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Introduction: Joint symbolic analysis (JSA) can be utilized to describe interactions
between time series while accounting for time scales and nonlinear features. JSA
is based on the computation of the rate of occurrence of joint patterns built after
symbolization. Lagged JSA (LJSA) is obtained from the more classical JSA by
introducing a delay/lead between patterns built over the two series and combined
to form the joint scheme, thus monitoring coordinated patterns at different lags.

Methods: In the present study, we applied LJSA for the assessment of
cardiorespiratory coupling (CRC) from heart period (HP) variability and
respiratory activity (R) in 19 healthy subjects (age: 27–35 years; 8 males,
11 females) during spontaneous breathing (SB) and controlled breathing (CB).
The R rate of CB was selected to be indistinguishable from that of SB, namely,
15 breaths·minute−1 (CB15), or slower than SB, namely, 10 breaths·minute−1 (CB10),
but in both cases, very rapid interactions between heart rate and R were known to
be present. The ability of the LJSA approach to follow variations of the coupling
strength was tested over a unidirectionally or bidirectionally coupled stochastic
process and using surrogate data to test the null hypothesis of uncoupling.

Results:We found that: i) the analysis of surrogate data proved that HP and Rwere
significantly coupled in any experimental condition, and coupling was not more
likely to occur at a specific time lag; ii) CB10 reduced CRC strength at the fastest
time scales while increasing that at intermediate time scales, thus leaving the
overall CRC strength unvaried; iii) despite exhibiting similar R rates and respiratory
sinus arrhythmia, SB and CB15 induced different cardiorespiratory interactions; iv)
no dominant temporal scheme was observed with relevant contributions of HP
patterns either leading or lagging R.

Discussion: LJSA is a useful methodology to explore HP–R dynamic interactions
while accounting for time shifts and scales.
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Introduction

Cardiorespiratory coupling (CRC) is defined as the interaction
between cardiac and respiratory rhythms. CRC covers a variety of
phenomena independent of each other (Penzel et al., 2016; Elstad
et al., 2018). Respiratory sinus arrhythmia (RSA) is the most studied
effect of CRC (Hirsch and Bishop, 1981; Eckberg, 1983; Hayano
et al., 1996). RSA accounts for the periodical modification of heart
period (HP) with respiratory activity (R) resulting from HP
shortening during inspiration and HP lengthening during
expiration under physiological conditions and breathing rates.
RSA is a frequency-dependent phenomenon (Angelone and
Coulter, 1964; Hirsch and Bishop, 1981; Eckberg, 1983; Brown
et al., 1993), but it is not affected by voluntary control of
breathing (Patwardhan et al., 1995; Pinna et al., 2006). Another
phenomenon under the umbrella of CRC is cardiorespiratory phase
synchronization, which takes the form of short intermittent epochs
of stable occurrence of heartbeats at specific phases of the respiratory
cycle (Schäfer et al., 1998; Schäfer et al., 1999; Bartsch et al., 2012;
Kuhnhold et al., 2017; Mazzucco et al., 2017; Cairo et al., 2021;
Ottolina et al., 2023). Cardiorespiratory phase synchronization has
been observed in athletes (Schäfer et al., 1998; Cairo et al., 2021),
healthy subjects (Schäfer et al., 1999; Bartsch et al., 2012), patients in
intensive care units (Mazzucco et al., 2017; Ottolina et al., 2023), and
post-infarction patients (Kuhnhold et al., 2017). Cardioventilatory
coupling, defined as a stable temporal relationship between the onset
of the inspiration and the last heartbeat preceding it (Galletly and
Larsen, 1997; Tzeng et al., 2003; Larsen et al., 2010; Friedman et al.,
2012), is another form of CRC independent of RSA and
cardiorespiratory phase synchronization.

