, including saddle point problem and adaptive techniques [54,76,83,88,89,94,101].

3.3 Theoretical analysis of the BDDC preconditioner

We now present an estimate for the eigenvalues of the preconditioned operator M−1Ŝ, following

the theory developed in [70] and adapting it to our VEM formulation. We recall all the definitions

and the lemmas that we need, providing a proof only for the mainly ones that present some

differences. All the proof of the lemmas that are omitted here can be recovered in [70].

We organized this section as follows. Firstly, we introduce the subspaces and we gave the

Assumptions under which the preconditioned saddle point problem is symmetric and positive

definite, since the argument is independent on the dimension we also give the convergence rate

result. Then, separately for two and three dimensions, we gave the recipes to guarantee that

these assumptions are fulfilled.

3.3.1 Benign spaces and convergence rate estimate

In the following, we denote by a(i), a
(i)
h and b(i) the restrictions to subdomain Ωi of the bilinear

forms a, ah and b, respectively. We introduce the |.|
S

(i)
Γ

and |.|SΓ
seminorms defined by

|v(i)
Γ |2

S
(i)
Γ

= v
(i)
Γ

T
S
(i)
Γ v

(i)
Γ , |vΓ|2SΓ

= vΓ
TSΓvΓ =

N∑
i=1

|v(i)
Γ |2

S
(i)
Γ

, (3.38)

and we give a norm equivalence result:

Lemma 3.3.1. There exist positive constant c1 and c2, independent of H, h and the shape of

the subdomains, such that

c1β̃
2|vΓ|2SΓ

≤ |vΓ|21/2,Γ ≤ c2|vΓ|2SΓ
∀vΓ ∈ VΓ,

where β̃ is the stability constant inf-sup defined in (2.2.1).

Proof. This proof follows substantially the result presented in Bramble and Pasciak ( [25] Theo-

rem 4.1) where a proof for FEM is provided. Given vΓ ∈ VΓ, we define the operators T : VΓ → V̂
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and S : VΓ → Q that satisfy ∀i = 1, ..., N :

(1) S(vΓ)|Ωi ∈ Q
(i)
I ,

(2) T (vΓ)|Γ = vΓ,

(3) a
(i)
h (T (vΓ),v) + b(i)(v, S(vΓ) = 0 for all v ∈ V

(i)
I ,

(4) b(i)(T (vΓ), q) = 0 for all q ∈ Q
(i)
I .

(3.39)

The above condition uniquely defines S and T . Now given vΓ ∈ VΓ, let v
H
Γ ∈ V̂ be the discrete

harmonic extension of vΓ, i.e. the unique function in V̂ which equals vΓ on Γ and satisfies

∀i = 1, ..., N :

a(i)(vH
Γ ,v) = 0 for all v ∈ V

(i)
I . (3.40)

By the stability of the discrete harmonic extension and the stability of the discrete bilinear form

ah [14], we have on each subdomain:

a
(i)
h (vH

Γ ,v
H
Γ ) ≤ c3a

(i)(vH
Γ ,v

H
Γ ) ≤ c3|v(i)

Γ |21/2,Γi
, (3.41)

where c3 is a positive constant independent of h, H and the number of subdomains N . Now, by

definition of S and T , and since b(i)(T (vΓ), S(vΓ)) = 0, we have:

a
(i)
h (T (vΓ), T (vΓ)) = a

(i)
h (T (vΓ),v

H
Γ ) + b(i)(vH

Γ , S(vΓ)). (3.42)

Applying (2.2.1) on the subdomains, we have, for some c > 0:

||S(vΓ)||2Qi
≤ β̃−2 sup

w∈V
(i)
I

b(i)(w, S(vΓ))
2

∥w∥21
≤ cβ̃−2 sup

w∈V
(i)
I

b(i)(w, S(vΓ))
2

a
(i)
h (w,w)

= cβ̃−2 sup
w∈V

(i)
I

a
(i)
h (T (vΓ),w)2

a
(i)
h (w,w)

≤ cβ̃−2a
(i)
h (T (vΓ), T (vΓ)),

(3.43)

Applying Cauchy-Schwarz to the first term in (3.42) and using (3.43), we have:

|v(i)
Γ |2

S
(i)
Γ

= a
(i)
h (T (vΓ), T (vΓ)) ≤ a

(i)
h (T (vΓ), T (vΓ))

1/2a
(i)
h (vH

Γ ,v
H
Γ )1/2

+c|vH
Γ |H1(Ωi)||S(vΓ)||Qi

≤ ah(T (vΓ), T (vΓ))
1/2ah(v

H
Γ ,v

H
Γ )1/2+

cβ̃−1ah(v
H
Γ ,v

H
Γ )1/2a

(i)
h (T (vΓ), T (vΓ))

1/2

and then:

cβ̃2|v(i)
Γ |2

S
(i)
Γ

= cβ̃2a
(i)
h (T (vΓ), T (vΓ)) ≤ a

(i)
h (vH

Γ ,v
H
Γ ). (3.44)
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Finally, from (3.41) and summing on the subdomains

cβ̃2|vΓ|2SΓ
= cβ̃2ah(T (vΓ), T (vΓ)) ≤ ah(v

H
Γ ,v

H
Γ ) ≤ c3|vΓ|21/2,Γ,

which yields the first inequality of the thesis with c1 = c/c3.

For the second inequality we have, by definition of the discrete harmonic extension and again

the stability of the discrete bilinear form ah:

|vΓ|21/2,Γi
≤ a(i)(vH

Γ ,v
H
Γ ) ≤ a(i)(T (vΓ), T (vΓ)) ≤ c2a

(i)
h (T (vΓ), T (vΓ)) (3.45)

and then:

|vΓ|21/2,Γ ≤ c2|vΓ|2SΓ
. (3.46)

The operators ŜΓ and S̃Γ, given in (3.12) and (3.26), are both symmetric and positive definite,

because of the Dirichlet boundary conditions on ∂Ω and provided that sufficiently many primal

constraints are chosen. We can then define the ŜΓ and S̃Γ norms on the spaces V̂Γ and ṼΓ by

∥vΓ∥2ŜΓ
= vT

ΓR
T
ΓSΓRΓvΓ = |RΓvΓ|2SΓ

∀vΓ ∈ V̂Γ,

∥vΓ∥2S̃Γ
= vT

ΓR
T

ΓSΓRΓvΓ = |RΓvΓ|2SΓ
∀vΓ ∈ ṼΓ.

We then define the two spaces, whose utility is that, restricted to such spaces, the interface

problem operators Ŝ of (3.9) and S̃ of (3.32) are positive semi-definite. As in [70], we give the

following:

Definition 3.3.1. Given the discrete spaces V̂Γ and ṼΓ, we define the two subspaces

V̂Γ,B = {vΓ ∈ V̂Γ|B̂0ΓvΓ = 0},

ṼΓ,B = {vΓ ∈ ṼΓ|B̃0ΓvΓ = 0}.

We call V̂Γ,B ×Q0 and ṼΓ,B ×Q0 the benign subspaces of V̂Γ ×Q0 and ṼΓ ×Q0.

Lemma 3.3.2. The interface operator Ŝ of (3.9), restricted to the subspace V̂Γ,B×Q0 is positive

semi-definite. The same is true for S̃ of (3.26) restricted to ṼΓ,B ×Q0.

We define the Ŝ and S̃ seminorms on the benign subspaces

|v|2
Ŝ
= vT Ŝv = ∥vΓ∥ŜΓ

∀v = (vΓ, q0) ∈ V̂Γ,B ×Q0,

|v|2
S̃
= vT S̃v = ∥vΓ∥S̃Γ

∀v = (vΓ, q0) ∈ ṼΓ,B ×Q0.

We make note that for we did not explicitly explain yet how to choose the primal and dual

DoFs. This has to be done, as in the FEM case (see [70]), in such a way that the following two

Assumptions (or conditions) are satisfied.
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Assumption 1. For any v∆ ∈ V∆,
∫
∂Ωi

v
(i)
∆ · n = 0 and

∫
∂Ωi

(ED,∆v∆)
(i) · n = 0, where n is

the outward normal of ∂Ωi. We can equivalently write B
(i)
0∆v

(i)
∆ = 0 and B

(i)
0∆(ED,∆v∆)

(i) = 0.

Assumption 2. There exists a positive constant C, which is independent of H, h and the

number of subdomains, but that can depend on the degree of the VEM discretization k, such

that

|R̄Γ(ED,ΓvΓ)|1/2,Γ ≤ C

(
1 + log

(
H

h

))
|R̄ΓvΓ|1/2,Γ, ∀vΓ ∈ VΓ.

The first assumption, also commonly known as no-net-flux condition, is needed to ensure that

the iterates of the preconditioned conjugate gradient method stay in the benign space during

the resolution of the saddle point problem(Lemma 3.3.3). The second one instead ensure the

stability of the average operator and it is necessary to guarantee the convergence of the method.

These assumptions will be both proven later by properly constructing the BDDC primal space

in 2D and 3D in Sec 3.3.3 and 3.3.4, respectively.

With these two assumptions, we have the following results:

Lemma 3.3.3. Let Assumption 1 hold. Then R̃T
Dv ∈ V̂Γ,B ×Q0, for any v ∈ ṼΓ,B ×Q0.

Lemma 3.3.4. Let Assumptions 1 and 2 hold. Then there exists a positive constant C, which

is independent of H, h and the number of subdomains, such that

|EDv|S̃ ≤ C
1

β̃

(
1 + log

(
H

h

))
|v|S̃ , ∀v = (vΓ, q0) ∈ ṼΓ,B ×Q0,

where β̃ is the inf-sup stability constant of (2.2.1).

Proof. Given any v = (vΓ, q0) ∈ ṼΓ,B×Q0, we know, from Lemma 3.3.3, that R̃T
Dv ∈ V̂Γ,B×Q0.

Therefore, EDv = R̃R̃T
Dv ∈ ṼΓ,B ×Q0. We have from the definition of the S̃-seminorm, that

|EDv|2
S̃
= ∥ED,ΓvΓ∥2S̃Γ

= |R̄Γ(ED,ΓvΓ)|2SΓ
≤ C

1

β̃2
|R̄Γ(ED,ΓvΓ)|21/2,Γ, (3.47)

where the last inequality follows from Lemma 3.3.1. We have, from Assumption 2 and Lemma

3.3.1

|R̄Γ(ED,ΓvΓ)|21/2,Γ ≤ C

(
1 + log

(
H

h

))2

|R̄ΓvΓ|21/2,Γ

≤ C

(
1 + log

(
H

h

))2

|R̄ΓvΓ|2SΓ
≤ C

(
1 + log

(
H

h

))2

∥vΓ∥2S̃Γ
.

(3.48)

Consequently we have

|EDv|2
S̃
≤ C

1

β̃2

(
1 + log

(
H

h

))2

∥vΓ∥2S̃Γ
= C

1

β̃2

(
1 + log

(
H

h

))2

|v|2
S̃
. (3.49)
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We have the following lemma (proof in [70]):

Lemma 3.3.5. Any vector of the form u = (0, p0) ∈ V̂Γ,B × Q0 is an eigenvector of the

preconditioner operator M−1Ŝ with eigenvalue equal to 1.

Theorem 3.3.1. Let Assumptions 1 and 2 hold. The preconditioned operator M−1Ŝ is then

symmetric, positive definite with respect to the bilinear form ⟨·, ·⟩Ŝ on the benign space V̂Γ,B×Q0.

Its minimum eigenvalue is 1 and its maximum eigenvalue is bounded by

C
1

β̃2

(
1 + log

(
H

h

))2

. (3.50)

Here, C is a constant which is independent of H, h and the number of subdomains, and β̃ is the

inf-sup stability constant defined in (2.2.1).

Proof. We know from Lemma 3.3.5, that any vector of the form u = (0, p0) ∈ V̂Γ,B ×Q0 is an

eigenvector of the preconditioned operator M−1Ŝ with an eigenvalue equal to 1. It is sufficient

to find lower and upper bounds of the quotient
〈
M−1Ŝu,u

〉
Ŝ
/⟨u,u⟩Ŝ , for any u = (uΓ, p0) ∈

V̂Γ,B ×Q0, where uΓ is non zero and therefore ⟨u,u⟩Ŝ > 0.

Lower bound : Given u ∈ V̂Γ,B ×Q0, let

v = S̃−1R̃DS̃u ∈ ṼΓ,B ×Q0. (3.51)

We have from the fact that R̃T R̃D = R̃T
DR̃ = I,

⟨u,u⟩Ŝ = uT ŜR̃T
DR̃u = uT ŜR̃T

DS̃
−1S̃R̃u = ⟨v, R̃u⟩S̃ . (3.52)

From the Cauchy-Schwartz inequality and the fact that Ŝ = R̃T S̃R̃, we find that

⟨v, R̃u⟩S̃ ≤ ⟨v,v⟩1/2
S̃

⟨R̃u, R̃u⟩1/2
S̃

= ⟨v,v⟩1/2
S̃

⟨u,u⟩1/2
S̃

. (3.53)

Therefore from (3.52) and (3.53),

⟨u,u⟩S̃ ≤ ⟨v,v⟩S̃ . (3.54)

Since,

⟨v,v⟩S̃ = uT ŜR̃T
DS̃

−1S̃S̃−1R̃DŜu =
〈
u, R̃T

DS̃
−1R̃DŜu⟩Ŝ =

〈
u,M−1Ŝu

〉
Ŝ
, (3.55)

we obtain, from equations (3.54) and (3.55), that ⟨u,u⟩S̃ ≤
〈
u,M−1Ŝu

〉
Ŝ
, which gives a lower

bound of 1 for the eigenvalues. Then from Lemma 3.3.5, we know that 1 is the minimum

eigenvalue of the preconditioned operator.

Upper bound : Given u ∈ V̂Γ,B×Q0, take v ∈ ṼΓ,B×Q0 as in (3.51). We have, R̃T
Dv =M−1Ŝu.
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Since Ŝ = R̃T S̃R̃ and by using Lemma 3.3.4, we have

⟨M−1Ŝu,M−1Ŝu⟩Ŝ = ⟨R̃T
Dv, R̃T

Dv⟩Ŝ = ⟨R̃R̃T
Dv, R̃R̃T

Dv⟩S̃

= |EDv|2
S̃
≤ C2 1

β̃2

(
1 + log

(
H

h

))2

|v|2
S̃
.

(3.56)

Therefore from equation (3.55), we have

⟨M−1Ŝu,M−1Ŝu⟩Ŝ ≤ C2 1

β̃2

(
1 + log

(
H

h

))2

⟨u,M−1Ŝu⟩Ŝ . (3.57)

Using the Cauchy-Schwarz inequality and equation (3.57), we have

⟨u,M−1Ŝu⟩Ŝ ≤ ⟨M−1Ŝu,M−1Ŝu⟩1/2
Ŝ

⟨u,u⟩1/2
Ŝ

≤ C
1

β̃

(
1 + log

(
H

h

))
⟨u,u⟩1/2

Ŝ
⟨u,M−1Ŝu⟩1/2

Ŝ
.

(3.58)

This gives

⟨u,M−1Ŝu⟩Ŝ ≤ C
1

β̃2

(
1 + log

(
H

h

))2

⟨u,u⟩Ŝ , (3.59)

and the upper bound of the theorem.

3.3.2 Auxiliary lemmas

We recall here some edge and face estimates that we will need to prove the two assumptions. For

each macro edge E = Γi ∩ Γj ∈ Eh, we define VE
Γ := V

(i)
Γ |E = V

(j)
Γ |E , that is the restriction of

the VEM interface velocity space on the macro edge E . We make note that this restricted space

coincides with the one dimension finite element space of order k on the grid induced on E by the

tassellation Th which is quasi uniform of mesh size h, in view of the mesh assumptions in 1.2.1.

In particular it satisfies standard and inverse inequalities: for d = 2, 3 and for some c > 0 for all

r, s with 0 < r ≤ k + 1, 0 ≤ s < min{3/2, r},v ∈ [Hr(E)]d:

inf
wh∈VE

Γ

∥v −wh∥[Hs(E)]d ≤ c

(
h

H

)r−s

|v|[Hr(E)]d , (3.60)

and for all s, r with 0 ≤ s ≤ r < 3/2, vh ∈ VE
Γ:

∥vh∥[Hr(E)]d ≤ c

(
h

H

)s−r

∥vh∥[Hs(E)]d . (3.61)

Now, for vΓ ∈ VΓ we consider the splitting:

vΓ = vΠ + v∆, (3.62)
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and for vE
Γ ∈ VE

Γ:

vE
Γ = vE

Π + vE
∆, (3.63)

where vE
Π and vE

∆ are the restriction to the edge E of the primal and dual DoFs, with the obvious

definition of the spaces VE
Π and VE

∆. To simplify the notation, from now, we will write A ≲ B

to say that the quantity A is bounded from above by cB, with a constant c that is independent

of H,h and the number of subdomains. We also denote with T, P and D respectively the set

of indices of the DoFs living on Γ and the set of indices of primal DoFs and dual DoFs, the

subscript E denotes the restriction to that edge. The following lemma gives us an estimate for

an interface velocity function in two dimension.

Lemma 3.3.6. For all vE
Γ ∈ VE

Γ, E ∈ EH , we have:

∥vE
∆∥[H1/2

00 (E)]2 ≲ (1 + log(H/h))|vE
Γ|[H1/2(E)]2 +

√
(1 + log(H/h))∥vE

Γ∥[L∞(E)]2 .

Proof. We show the proof for the VEM method of order k = 2.

We let πΓ : [L2(E)]2 → VE
Γ and π0

Γ : [L2(E)]2 → VE
∆ denote the L2-projection onto respectively

VE
Γ and VE

∆. Moreover, let i0Γ : VE
Γ → VE

∆ the restriction operator that maps the restriction to

the DoFs edge into the duals one. We have that for vE
Γ ∈ VE

Γ:

∥i0ΓvE
Γ∥[L2(E)]2 ≲ h

∑
j∈DE

|Dj
V (v

E
Γ)|2 ≲ h

∑
j∈TE

|Dj
V (v

E
Γ)|2 ≲ ∥vE

Γ ∥[L2(E)]2 .

We consider now π1
Γ = i0Γ ◦πΓ : [L2(E)]2 → VE

∆; we see that it is L
2-bounded: for all v ∈ [L2(E)]2

∥π1
Γv∥[L2(E)]2 ≲ ∥πΓv∥[L2(E)]2 ≲ ∥v∥[L2(E)]2 .

On the other hand, observing that i0Γ ◦ π0
Γ = π0

Γ, we have that, for v ∈ [H1
0 (E)]2

∥v − π1
Γv∥[L2(E)]2 ≲ ∥v − π0

Γv + i0Γπ
0
Γv − i0ΓπΓv∥[L2(E)]2

≲ ∥v − π0
Γv∥[L2(E)]2 + ∥π0

Γv − πΓv∥[L2(E)]2

= ∥v − π0
Γv∥[L2(E)]2 + ∥π0

Γv − v + v − πΓv∥[L2(E)]2

≲ ∥v − π0
Γv∥[L2(E)]2 + ∥v − πΓv∥[L2(E)]2 ≲

h

H
|v|[H1(E)]2 .

By a standard argument, we can prove that π1
Γ is H1

0 -bounded. In fact, letting Π1
Γ : [H1

0 (E)]2 →
VE

∆ denote the [H1
0 (E)]2 projection onto VE

∆, defined as

Π1
Γ(v) = arg min

w∈VE
∆

(
1

2
|w|21,E− < v,w >

)
,
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we have:

|π1
Γv|[H1(E)]2 ≲ |v|[H1(E)]2 +

(
h

H

)−1

∥π1
Γv −Π1

Γv∥[L2(E)]2

≲ |v|[H1(E)]2 +

(
h

H

)−1

∥π1
Γv − v∥[L2(E)]2 +

(
h

H

)−1

∥v −Π1
Γv∥[L2(E)]2

≲ |v|[H1(E)]2 +

(
h

H

)−1(
h

H

)
|v|[H1(E)]2 +

(
h

H

)−1(
h

H

)
|v|[H1(E)]2

≲ |v|[H1(E)]2 .

By space interpolation we then deduce that π1
Γ is uniformly bounded for all s ∈ [0, 1], s ̸= 1/2,

that is for all v ∈ [Hs
0(E)]2 we have:

∥π1
Γw∥[Hs

0 (E)]2 ≲ ∥w∥[Hs
0 (E)]2

with a constant independent of s, whereas for v ∈ [H
1/2
00 (E)]2 we have:

∥π1
Γv∥[H1/2

00 (E)]2 ≲ ∥v∥
[H

1/2
00 (E)]2 .

We now recall that for 0 < s < 1/2 , the space [Hs(E)]2 is embedded in [Hs
0(E)]2 and we have [16]:

∥v∥[Hs
0 (E)]2 ≲

1

1− 2s
|v|[Hs(E)]2 +

1√
1− 2s

∥v∥[L∞(E)]2 .

Then, for ε ∈]0, 1/2[ and vE
Γ ∈ VE

Γ we have:

∥π1
ΓwΓ∥[H1/2

00 (E)]2 ≲

(
h

H

)−ε

∥π1
ΓwΓ∥[H1/2−ε

0 (E)]2 ≲

(
h

H

)−ε

∥wΓ∥[H1/2−ε
0 (E)]2

≲
1

ε

(
h

H

)−ε

|vΓ|[H1/2−ε
0 (E)]2 +

1√
ε

(
h

H

)−ε

∥vΓ∥[L∞(E)]2

≲ (1 + log(H/h))|vΓ|[H1/2(E)]2 +
√
1 + log(H/h)∥vΓ∥[L∞(E)]2 ,

where the last inequality is obtained by choosing ε = 1/|1 + log(H/h)|. Observing that for

vE
Γ ∈ VE

Γ we have:

vE
∆ = i0Γv

E
Γ = π1

Γv
E
Γ,

so we get the thesis.

To take care of the estimates in three dimension we need bounds for edge and face terms.

First of all we need a Riesz Basis Property, that gives us the equivalence between the L2(f) norm

of a function in B̂k(f) and the euclidean norm of the vector of its DoFs:
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Lemma 3.3.7. Let f be a face of an element K. For all vh ∈ [B̂k(f)]
3 we have:∫

f

|vh|2 ≃ h2
∑
i∈X

|Di
v(vh)|2, (3.64)

where X is the union of the set of DoFs D1
v,D

2
v and D3

v.

We do not provide the proof of this Lemma because it is the natural vector extension of

the one in [18] and [36], with a slightly different choice for the DoFs of the face velocity space.

Moreover, it simply involves the Π0
k+1 projection instead of Π0

k.

Finally we need to recall two lemmas that we need for estimating the contributions of the interface

velocity functions defined on the edges and faces of the subdomains. The first one guarantees us

an estimate for the edges and it is nothing else than the vectorial extension of the one in [18]:

Lemma 3.3.8. Let be Ωi a subdomain and let be F a face of Ωi. Then for vΓ ∈ VΓ|F we have

∥vΓ∥[L2(∂F )]3 ≲
√

1 + log(H/h)∥vΓ∥[H1/2(F )]3 , (3.65)

where the subscript |F means that we are restricting the interface space VΓ on the face F .

The second is a face lemma:

Lemma 3.3.9. Let vΓ ∈ V
(i)
Γ . Then, for all faces Fi of Ωi it holds that θFi

vΓ|Fi
∈ [H

1/2
00 (Fi)]

3

and

∥θFi
vΓ∥2[H1/2

00 (Fi)]3
≲ (1 + log(H/h))2∥vΓ∥2[H1/2(Fi)]3

, (3.66)

where θFi is defined at the beginning of Section 3.3.4.

The proof of this lemma is quite similar to the Lemma 3.3.6 one, adapted for the faces. It

basically follows the same procedure of Lemma 5.2 in [18]. The only difference is that we need to

substitute the the Scott-Zhang interpolation with the Stokes VEM interpolant defined in Lemma

2.2.1 and the Riesz basis property of Lemma 3.3.7 adapted in our framework.

3.3.3 The coarse space in two dimensions

To satisfy the assumptions 1 and 2 in the previous section we have to choose properly the primal

constraints for the interface velocity space. The natural choice it is to make all the vertices of

the subdomains as primal DoFs for both the components of the velocity. However, if this is

sufficient to guarantee the stability of the average operator as we will see in Lemma 3.3.10, it is

not enough to satisfy the no-net-flux. In particular, some extra edge constraints are necessary.

For each interface edge Γij , which is shared by a pair of subdomains Ωi and Ωj , we make∫
Γij

v
(i)
Γ · nij =

∫
Γij

v
(j)
Γ · nij (3.67)
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for a fixed selection of the normal nij of Γij . Proceeding the discussion with this first choice,

after changing the variables, the dual interface velocity component will vanish at the subdomain

vertices and its normal component will have a weighted zero average over each Γij , i.e.
∫
Γi

vΓ
(i) ·

nij =
∫
Γj

vΓ
(j) · nij = 0. By the definition of the average operator ED,∆, we have that the

average interface velocity is:

ED,∆v∆ =
νγi

νγi + νγj
v
(i)
∆ +

νγj
νγi + νγj

v
(j)
∆

on each edge, and hence ∫
Γij

(ED,∆v∆)
(i) · nij = 0. (3.68)

The stability of the average operator is shown in the following:

Lemma 3.3.10. For all vΓ ∈ ṼΓ we have:

|ED,ΓvΓ|21/2,Γ ≲ (1 + log(H/h))2|vΓ|21/2,Γ (3.69)

Proof. Let consider vΓ ∈ ṼΓ and we define wΓ := EDvΓ. We have:

|wΓ|1/2,Γ = |wΓ − vΓ + vΓ|1/2,Γ ≤ |wΓ − vΓ|1/2,Γ + |vΓ|1/2,Γ. (3.70)

Since all the vertices of the subdomains are primal, we can rewrite:

|wΓ − vΓ|1/2,Γ =

N∑
i=1

|w(i)
Γ − v

(i)
Γ |1/2,Γi

. (3.71)

Using the splitting in (3.62) for both vΓ and wΓ and observing that vΠ = wΠ, we have that:

N∑
i=1

|wΓ − vΓ|21/2,Γi
≲

N∑
i=1

|w∆ − v
(i)
∆ |21/2,Γi

.

We observe that, for a given macro edge Eij = ∂Ωi ∩ ∂Ωj , we have

w∆|Eij =
νγi

νγi + νγj
v
(i)
∆ |Eij

+
νγj

νγi + νγj
v
(j)
∆ |Eij

whence

(w∆ − v
(i)
∆ )|Eij

=
νγj

νγi + νγj

(
v
(j)
∆ − v

(i)
∆

)
|Eij

.
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Observing that:

νi
( νγj
νγi + νγj

)2 ≤ min{νi, νj} ≤ νj , (3.72)

we have: ∑
i=1,..,N

νi |v(i)
∆ −w∆|21/2,Γi

≲
∑

i=1,..,N

∑
Eij∈Ei

H

νi |v(i)
∆ |Eij

−w∆|Eij
|2
[H

1/2
00 (Eij)]2

≲
∑

i=1,..,N

∑
Eij=∂Ωi∩∂Ωj∈Ei

H

νi

(
νγj

νγi + νγj

)2

|v(i)
∆ |Eij

− v
(j)
∆ |Eij

|2
[H

1/2
00 (Eij)]2

=
∑

Eij=∂Ωi∩∂Ωj∈EH

νi ν
2γ
j + νj ν

2γ
i

(νγi + νγj )
2

|v(i)
∆ |Eij

− v
(j)
∆ |Eij

|2
[H

1/2
00 (Eij)]2

≲
∑

Eij=∂Ωi∩∂Ωj∈EH

min{νi, νj}|v(i)
∆ |Eij

− v
(j)
∆ |Eij

|2
[H

1/2
00 (Eij)]2

.

(3.73)

We recall that we have the following bound for any vΓ|Eij
∈ V

Eij

Γ with vΓ|Eij
(x) = 0 for some

x ∈ Γ|Eij
:

∥vΓ|Eij
∥[L∞(Eij)]2 ≲

√
1 + log(H/h) |vΓ|Eij

|[H1/2(Eij)]2 . (3.74)

This bound was proven in [16] where it is provided a proof that only relies on the properties of

V
Eij

Γ . Using Lemma 3.3.6 and (3.74), because v
(i)
Γ − v

(j)
Γ vanishes at the extremes of Γij , we

have:

|v(i)
∆ |Eij

− v
(j)
∆ |Eij

|2
[H

1/2
00 (Eij)]2

≲ (1 + log(H/h))2
∣∣v(i)

Γ |Eij
− v

(j)
Γ |Eij

∣∣
[H1/2(Eij)]2

+(1 + log(H/h))2∥v(i)
Γ |Eij − v

(j)
Γ |Eij∥[L∞(Eij)]2

≲ (1 + log(H/h))2
∣∣v(i)

Γ |Eij − v
(j)
Γ |Eij

∣∣
[H1/2(Eij)]2

≲ (1 + log(H/h))2
(∣∣v(i)

Γ |Eij

∣∣
[H1/2(Eij)]2

+
∣∣v(j)

Γ |Eij

∣∣
[H1/2(Eij)]2

)
,

whence we obtain∑
i=1,..,N

νi |w∆ − v∆|21/2,Γi
≲ (1 + log(H/h))2

∑
i=1,..,N

νi |v(i)
Γ |21/2,Γi

We finally have:

|vΓ −wΓ|21/2,Γ ≲ (1 + log(H/h))2|vΓ|21/2,Γ,

and by applying the inverse triangular inequality we obtain the thesis.

Remark 3.3.1. We make note that if we use the standard multiplicity scaling we can not more
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exploit the relation (3.72). In this way we are not able to do the last estimate of (3.73) and we

can only obtain:∑
i=1,..,N

νi |v(i)
∆ −w∆|21/2,Γi

≲
∑

Eij=∂Ωi∩∂Ωj∈EH

(νi + νj)|v(i)
∆ |Eij − v

(j)
∆ |Eij

|2
[H

1/2
00 (Eij)]2

. (3.75)

The final estimate then concludes with a dependence on the viscosity constant ν, since the high

viscosity coefficient penalize the jump. Numerical results in 3.4.1.2 will show this aspect.

3.3.4 The coarse space in three dimensions

In this section we provide a recipe to construct the coarse space in three dimensions. Following

[70], we recall that in three dimensions, the interface Γ of a subdomain Ωi is constituted by

faces Fl shared by two subdomains, edges Ek that are shared by more than two subdomains (the

notation Ek(Fl) is to underline that the edge Ek belongs to the boundary of face Fl) and vertices

Vj that are the endpoints of the edges. Now let be G any one of these geometrical entities and

let be v ∈ V a generic virtual function, we define the cut-off linear functional θG that maps a

virtual function v into another virtual function θG(v), that is equal to v on all the DoFs that

belongs to G and 0 elsewhere, for simplicity we generally write θGv instead of θG(v). We use the

subscript Fl to refer the DoFs that live only in the interior of the face excluding the boundary

face DoFs. When a multi-subscript is present, like Fij , it means that the face is shared between

the subdomains Ωi and Ωj .

To satisfy Assumption 1, we first make all vertices primal, and then we require that, for any v∆,

the two quantities:∫
Fij

v
(i)
∆ · nij =

∫
Fij

(θFijv
(i)
∆ ) · nij +

∑
Ek⊂Fij

∫
Fij

(θEk(Fij)v
(i)
∆ ) · nij (3.76)

and ∫
Fij

(EDv)
(i)
∆ · nij =

1

2

∫
Fij

θFij
(v

(i)
∆ + v

(j)
∆ ) · nij

+
∑

Ek⊂Fij

∑
m∈NEk

1

card(NEk
)

∫
Fij

(θEk(Fij)v
(m)
∆ ) · nij

(3.77)

vanish, where NEk
is the set of all the subdomains that share the edge Ek and nij is the unit

outward normal vector to the face Fij . To do so, we need that all the integrals of the right-hand

side of (3.76) and (3.77) will vanish. This can be achieved by enforcing a primal constraint for

each face Fij : ∫
Fij

(θFij
v
(i)
Γ ) · nij =

∫
Fij

(θFij
v
(j)
Γ ) · nij (3.78)
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and a set of primal constraints requiring that for each edge Ek, on each face Fij , the following

quantity is the same for all m ∈ NEk
:∫
Fij

(θEk(Fij)v
(m)
Γ ) · nij (3.79)

To ensure constraint (3.78), we need one primal variable per face, while, to ensure constraint

(3.79), we need as many primal variables as the number of faces which share the edge Ek. We

remark that in our VEM context, the quantities in (3.78) and (3.79) are directly computable

from the DoFs introduced in Chapter 2. For particular subdomain partitions, such as those

with cubic subdomains and hexahedral elements, it might happen that some of the primal basis

functions are linearly dependent; this situation is harmless in practice since we can perform a

singular value decomposition of the basis DoFs and obtain non-singular coarse operators.

To satisfy Assumption 2, we have to ensure that we have the right type of constraints that

can control the rigid body modes (at least six constraints: the three translations and the three

rotations). Given the fact that the coefficients of the Stokes problem are all the same for each

subdomain and that the vertices of the subdomains have been selected as primal constraints, we

can prove that the second Assumption is satisfied if also all the faces of the interface Γ are fully

primal in the sense of the following definition (see [66, def. 5.3]):

Definition 3.3.2. A face Fij is called fully primal if, in the space of primal constraints over Fij ,

there exists a set fm, m = 1, ..., 6, of linear functionals on V
(i)
Γ with the following properties:

• |fm(v
(i)
Γ )|2 ≤ CH−1(1 + log(H/h))∥v(i)

Γ ∥H1/2(Fij);

• fm(rl) = δml ∀m, l = 1, ..., 6 rl ∈ ker(ε),

with C > 0 and v
(i)
Γ ∈ V

(i)
Γ .

We recall that, to satisfy Assumption 1, we have chosen as primal constraints some averages of

the normal component of the velocity over the edges. In Section 7 of [70] (see also further details

in [66]), it is shown that this choice of primal DoFs is sufficient to guarantee a set of functionals

that makes the face fully primal. It is essential to underline that in some particular cases, like

triangular or rectangular faces, some of these constraints can be linearly dependent and it is

necessary to introduce some extra edge average in the tangential direction. This condition can

be verified numerically because the selection of a set of linearly independent set of constraints can

be computed using a QR factorization and selecting six functionals that are robustly independent.

For sake of simplicity, our proof will be for the standard multiplicity scaling. It is easy to extend

it to a general ν-scaling using the same techniques as in the previous section and to a general

non diagonal scaling following [101]. We are ready to state the lemma related to the stability of

the average operator:
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Lemma 3.3.11. For all vΓ ∈ ṼΓ holds that:

|EDvΓ|2S̃ ≲ C
1

β2

(
1 + log

(
H

h

))2

|vΓ|2S̃ , (3.80)

where C is a positive constant that is independent on h,H and βh, but it can depend on the

degree k of the virtual element discretization.

Proof. Let consider vΓ ∈ ṼΓ and we define wΓ := EDvΓ. We have:

|wΓ|S̃ = |wΓ − vΓ + vΓ|S̃ ≤ |wΓ − vΓ|S̃ + |vΓ|S̃ . (3.81)

Since all the vertices of the subdomains are primal, we can rewrite:

|wΓ − vΓ|S̃Γ
=

N∑
i=1

|w(i)
Γ − v

(i)
Γ |

S
(i)
Γ

(3.82)

and for each subdomain Ωi we can also use the split:

w
(i)
Γ − v

(i)
Γ =

∑
Fij⊂∂Ωi

θFij
(w

(i)
Γ − v

(i)
Γ ) +

∑
Ek⊂∂Ωi

θEk
(w

(i)
Γ − v

(i)
Γ ) (3.83)

Recalling that a face Fij is shared by two subdomains i, j and using the explicit definition of

ED:

w
(i)
Γ − v

(i)
Γ =

1

2
(v

(i)
Γ + v

(j)
Γ )− v

(i)
Γ = v

(j)
Γ − v

(i)
Γ .