Therefore, it is clear that the cardiac and respiratory systems
interact in complex and multifaceted ways, including various
nonlinear types of interplay (Elstad et al., 2018; Abreu et al.,
2023), and this influence might be mediated by the baroreflex as
well (Dick et al., 2005; Abreu et al., 2020). As such, many bivariate
methodologies that are capable of accounting for high-order
statistical moments have been proposed in the context of CRC
assessment (Moser et al., 1995; Galletly and Larsen, 1997; Schäfer
et al., 1998; Penzel et al., 2016). Among them, joint symbolic analysis
(JSA) was first proposed as an extension of univariate symbolic
analysis (Baumert et al., 2002; Wessel et al., 2009; Kabir et al., 2011;
Schulz et al., 2013a; Porta et al., 2015a; Porta et al., 2015b) and
applied to beat-to-beat HP variability and R for the quantification of
CRC in sports, health, and pathology (Kabir et al., 2011; Reulecke
et al., 2012; Schulz et al., 2013b; Baumert et al., 2015; Schulz et al.,
2015; Reulecke et al., 2018; Schulz et al., 2018; Abreu et al., 2019).
The introduction of a time shift between patterns, thus leading to a
lagged JSA (LJSA), allows monitoring CRC with different temporal
schemes and latencies (Wessel et al., 2009; Suhrbier et al., 2010;
Kabir et al., 2011; Baumert et al., 2015). Because some JSA tools can
account for the time scales when analyzing interactions by
classifying joint symbolic schemes composed of patterns featuring
different frequency contents (Porta et al., 2015b; Bari et al., 2016;
Porta et al., 2016), LJSA could be made scale-specific.

The temporal scheme in HP–R dynamic interactions remains
poorly elucidated. Modeling approaches describe cardiorespiratory
interactions because of the exogenous actions of R on HP (Baselli

et al., 1994; Triedman et al., 1995; Porta et al., 2000a; Chen and
Mukkamala, 2008; Porta et al., 2012a; Porta et al., 2013a). This
hypothesis was followed even when applying JSA, given that in Kabir
et al. (2011), the delay of HP to R was optimized, while
advancements of HP to R were not considered. However, the
leading action of the heart to the respiratory system has been
identified (Galletly and Larsen, 1997; Galletly and Larsen, 1999)
and confirmed in healthy individuals (Tzeng et al., 2003; Larsen
et al., 2010; Friedman et al., 2012). This link was supported via cross-
spectral analysis, especially at breathing rates below 0.15 Hz, while in
the range of respiratory rates between 0.15 to 0.25 Hz, heart rate
fluctuations and R volume appear to be in phase (Saul et al., 1989).
More sophisticated parametric modeling approaches corroborate
the finding that HP might lead R (Yana et al., 1993; Perrott and
Cohen, 1996; Porta et al., 2013b). This effect is compatible with the
fastness of cardiac neural control compared to the slowness of the
thoracic movements (Yana et al., 1993; Triedman et al., 1995; Perrott
and Cohen, 1996; Porta et al., 2013b). However, some studies
provided a less trivial interpretation involving the action of a
latent confounder, such as the baroreflex (Abreu et al., 2020)
triggering the onset of inspiration (Galletly and Larsen, 1999;
Dick et al., 2005). We tested the hypothesis that the association
between heartbeat and R could be higher at specific time shifts and
that this result might depend on breathing rate.

The aim of the present study is the evaluation of the HP–R
association in healthy subjects during SB and CB using an LJSA
approach capable of differentiating interactions at different time
scales. The rate of CB is selected to be indistinguishable from that of
SB, namely, at 15 breaths·minute−1 (CB15), or significantly slower,
namely, 10 breaths·minute−1 (CB10) but above the limit of 0.15 Hz.
The protocol includes CB10 and CB15 because both paced R rates
are in the range of R frequencies leading to very fast, in-phase
modifications of heart rate and R volume (Saul et al., 1989), even
though interactions occur at significantly different time scales that
are slower in the case of CB10 than CB15. Accordingly, we tested a
physiological range of lags, accurately chosen according to the type
of collected signals, to explore variations of the HP–R association
with time shift. The link of markers derived from LJSA and coupling
strength was tested over simulations, and surrogate data were
exploited to check the significance of interactions. Preliminary
results were presented at the 12th conference of the European
Study Group on Cardiovascular Oscillations (Cairo et al., 2022).