Starting from the face contributions, we write:

v
(j)
Γ − v

(i)
Γ =

(
v
(j)
Γ −

6∑
m=1

fFij
m (v

(j)
Γ )rm

)
−
(
v
(i)
Γ −

6∑
m=1

fFij
m (v

(i)
Γ )rm

)
(3.84)

where {rm} form = 1, .., 6 is the basis for the rigid body modes and the f
Fij
m (·) are the functionals

that are equal for the faces i and j since the faces are fully primal. For an arbitrary rigid body

mode, r(i) ∈ V
(i)
Γ we write:

v
(i)
Γ −

6∑
m=1

fFij
m (v

(i)
Γ )rm = (v

(i)
Γ − r(i))−

6∑
m=1

fFij
m (v

(i)
Γ − r(i))rm (3.85)

We can estimate the first term of the right-hand side using lemma 3.3.9:

∥θFij (v
(i)
Γ − r(i))∥

[H
1/2
00 (Fij)]3

≲ (1 + log(H/h))∥v(i)
Γ − r(i)∥[H1/2(Fij)]3 . (3.86)

Then we consider the second term of (3.85), and we estimate it using two additional contributions,
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by lemma 8 in [66]:

∥θFij
r(i)m ∥

[H
1/2
00 (Fij)]3

≲ H(1 + log(H/h)) (3.87)

and by the definition of fully primal face (3.3.2) and (3.3.8) we have:

|fFij
m (v

(i)
Γ − r(i))| ≲ 1

H
(1 + log(H/h))∥v(i)

Γ − r(i)∥[H1/2(Fij)]3 . (3.88)

Then combining the previous two estimates we have:

∥θFij

6∑
m=1

fFij
m (v

(i)
Γ − r(i))rm∥

[H
1/2
00 (Fij)]3

≲ (1 + log(H/h))∥v(i)
Γ − r(i)∥[H1/2(Fij)]3 . (3.89)

By triangular inequality and since r(i) is an arbitrary rigid body mode, we can take the minimum

of over all the modes and by Lemma 1.4.2:

∥θFij
(v

(i)
Γ −

6∑
m=1

fFij
m (v

(i)
Γ )rm)∥

[H
1/2
00 (Fij)]3

≲ ∥θFij
(v

(i)
Γ − r(i))∥

[H
1/2
00 (Fij)]3

+

∥θFij (v
(i)
Γ −

6∑
m=1

fFij
m (v

(i)
Γ − r(i))rm)∥

[H
1/2
00 (Fij)]3

≲

(1 + log(H/h))∥v(i)
Γ − r(i)∥[H1/2(Fij)]3 ≲ (1 + log(H/h))|v(i)

Γ |[H1/2(Fij)]3

(3.90)

We can repeat in the same way for the jth term and obtain:

∥θFij (v
(i)
Γ − v

(j)
Γ )∥

[H
1/2
00 (Fij)]3

≲ (1 + log(H/h))|v(i)
Γ |[H1/2(Fij)]3

+(1 + log(H/h))|v(j)
Γ |[H1/2(Fij)]3

(3.91)

Regarding the edge terms, we need to estimate contributions that depend on the number of

subdomains that share the edge. We propose the estimate for one of these contributions since

the others are treated similarly. We consider an edge Ek ⊂ ∂Fij , by the fact that all the faces

are fully primal, we can reduce these terms to face estimates, we write:

∥v(i)
Γ − v

(j)
Γ ∥2[L2(Ek)]3

≲ ∥v(i)
Γ −

6∑
m=1

fFij
m (v

(i)
Γ )rm∥2[L2(Ek)]3

+∥v(j)
Γ −

6∑
m=1

fFij
m (v

(j)
Γ )rm∥2[L2(Ek)]3

(3.92)

We proceed again considering an arbitrary rigid body mode r(i) ∈ V
(i)
Γ . Using the triangular
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inequality and (3.3.8):

∥v(i)
Γ −

6∑
m=1

fFij
m (v

(i)
Γ )rm∥2[L2(Ek)]3

≲ ∥v(i)
Γ − r(i)∥[L2(Ek)]3+

∥
6∑

m=1

fFij
m (v

(i)
Γ − r(i))rm∥2[L2(Ek)]3

≲ (1 + log(H/h))∥v(i)
Γ ∥2[H1/2(Fij)]3

+

6∑
m=1

|fFij
m (v

(i)
Γ − r(i))|2∥rm∥2[L2(Ek)]3

.

(3.93)

It can be proved that ∥rm∥[L2(Ek)]3 ≲ H ( [67]), and now using (3.88) and minimizing again on

all over the rigid body modes:

∥v(i)
Γ −

6∑
m=1

fFij
m (v

(i)
Γ )rm∥2[L2(Ek)]3

≲ (1 + log(H/h))|v(j)
Γ |2[H1/2(Fij)]3

. (3.94)

We have an analogous result for the jth term and obtain:

∥v(i)
Γ − v

(j)
Γ ∥2[L2(Ek)]3

≲ (1 + log(H/h))|v(i)
Γ |2[H1/2(Fij)]3

+(1 + log(H/h))|v(j)
Γ |2[H1/2(Fij)]3

.
(3.95)

We conclude by Lemma 3.3.1, combining (3.91) and (3.95) by summing over the subdomains.

Assumption 2 is then obtained by combining Lemma 3.3.11 and 3.3.1.

3.4 Numerical Results

In this section, we provide some numerical tests to study the behavior of the BDDC precondi-

tioner with respect to the mesh size h, the number of subdomains N , the shape of the polygonal

mesh elements, the subdomain partition technique used and coefficient jumps.

3.4.1 Numerical Results in 2D

We solve the Stokes equations on the unit square domain Ω = [0, 1]×[0, 1], applying homogeneous

Dirichlet boundary conditions on the whole ∂Ω. In the following tables, we report the number

of iterations to solve the global interface saddle-point problem (3.9) with the non-preconditioned

GMRES method or the PCG method, accelerated by BDDC. Where possible, we estimate the

extreme eigenvalues using the Lanczos trick [68]. Both in case of PCG and GMRES, we set the

tolerance for the relative residual error to 10−6.

Our tests have been executed on different types of polygonal meshes (QUAD, CVT and RAND

as in Figure 2.2 using two different partition techniques (Figure 3.3). We identify with SQUARE

the partition generated by subdividing the domain Ω into square subdomains and using a fixed
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(a) QUAD mesh. (b) CVT mirrored mesh. (c) RAND mirrored mesh.

(d) QUAD mesh METIS (e) CVT mesh METIS. (f) RAND mesh METIS.

Figure 3.3: Examples of the different type of meshes we consider in our numerical experiments
partitioned in 4× 4 subdomains. The mesh in (a), (b) and (c) are partitioned by SQUARE, (d),
(e) and (f) are done by using METIS.

local mesh discretization that is mirrored between the subdomains (Figure 3.3 (a), (b) and

(c)). The second one is the METIS decomposition [58], that for a fixed mesh produce a general

decomposition into subdomains by graph partitioning, in this case we do not have straight macro

edges (Figure 3.3 (d), (e) and (f)). We use the VEM discretization with degree k = 2, that means

having polynomials of degree 2 on the boundary of each element for the velocity and piecewise

constant functions for the pressure. We underline the fact that we would have obtained the same

behavior, both in terms of number of iterations and spectral condition number, also in the case

of imposing using the reduced scheme, because the interface problem and the preconditioner are

exactly the same due to the decomposition technique used in (3.2) and (3.3).

In the tables we use the following notation: SQUARE (os SQ) and METIS (or MET) = type

of the mesh partitioning, nSub = number of subdomain, H/h = ratio between the diameter of

subdomain and the element, it = iteration count (GMRES or PCG), λmin = minimum eigenvalue

of the preconditioned saddle point problem, λmax = maximum eigenvalue of the preconditioned

saddle point problem. When the BDDC preconditioner is used, we identify with BDDC (V)

the coarse space generated by using as primal constraints the vertices of the subdomains and

with BDDC (V+N) the coarse space generated by using as primal constraints the vertices of the

subdomains plus the average of the normal component of the velocity.
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SQUARE GMRES BDDC (V) BDDC (V + N)
nSub it λmin λmax it λmin λmax it

Q
U
A
D

4× 4 57 N.A. N.A 13 1.00 5.75 10
8× 8 203 N.A. N.A 26 1.00 7.81 15

12× 12 309 N.A. N.A 26 1.02 8.31 18
16× 16 436 N.A. N.A 26 1.02 8.47 19
20× 20 551 N.A. N.A 26 1.02 8.57 19

C
V
T

4× 4 118 N.A. N.A 18 1.00 5.67 13
8× 8 284 N.A. N.A 26 1.00 7.74 17

12× 12 385 N.A. N.A 26 1.02 8.23 19
16× 16 507 N.A. N.A 26 1.02 8.42 19
20× 20 625 N.A. N.A 27 1.01 8.52 19

R
A
N
D

4× 4 110 N.A. N.A 18 1.00 5.43 13
8× 8 298 N.A. N.A 26 1.01 7.49 17

12× 12 401 N.A. N.A 27 1.02 7.95 19
16× 16 533 N.A. N.A 28 1.02 8.19 19
20× 20 663 N.A. N.A 31 1.01 8.38 19

Table 3.1: Weak scaling with subdomain ratio H/h = 8 and SQUARE partitioning.

3.4.1.1 Homogeneous fluid

We perform two common scaling test in the domain decomposition and an optimality test. Here,

we consider an homogeneous fluid with νi = 1 for all the subdomains Ωi using the same test

problem as in 2.3.

Weak Scaling. We fix the ratio H/h = 8 for the local problems and we increase the number of

subdomains. Table 3.1 reports the results for the different meshes partitioned with the SQUARE

technique. As expected, for the non-preconditioned GMRES, we observe that the iteration counts

grow when the number of subdomains increases. The BDDC(V) solver appears to be scalable,

since the iterations remain bounded when the number of subdomains increase, with a worse

behavior for the RAND meshes. In this case we do not fulfill the no-net-flux assumption, so we

are not able to have an estimate of the eigenvalue since the preconditioned problem is not sym-

metric and positive definite. Using the BDDC(V+N) solver, both the assumptions are satisfied,

therefore the system is symmetric and positive definite and we are able to give an estimate of the

eigenvalues. The results confirm the theoretical estimates, since both the condition number and

the number of iterations are independent of number of subdomains. Moreover we can see that

the number of iterations and the spectral estimates are independent on the type of the mesh used

for the local problems (Figure 3.5). Table 3.2 reports the results again for a weak scaling test

using METIS as subdomain partition. The behavior of the GMRES is the same as before, but

we can see that also for the BDDC(V) solver the number of iterations increases when increasing

the number of subdomains. This also happens for the BDDC(V+N) with, in general, a milder

effect. This fact is due to the irregularity of the boundary of the subdomains that the METIS

partitioning technique creates. Even though the lower bound for the eigenvalues is respected,

the upper one slightly increases, since the different shape of the partition reflects into different

sparsity pattern of the matrices. The high spectral number for the QUAD and RAND mesh with
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METIS GMRES BDDC (V) BDDC (V + N)
nSub it λmin λmax it λmin λmax it

Q
U
A
D

4× 4 217 N.A. N.A 30 1.00 11.70 20
8× 8 483 N.A. N.A 42 1.00 12.14 22

12× 12 767 N.A. N.A 52 1.00 24.92 26
16× 16 1 008 N.A. N.A 55 1.00 22.01 27
20× 20 1 299 N.A. N.A 78 1.00 233.35 40

C
V
T

4× 4 236 N.A. N.A 31 1.00 10.16 18
8× 8 592 N.A. N.A 38 1.00 10.17 20

12× 12 952 N.A. N.A 41 1.00 17.12 21
16× 16 1 273 N.A. N.A 44 1.00 16.41 22
20× 20 1 449 N.A. N.A 46 1.00 17.34 23

R
A
N
D

4× 4 252 N.A. N.A 35 1.00 21.77 20
8× 8 675 N.A. N.A 47 1.00 30.31 28

12× 12 1 042 N.A. N.A 56 1.00 36.20 32
16× 16 1 518 N.A. N.A 63 1.00 45.19 34
20× 20 1 914 N.A. N.A 63 1.00 71.26 41

Table 3.2: Weak scaling with subdomain ratio H/h = 8 and METIS partitioning.

SQUARE GMRES BDDC (V) BDDC (V + N)
H/h it λmin λmax it λmin λmax it

Q
U
A
D

8 57 N.A. N.A. 13 1.00 5.75 10
16 79 N.A. N.A. 15 1.00 7.20 11
24 94 N.A. N.A. 17 1.00 8.09 11
32 107 N.A. N.A. 17 1.00 8.76 12

C
V
T

8 118 N.A. N.A. 18 1.00 5.67 13
16 153 N.A. N.A. 19 1.00 7.19 14
24 157 N.A. N.A. 20 1.00 8.07 15
32 187 N.A. N.A. 21 1.00 8.76 15

R
A
N
D

8 110 N.A. N.A. 18 1.00 5.43 13
16 169 N.A. N.A. 20 1.00 7.13 14
24 176 N.A. N.A. 22 1.00 8.00 15
32 194 N.A. N.A. 23 1.00 8.45 15

Table 3.3: Optimality test with respect to mesh ratio H/h. nSub = 4×4 and SQUARE partition.

nSub = 20 × 20 is due to the fact that in this case METIS produces non convex subdomains.

Increasing the ratio H/h will clearly reduce the effect caused by the irregular boundaries.

Optimality test. We now perform an optimality test with respect to the mesh size: we

fix the number of subdomains at 16 and we increase the local ratio H/h. The results for the

SQUARE partitioning are reported in Table 3.3. The GMRES, of course is not optimal, while

the BDDC (V) seems to have a quasi-optimal behavior since the iteration count exhibits a

logarithmic growth. Also the BDDC (V+N) shows a quasi-optimal behavior since both the

iteration count and the spectral estimates respect again, in line with the theory, a logarithmic

growth (Figure 3.6). In Table 3.4 we reported the results for the METIS partitioning. As we

expect, the iteration count and, when possible, the spectral estimates are greater than in Table

3.3, due to the irregularity of the subdomains. One can note that the iteration count and the

spectral estimates do not grow when increasing the coefficient ratio H/h. However, this does
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METIS GMRES BDDC (V) BDDC (V + N)
H/h it λmin λmax it λmin λmax it

Q
U
A
D

8 217 N.A. N.A. 30 1.00 11.70 20
16 293 N.A. N.A. 29 1.00 10.79 18
24 300 N.A. N.A. 27 1.00 12.12 16
32 358 N.A. N.A. 30 1.00 10.53 19

C
V
T

8 236 N.A. N.A. 31 1.00 10.16 18
16 304 N.A. N.A. 32 1.00 8.67 18
24 379 N.A. N.A. 32 1.00 17.69 19
32 376 N.A. N.A. 31 1.00 8.53 18

R
A
N
D

8 252 N.A. N.A. 34 1.00 12.44 21
16 344 N.A. N.A. 34 1.00 13.93 21
24 405 N.A. N.A. 34 1.00 9.68 18
32 420 N.A. N.A. 34 1.00 12.04 21

Table 3.4: Optimality test with respect to mesh ratio H/h. nSub = 4× 4 and METIS partition.

not mean that the solver is optimal, but it is consequence of the evolution of the boundary

when increasing the mesh refinement. As shown in Figure 3.4, we can see that when we increase

the ratio H/h, the boundary of the subdomains appear to be more regular. When increasing

the mesh refinement, the quasi-optimality would increase the iteration count and the condition

number but the effect of the irregularity of the boundary is reduced. This explains why the do

not see any growth in this test.

Strong scaling. We conclude this group with a strong scaling test. We fixed the global size

problem with 16000 elements for all the three different meshes and we solve the global saddle

point problem increasing the number of the subdomains. In this case we choose the most natural

partitioning technique using SQUARE partition for the QUADmesh and the METIS for the CVT

and RAND ones. Looking at the estimate of Theorem 3.3.1 we expect that the condition number

will slightly decrease when increasing the number of the subdomains, since H decrease while h

is fixed. We can observe this fact for the QUAD mesh in Table 3.5 where, for the BDDC (V+N)

solver, the iteration count remain fixed and the largest eigenvalue slightly decrease. Similar result

(a) H/h = 4 (b) H/h = 8 (c) H/h = 16

Figure 3.4: The different shape of the boundaries for 2x2 subdomains when increasing the ratio
H/h.
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Figure 3.5: Weak scaling. It (left) and k2 (right) with the BDDC preconditioners for different
coarse space and meshes discretizations. Part = SQUARE, H/h = 8.
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Figure 3.6: Optimality test. It (left) and k2 (right) with the BDDC preconditioners for different
coarse space and meshes discretizations. Part = SQUARE, nSub = 4× 4.
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Figure 3.7: Strong scaling. It (left) and k2 (right) with the BDDC preconditioners for different
coarse space and meshes discretizations. Part = SQUARE, H/h = 8.

can be observed also for the other two type of meshes where the increasing irregularity of the

boundaries hides this effect (Figure 3.7).
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GMRES BDDC (V) BDDC (V + N)
nSub it λmin λmax it λmin λmax it

Q
U
A
D

4× 4 117 N.A. N.A. 17 1.00 9.28 12
8× 8 318 N.A. N.A. 30 1.00 10.85 16

12× 12 421 N.A. N.A. 29 1.00 10.16 19
16× 16 479 N.A. N.A. 27 1.00 9.27 19
20× 20 551 N.A. N.A. 26 1.00 8.57 19

C
V
T

4× 4 432 N.A. N.A. 33 1.00 9.94 18
8× 8 815 N.A. N.A. 38 1.00 10.26 20

12× 12 1070 N.A. N.A. 45 1.00 17.38 23
16× 16 1336 N.A. N.A. 41 1.00 12.21 22
20× 20 1449 N.A. N.A. 46 1.00 17.34 23

R
A
N
D

4× 4 512 N.A. N.A. 36 1.00 21.30 23
8× 8 984 N.A. N.A. 50 1.00 31.93 28

12× 12 1347 N.A. N.A. 53 1.00 28.44 28
16× 16 1605 N.A. N.A. 62 1.00 63.35 34
20× 20 1914 N.A. N.A. 63 1.00 38.48 34

Table 3.5: Strong scaling. nEl = 25600, QUAD (SQUARE), CVT and RAND (METIS).

3.4.1.2 Coefficient jumps

In order to verify the robustness of the method with respect to strong variations of the viscosity

ν, we now consider problems with ν discontinuous across the interfaces Γ. For a random set

of subdomain L we choose the coefficient ν = 1e3, while for the others we choose ν = 1e − 3,

applying a jump of 6 orders of magnitude. We then solve the lid-driven cavity benchmark

problem, using as load term f a force that should represent the gravity that take down the high

viscosity materials:

f =

β if x ∈ Ωi,with i ∈ L

0 otherwise

with β = 10. In Table 3.6, we report the iteration counts and the spectral estimates for the

BDDC (V+N) solver varying the local mesh, the partitioning and the scaling technique used.