LJSA

The two series HP � HPi, i � 1, . . . , N{ } and R � Ri,{
i � 1, . . . , N}, where i is the cardiac beat counter and N is
the series length, were separately converted into symbols
via a uniform quantization procedure that covered the
max–min range over ξ quantization bins (Porta et al., 2001;
Cysarz et al., 2013). From the symbolic series HPξ �
HPξi , i � 1, . . . , N{ } and Rξ � Rξ

i , i � 1, . . . , N{ }, we built the

series of patterns of length L, HPξL � HPξi,L, i � L, . . . , N{ } and

Rξ
L � Rξ

i,L, i � L, . . . , N{ }, where HPξi,L � HPξi HPξi−1 . . . . HPξi−L+1[ ]
and Rξ

i,L � Rξ
i R

ξ
i−1 . . . . Rξ

i−L+1[ ] are the patterns defined according

to the technique of delay embedding. The parameters ξ = 6 and
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L = 3 were set according to Porta et al. (2001) to ensure the
consistency of the estimates of the symbolic pattern rates over
short series of HP and R with N = 256.

Each symbolic pattern was classified into one of four classes
according to the variation between adjacent symbols (Porta et al.,
2001): i) the no variation (0V) pattern when all the three symbols
were equal; ii) the one variation (1V) pattern when two adjacent
symbols were equal but the remaining one (i.e., the first or the third)
was different; iii) the two like variation (2LV) pattern when the three
symbols were different and showed a progressive increase, or
decrease, from the first to the third one; iv) the two unlike
variation (2UV) pattern when the two adjacent symbols were
different with the second symbol of the pattern lower or higher
than the first and the third one.

This approach allows the preservation of the amplitude features
of the series according to the adopted coarse-graining procedure as
well as the classification of patterns according to their temporal
scale, given that the 0V pattern is the slowest one, because of its
stable behavior, and the 2UV pattern is the fastest one, owing to its
rapid changes. 1V and 2LV exhibited an intermediate range of time
scales, with the 1V pattern slower than the 2LV one (Porta et al.,
2001). The symbolization allowed the assessment of the autonomic
control governing changes of HP (Guzzetti et al., 2005). The joint
HP–R pattern was built by associating a pattern built over R, namely,
Rξ
i,L, with a pattern built over HP τ lags ahead, namely, HPξ

i+τ,L,
where τ is an integer value, thus allowing the assessment of the
association between HP and R with HP leading R for τ < 0,
immediate HP–R association when τ � 0 (i.e., within the current
HP), and association between HP and R with HP lagging R for τ > 0.

We defined a joint coordinated (C) pattern associating one
pattern built over HP and one pattern built over R when both
belonged to the same family (Porta et al., 2015b). C patterns were
labeled as 0V-0V, 1V-1V, 2LV-2LV, and 2UV-2UV. The percentage
of C patterns (C%) over the total number of joint schemes (i.e.,
N − L − |τ| + 1) was computed. C% was deemed to be an index of
the overall association between the HP and R series regardless of the
time scales of the HP–R dynamic interactions. C% ranged from 0
(i.e., no coordinated behavior) to 100 (i.e., all patterns are
coordinated) (Porta et al., 2015b). The percentages of each of the
four joint pattern classes were computed over the total number of C
joint patterns for each τ value so that their sum was always 100%.
These markers were denoted as 0V-0V%, 1V-1V%, 2LV-2LV%, and
2UV-2UV%. These four indexes were deemed to assess the
association between the HP and R series at a specific time scale
of interactions set by the type of joint pattern: HP–R dynamic
interactions occurred at the slowest and fastest scales in the presence
of 0V-0V and 2UV-2UV joint patterns, respectively, and at time
scales intermediate between those described by the 0V-0V and 2UV-
2UV joint schemes when the 1V-1V and 2L-2LV joint patterns were
detected. Indexes ranged from 0 (i.e., that specific scale did not
contribute to the overall HP–R coordination) to 100 (i.e., that
specific scale fully explained the overall HP–R coordination)
(Porta et al., 2015b).

In-phase and out-of-phase patterns, usually referred to as
symmetric and diametric patterns (Wessel et al., 2009), were
merged within the same class because classification did not
account for the sign of the variations (Porta et al., 2001). In the
range of breathing rates considered in the present study, the phase

between heart rate and R volume was expected to be about 0
(Angelone and Coulter, 1964; Eckberg, 1983; Saul et al., 1989).
Therefore, because we recorded HP, being in phase opposition with
heart rate, and a nasal flow, being in quadrature with the R volume,
the expected phase shift between HP and our R signal was π/2. This
phase shift at a rate of 10 and 15 breaths·minute−1 was equivalent to
latencies of 1.5 s and 1 s, respectively, namely, less than two beats at
the cardiac frequencies of the present study in any experimental
condition. Therefore, the selected interval for τ values was
−2≤ τ ≤ + 2.

Simulations

To validate the ability of the LJSA approach to follow changes in
the coupling strength, we simulated two stochastic processes that
were interconnected unidirectionally or bidirectionally via a
parameter modulating the coupling strength (Porta et al., 2023).
The two processes Y1 and Y2 are defined as

Y1,i � 2ρ1 · c1 · Y2,i−1 + 1 − c1( ) · Y1,i−1[ ] · cosφ1 − ρ21 · Y1,i−2 +W1,i ,
Y2,i � 2ρ2 · c2 · Y1,i−1 + 1 − c2( ) · Y2,i−1[ ] · cosφ2 − ρ22 · Y2,i−2 +W2,i ,

(1)
where W1 and W2 are Gaussian white noises with zero mean and
variances assigned such that Y1 and Y2 exhibit unit variance. Three
configurations are of value: i) full uncoupling between Y1 and Y2

with c1 � c2 � 0 and Y1 and Y2 are two second-order autoregressive
processes; ii) unidirectional interactions from Y1 to Y2 with c1 � 0
and c2 ≠ 0; iii) bidirectional interactions from Y1 to Y2 and vice
versa with c1 ≠ 0 and c2 ≠ 0. In the uncoupling condition, Y1 andY2

were set to feature the same dominant rhythm according to ρ1 �
ρ2 � 0.85 with phases φ1 � φ2 � ± 3π/10 corresponding to a
dominant oscillation at the normalized frequency f1 � f2 � 0.15
cycles · sample−1, thus simulating the typical dynamics usually
observed in HP and R series during SB and CB (i.e., 0.15 Hz
with a mean HP equal to 1 s). In the unidirectional configuration
from Y1 to Y2, the coupling parameter c2 was varied incrementally
from 0 to 1.0 with 0.1 steps with c1 � 0. In the bidirectional
configuration from Y1 to Y2 and vice versa, c1 � c2 � c, and c
was varied gradually from 0 to 1.0 with 0.1 steps.

Experimental protocol and data
analysis

Experimental protocol

The estimate of CRC via LJSA was performed on a historical
database designed to quantify cardiorespiratory interactions while
varying the breathing rate (Porta et al., 2000b; Porta et al., 2012a).
The protocol was in keeping with the Declaration of Helsinki and
approved by the Local Ethical Review Board of L. Sacco Hospital,
Milan, Italy (protocol code: 1999-3; date of approval: 1/2/1999).
Written signed informed consent was obtained from all subjects. We
enrolled 19 healthy subjects (age: 27–35 years, median = 31 years;
8 males, 11 females). The health status of subjects was verified via
physical examination, evaluation of the historical personal records,
blood pressure measurement with a sphygmomanometer, and
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standard assessment of the electrocardiographic trace by an expert
cardiologist. During the experimental sessions, we acquired the
electrocardiogram (ECG) from lead II via a bioamplifier
(Marazza, Monza, Italy) and the R flow via a nasal thermistor
(Marazza, Monza, Italy) at the sampling frequency of 300 Hz.
The two signals were synchronized through a 12-bit analog-to-
digital board (National Instruments, Austin, TX, United States)
plugged into a personal computer. Recordings were made at rest
in a supine position during SB, CB10, and CB15. The SB session
always preceded CB recordings, while the order of the CB10 and
CB15 sessions was randomized. The subjects were trained to follow a
computer-based metronome that provided the pace for starting both
the inspiratory and expiratory phases. The inspiratory-to-expiratory
ratio was set to a traditional 1:2 (De Maria et al., 2021) via the
metronome sounds. The indication provided by the metronome was
reinforced through verbal commands by the experimenter. Sessions
lasted 10 min, and subjects were not allowed to talk for the entire
duration of the protocol.