We keep fixed the number of the subdomains at 64. We can observe that the multiplicity-scaling,

even if respect the lower bound meaning that the problem is symmetric and positive definite, it

is not able to control neither the iteration nor the upper bound. The ν-scaling exhibits a good

behavior, while the deluxe scaling has the better one. In Table 3.7 we reported the same test for

256 subomains. We see that again the multiplicity-scaling is not able to handle the jumps, while

the ν and the deluxe scaling are able to keep low the number of the iteration and the spectral

estimates. Further consideration and a more exhaustive study, varying the viscosity coefficients

will be done in the next Chapter.
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(a) SQUARE partitioning (b) METIS partitioning

Figure 3.8: Examples of jump configuration. In black the subdomains with ν = 1e3, in withe
the subdomains with ν = 1e − 3. The red arrows show the solution for velocity flow of the
lid-driven-cavity problem.

BDDC (V+N) mul-scaling ρ-scaling del-scaling
Part Mesh it λmin λmax it λmin λmax it λmin λmax

S
Q

QUAD 1.00 NaN 742 1.00 6.22 17 1.00 5.85 16
CVT 1.00 NaN 732 1.00 6.17 17 1.00 5.87 16

RAND 1.00 NaN 713 1.00 6.19 17 1.00 6.00 16

M
E
T QUAD 1.00 NaN 1003 1.00 15.91 23 1.00 4.34 14

CVT 1.00 NaN 1002 1.00 14.32 21 1.00 5.10 15
RAND 1.00 NaN 2082 1.00 29.82 29 1.00 5.35 26

Table 3.6: Coefficient jumps. Comparison of the three different type of scaling for the BDDC
(V+N) coarse space with 8× 8 subdomains.

BDDC (V+N) mul-scaling ρ-scaling del-scaling
Part Mesh it λmin λmax it λmin λmax it λmin λmax

S
Q

QUAD 1.00 NaN 569 1.00 9.10 19 1.00 6.84 18
CVT 1.00 NaN 566 1.00 9.20 20 1.00 6.79 18

RAND 1.00 NaN 568 1.00 9.48 20 1.00 6.74 18

M
E
T QUAD 1.00 NaN 1810 1.00 17.04 25 1.00 11.72 19

CVT 1.00 NaN 1501 1.00 15.93 23 1.00 9.45 20
RAND 1.00 NaN 3577 1.00 33.13 33 1.00 39.22 28

Table 3.7: Coefficient jumps. Comparison of the three different type of scaling for the BDDC
(V+N) coarse space with 16× 16 subdomains.

3.4.2 Numerical Results in 3D

In this Section, we report the numerical results to validate our theoretical estimates of the BDDC

algorithm for solving the 3D Stokes model problem (1.9). We solve a problem on the unit cube

[0, 1]3 with a known solution as in 2.3, imposing Neumann boundary conditions on two faces of

the cube and homogeneous Dirichlet boundary conditions on the other ones. Again we use the
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BDDC method as a preconditioner for system the (3.9), which is solved by the CG method with

a stopping criterion of a 10−8 reduction of the l2−norm of the relative residual. Here, we consider

three types of meshes: hexahedral (Cube), octahedral (Octa), and Voronoi (CVT), see Figure 3.3.

Since we need the deluxe scaling to construct our adaptive coarse space in three dimension in the

next Chapter, we do the scaling and optimality test directly using this technology. In the tables

we use the following notation: procs = number of CPUs, nEl = number of VEM elements, k =

degree of VEM approximation, nDoFs = number of DoFs, NΠ = number of primal constraints, it

= iteration count (PCG), k2 = conditioning number, Tass= time to assemble the stiffness matrix

and the right-hand side, Tsol = time to solve the interface saddle point problem and Sid = ideal

speed up, Sp = parallel speed up.

Strong Scaling. We first study the strong scalability of our solvers. We keep fixed the global

number of the DoFs and the degree of the VEM approximation k, while we increase the number

of processors from 4 to 256. We consider CUBE mesh with 408 243 DoFs, a CVT mesh with

311 155 DoFs and an OCTA mesh with 549 939 DoFs for the degree k = 2. While a CUBE mesh

with 589 344 DoFs, a CVT mesh with 311 155 DoFs and an OCTA mesh with 398 260 DoFs for

the degree k = 3. We recall that denoting by p the number of processors, the parallel speedup is

defined as:

Sp :=
CPU time with 4 processors

CPU time with p processors
.

In Table 3.8, we report the results related to the three polyhedral meshes with k = 2, 3. In

Figure 3.9, we plot the number of iterations and the parallel speedup for the case k = 3. We

observe that the CPU time Tass, needed to assemble the stiffness matrix and the right-hand-side

is scalable, with a speedup very close to the ideal ones. The BDDC method results scalable since

the number of CG iterations remains bounded and the solution time decreases as the number

of the processors increases. We note that, as usual in a strong scalability study, the parallel

speedup does not increase when the number of processors is large with respect to the local size

of the problems. This is because communication time overcomes the time for computation.

Optimality with respect to the mesh size. We now perform an optimality test with

respect to the mesh size: we keep fixed the number of processors at 32 and we increase the

number of DoFs, maintaining the degree of the VEM discretization k = 2. The results are

reported in Table 3.9. We observe that the solver has a quasi-optimal behavior irrespective of

the type of polyhedral mesh considered since both the iteration count and the condition number

exhibit a logarithmic growth as predicted by Theorem 3.3.1.

Optimality with respect to the polynomial degree. In this test, we study the robustness

of our preconditioners when increasing the polynomial degree of the VEM discretization. The

tests are performed keeping fixed the number of processors again at 32 and the mesh size.

The results reported in Table 3.10 show that the BDDC solver exhibits a slight increase of the

condition number and iterations count when the degree k increases.
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k = 2 k = 3
procs Sid Tass Sp it Tsol Sp Tass Sp it Tsol Sp

C
U
B
E

4 1 299 21 132 3346 26 318
8 2 871 1.5 31 62 2.1 1821 1.8 41 193 2.4

16 4 418 3.1 33 35 3.8 745 4.4 49 92 3.5
32 8 202 6.4 55 16 8.3 467 7.2 72 37 8.6
64 16 105 12.4 58 6 22.0 245 13.7 86 29 11.0

128 32 53 24.5 61 5 26.4 140 23.9 98 13 24.5
256 64 27 48.1 62 5 26.4 83 40.3 99 11 28.9

C
V
T

4 2 456 38 711 2 812 41 289
8 2 1 423 1.7 41 248 2.9 1 450 1.9 43 103 2.8

16 4 816 3.0 42 174 4.1 820 3.4 44 70 4.1
32 8 400 6.1 46 66 10.8 460 6.1 45 20 14.0
64 16 216 11.4 33 21 33.9 264 10.6 37 6 44.2

128 32 126 19.5 32 9 79.0 179 15.7 39 5 50.7
256 64 72 34.1 32 8 93.2 175 16.0 37 6 44.2

O
C
T
A

4 3 225 32 59 3 889 30 102
8 2 1 637 2.0 32 59 2.6 1 922 2.0 39 44 2.3

16 4 838 3.9 41 36 4.2 982 4.0 52 34 3.0
32 8 434 7.4 57 16 9.5 497 7.8 77 15 6.7
64 16 218 14.8 64 7 21.7 261 14.9 90 7 14.2

128 32 116 27.8 76 5 30.4 133 29.3 92 7 14.7
256 64 56 57.6 70 7 21.7 66 59.1 92 7 15.0

Table 3.8: Strong Scaling.nEl for CUBE = 13 824 , CVT = 4000 and OCTA = 15 552 meshes
for k = 2. nEl for CUBE = 8000 , CVT = 1000 and OCTA = 4608 meshes for k = 3.
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Figure 3.9: Test 1: strong scaling. Iteration of the CG (left) and parallel speedup (right) with
the BDDC preconditioners for k = 2, 3 and different meshes discretizations.
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Table 3.9: Optimality test with respect to the mesh size. k = 2 and procs = 32.

nEl nDoFs NΠ it k2
4 096 124 195 125 44 44.67
8 000 239 763 152 50 54.53

13 824 408 243 125 54 63.98
21 952 643 387 152 58 72.37
32 768 954 947 125 62 80.63

(a) CUBE meshes.

nEl nDoFs NΠ it k2
125 8 945 633 22 7.7

1 000 76 051 801 32 16.09
2 000 154 067 829 40 28.35
4 000 311 155 836 46 37.42
8 000 626 455 833 56 53.10

(b) CVT meshes.

nEl nDoFs NΠ it k2
576 22 035 125 36 26.15

4 608 166 179 125 40 37.19
9 000 320 763 157 57 47.31

15 552 549 939 125 57 70.78
30 375 1 065 693 474 57 46.62

(c) OCTA meshes.

Table 3.10: Optimality Test Increasing the polynomial degree k. procs = 32 and nEl for CUBE
= 512, CVT = 125 and OCTA = 576.

k nDoFs NΠ it k2
2 16 787 125 34 23.86
3 40 667 125 49 46.34
4 76 387 125 64 80.67

(a) CUBE meshes.

k nDoFs NΠ it k2
2 8 945 633 22 7.7
3 19 256 633 31 14.89
4 33 487 633 46 28.86

(b) CVT meshes.

k nDoFs NΠ it k2
2 22 035 125 36 26.15
3 52 251 125 55 53.66
4 96 675 125 75 91.81

(c) OCTA meshes.
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Chapter 4

Enriching the coarse space

In this chapter we study the behavior of the BDDC algorithm applied to the Stokes equations

with heterogeneous viscosity. In the previous Chapter, we saw that our preconditioner is robust

with respect to coefficient jumps that are constant on the subdomains. Here, we study its

performance when the jumps occurs between the elements. Moreover, we show numerical tests

for a practical application, where the viscosity function is represented by a continuous function

that exhibits sharp gradients to represent high viscosity materials present in the fluid. We

introduce two adaptive techniques to enrich the coarse space in two dimensions and one for the

three dimensional case. We also present an heuristic and economic approach, currently under

study, to enrich the coarse space without solving auxiliary eigenvalue problems. The study related

to the two dimensional framework, is currently under development in collaboration with Prof.

Axel Klawonn and Dr. Martin Lanser from the University of Cologne [20]. For what concern the

three dimensional extension we work together with Prof. Franco Dassi from University of Milano-

Bicocca, and Dr. Stefano Zampini from King Abdullah University of Science and Technology

(KAUST) [19].

4.1 Adaptive coarse spaces in two dimensions

We start presenting two adaptive techniques to enrich the coarse space in two dimensions. The

idea is to solve generalized eigenvalue problems defined on each subdomain macro edge E and

then construct an enriched primal space such that the condition number of the preconditioned

system will be bounded from above by a selected TOL ∈ [1,∞) times a constant C independent

of h,H and N :

κ2(M
−1S) ≤ C TOL.

Both approaches are based on a localization of the ED, or PD estimate (see eq. (3.24) and

following, for theie definitions), since the two operators have the same S̃Γ-norm [73]. The estimate
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before is then obtained by applying Theorem 3.3.1, where the Assumption 2 is substituted by

the adaptive operator estimate.

Remark 4.1.1. It is important to emphasize that when using a transformation of basis approach

(see Appendix A), the adaptive techniques to enrich the coarse space have to be applied after

having imposed the no-net-flux condition. In fact we can not ensure a priori that this constraint

will be detect by the solution of the eigenvalue problems.

The algorithm in our 2D implementation is the following:

• apply the transformation of basis to impose the no-net-flux condition;

• solve the eigenvalue problems and compute the constraints in the transformed space;

• transform back the coefficient into the original space of function;

• construct the orthonormal transformation imposing the no-net-flux condition and the ad-

ditional constraints using a QR decomposition.

Since these transformations modify the sparsity pattern of the matrices, when the size of the

problem is too large, for example in our three dimensions numerical test, an approach that avoid

the explicit change of the basis is needed [101].

4.1.1 First coarse space

The first approach, designed specifically with the deluxe scaling, was originally introduced in [82]

and already successfully used for VEM discretization in [19, 43]. A variant, that allows to use

any kind of scaling, has been presented in [63] for FEM discretizations.

4.1.1.1 Generalized eigenvalue problem

The proof of the adaptive coarse space that we will present here has been given, for BDDC and

finite element discretizations, in Section 4 of [96] and in [64]. Scrolling the second proof, we see

that we can reproduce the same proof also for virtual element discretization paying attention

to use the VEM edge estimates. We limit here to recall the construction of this coarse space.

Let Eij be the open macro edge shared by two subdomains Ωi and Ωj , and we settle in a deluxe

scaling context. Thus, for k = i, j, defining the matrices S
(k)
EijEij

and S̃
(k)
EijEij

as in (3.18) and

(3.19), the deluxe scaling matrices are given by

D
(k)
Eij

:=

(
S̃
(i)
EijEij

+ S̃
(j)
EijEij

)−1

S̃
(k)
EijEij

fork = i, j. (4.1)

We also define the product A : B = (A−1 +B−1)−1, and we solve the eigenvalue problem

S
(i)
Eij

: S
(j)
Eij

xm = µmS̃
(i)
Eij

: S̃
(j)
Eij

xm. (4.2)
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We select the xm, m = 1, .., k for which µm < TOL and we compute the coefficient cij for the

constraints as

cij := S̃
(i)
Eij

: S̃
(j)
Eij

xm.

We give an other approach for this coarse space for generic scaling matrices D
(k)
Eij

with k = i, j,

that satisfy D
(i)
Eij

+D
(j)
Eij

= I. We solve the generalized eigenvalue problem:

S
(i)
Eij

: S
(j)
Eij

xm = µm

(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(j)T
Eij

S
(j)
Eij ,0

D
(j)
Eij

)
xm, (4.3)

and we select the xm, m = 1, .., k for which µm < TOL and we compute the coefficient cij for

the constraints as

cij :=
(
D

(j)T
Eij

S
(i)
Eij ,0

D
(j)
Eij

+D
(j)T
Eij

S
(j)
Eij ,0

D
(j)
Eij

)
xm.

Remark 4.1.2. It is easy to see that using D
(k)
Eij

defined as in (4.1), the two eigenvalue problems

(4.2) and (4.3) are equivalent.

Theorem 4.1.1. Let the assumptions of (3.3.1) hold. In addition, let the primal space contain

all the eigenvectors of the generalized eigenvalue problems (4.2), whose corresponding eigenvalues

are lower than 1/TOL for each E ∈ Γ. Then, the preconditioned BDDC operator for (2.77)

satisfies

κ2(M
−1S) ≤ C TOL, ∀TOL ∈ [1,∞), (4.4)

where C is independent of N,h, and H, but it depends on the number of the macro edges NE .

4.1.2 Second coarse space

The second coarse space has been successfully used in FETI-DP and BDDC in [65, 74, 77, 89],

and firstly theoretically proved in [64]. It has been also recently extended to VEM discretization

of diffusion and linear elasticity problems in [62].

4.1.2.1 Notation

As in the FETI-DP framework, we define the jump matrix B = [B(1) ...B(N)] that connects

the dual DoFs on the interface such that BuΓ = 0 if uΓ is continuous. For Eij edge shared

by Ωi and Ωj , we define the operator BEij
= [B

(i)
Eij
B

(j)
Eij

] as a submatrix of [B(i)B(j)], that

consists of a matrix with a one 1 and a one -1 for each rows. We also define their scaled version

BD,Eij
= [B

(i)
D,Eij

B
(j)
D,Eij

] obtained taking the same rows from [B(i)B(j)] = [D(i)TB(i)D(j)TB(j)].

Let Sij :=

[
S

(i)
Γ

S
(j)
Γ

]
and the restricted version of the PD operator PDij

= BT
D,Eij

BEij
.

Defining by Ṽij the space of functions belonging to V
(i)
Γ ×V

(j)
Γ and that are continuous in the

primal nodes, we define by RT
ij the restriction operator from V

(i)
Γ ×V

(j)
Γ to Ṽij . We introduce
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Πij , the l2-orthogonal projection from V
(i)
Γ ×V

(j)
Γ to Ṽij

Πij := Rij(R
T
ijRij)

−1RT
ij

and Π̄ij , another orthogonal projection from V
(i)
Γ ×V

(j)
Γ to Range (ΠijSijΠij+σ(I−Πij)), where

σ is a suitable positive constant, usually taken as the maximum of the entries of the diagonal Sij

Π̄ij := I − c cT

with c := ĉ
∥ĉ∥ , c = (1, ..., 1)T (see [64] Section 5 for further details on these operators).

4.1.2.2 Generalized eigenvalue problem

We then solve the eigenvalue problem

Π̄ijΠijP
T
Dij

SijPDijΠijΠ̄ij xm = µm

(
Π̄ij

(
ΠijSijΠij + σ(I −Πij)

)
Π̄ij + σ

(
I − Π̄ij

))
xm,

and we select the xm,m = 1, .., k for which µm ≥ TOL and we compute the coefficient constraints

as cmij
cmij := BT

Dij
SijPDij

xm.

Theorem 4.1.2. Let the assumptions of (3.3.1) hold. In addition, let the primal space contain

all the eigenvectors of the generalized eigenvalue problems (4.2), whose corresponding eigenvalues

are greater than TOL for each ε ∈ Γ. Then, the preconditioned BDDC operator for (2.77) satisfies

κ2(M
−1S) ≤ C TOL, ∀TOL ∈ [1,∞), (4.5)

where C is independent of N,h, and H, but it depends on the number of macro edges NE .

A complete proof for FETI-DP and finite element discretizations has been given in [64]. Since

the interface consists of line segments in both cases, even if the discretization is performed by

finite element or virtual element the discrete trace spaces can be constructed in the same way.

Moreover, the kernels of the Schur complements are identical regardless if the local discretization

is obtained using finite or virtual elements. We do not show the details here, but the proof for

the variant using virtual elements turns out to be analogous.

Remark 4.1.3. The eigenvalue problem of this coarse space is larger, since the size of the

eigenvalue problem is determined by the number of DoFs of V
(i)
Γ ×V

(j)
Γ , while in the previous

algorithm it is determined by the number of DoFs on an edge Eij . However, the advantage of

this approach is that it produce sparser matrices. In fact, the left-hand side is not dense because

of the structure of the local jump operator and the right-hand side consists of two dense blocks

and two zero blocks in the dual part.
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4.1.3 Frugal approach

We recall here an heuristic approach to enrich the coarse introduced in [56] and already used

for the VEM for stationary diffusion and linear Elasticity in [62]. Since in general the condition

number is determined by few large eigenvalue, the idea consists of building constraints for each

edge of the interface Γ, without the need to solve an eigenvalue problems. We now try to define

frugal constraints for virtual element discretizations for the Stokes equations. When applying

the BDDC method to the Stokes problem in two dimensions, we need three constraints for each

edge to account for the three (linearized) rigid-body motions, like in the linear elasticity case.

Given two subdomains Ωl, l = i, j, with diameter Hl, the kernel of the strain tensor ε is given

by two translations and one rotation:

r1 :=

[
1

0

]
, r2 :=

[
0

1

]
, r3 :=

1

Hl

[
x2 − x̂2

−x1 + x̂1

]
, (4.6)

where x̂ ∈ Ωl is the center of the rotation. Differently from the approach in [62], we do not

rescale the rigid body modes and we simply define the ”approximate” eigenvector v(x)
(m,l)
Eij

:

v(x)
(m,l)
Eij

:=

r(x)
(l)
m , x ∈ Eij ,

0, x ∈ ∂Ωl \ Eij ,
(4.7)

and we define v(x)
(m)T
Eij

:= [v(x)
(m,i)T
Eij

,−v(x)(m,j)T
Eij

].

The three frugal edge constraints are then obtained by:

cij := BT
Dij

SijPDij
v(x)

(m)T
Eij

. (4.8)

Remark 4.1.4. This approach should work only when the number of the constraints per edge

required for the second adaptive coarse space is less than 3 for each edge. We make note that,

when using a transformation of basis approach, the rigid body modes have to be transformed

too.

4.2 Numerical results in 2D

With our Matlab VEM implementation of degree k = 2, we considered a lid-driven cavity

benchmark problem, where the heterogeneity is introduced to represent high viscosity material

in the fluid. We consider two different type of heterogeneity: the classic one represented as

high coefficient jumps between elements (Figure 4.1) and a second type that wants to represent

a practical example where the viscosity is a continuous function that exhibits sharp gradients

(Figure 4.2). In our experiments we used two different type of meshes (CVT and RAND), and

as before, two type of mesh partitioning SQUARE and METIS.
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(a) One straight beam (b) Two straight beams

(c) Beams with offset (d) Random distribution

Figure 4.1: Different coefficient distributions for a 4 × 4 domain decomposition with straight
macro edges. The red and white elements have coefficient ν = 1e3 and ν = 1e− 3 respectively.

We compare four different coarse space: the classic coarse space, the two adaptive coarse space

and the frugal one; we also compare the ν and the deluxe scaling. In the tables we use the

following notation: nSub = number of subdomains, nEl = number of elements, nSink = number

of Sinkers, nΠ = number of primal constraints, it = iteration count (CG), k2 = condition number,

nnf = coarse space spanned by vertex constraints plus no-net-flux for each macro edge, nnf+fru

= coarse space spanned by vertex constraints plus no-net-flux and three frugal constraints for

each macro edge, First = coarse space spanned by vertex constraints, no-net-flux and first

approach of the adaptive technique for each macro edge, Second = coarse space spanned by

vertex constraints, no-net-flux and second approach of the adaptive technique for each macro

edge. Moreover ”x” in the tables means that the result is not available due to a non convergence

of the method.
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(a) 4x4 subdivision (b) 5x5 subdivision

Figure 4.2: Two examples of METIS decomposition of a CVT and a RAND mesh for the Sinker
problem. The yellow elements has a coefficient ν = 1e3, while the blue ν = 1e − 3. In the left
picture is represented the numerical solution for the velocity field.

4.2.1 Jumping Coefficients

We studied different configuration of coefficient jumps looking at straight beams configuration

and beams with offset across the interface (Figure 4.1a). For this family of tests we considered

2×2, 4×4 and 8×8 subdomains with a ν := 1e3 for red elements and ν = 1e−3 for the others and

we fix the tolerance for both the adaptive coarse space to TOL = 100. The mesh is constructed

choosing locally for each subdomain a CVT or a RAND mesh and then it is mirrored for each

subdomain. In particular the local mesh for each subdomain are made with 200 elements, and

the CVT ones are created using 500 Lloyd iterations. We remind that the coarse space always

includes the vertices of each subdomain and an extra constraint for the no-net-flux condition for

each macro edge, plus the constraints added by the adaptive or frugal technique.

4.2.1.1 Mirrored meshes

One Straight Beam. In Table 4.1 we show the iteration and condition numbers for the two

different type of meshes and the two different types of scaling. For 2× 2 subdomains the results

are singular since all the coarse space work for both the scalings, in fact the adaptive coarse spaces

do not need extra constraints. Increasing the number of subdomains, we can see that when using

the multiplicity scaling the coarse space spanned just by the no-net-flux condition fails, while

the results obtained with both the adaptive coarse spaces agree with the theoretical estimate,

keeping the condition number under the fixed tolerance. The frugal coarse space provides good

results. The iteration count and the condition numbers are very similar to the adaptive coarse

spaces. We can note that sometimes its performance is even better and this is justified by the

fact that this coarse space enrich all the edges.
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Table 4.1: Coarse space comparison for one straight beam test (Figure 4.1a), increasing the
number of subdomains.

nnf nnf + fru First Second
CVT nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 6 12 1.60e+1 18 14 16.04 8 12 16.01 6 12 16.01

4x4 42 246 2.66e+5 114 13 4.66 90 13 5.59 78 13 5.59
8x8 210 1757 8.06e+5 546 12 4.55 434 17 9.42 378 17 9.42

d
el

2x2 6 8 4.00 18 9 4.00 8 8 4.00 6 8 4.00
4x4 42 121 3.30e+4 114 15 10.92 70 15 9.81 59 17 9.81
8x8 210 760 1.06e+5 546 19 14.93 386 16 10.74 365 18 10.66

nnf nnf + fru First Second
RAND nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 6 12 17.12 18 15 17.01 8 13 17.11 6 12 17.11

4x4 42 212 2.40e+5 114 12 5.90 90 12 5.16 78 12 5.16
8x8 210 1729 7.24e+5 546 12 5.70 434 16 8.74 380 16 8.42

d
el

2x2 6 8 4.20 18 10 4.17 8 8 4.20 6 8 4.20
4x4 42 124 3.23e+4 114 15 14.11 70 16 10.49 58 17 10.48
8x8 210 778 1.01e+5 546 20 19.46 386 16 11.39 350 18 11.31

We discuss now the number of primal constraints needed for the different coarse space. Making

reference to Figure 4.1a, we can easily count the number of constraints needed for all the coarse

spaces. In particular, the basic coarse space is spanned by 18 vertices constraints plus 24 edge

constraints due to the no-net-flux condition. The frugal coarse space needs to add 3 constraints

for each edge, that means 72 constraints. While the first and second adaptive coarse space add

respectively 4 and 3 extra edge constraints when a jump occurs, that means 48 and 36 constraints.

The fact that the first coarse space need exactly one extra constraint for each edge where a jump

occurs has already been observed in [64] for FEM discretizations. Since the extra constraints are

needed only on the macro edges with coefficient jumps, in the frugal coarse space, one can decide

to add the extra constraints only on specific macro edges where a jump occurs. Eventually, it is

also possible detect if the constraints that have to be added belongs to a large eigenvalue, this

could be done to limit the dimension of the coarse space.

When using the deluxe scaling, we have in general a good improvement in the performance of

all the algorithms.

Two Straight beams. Table 4.2 reports the results for the test for the two straight beams

configuration in Figure 4.1b. The behavior of both the adaptive coarse spaces is basically the

same as before, the two algorithms are able to keep the condition numbers below the fixed tol-

erance. As expected, the poorest coarse space fails and also the frugal constraints do not give

us good result. In fact, the number of constraints required from the adaptive coarse spaces is

greater than the number of primal constraints added in the frugal space.

Beams with offset. Table 4.3 reports the results for the test with the beam with offset

configurations in Figure 4.1c. The adaptive coarse spaces perform well, as expected while the

basic coarse space fails. The frugal constraints instead, combined with the deluxe scaling gives

results in line with the adaptive coarse spaces.
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Table 4.2: Coarse space comparison for two straight beam test (Figure 4.1b), increasing the
number of subdomains.

nnf nnf + fru First Second
CVT nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 6 18 4.96e+1 18 21 49.2e+01 8 18 49.62 6 18 49.62

4x4 42 520 1.78e+5 114 102 1.16e+4 126 17 14.70 114 17 14.70
8x8 210 2992 7.07e+5 546 459 3.03e+4 602 20 16.96 547 21 16.96

d
el

2x2 6 8 12.43e+1 18 12 12.37 8 8 12.43 6 8 12.43
4x4 42 346 5.24e+4 114 61 6.35e+3 82 22 38.59 71 25 38.64
8x8 210 1239 7.87e+4 546 386 NaN 506 24 32.94 470 27 32.66

nnf nnf + fru First Second
RAND nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 6 19 34.04 18 20 33.89 8 19 34.02 6 19 34.02

4x4 42 488 1.40e+5 114 101 9.66e+3 126 16 10.67 114 16 10.66
8x8 210 2781 5.57e+5 546 476 NaN 602 19 15.01 546 19 15.01

d
el

2x2 6 8 7.97 18 14 8.32 8 8 7.97 6 8 7.97
4x4 42 316 3.87e+4 114 53 5.23e+3 82 18 23.97 71 22 23.50
8x8 210 1156 6.13e+4 546 337 NaN 506 28 55.53 466 23 12.83

Table 4.3: Coarse space comparison for straight beams test with offset (Figure 4.1c), increasing
the number of subdomains.

nnf nnf + fru First Second
CVT nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 6 212 5.82e+5 18 230 NaN 54 14 16.21 54 13 16.21

4x4 42 1074 NaN 114 684 NaN 334 16 6.31 334 16 6.31
8x8 210 3178 NaN 546 1300 NaN 1594 18 10.17 1594 18 10.17

d
el

2x2 6 9 5.09 18 16 12.01 6 9 5.09 6 9 5.09
4x4 42 189 2.72e+4 114 17 9.57 58 18 20.32 63 21 20.36
8x8 210 758 8.23e+4 546 18 9.08 330 20 13.62 343 22 13.58

nnf nnf + fru First Second
RAND nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 6 154 4.31e+5 18 198 4.00e+5 38 14 13.92 38 14 13.92

4x4 42 1035 NaN 114 894 NaN 414 16 5.57 414 16 5.58
8x8 210 2931 7.72e+5 546 1745 NaN 1882 18 9.41 1888 18 8.02

d
el

2x2 6 10 5.04 18 14 7.74 6 10 5.04 6 10 5.04
4x4 42 170 2.45e+4 114 19 12.12 58 19 21.46 60 21 21.43
8x8 210 705 7.27e+4 546 19 10.61 330 22 13.94 349 22 13.83
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Table 4.4: Coarse space comparison for random coefficient distribution (Figure 4.1d), increasing
the number of subdomains.

nnf nnf + fru First Second
CVT nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 9 274 NaN 24 274 6.69e+5 88 22 39.33 84 22 40.12

4x4 42 1346 NaN 114 565 NaN 403 34 73.87 395 34 73.91
8x8 273 5838 2.97e+6 546 2601 NaN 2189 52 76.45 2136 47 75.76

d
el

2x2 9 10 2.85 24 10 2.79 13 10 2.85 9 10 2.85
4x4 42 34 9.97e+1 114 20 10.82 50 24 65.54 46 24 65.15
8x8 273 231 3.16e+5 546 30 41.44 274 40 82.15 237 37 84.14

nnf nnf + fru First Second
RAND nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 6 198 1.00e+6 18 198 5.22e+5 75 26 34.93 73 26 34.93

4x4 69 1850 4.89e+6 114 1298 NaN 466 46 95.92 458 46 100.7
8x8 x x x 546 3875 NaN 2186 61 94.65 2156 60 94.71

d
el

2x2 6 11 6.37 18 17 11.90 8 12 6.37 6 11 6.37
4x4 69 x x 114 23 93.94 50 29 71.30 45 28 71.06
8x8 x x x 546 34 93.69 262 42 139.35 244 36 61.08

Table 4.5: Coarse space comparison for the one straight beams testcase with 4× 4 subdomains
(Figure 4.1a), increasing the coefficient jump.

nnf nnf + fru First Second
CVT nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 1e4 42 82 2.66e+3 114 15 10.10 82 19 44.21 70 22 47.02

1e5 42 123 2.65e+4 114 15 10.82 90 11 3.92 78 14 5.63
1e6 42 246 2.66e+5 114 15 10.92 90 11 3.92 78 13 5.63

d
el

1e4 42 43 2.94e+2 114 12 3.86 66 22 54.34 56 25 55.83
1e5 42 69 3.26e+3 114 12 4.56 70 16 9.60 60 18 9.70
1e6 42 121 3.30e+4 114 13 4.66 70 16 9.73 59 18 9.79

nnf nnf + fru First Second
RAND nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 1e4 42 76 2.41e+3 114 15 13.01 82 19 40.53 70 21 44.53

1e5 42 123 2.40e+4 114 15 13.97 90 12 4.05 78 14 5.70
1e6 42 212 2.40e+5 114 15 14.11 90 12 4.05 78 14 5.70

d
el

1e4 42 43 2.89e+2 114 13 4.75 66 21 53.91 56 23 53.91
1e5 42 68 3.19e+3 114 13 5.75 70 16 9.30 59 17 9.52
1e6 42 124 3.23e+4 114 12 5.90 70 16 9.44 61 18 9.64
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Random coefficient distribution. Table 4.4 shows the result for a random distribution of

the coefficient jumps as in Figure 4.1d. The results are in line with our expectations. The classic

coarse space of course fails. Both the adaptive coarse space seem to be robust since they are able

to keep the condition number under the fixed tolerance and the deluxe scaling drastically reduce

the dimension of the coarse space. The surprising result is given by the frugal coarse space that

combined with the deluxe scaling is able to handle this configuration. Of course, this is due to

the fact that the number of primal constraints required by the adaptive coarse space is limited,

for other more complex configurations this could not happen.

Robustness varying coefficient jump ratio. Finally in Table 4.5 we tested different

values for the coefficient jumps using the one beam configuration. We can see that, as expected,

increasing the jump, the condition number grow for the classic coarse space. The adaptive coarse

spaces and the frugal one are robust, since the iteration count and the condition number do not

grow. We can also note that the number of constraints required by the adaptive algorithms stay

bounded when the jump increase.

4.2.1.2 METIS partition

We performed also a test with an irregular partition into 3x3 and 5x5 subdomains, of a CVT

and a RAND mesh with 5000 elements provided by METIS (Figure 4.3). We reported in Table

4.6 the results for a one beam test (4.3a) and a random configuration (4.3b). We only tested the

two adaptive coarse spaces. Their behavior follows our expectations and again both two coarse

space are robust with respect to the jumps. The deluxe scaling reduce the number of iterations

and constraints required.

(a) Five straight beams (b) Random coefficient distribution

Figure 4.3: Two example of CVT and RAND meshes with 25 subdomains with a METIS de-
composition.
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Table 4.6: Adaptive coarse space comparison for one straight beam and a random coefficient
distribution (Figure 4.3). CVT and RAND mesh with 5000 elements and partitioned by METIS.

Beam Random
CVT First Second First Second

nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 3x3 170 31 53.02 152 32 52.92 524 34 43.68 512 36 43.65

5x5 539 28 53.72 468 31 55.51 1504 51 77.81 1454 51 76.23

d
el 3x3 55 21 18.31 36 23 38.91 54 18 8.56 32 18 9.73

5x5 246 19 8.84 163 20 9.55 215 25 18.93 122 24 20.89

Beam Random
RAND First Second First Second

nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 3x3 199 26 27.49 173 29 35.32 432 46 78.19 416 46 78.37

5x5 658 31 44.08 573 34 45.51 1624 53 87.35 1579 53 87.43

d
el 3x3 63 14 8.34 35 16 8.78 52 20 15.51 32 19 16.08

5x5 253 20 29.63 163 24 25.37 243 31 20.65 134 32 45.28

4.2.2 Sinkers

We now look at the second type of heterogeneity. As in [19, 87], we test the robustness of our

adaptive BDDC algorithm on a multi-sinker test problem with inclusions of equal size placed

randomly in the unit square domain so that they can overlap and intersect the boundary. This

physically represent drops of an high viscosity material into a general fluid. The viscosity coef-

ficient ν(x) ∈ [νmin, νmax], x ∈ Ω, 0 < νmin < νmax < ∞, is defined in terms of a C∞ indicator

function χn(x) ∈ [0, 1] that accumulates n sinkers via the product of modified Gaussian functions:

ν(x) := (νmax − νmin)(1− χn(x)) + νmin, x ∈ Ω

χn(x) :=

n∏
i=1

1− exp

(
− δmax

(
0, |ci − x| − ω

2

)2)
, x ∈ Ω

(4.9)

where ci ∈ Ω, i = 1, ..., n are the centers of the sinkers, δ > 0 control the exponential decay and

ω ≥ 0 is the diameter of the sinkers. In this way, the viscosity exhibits sharp gradients. In both

of the two family of experiments the dynamic ratio DR(ν) := νmax/νmin can be up to six orders

of magnitude. The right hand side is defined as f(x) := (0, β(χn(x−1))), with β = 10, this is due

to simulate gravity that takes down the high viscosity material. We consider two different tests.