Beat-to-beat variability series extraction

The R-wave peaks were identified on the ECG through a threshold-
based algorithm applied to the ECG first derivative. The ith HP value
was then estimated as the time interval occurring between the ith and
(i + 1)th R-wave peaks. The R signal was sampled at the ith R-wave
peak. Sequences of 256 consecutive values were selected within each
experimental condition, thus focusing on short-term cardiac control
(Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996). Detections of
the R-wave peak were visually checked and manually corrected if
necessary. The effect of any isolated arrhythmic beat was mitigated
through linear interpolation using the two most adjacent HPs
computed between sinus beats. The 5% limit of corrections was
never reached. From the HP series, we computed the mean, labeled
as μHP and expressed in ms.

Frequency domain analysis

Power spectral density was estimated separately over the HP and R
series via a parametric approach based on the identification of the
coefficients of an autoregressive model (Baselli et al., 1997). The least
squares problem was solved via the Levinson–Durbin recursion (Kay
and Marple, 1981). The model order was optimized via the Akaike
information criterion between 10 and 16 (Akaike, 1974). The traditional
method based on the decomposition of the power spectral density
according to the residue theorem was utilized to compute the power
associated to each spectral component (Baselli et al., 1997). The high-
frequency band (HF, 0.15–0.4 Hz) was considered for the computation
of the RSA from the HP series and the assessment of the respiratory
frequency (fR) from the R series. RSA was estimated by summing the
power of all spectral components whose central frequency fell within the
HF band, and this index was labeled as HFHP and expressed in ms2.
From the R series, we extracted the fR as the central frequency of the
dominant spectral component present in the HF band.

Power cross-spectral density was estimated over the HP and R series
using a parametric approach based on the identification of the bivariate

autoregressivemodel (Baselli et al., 1997). The least squares problemwas
solved via the Cholesky decompositionmethod (Porta et al., 2000a). The
model order was fixed to 10. The power cross-spectral density was
computed by taking the R series as the input and HP as the output. The
phase φHP−R(f) of the power cross-spectral density represented the
phase shift from R to HP as a function of the frequency f, where negative
values indicated that HP lagged R, and positive values indicated that HP
led R. The phase was expressed in radians (rad) and ranged from −π to
+π. The phase function was sampled at fR [φHP−R(fR)] and converted
into a time shift τHP−R(fR) � 0.5·φHP−R(fR)

fR ·π expressed in s. τHP−R(fR) is
given in beats as well by dividing τHP−R(fR) by μHP.

Surrogate data approach

We utilized a surrogate data approach to test the null hypothesis of
uncoupling between HP and R at a given time lag τ (H0,τ) and the null
hypothesis of full uncoupling between HP and R regardless of the time
lag (H0). We constructed sets of surrogate pairs preserving the
distribution and power spectral density of the original series
(Schreiber and Schmitz, 1996) but fully adherent with H0,τ and H0

(Palus, 1997).We generated 100 realizations for each original pair ofHP
and R series in any experimental condition. The surrogate series were
built to preserve the distribution and power spectral density of the
original series, while phases were substituted with uniformly distributed
random numbers ranging from 0 to 2π. Surrogate pairs were generated
through an iteratively refined, amplitude-adjusted, Fourier transform-
based procedure (Schreiber and Schmitz, 1996). The technique allowed
the exact preservation of the original distribution, while the power
spectral density was the best approximation of the initial power spectral
density given 100 iterates. The use of two independent random phase
sequences allowed the generation of fully uncoupled pairs (Palus, 1997).
A fast Fourier transform procedure was applied to speed the
construction of surrogates. The percentages of the C pattern families
(i.e., 0V-0V%, 1V-1V%, 2LV-2LV%, and 2UV-2UV%) were computed
over each set of surrogates, and the 95th percentile was extracted. At
each time lag, if the percentage of the C pattern family computed over
the original series was above the 95th percentile of the same index
derived from surrogates and if this occurred for at least one of the 4°C
pattern classes, the H0,τ was rejected for the considered τ, and the
alternative hypothesis, namely, the two series were significantly
associated at the selected τ, was accepted. The H0 was rejected if
H0,r was rejected in correspondence with at least one of the
considered time lags (i.e., τ = −2, τ = −1, τ = 0, τ = +1, or τ = +2),
and the alternative hypothesis, namely, the two series were significantly
associated regardless of time shift, was accepted. The percentage of
H0 rejections was evaluated in any experimental condition (i.e., SB,
CB10, and CB15).