We first set a configuration for the sinkers (Figure 4.2a) where they are placed randomly and we

increase the number of the subdomains, Table 4.7. We see that with the multiplicity scaling the

behavior of the adaptive coarse space respect again our expectations, while the smaller coarse

space and the frugal approach keep an high condition number. We observe that the performance

of our algorithm increase when the number of subdomains increase, even with the two non

adaptive coarse spaces. This is due to the fact that using the same configuration for the sinkers

when the number of subdomains increase some of the inclusions are helped from the vertex

constraints. Introducing the deluxe scaling we see that the frugal approach perform very well

and seems to be a good alternative. We also have good results even just combining the deluxe
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Table 4.7: Test with nSink = 11 and increasing the number of subdomains. Mesh sizes: nEl =
1000 for 2 × 2 subdomains, nEl = 5000 for 4 × 4 and nEl = 12000 for 8 × 8. The CVT meshes
are created using 300 Lloyd iterations. The partition is performed by METIS. The coefficient
δ = 2000, w = 0.05 and DR = 1e6.

nnf nnf + fru First Second
CVT nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 9 185 1.12e+4 24 135 1.52e+3 49 58 106.62 47 58 107.42

4x4 69 139 1.22e+4 168 62 4.10e+2 96 49 80.99 84 52 102.99
8x8 360 185 1.16e+4 840 51 1.21e+2 418 54 101.43 394 55 97.96

d
el

2x2 9 11 10.03 24 12 6.10 11 11 9.93 9 11 10.03
4x4 69 17 10.53 168 11 3.67 81 17 10.54 73 17 10.51
8x8 360 21 25.91 840 12 4.25 386 21 25.95 406 18 9.57

nnf nnf + fru First Second
RAND nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l 2x2 9 224 1.42e+2 24 173 3.28e+3 56 52 99.80 53 51 97.18

4x4 69 203 1.04e+5 168 89 4.00e+3 104 54 90.37 90 56 97.76
8x8 354 199 1.72e+4 828 53 247.96 426 51 96.15 400 54 96.32

d
el

2x2 9 12 13.91 24 11 2.91 13 12 13.89 9 12 13.91
4x4 69 20 16.79 168 13 5.82 84 19 16.50 71 19 16.73
8x8 354 21 16.78 828 11 3.33 380 20 16.60 383 19 13.47

Table 4.8: Test with increasing number of randomly placed sinkers. Mesh sizes: nEl = 5000.
The CVT mesh is created using 300 Lloyd iterations. The partition is performed by METIS into
5× 5 subdomains. The coefficient δ = 2000, w = 0.05 and DR = 1e6.

nnf nnf + fru First Second
CVT nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l

5 117 140 NaN 279 54 396.27 143 46 82.14 134 46 82.21
10 117 117 6.63e+3 279 52 297.33 148 47 81.07 135 49 101.38
15 117 179 3.09e+4 279 69 375.24 164 51 80.93 144 53 101.21
20 117 199 3.07e+4 279 79 606.77 171 54 98.15 150 55 92.60

d
el

5 117 16 7.88 279 10 2.44 125 15 7.56 123 15 5.87
10 117 16 8.40 279 10 2.57 131 16 7.72 122 17 8.34
15 117 17 8.80 279 11 6.23 137 16 8.72 122 17 8.81
20 117 22 28.78 279 12 6.23 138 20 28.72 122 21 28.03

nnf nnf + fru First Second
RAND nΠ it k2 nΠ it k2 nΠ it k2 nΠ it k2

m
u
l

5 114 110 2.79e+4 276 52 363.35 132 48 91.52 123 50 91.54
10 114 120 1.18e+4 276 60 1.30e+3 140 49 90.42 126 49 83.04
15 114 340 NaN 276 105 1.30e+3 170 61 94.91 152 61 97.77
20 114 420 8.14e+4 276 122 NaN 191 62 99.80 170 63 97.48

d
el

5 114 15 5.96 276 12 6.27 123 15 5.96 118 15 5.73
10 114 16 5.97 276 12 3.38 127 15 5.42 118 16 5.98
15 114 21 39.63 276 13 4.30 132 20 39.62 118 20 39.56
20 114 27 413.74 276 13 6.48 137 23 39.14 121 23 39.47
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scaling with the coarse space spanned by the no-net-flux condition. In Table 4.8 we instead keep

fixed the number of subdomains at 5 × 5 and we increase the number of the inclusions. Again

as before the adaptive coarse spaces are robust and also when introducing the deluxe scaling the

smaller coarse space and the frugal one perform well.

4.3 Adaptive coarse space in three dimensions

We recall here an adaptive technique to enrich the minimal primal space VΓ [43, 100], that is

nothing else that the three dimensional extension of the first coarse space previously introduced.

This is the adaptive coarse space implemented in PETSC in the PCBDDC library, so for more

details about the implementation, we refer [100]. The idea is again to solve generalized eigenvalue

problems defined on each subdomain face F and edge E and then construct an enriched primal

space such that the condition number of the preconditioned system will be bounded from above

by a selected νtol ∈ [1,∞) times a constant independent on h,H and N . To construct an adaptive

coarse space, we need to settle in a deluxe scaling context [101]. For each face F shared by two

subdomains i, j, we consider the principal minors of the subdomain matrices S
(k)
T with k = i, j:

S
(k)
FF := R

(k)
F S

(k)
T R

(k)
F

T
, (4.10)

where R
(k)
F maps V

(k)
Γ to the DoFs located on F . Then we split the matrices as follows

S
(k)
FF =

[
S
(k)
F ′F ′ S

(k)
F ′F∆

S
(k)T

F ′F∆
S
(k)
F∆F∆

]
, k = i, j (4.11)

where F∆ is the dual set of the DoFs associated to the face F and F ′ := Γi \ F∆. We introduce

the Schur complements:

S̃
(k)
F∆F∆

= S
(k)
F∆F∆

− S
(k)T

F ′F∆
S
(k)−1

F ′F ′ S
(k)
F ′F∆

, k = i, j. (4.12)

and then we solve the following eigenvalue problems:

S̃
(i)
F∆F∆

: S̃
(j)
F∆F∆

ψ = νS
(i)
F∆F∆

: S
(j)
F∆F∆

ψ (4.13)

where again A : B = (A−1 + B−1)−1, finally we choose the element of the primal space as

S
(i)
F∆F∆

: S
(j)
F∆F∆

Ψ, where Ψ is the matrix formed column-wise by those eigenvectors associated

with eigenvalues smaller than a fixed tolerance 1/νtol.

Analogously we repeat the same process for any edge E . Assuming that the edge E is shared by

NE subdomains, we define as in (4.10),(4.11) and (4.12), for k ∈ NE the matrices S
(k)
EE , S

(k)
EE and
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S̃
(k)
E∆E∆

. Then we solve the eigenvalues problem:( ∑
i∈NE

S̃
(i)−1
E∆E∆

)
ψ =

( ∑
i∈NE

S
(i)−1
E∆E∆

)
ψ

and we select the elements of the primal space as (
∑

i∈NE
S̃
(i)−1
E∆E∆

)Ψ, where Ψ, again is the

matrix formed column-wise by those eigenvectors associated with eigenvalues smaller than a

fixed tolerance 1/νtol.

We do not provide a proof of the following theorem, and we remand to [43] for further details:

Theorem 4.3.1. Let the dual space satisfy the no-net-flux condition given in (1) and let the

average operator preserve subdomain normal fluxes as in (3.78) and (3.79). Then, M−1S is

symmetric positive definite on the subspace V̂Γ,B × Q0; the minimum eigenvalue is 1, and we

can algebraically construct a primal space VΓ such that:

κ2(M
−1S) ≤ Cνtol, ∀νtol ∈ [1,∞), (4.14)

where C is independent of N,h, and H .

4.4 Numerical results in 3D

In this Section, we report the numerical results to validate our theoretical estimates of the

adaptive BDDC algorithm for solving the Stokes model problem (1.9). We keep the same test

problem as in Section 3.4.2 in particular we solve a problem on the unit cube [0, 1]3 with a

known solution (Figure 2.3a) imposing Neumann boundary conditions on two faces of the cube

and homogeneous Dirichlet boundary conditions on the other ones. We always solve the system

(3.9), with the BDDC method used as a preconditioner for the CG method with a stopping

criterion of a 10−8 reduction of the l2−norm of the relative residual. We keep considering the

three types of meshes Cube, Octa and CVT ( Figure MESH). In our experiments, we compare

two different choices of primal spaces, corresponding to tolerances νtol = 2 and νtol = ∞. The

first one represents the adaptive coarse space built to keep the condition number under the fixed

tolerance νtol = 2. The latter represents the minimal coarse spaces created as explained in

Chapter 3 to satisfy Assumptions 1 and 2. We also compare the BDDC algorithms against our

previous block-diagonal preconditioners [40], and the parallel direct solver MUMPS [3, 4]. We

conclude by testing the robustness of our adaptive BDDC algorithm on a benchmark problem

with variable viscosity. We provide again Strong Scaling and optimality test, also a test varying

the tolerance of the adaptive coarse space is performed with the purpose to have an heuristic idea

of the optimal value of νtol to require. We conclude by testing the robustness of our adaptive

BDDC algorithm on a benchmark problem with variable viscosity. To facilitate the comparison

of the adaptive coarse space against the minimal one, we place some of the tables of the previous

chapter next to the adaptive ones.
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In the tables we use the following notation: procs = number of CPU cores, nEl = number of

VEM elements, k = degree of VEM approximation, nDoFs = number of DoFs, NΠ = number of

primal constraints, it = iteration count (GMRES for Block-Schur and Mass, CG for BDDC), k2 =

conditioning number, Tass= time to assemble the stiffness matrix and the right-hand side, Tass=

time to assemble the preconditioner, Tsol = time to solve the interface saddle point problem and

Sid = ideal speed up, Sp = parallel speed up.

4.4.1 Test 1: Strong scalability

We first study the strong scalability of our solvers. We keep fixed the global number of DoFs

and the degree of the VEM approximation k, while we increase the number of processors from 4

to 256. We consider a CUBE mesh with 408 243 DoFs, a CVT mesh with 311 155 DoFs and an

OCTAmesh with 549 939 DoFs. In Table 3.8, we report the results related to the three polyhedral

meshes with k = 2, 3. In Figure 3.9, we plot the number of iterations and the parallel speedup for

the case k = 2, 3. We observe that the CPU time Tass, needed to assemble the stiffness matrix and

the right-hand-side is scalable, with a speedup very close to the ideal ones. The adaptive BDDC

method (νtol = 2) results algorithmically scalable since the number of CG iterations remains

bounded and the solution time decreases as the number of the processors increases. The parallel

speedup shows a superlinear rate and improves only up to the point where communication times

start to dominate, as usual in the strong scaling tests of domain decomposition methods where

local problems are solved using direct factorizations. The differences between CUBE, OCTA and

CVT meshes are due to the different sparsity patterns of the local subdomain problems. Also,

the minimal coarse space results are scalable for the degree k = 2 and 3, with the same behavior

as the adaptive BDDC.

4.4.2 Test 2: Optimality test with respect to the mesh size

We now perform an optimality test with respect to the mesh size: we keep fixed the number of

processors at 32 and the degree of the VEM discretization k = 2, and we increase the number of

DoFs by refining the mesh. The results are reported in Table 4.11. We observe that the adaptive

solver has an optimal behavior irrespective of the type of polyhedral mesh considered since the

number of iterations is independent of the refinement level and the condition number stays below

the fixed tolerance. The minimal coarse space shows a quasi-optimal behavior since both the

iteration count and the condition number exhibit a logarithmic growth as predicted by Theorem

3.3.1. Similar results also occur for the cases k = 3 and 4.

4.4.3 Test 3: Optimality test with respect to the polynomial degree

In this test, we study the robustness of our preconditioners when increasing the polynomial degree

of the VEM discretization. The tests are performed by keeping fixed the number of processors

(32) and the number of elements. The results reported in Table 3.10 show that the adaptive
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νtol = 2 νtol = ∞
procs Sid Tass Sp NΠ it Tsol Sp NΠ it Tsol Sp

C
U
B
E

4 1 299 447 8 129 4 21 132
8 2 871 1.5 1 145 9 46 2.8 21 31 62 2.1

16 4 418 3.1 2 195 9 29 4.4 41 33 35 3.8
32 8 202 6.4 4 577 9 12 10.8 125 55 16 8.3
64 16 105 12.4 7 831 9 5 25.8 311 58 6 22.0

128 32 53 24.5 13 411 9 4 32.3 643 61 5 26.4
256 64 27 48.1 22 723 9 5 25.8 1 399 62 5 26.4

C
V
T

4 2 456 661 9 754 15 38 711
8 2 1 423 1.7 1 655 10 334 2.3 130 41 248 2.9

16 4 816 3.0 3 289 10 157 4.8 337 42 174 4.1
32 8 400 6.1 6 641 10 61 12.4 905 46 66 10.8
64 16 216 11.4 10 355 10 21 35.9 2326 33 21 33.9

128 32 126 19.5 17 566 11 11 68.5 4398 32 9 79.0
256 64 72 34.1 27 429 11 9 83.8 10 608 32 8 93.2

O
C
T
A

4 3 225 476 8 127 21 32 59
8 2 1 637 2.0 1 217 8 50 2.6 21 32 59 2.6

16 4 838 3.9 2 299 8 30 4.3 51 41 36 4.2
32 8 434 7.4 4 793 8 12 10.5 125 57 16 9.5
64 16 218 14.8 8 063 8 5 24.0 311 64 7 21.7

128 32 116 27.8 14 342 9 6 21.9 643 76 5 30.4
256 64 56 57.6 26 708 9 5 23.5 1 676 70 7 21.7

νtol = 2 νtol = ∞
procs Sid Tass Sp NΠ it Tsol Sp NΠ it Tsol Sp

C
U
B
E

4 3346 783 7 270 4 26 318
8 2 1821 1.8 1 952 9 111 2.4 30 41 193 2.4

16 4 745 4.4 3 743 9 72 3.7 69 49 92 3.5
32 8 467 7.2 7 815 9 29 9.2 152 72 37 8.6
64 16 245 13.7 13 163 8 12 22.5 311 86 29 11.0

128 32 140 23.9 23 350 9 9 28.7 815 98 13 24.5
256 64 83 40.3 43 896 10 12 23.3 2 309 99 11 28.9

C
V
T

4 2 812 799 9 290 15 41 289
8 2 1 450 1.9 1 791 10 83 3.5 139 43 103 2.8

16 4 820 3.4 3 580 10 59 4.9 341 44 70 4.1
32 8 460 6.1 6 805 11 20 14.6 888 45 20 14.0
64 16 264 10.6 9 831 11 7 40.8 2 134 37 6 44.2

128 32 179 15.7 15 889 12 6 47.5 4 152 39 5 50.7
256 64 175 16.0 22 874 13 8 37.2 7 840 37 6 44.2

O
C
T
A

4 3 889 669 8 96 7 30 102
8 2 1 922 2.0 1 675 8 34 2.8 21 39 44 2.3

16 4 982 4.0 3 147 8 24 4.0 51 52 34 3.0
32 8 497 7.8 6 511 8 11 8.9 125 77 15 6.7
64 16 261 14.9 10 715 8 5 18.1 311 90 7 14.2

128 32 133 29.3 18 215 8 4 22.3 643 92 7 14.7
256 64 66 59.1 30 263 8 6 15.7 1 399 92 7 15.0

Table 4.9: Strong Scalability with k = 2, 3. nEl for CUBE = 13 824 , CVT = 4000 and OCTA
= 15 552 meshes for k = 2. nEl for CUBE = 8000 , CVT = 1000 and OCTA = 4608 meshes
for k = 3.
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Figure 4.4: Test 1: strong scaling. Iteration of the CG (left) and parallel speedup (right) with
the BDDC preconditioners for the two different primal spaces for different meshes and degrees
of VEM discretizations.
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νtol = 2 νtol = ∞
nEl nDoFs NΠ it k2 NΠ it k2

C
U
B
E

4 096 124 195 2 861 9 1.59 125 44 44.67
8 000 239 763 3 644 9 1.62 152 50 54.53

13 824 408 243 4 577 9 1.57 125 54 63.98
21 952 643 387 5 257 9 1.64 152 58 72.37
32 768 954 947 6 141 9 1.57 125 62 80.63

C
V
T

125 8 945 1 192 12 2.29 633 22 7.7
1 000 76 051 3 666 10 2.01 801 32 16.09
2 000 154 067 5 018 10 1.93 829 40 28.35
4 000 311 155 6 700 10 1.92 836 46 37.42
8 000 626 455 8 890 10 1.90 833 56 53.10

O
C
T
A

576 22 035 1 313 9 1.76 125 36 26.15
4 608 166 179 3 065 8 1.52 125 40 37.19
9 000 320 763 4 571 9 1.64 157 57 47.31

15 552 549 939 4 793 8 1.53 125 57 70.78
30 375 1 065 693 8 513 10 1.85 474 57 46.62

Table 4.10: Optimality test with respect to the mesh size. k = 2 and procs = 32.

νtol = 2 νtol = ∞
k nDoFs NΠ it k2 NΠ it k2

C
U
B
E 2 16 787 1 273 9 1.81 125 34 23.86

3 40 667 2 683 8 1.44 125 49 46.34
4 76 387 4 495 8 1.49 125 64 80.67

C
V
T

2 8 945 1 192 12 2.29 633 22 7.7
3 19 256 2 444 12 2.26 633 31 14.89
4 33 487 4 604 14 3.02 633 46 28.86

O
C
T
A 2 22 035 1 313 9 1.76 125 36 26.15

3 52 251 2 847 8 1.46 125 55 53.66
4 96 675 4 951 9 1.61 125 75 91.81

Table 4.11: Optimality Test Increasing the polynomial degree k. procs = 32 and nEl for CUBE
= 512, CVT = 125 and OCTA = 576.

BDDC algorithm is robust with respect to the polynomial degree in all meshes. The BDDC

solver with minimal coarse space instead exhibits a slight increase of the condition number and

iterations count when the degree k increases.

4.4.4 Test 4: Solvers comparison

In Table 4.12, we compare the performance of the CG method accelerated by the adaptive

BDDC preconditioner against the direct solver MUMPS, the GMRES method accelerated by

the Block-Schur preconditioner proposed in [41], and preconditioned GMRES by the Block-Mass

preconditioner proposed in [50]. The Block-Schur preconditioner is of the form:

B =

[
diag(A)−1 0

0 S̃−1

]
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MUMPS Block-Schur BDDC
nEl k nDoFs Tsol it Tsol it Tsol

C
U
B
E 32 768 2 954 947 297 705 110 21 26

13 824 3 1 009 803 416 NC NC 18 22
8 000 4 1 119 523 465 NC NC 13 34

C
V
T

8 000 2 627 455 913 568 134 16 58
4 000 3 666 301 971 NC NC 17 103
2 000 4 571 696 842 NC NC 22 93

O
C
T
A 30 375 2 1 065 693 285 893 180 21 60

15 552 3 1 322 571 355 NC NC 19 73
9 000 4 1 436 523 548 NC NC 34 97

Table 4.12: Solver comparison among different parallel solver with procs = 64.

k = 2
νtol NΠ it k2 Tsol TPrec

C
U
B
E

2 9181 8 1.54 18.1 1509
5 2683 20 6 16.9 1532

10 937 30 14.3 19.6 1448
100 301 61 88.2 22.3 1347

1000 289 58 88.2 21.6 1338

C
V
T

2 9380 10 1.95 19.1 2981
5 3826 18 4.7 20.4 3155

10 2405 27 10.4 21.8 2883
100 2250 32 15.2 20.7 2900

1000 2250 32 15.2 20.6 2634

O
C
T
A

2 12490 10 1.9 66.9 4641
5 5281 20 6.0 61.8 4734

10 2170 27 9.6 61.3 4630
100 1188 51 33.9 68.6 4169

1000 1188 51 34.0 68.5 4166

k = 3
νtol NΠ it k2 Tsol TPrec

C
U
B
E

2 14068 9 1.7 29.6 5925
5 5020 18 4.7 22.8 5160

10 1726 31 12.8 24.3 5903
100 430 67 163.2 30.6 5160

1000 370 80 164.6 35.7 5830

C
V
T

2 12940 14 4.6 32.8 11529
5 6052 21 9.1 26.2 10358

10 3497 31 27.8 27.3 11336
100 2209 43 41.2 26.2 10175

1000 2209 43 41.2 29 11424

O
C
T
A

2 14869 8 1.5 31.5 13442
5 5317 19 5.2 25.1 11950

10 1759 30 12.9 26.4 13475
100 397 55 44.5 30.5 11825

1000 289 91 215.6 42.2 13521

Table 4.13: Test 5: Optimality test with respect to the adaptive tolerance with k = 2, 3 and
procs = 64. nEl for CUBE = 32 768 , CVT = 4000 and OCTA = 30 375 meshes for k = 2. nEl
for CUBE = 13 824 , CVT = 2000 and OCTA = 15 552 meshes for k = 3.

where S̃ = −Bdiag(A)−1BT is the approximate Schur complement of the system (2.77) and the

inversion of this matrix is performed by MUMPS, while the latter substitutes the bottom right

block with the mass matrix for the pressure. We can see that the adaptive BDDC is significantly

faster than the other solvers for all the meshes considered and for the three different degrees of

the VEM discretization. We also note that both the Schur complement based preconditioners

are not robust for the degree k = 3 and 4, since the GMRES method does not converge (NC in

the table).

4.4.5 Test 5: Optimality test with respect to the adaptive tolerance

In Table 4.13, we study the behavior of the adaptive coarse space for the degree k = 2, 3 when

varying the νtol parameter. We can see that with all the different choice of this parameter the

condition number respect the theory for both the degrees. Looking at the time Tsol needed to
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solve the interface problem, we see that there is not so significant difference with the choice of

the tolerance, even the fastest time is around the value νtol = 10. Looking instead at the time

TPrec, that correspond to the time needed to set the preconditioner, we see that the optimal time

is around νtol = 100. This time is the highest computational part in this algorithm, but it is

reqiured once for all. These contributions have to be computed just at the beginning since they

do not change during the iterations. This is a relevant result for real application since we can

achieve an acceptable value for the condition number and a fast resolution of the linear system

even if we do not introduce too many primal constraints (as show the Figure 4.5). Further

considerations on varying the tolerance will be done in the next test.
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Figure 4.5: Optimality test with respect to the adaptive tolerance with k = 2, 3 and procs = 64.
The plot shows the ratio RΠ between the number of the primal DoFs and the total number of
interface DoFs.

DR(ν) 1e+ 0 1e+ 2 1e+ 4 1e+ 6
n it k2 it k2 it k2 it k2

C
U
B
E

1 18 6.2 19 7.7 20 7.6 19 7.7
5 17 6.6 19 7.7 19 7.6 19 8.4

10 18 6.6 19 7.6 19 7.6 19 8.5
20 17 6.6 19 7.4 19 7.7 19 6.1

C
V
T

1 15 4.7 15 4.8 16 5.2 17 6.1
5 15 4.7 15 4.8 17 5.8 19 8.1

10 15 4.7 15 5.1 17 6.1 20 8.1
20 14 4.7 17 7.7 20 9.7 28 15.2

O
C
T
A

1 17 6.2 19 7.4 19 7.6 20 8.4
5 17 6.2 18 7.2 19 7.6 19 8.4

10 17 6.2 18 6.8 20 8.8 19 8.9
20 17 6.2 18 7.0 19 7.6 18 8.4

Table 4.14: Test 6a. Multi-sinker benchmark problem varying the number of the inclusions.
procs = 64 and nEl for CUBE = 13 824, CVT = 4000 and OCTA = 15 552.
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k = 2
νtol NΠ it k2 Tsol TPrec

C
U
B
E

2 9876 17 4.9 7 256
5 4158 19 8.5 6 251

10 2657 30 11.7 6 253
100 973 77 107.4 9 259

1000 555 168 460.6 16 265
10000 469 289 2.20E+03 26 272

Deluxe 311 2003 1.70E+05 285 533

C
V
T

2 13054 15 4.0 25 2880
5 6196 20 8.1 23 2907

10 4123 34 14.1 24 2881
100 2547 78 74.6 31 2889

1000 2405 126 3.10E+02 43 2947
10000 2377 152 6.40E+02 47 2650

Deluxe 2326 166 6.60E+02 48 2953

O
C
T
A

2 10180 11 2.2 7 569
5 4119 19 8.9 6 532

10 2463 30 11.3 6 567
100 897 66 59.5 9 574

1000 548 146 3.30E+02 16 538
10000 461 252 2.00E+03 26 589

Deluxe 311 1906 1.75E+05 287 817

Table 4.15: Test 6b. Multi-sinker benchmark problem varying the tolerance of the adaptive
coarse space. procs = 64 and nEl for CUBE = 13 824, CVT = 4000 and OCTA = 15 552.

4.4.6 Test 6: Multi-sinker benchmark problem

To consider a practical application, we conclude by testing the robustness of our adaptive BDDC

algorithm on a benchmark problem with heterogeneous viscosity. We perform a multi-sinker

test problem as in the two dimensional case with inclusions of equal size placed randomly in the

unit cube domain so that they can overlap and intersect the interface among the subdomains.

The viscosity coefficient ν(x) is defined in terms of a C∞ indicator function χn(x) ∈ [0, 1] that

accumulates n sinkers via the product of modified Gaussian functions, see [87] for more details

about these functions. In this way, the viscosity exhibits sharp gradients, and its dynamic ratio

DR(ν) := νmax/νmin in our study can be up to six orders of magnitude.

Figure 4.6 shows two example of the solution of the test used in our simulation. We solved the

standard Stokes equations with a load term as in 4.2.2 to simulate the gravity. The pictures

exhibit two different flows for the fluid due to the fact that in the left one we imposed Neumann

boundary condition on two faces of the cube and homogeneous Dirichlet boundary condition

on the rest, while in the right one we took homogeneous Dirichlet boundary conditions on the

whole domain. The two different behaviours are clear, since in the left example we see the flow

through two faces while in the right one we see the low viscosity fluid being strongly pushed to

the top while the inclusions are taken down by the gravity. As previously, in our experiments

we imposed Neumann boundary conditions on two faces of the cube and homogeneous Dirichlet

on the other ones. We fix the mesh element size and the number of processes at 64, and we

study the iteration count and condition number of the adaptive BDDC algorithm with νtol = 5,
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varying the dynamic ratio DR(ν) from 1 to 1e+6, and the number of sinkers n from 1 to 20. The

results reported in the left panel of Table 4.14, obtained on different polyhedral meshes and for

a VEM discretization of degree k = 2, show the robustness of our adaptive preconditioner since

the number of iterations and the condition number are independent of the number of sinkers

and the viscosity ratio. We also report in Table 4.15 a test by varying the tolerance νtol to

highlight the need for an adaptive coarse space in terms of computational timings. It is evident

the necessity to use an adaptive approach in this situation, since the simple deluxe scaling is not

able to handle the heterogeneity. The number of iterations required and the condition number

are very high. We observe also that there is not so much gain in terms of timing to solve the

linear system imposing a too strict tolerance. It seems to be reasonable to relax this parameter

around 100, in a way to not have to deal with a too large primal space.

Figure 4.6: Two examples of a viscosity field and fluid flow for a test case with 5 Sinkers. The
inclusions are represented by spheres placed in the baricenter of each element with size and colour
scaled by the viscosity function. The red arrows represent the velocity field of the fluid scaled by
its magnitude. In the left figure we imposed Neumann boundary conditions on the plains y = 0
and y = 1 and homogeneous Dirichlet boundary condition on the other faces. In the right figure
we imposed homogeneous Dirichlet boundary condition on the whole domain.
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Chapter 5

Non-Symmetric Problems: The

Oseen equation

In this chapter we analyze the BDDC algorithm applied to a non-symmetric saddle point problem

that arise from the VEM discretization of the steady Navier-Stokes and Oseen equations. We

do not provide here a complete treatment of the theory, but we limit to explain the features and

the problems that arise in this context. Since our interest is to test our preconditioner to solve a

non-symmetric problem, we limit to apply it to solve the Oseen equation. The same algorithm

combined with the Newton method to solve the non-linearity, can be used in the Navier-Stokes

context. We also provide some numerical simulations that shows the good behavior of the

preconditioner. Due to the lack of the symmetry of the model problem the resolution of the

preconditioned linear system is obtained by the GMRES method.

5.1 The VEM discretization

We recall here, very briefly, the VEM technology for this equation. It is well known that,

the problem (1.20) leads to instabilities when the convective term ∥β∥[L∞(Ω)]d with d = 2, 3,

is dominant with respect to the diffusive and the reaction term ( [30, 31, 48, 55, 90]). In such

situations, the spurious oscillations that spoil the numerical solution are prevented by a stabilized

form of the problem, that in the VEM context for the Oseen equation was presented in [13]. In

our study we do not introduce any stabilization, so to stay on the safe side we assume to be in

diffusion-dominated case with ν = σ = 1 and the field β, in the numerical simulations, chosen

as the exact solution in order to simulate a Navier-Stokes framework. We do not enter into

the details and we remand to [12, 15] for an exhaustive study and analysis of the Navier-Stokes

VEM. In the same fashion of Chapter 2 we define the VEM spaces for the velocity and pressure

to discretize the Oseen problem (1.20). In particular, we choose exactly the same space as in

(2.5),(2.6) in two dimension and (2.38),(2.30) in three dimension.
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5.1.1 Bilinear forms and Discrete problem

We do not repeat all the procedure to define the VEM method used, since it is the same of the

one in Chapter 2. We limit here to show the local bilinear forms that differ from the previous

ones. With this scope, we define AK
h : VK ×VK → R:

AK
h (uh,vh) := ν

∫
K

Π0,K
k−1 ε(uh) : Π

0,K
k−1 ε(vh) dK + σ

∫
K

Π0,K
k uh ·Π0,K

k vh dK, (5.1)

cKh : VK ×VK → R and its skew symmetric form cskew,K
h : VK ×VK → R:

cKh (uh,vh) :=

∫
K

[(
Π0,K

k ∇uh

)
β

]
·Π0,K

k vh dK,

cskew,K
h (uh,vh) :=

1

2
cKh (uh,vh)−

1

2
cKh (vh,uh),

(5.2)

while the bilinear form b : VK × QK → R is again chosen as the continuous one, since no

approximation is needed. The stabilization term SK is chosen as in Chapter 2, and we introduce

the local discrete form KK
h : VK ×VK → R:

KK
h (uh,vh) := AK

h (uh,vh) + cskew,K
h (uh,vh) + SK(uh,vh). (5.3)

Using the global version of the bilinear form previously introduced, the VEM method for the

Oseen equation is then given by:
find (uh, ph) ∈ Vh,0 ×Qh,0 such that

Kh(uh,vh) + b(vh, ph) = (fh,vh) for all vh ∈ Vh,0,

b(uh, qh) = 0 for all qh ∈ Qh,0,

(5.4)

Under the assumption we have done before it is shown in [12,15] that this method has the optimal

order of convergence. For a complete analysis that takes also into account the instability induced

by the convective field in two dimension, can be found in [13].

The discrete variational problem can be written as:[
K BT

B 0

][
u

p

]
=

[
f

0

]
, (5.5)

where the matrices K and B are associated with the discrete bilinear forms Kh(·, ·) and bh(·, ·),
with K = A+C, where A is the matrix of the symmetric bilinear form ah(·, ·) and C the one of

the non-symmetric one cskewh (·, ·).
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Figure 5.1: Velocity (left) and pressure (right) convergence plot for QUAD, CVT and RAND
mesh in 2D for VEM discretization of degree k = 2.
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Figure 5.2: Velocity (left) and pressure (right) convergence plot for CUBE, CVT and OCTA
mesh in 3D for VEM discretization of degree k = 2.

5.1.2 Numerical results

For sake of completeness we performed numerical simulations on the unit square and the unit

cube imposing Dirichlet boundary conditions on the whole domain Ω. We analyzed the errors

δ(u) and δ(p), defined in (2.78), on a test problem with known exact solution u (the same as in

2.3), ν = σ = 1 and the field β = u. We reported in Figure 5.1 and 5.2, the convergence plot of

the method of order k = 2 in two and three dimension. As we can see in the pictures, for this

case we recover the optimal error for the convergence without introduce any stabilization.

5.2 Domain decomposition and BDDC construction

In the same fashion of Chapter 3, we introduce the domain decomposition technique. We split

Th into N non-overlapping subdomains Ωi with characteristic size Hi, respecting the shape-

regularity of the decomposition. We decompose the discrete velocity and pressure space V̂ and
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Q into:

V̂ = VI

⊕
V̂Γ, Q = QI

⊕
Q0, (5.6)

with Q0 :=
∏N

i=1{q ∈ Ωi|q is constant in Ωi}.
In this way, we obtain that the global saddle-point problem (2.77) can be written as: find

(uI , pI ,uΓ, p0) ∈ (VI , QI , V̂Γ, Q0), such that:
KII BT

II K̂IΓ 0

BII 0 B̂IΓ 0

K̂ΓI B̂T
IΓ K̂ΓΓ B̂T

0Γ

0 0 B̂T
0Γ 0




uI

pI

uΓ

p0

 =


fI

0

fΓ

0

 , (5.7)

where we make note that now we have lost the symmetry in the blocks related to the bilinear

form A. We proceed to eliminate, by static condensation, the independent subdomain variables

(uI , pI) solving independent Dirichlet problems:[
KII BT

II

BII 0

][
uI

pI

]
+

[
K̂IΓ 0

B̂IΓ 0

][
uΓ

p0

]
=

[
fI

0

]
, (5.8)

and obtain the global interface saddle point problem:

Ŝ û =

[
ŜΓ B̂T

0Γ

B̂0Γ 0

][
uΓ

p0

]
=

[
gΓ

0

]
= ĝ, (5.9)

where the right-hand side ĝ ∈ FΓ × F0 is given by

ĝ =

N∑
i=1

R
(i)
Γ

T
{[

f
(i)
Γ

0

]
−

[
K

(i)
ΓI B

(i)
IΓ

T

0 0

][
K

(i)
II B

(i)
II

T

B
(i)
II 0

]−1 [
f
(i)
I

0

]}
, (5.10)

with the same restriction and scaling operators defined in the previous chapters. To construct

the preconditioner, we need to reintroduce a partially assembled interface velocity space, namely

ṼΓ (see Figure 3.2.1 (b)):

ṼΓ = V̂Π

⊕
V∆ = V̂Π

⊕( N∏
i=1

V
(i)
∆

)
. (5.11)

Proceeding by block factorization, the inverse of the Schur complement on the partially assembled

velocity space, can then be written as:

S̃−1 =

N∑
i=1

[
0 0 RT

∆,i

] K
(i)
II B

(i)T

II K
(i)
I∆

B
(i)
II 0 B

(i)
I∆

K
(i)
∆I B

(i)T

I∆ K
(i)
∆∆


−1  0

0

R∆,i

+ΦS−1
CCΨ

T , (5.12)
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with the primal basis functions:

Φ = RT
Π0 −

N∑
i=1

[
0 0 RT

∆,i

] K
(i)
II B

(i)T

II K
(i)
I∆

B
(i)
II 0 B

(i)
I∆

K
(i)
∆I B

(i)T

I∆ K
(i)
∆∆


−1  K

(i)
IΠ 0

B
(i)
IΠ 0

K
(i)
∆Π B

(i)T

0∆

R(i)
C ,

Ψ = RT
Π0 −

N∑
i=1

[
0 0 RT

∆,i

] K
(i)
II B

(i)T

II K
(i)
I∆

B
(i)
II 0 B

(i)
I∆

K
(i)
∆I B

(i)T

I∆ K
(i)
∆∆


−T  K

(i)T

ΠI 0

B
(i)
IΠ 0

K
(i)T

Π∆ B
(i)T

0∆

R(i)
C ,

(5.13)

that are distinct in a non-symmetric framework, with the preconditioner that has the usual form:

M−1 = R̃T
DS̃

−1R̃D, (5.14)

and the BDDC preconditioned problem: find (uΓ, p0) ∈ V̂Γ ×Q0, such that

R̃T
DS̃

−1R̃DŜ

[
uΓ

p0

]
= R̃T

DS̃
−1R̃D

[
gΓ

0

]
. (5.15)

Again the matrix Ŝ is indefinite on the space V̂ × Q0, but it is positive definite on the benign

subsace V̂ ∩Ker(B̂0,Γ) × Q0. To ensure that the iterates of the GMRES methods stay in this

subspace it is necessary introduce again and satisfy the no-net-flux condition. For what concern

the theoretical convergence rate of the preconditioner the study is more involved. Due to the

asymmetry, the Oseen extension does not have the minimization property and one has to estimate

more carefully the non-symmetric part. A detailed study has been done in [97], where in the

lower bound estimate of the average operator is no more possible use the minimization property

of the Stokes extension and a complex procedure is required. Moreover, in that paper their

analysis require a further assumption on the field β, leading to introduce more constraints in

the primal space. Anyway, we decide to not introduce them in our algorithm and, as we will

see in the numerical results, we obtain a good behavior of the preconditioner. They will be

studied in future works in this direction. Although we do not have a theoretical estimate for the

convergence rate of this algorithm on non-symmetric problems, we obtain scalability results that

are in line with the same preconditioner applied on symmetric problems.