Statistical analysis

The normality of data was checked via the Shapiro–Wilk test. The
one-way repeated measures analysis of variance versus control
(Dunnett’s test for multiple comparisons), or the one-way Friedman
repeated measures analysis of variance on ranks versus control (Dunn’s
test for multiple comparisons), when appropriate, was used to
separately evaluate the effect of breathing modality (i.e., SB, CB10,
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and CB15) and the effect of time shift (i.e., τ = −2, τ = −1, τ = 0, τ = +1,
and τ = +2). When assessing the impact of the breathing modality on
LJSA markers, data were pooled regardless of the time lag. When
assessing the impact of the time shift on LJSAmarkers, data were pooled
regardless of the experimental condition. The two-way repeated
measures analysis of variance versus control (Holm–Sidak test for
multiple comparisons) was utilized to check the impact of the
experimental condition within the same time lag and the effect of
time lag within the same experimental condition. In the case of both the
one-way and the two-way analyses, the control conditions were SB and
τ = 0. The χ2 test (McNemar’s test) was applied to the proportion of
subjects featuring the rejection of H0 to assess the impact of the CB
versus SB. The level of significance of the test was lowered according to
the number of comparisons (i.e., 2) to account for the multiple
comparison issue. The same test was utilized to check the impact of

CB versus SB within the same time lag and of the time lag versus τ =
0within the same experimental condition on the proportions of subjects
featuring the rejection of H0,τ. In this case, the level of significance was
lowered by a factor accounting for all the considered comparisons.
Statistical analysis was carried out using a commercial statistical
program (SigmaPlot, v.14.0, Systat Software, Inc., Chicago, IL,
United States). A p < 0.05 was always considered significant.

Results

Results over simulations

The vertical grouped error bar graphs of Figure 1 summarize the
results of simulations of unidirectionally coupled (Figures 1A, C, E,

FIGURE 1
The vertical grouped error bar graphs show C% (A,B), 0V-0V% (C,D), 1V-1V% (E,F), 2LV-2LV% (G,H), and 2UV-2UV% (I,J) computed over simulated
processes as a function of c2. Results were obtained in the case of unidirectional interactions with c1 � 0 (A,C,E,G,I) and bidirectional interactions with
c1 � c2 (B,D,F,H,J) from 20 realizations of Y1 and Y2. Results were reported for τ � −1 (black bars) and τ � +1 (white bars). At c2 � 0, Y1 and Y2 were
uncoupled. The symbols § and * indicate a significant difference with p < 0.05 versus c2 � 0 within the same time shift, being τ � −1 and τ � +1,
respectively. The symbol # indicates a significant difference with p < 0.05 between the time lags within the same value of c2. Symbols indicating p <
0.05 were reported solely when the null hypothesis of uncoupling between Y1 and Y2 was rejected (i.e., the value of the markers was significantly above
the one found at c2 � 0). Data are reported as mean plus standard deviation.
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G, I) and bidirectionally coupled (Figures 1B, D, F, H, J) stochastic
processes. Results are shown for τ � −1 (black bars) and τ � +1
(white bars), given that Y1 acts on Y2 with τ � +1 in the simulations
of unidirectionally coupled processes and lagged interactions in the
simulations of bidirectionally coupled processes occurred with τ �
+1 from Y1 to Y2 and vice versa. Results are provided for C%
(Figures 1A, B), 0V-0V% (Figures 1C,D), 1V-1V% (Figures 1E, F),
2LV-2LV% (Figures 1G, H), and 2UV-2UV% (Figures 1I, J) as a
function of the parameter c2 regulating the coupling strength
between the processes. Both simulations are designed in such a
way that c2 � 0 corresponds to the situation of uncoupling between
realizations of stochastic processes featuring a dominant oscillation
at the same frequency compatible with the breathing rate of 0.15 Hz
with an HP = 1 s, and the coupling strength grows with c2. Results
were obtained from 20 pairs of realizations.