5.3 Numerical results

In this section, we provide as before some numerical tests to study the behavior of the BDDC

preconditioner with respect to the mesh size h, the number of subdomains N the shape of the

polygonal mesh elements. All the test reported here are referred to the BDDC algorithm that

satisfies both the assumptions to guarantee the stability of the average operator and the iteration

that remains into the benign space. Due to the asymmetry of the problem we solve the saddle
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QUAD CVT RAND
nSub NΓ NΠ it NΓ NΠ it NΓ NΠ it

S
Q
U
A
R
E

4x4 3810 42 14 738 42 15 594 42 15
8x8 8834 210 18 3394 210 18 2786 210 18

12x12 13794 506 20 7970 506 20 6578 506 19
16x16 18690 930 20 14466 930 20 11970 930 20
20x20 23522 1482 19 22882 1482 20 18962 1482 20

M
E
T
IS

4x4 870 69 20 1470 69 18 1282 66 20
8x8 3906 360 23 6770 354 21 5698 357 29

12x12 9342 854 27 15610 872 23 13478 875 33
16x16 16510 1581 29 28198 1614 25 24190 1611 36
20x20 23522 1482 34 44338 2574 26 38670 2568 37

Table 5.1: Weak scaling. k = 2 with ratio H/h = 8.

point problem with the GMRES method using a stopping criteria for the relative residual error

to 10−8 for both two and three dimension.

5.3.1 Numerical Results in 2D

We solve the Oseen equations on the unit square domain Ω = [0, 1]×[0, 1], applying homogeneous

Dirichlet boundary conditions on the whole ∂Ω, with the usual known solution (2.3). In the

following tables, we report the number of iterations to solve the global interface saddle-point

problem (5.9) with the preconditioned GMRES method, accelerated by BDDC. Also here, our

tests have been executed on different types of polygonal meshes (QUAD, CVT and RAND as in

Figure 2.2 using the two different partition techniques SQUARE and METIS (Figure 3.3). We

use the VEM discretization with degree k = 2.

Remark 5.3.1. We remark that our 2D simulations have been provided by MATLAB R2023A©
in a serial code, no computational time analysis is provided.

In the tables we use the following notation: SQUARE (or SQ) and METIS (or MET) = type

of the mesh partitioning, nSub = number of subdomain, H/h = ratio between the diameter of

subdomain and the element, NΓ = number of interface DoFs, NΠ = number of primal DoFs, it

= iteration count (GMRES).

As in Section 3.4.1.1 we perform the two common scaling test in the domain decomposition

and an optimality test.

Weak Scaling. In Table 5.1 we reported the results for the different meshes, partitioned with

the two techniques. As expected, using with the SQUARE partitioning the iteration counts do

not grow when the number of subdomains increases,so the BDDC solver appears to be scalable.

A slightly worse behavior happen for the METIS partition, but as we said before this is due to

the irregularity of the subdomains.

Optimality test. The results for the optimality test with respect to the mesh size are shown

in Table 5.2. We fix the number of subdomains at 16 and we increase the local ratio H/h. With

the SQUARE partition, the GMRES have a quasi-optimal behavior since the iteration count
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QUAD CVT RAND
nSub NΓ NΠ it NΓ NΠ it NΓ NΠ it

S
Q
U
A
R
E 8 738 42 14 738 42 15 594 42 15

16 1506 42 15 1458 42 17 1522 42 17
24 2274 42 16 2130 42 17 2002 42 17
32 3042 42 17 2850 42 18 2434 42 19

M
E
T
IS

8 870 69 20 1470 69 18 1282 66 20
16 1722 69 19 3030 69 19 2498 69 22
24 2430 69 16 4506 69 20 3866 69 20
32 3510 69 19 5986 69 19 4934 69 23

Table 5.2: Optimality test. k = 2 with nSub = 4× 4.

QUAD CVT RAND
nSub NΓ NΠ it NΓ NΠ it NΓ NΠ it
4x4 3810 42 17 7650 69 18 6726 69 22
8x8 8834 210 20 17026 360 22 15110 351 29

12x12 13794 506 21 26786 866 26 23122 872 30
16x16 18690 930 20 35186 1602 24 30946 1608 35
20x20 23522 1482 19 44338 2574 26 38670 2568 37

Table 5.3: Strong scaling. k = 2 and nEl = 25600 for QUAD (SQUARE), CVT and RAND
(METIS).

exhibits a logarithmic growth. With the METIS partition we see again the same effect as in

the weak scaling test for the Stokes equations, where the increasing regularity of the boundaries

balances the growth of the iteration count.

Strong scaling. We conclude this group with a strong scaling test with 25600 elements for

all the three different meshes. Again the results reflect what we expect keeping the number of

iterations bounded when increasing the number of the subdomains.

5.3.2 Numerical Results in 3D

We conclude reporting the numerical results for the BDDC algorithm for solving the 3D Oseen

problem. We solve a problem on the unit cube [0, 1]3 with a known solution as in 2.3, imposing

full Dirichlet boundary conditions on the whole domain. Again we use the BDDC method as a

preconditioner for system the (5.9), which is solved by the GMRES method. The implementation

is based on the PETSc library [8], where the PCBDDC [100] library is adapted in our framework

after having introduce a little patch to handle the discrete extensions that are no more harmonic.

In the tables we use the following notation: procs = number of CPUs, nEl = number of VEM

elements, k = degree of VEM approximation, nDoFs = number of DoFs, NΓ = number of interface

DoFs, NΠ = number of primal constraints, it = iteration count (GMRES), k2 = conditioning

number, Tass= time to assemble the stiffness matrix and the right-hand side, Tsol = time to

solve the interface saddle point problem and Sid = ideal speed up, Sp = parallel speed up.
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procs Sid Tass Sp NΓ NΠ it Tsol Sp

C
U
B
E

8 1 7 253 1.00 37 443 23 32 178.1 1.00
16 2 3 431 2.11 62 019 53 38 64.9 2.74
32 4 1 580 4.59 85 827 123 48 28.7 6.21
64 8 769 9.43 108 895 289 57 15.5 11.49

128 16 387 18.74 155 013 621 69 9.7 18.36
256 32 194 37.39 198 177 1 337 61 8.7 20.42

C
V
T

8 1 11 265 1.00 42 453 126 42 92.7 1.00
16 2 6 636 1.70 68 691 333 45 38.0 2.44
32 4 3 394 3.32 92 745 885 45 16.1 5.76
64 8 1 819 6.19 113 475 2 250 40 7.6 12.20

128 16 1 051 10.72 154 215 4 859 39 5.1 18.18
256 32 556 20.26 184 995 10 608 41 9.6 9.66

O
C
T
A

8 1 11 490 1.00 64 011 63 50 177.0 1.00
16 2 7 459 1.54 105 447 188 53 78.1 2.27
32 4 3 848 2.99 144 435 472 53 31.6 5.60
64 8 1 685 6.82 181 143 1 188 52 15.3 11.57

128 16 857 13.41 238 035 2 101 60 8.7 20.30
256 32 449 25.59 290 559 3 764 60 8.6 20.58

Table 5.4: Strong Scaling. k = 2 and nEl for CUBE = 32 768 , CVT = 4000 and OCTA =
30 375 meshes.
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Figure 5.3: Strong scaling. Iteration of the GMRES (left) and parallel speedup (right) with the
BDDC preconditioner for different meshes.
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Table 5.5: Optimality test with respect to the mesh size. k = 2 and procs = 64.

nEl nDoFs NΓ NΠ it
512 16 281 6 507 289 26

1 728 53 787 14 931 289 32
8 000 238 763 42 147 289 45

21 952 643 387 83 187 289 54
46 656 1 353 675 138 051 289 60

(a) CUBE meshes.

nEl nDoFs NΓ NΠ it
125 8 945 6 987 1 241 22

1 000 76 051 40 005 1 752 34
2 000 154 067 67 353 1 716 38
4 000 311 155 113 475 1 826 44
16 000 1 022 535 301 815 1 854 42

(b) CVT meshes.

nEl nDoFs NΓ NΠ it
576 22 035 6 507 289 28

4 608 166 179 26 811 289 43
9 000 320 763 67 491 603 52
15 552 549 939 60 939 289 52
30 375 1 065 693 181 143 1188 52

(c) OCTA meshes.

Strong Scaling. We start looking at the strong scalability of our solver. We fixed the global

number of the DoFs and the degree of the VEM approximation at k = 2, while we increase

the number of processors from 8 to 256. We increase the number of DoFs with respect to the

previous tests, we consider CUBE mesh with 954 947 DoFs, a CVT mesh with 627 455 DoFs

and an OCTA mesh with 1 065 693 DoFs. In Table 5.4, we report the results related to the

three polyhedral meshes with k = 2, while in Figure 5.3, we plot the number of iterations and

the parallel speedup. We observe that the CPU time Tass, needed to assemble the stiffness ma-

trix and the right-hand-side is scalable, with a speedup very close to the ideal ones, except for

the CVT mesh that deteriorates a little. The BDDC method results scalable since the number

of GMRES iterations remains bounded and the solution time decreases as the number of the

processors increases. Having increased the size of the problem we can see that the effect of the

communication time that overcomes the solution time is visible only in the last row of each mesh.

Optimality with respect to the mesh size. We now perform an optimality test with

respect to the mesh size: we keep fixed the number of processors at 64 and we increase the

number of DoFs, maintaining the degree of the VEM discretization k = 2. The results are

reported in Table 5.5. As expected, the solver has a quasi-optimal behavior irrespective of the

type of polyhedral mesh considered since both the iteration count and the condition number

exhibit a logarithmic growth. In the CVT and OCTA meshes this effect is not so evident and

the method seems to show an optimal behavior, but again this fact is due to the partitioning

that automatically increase the number of the primal constraints.

Optimality with respect to the polynomial degree. We also study the robustness of

our preconditioners for the polynomial degree of the VEM discretization k = 2, 3 and 4. The

tests are performed keeping fixed the number of processors again at 64 and the mesh size. The
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Table 5.6: Optimality Test Increasing the polynomial degree k. procs = 64 and nEl for CUBE
= 512, CVT = 125 and OCTA = 576.

k nDoFs NΓ NΠ it
2 16 787 5 331 125 30
3 40 667 10 683 125 43
4 76 387 17 397 125 56

(a) CUBE meshes.

k nDoFs NΓ NΠ it
2 8 945 6 423 702 30
3 19 256 12 495 702 43
4 33 487 19 998 702 59

(b) CVT meshes.

k nDoFs NΓ NΠ it
2 22 035 5 331 125 31
3 52 251 10 683 125 46
4 96 675 17 397 125 52

(c) OCTA meshes.

MUMPS Block-Schur BDDC
nEl k nDoFs Tsol it Tsol it Tsol

C
U
B
E 32 768 2 954 947 312 791 123 58 13

13 824 3 1 009 803 409 NC NC 82 22
8 000 4 1 119 523 410 NC NC 95 34

C
V
T

8 000 2 627 455 770 522 117 46 19
4 000 3 666 301 1008 NC NC 62 39
2 000 4 571 696 797 NC NC 74 52

O
C
T
A 30 375 2 1 065 693 287 887 150 50 16

15 552 3 1 322 571 343 NC NC 90 34
4 608 4 741 699 105 NC NC 47 17

Table 5.7: Solver Comparison among different parallel solver. procs = 64.

results reported in Table 5.6 show that the BDDC solver exhibits, as in the Stokes problem, a

mild increase of the iterations count when the degree k increases.

Solver comparison. We conclude with Table 5.7, where we compare the performance

of the GMRES method accelerated by the adaptive BDDC preconditioner against the direct

solver MUMPS, and the GMRES method accelerated by the Block-Schur preconditioner proposed

in [41] and used in the previous Chapter. We do not use in this case the Block-Mass preconditioner

proposed in [50], since as we saw before it has a similar behavior of the Block-Schur but with

worse performance. Again, we can see that BDDC is significantly faster than the other solvers

for all the meshes considered and for the three different degrees of the VEM discretization. We

also observe the same phenomena for which the Block-Schur preconditioner is not robust for the

degree k = 3 and 4, since the GMRES method does not converge (NC in the table).
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Conclusions

In this thesis we extended the BDDC algorithms to the class of saddle point problems that arise

from divergence-free VEM discretization of the Stokes and Oseen equations. We constructed,

analyzed and numerically validated the behavior of this preconditioner in the two and three

dimensional framework.

In Chapter 2, we introduced the divergence-free VEM discretization. We recalled the con-

struction of the discrete spaces both in two and in three dimensions, and we showed the tech-

nique to compute the polynomial projections. We provided a proof for a Stokes optimal VEM

interpolant in the three dimensional framework. We completed the VEM analysis with some

convergence tests for the numerical methods that we used in our work.

In Chapter 3 we designed the BDDC methods applied to the saddle point problem that

arises from the VEM discretization of the Stokes equations. We described the construction of

these algorithms and, in case of a piecewise constant viscosity on the subdomains, we proved

a convergence rate estimate of the preconditioned system that is independent of the number of

subdomains and polylogarithmic with respect to the ratio H/h, where H denotes the subdomain

size and h the mesh size. We confirmed the theoretical estimate showing numerically the scal-

ability and quasi-optimality of the resulting algorithm. In the two dimensional case we proved

the robustness of the solver with respect to different polygonal meshes and different mesh parti-

tioning techniques with several numerical tests. We also showed the robustness of the algorithm

for the ν− and deluxe scaling for high coefficient jumps aligned with the subdomains. In the

three dimensional framework we numerically proved the scalability and the quasi-optimalty of

the preconditioner with several parallel computations including a CPU time analysis.

In Chapter 4 we studied different techniques to enrich the coarse space. In the two dimensional

case we constructed two adaptive coarse spaces that we showed to be robust with respect to

high jumps in the viscosity coefficient, which can change through the elements. To validate

our expectations we provided several numerical tests with different mesh discretizations and

different mesh partitioning. We also saw that our new heuristical approach to enrich the coarse

space without solving eigenvalue problems, when combined with the deluxe scaling, turned out

to be a good competitor for some jump configurations. In the three dimesional framework

we also provided an adaptive algorithm and numerically validated its performance with the

classical scalability and optimality test also for higher VEM discretizations. We also compared
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our algorithm with some valuable options of preconditioners seeing that the adaptive BDDC

is significantly faster than the other solvers for all the meshes considered and for the different

degrees of the VEM discretization. We finally proved the robustness of the adaptive coarse space

using a challenging multi-sinker testcase with heterogeneous viscosity.

Finally, in Chapter 5 of the thesis we applied the BDDC algorithm to the non-symmetric

saddle point problem that arises from the VEM discretization of the Oseen problem. We pro-

vided some numerical simulations including scalability and optimality tests in both two and

three dimensions, confirming the expectations for the performance of the preconditioner that is

comparable with the symmetric case. We will provide a theoretical analysis in the future.

Future possible extentions of this thesis include the development of BDDC algorithms for

VEM discretizations of the time dependent Navier-Stokes equations, Hellinger-Reissner elasticity

and coupled Darcy-Stokes problems.
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Appendix

A.1 The velocity change of basis

We introduce here the transformation of basis approach used in the two dimensional framework.

The idea is to perform a change of basis for the velocity space in such a way that each primal

constraint corresponds to an explicit DoF. The strategy used here differs from the classical

BDDC transformation of basis [67], since using an adaptive technique we need to enforce multiple

constraints for each edge. With this scope we use a generalized transformation of basis approach

introduced in [60] that we recall here.

We consider a single macro edge E of the interface, shared by two subdomains Ωi and Ωj . We

suppose that during each iteration of the Krylov method, the velocity vector vΓ|E should fulfills

N constraints given by the normalized vectors clij for l = 1, ..., N defined on ∂Ωi ∩ E(and equal

to that on ∂Ωj ∩ E), i.e., such that

cl
T

ij

(
v
(i)
Γ|E − v

(j)
Γ|E

)
= 0 i.e. cl

T

ij v
(i)
Γ|E = cl

T

ij v
(j)
Γ|E .

We then consider the orthonormalized set of constraint vectors (c1ij , ..., c
N
ij ) and we introduce:

T
(i)
E,ΠE

:= [c1ij , ..., c
N
ij ].

Then we compute a matrix T
(i)
E,∆E

, using a modified Grahm-Schmidt algorithm, so that T
(i)
E =

[T
(i)
E,ΠE

T
(i)
E,∆E

] is a square matrix and T
(i)T

E T
(i)
E = I. In our specific framework the first coefficient

c1ij of each edge always corresponds to the no-net-flux condition, while the additional constraints

are obtained by computing the coefficients clij with l = 2, ..., N using one of the enrichment tech-

niques for the primal space described in Chapter 4. This transformation is chosen consistently,
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i.e. for the two subdomains we have

TE,ΠE := T
(i)
E,ΠE

= T
(j)
E,ΠE

and TE,∆E = T
(i)
E,∆E

= T
(j)
E,∆E

.

Since for each edge these transformation of basis are independent from the others, the global

transformation of basis from the new (non-nodal) basis to the old (nodal) basis has the form

T =

[
IΠ 0

0 blockdiagl=1,...,NE
(TEl

)

]

where IΠ represent the identity matrix for the primal DoFs that are not affected by the trans-

formation (we used a reordering just for sake of simplicity in the notation).

A.2 The pressure change of basis

We briefly recall the transformation of basis for the pressure field needed to introduce the de-

composition

Q = QI

⊕
Q0 with QI =

N⊕
i=1

Q
(i)
I (A.1)

and Q0 :=
∏N

i=1{q ∈ Ωi|q is constant in Ωi}, where the elements in Q
(i)
I need to satisfy

∫
Ωi
q
(i)
I =

0. The matrix for the change of the base has the classical form as in [67], we recall here the

transformation for the subdomain Ωi, from Q
(i)
I

⊕
Q

(i)
0 to Q(i). Since the pressure basis functions

of degree greater than 1 have null average on the element by definition, we work only on the

constant terms that we denote with the subscript 0. We then introduce the matrix transformation

for the constant terms

Tp,0 =


1 −1 . . . −1

1 1
...

. . .

1 1

 (A.2)

and the transformation on the whole subdomain extending by identity

Tp =

[
Tp,0

I

]
. (A.3)

Remark A.2.1. The pressure change of basis is a essential in this preconditioner, as it guarantees

the well posedness of the interior problems and of the Schur complements. However, this change

of basis modify drastically the sparsity pattern of the matrices. This limits the applicability of

the algorithm since the memory required by the subdomain solvers becomes very large when

considering real problems. This happens also with the change basis for the velocity space. An
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approach that avoid these transformations for the pressure and the velocity, has been presented

in [101] and used in our three dimensional PETSc version of the algorithm. In our two dimensional

framework we explicitly performed both the change of basis, since the problem is smaller.
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