In the case of unidirectionally coupled processes, C%, 2LV-2LV
%, and 2UV-2UV% computed at τ � +1 were larger than the level
set by the uncoupling condition (i.e., at c2 � 0) when c2 ≥ 0.4,
c2 ≥ 0.2, and c2 ≥ 0.2, respectively, and these indexes were larger
than the value obtained at τ � −1 when c2 ≥ 0.4, c2 ≥ 0.2, and
c2 ≥ 0.5. Remarkably, 2UV-2UV% increased gradually with c2.
0V-0V% and 1V-1V% remained less than the value set by the
uncoupling condition (i.e., at c2 � 0), regardless of the time shift,
because the link between the two processes occurred at fast time
scales. 2UV-2UV% at τ � −1 was larger than the value set by the
uncoupled realizations as well, but it remained less than its value at
τ � +1, and the rate of the increase was less steep than that at τ � +1.

In the case of bidirectionally coupled processes, C% and 2UV-
2UV% computed at both τ � ± 1 were larger than the level set by the
uncoupling condition (i.e., at c2 � 0) when c2 ≥ 1.0 and c2 ≥ 0.2,
respectively. C% and 2UV-2UV% were alike when computed with
τ � ± 1. As in the case of the unidirectionally coupled processes,
2UV-2UV% increased gradually with c2. 0V-0V%, 1V-1V%, and
2LV-2LV% remained less than the value set by the uncoupling
condition (i.e., at c2 � 0), regardless of the time shift.

Impact of CB on time, spectral and cross-
spectral markers

The results of the time and frequency domain analysis of the HP
variability and R signal are reported in Table 1. The μHP and HFHP

powers were similar across experimental conditions. fR did not
change during CB15 compared to SB, while it was significantly
slower during CB10.

The vertical box-and-whisker plots of Figure 2 show cross-
spectral markers, namely, φHP−R(fR) (Figure 2A) and τHP−R(fR)

(Figure 2B), as a function of the experimental condition (i.e., SB,
CB10, and CB15). The height of the box represents the distance
between the first and third quartiles, with the median marked as a
horizontal segment, and the whiskers denote the 5th and 95th
percentiles. The phase is expressed in rad (Figure 2A) and
converted into a delay/advancement expressed in s in Figure 2B.
Significance was tested against SB. Phases were more likely to be
negative, thus indicating that, most frequently, HP lagged R. The
median values were −2.15, −1.98, and −1.78 rad during SB, CB10,
and CB15, respectively (Figure 2A). After converting phase values
into lags (Figure 2B), the delay of HP to R was more pronounced
during CB10 than SB and CB15, with median values of −0.71, −1.31,
and −0.69 beats during SB, CB10, and CB15, respectively, and
individual values being more negative than −2 beats in 5%, 32%,
and 0% and never more positive than +2 beats during SB, CB10, and
CB15, respectively.

Results of the surrogate data test

The simple bar graphs of Figure 3A show the percentage of H0

rejections as a function of the experimental condition, while the
grouped bar graph of Figure 3B summarizes the percentage of H0,τ
rejections as a function of the experimental condition at any time lag τ
represented with bars of different filling color from light gray to black.
Regardless of the experimental condition, HP and R series were found
to be significantly coupled (above 79%), and the percentage of H0

rejections peaked at 95% and 84% during CB10 and CB15,
respectively (Figure 3A). Remarkably, the percentage of H0,τ
rejections did not depend on either the time lag or experimental
condition, with values ranging from 37% to 63% (Figure 3B).

Impact of CB and time lag on LJSA markers

The simple error bar graph of Figure 4A shows C% as a function
of the time lag after pooling all the data regardless of the
experimental condition, while the simple error bar graph of
Figure 4B shows C% as a function of the experimental condition
after pooling all the data regardless of the time shift. The grouped
error bar graph of Figure 4C summarizes C% as a function of the
experimental condition when the time shift is represented by
different filling colors of the bars from light gray to black.
Significance was tested against τ = 0 and SB. C% decreased at
τ = +1 compared to τ = 0 (Figure 4A), did not vary with experimental
condition (Figure 4B), and increased at τ = −1 during
CB10 compared to SB (Figure 4C).

TABLE 1 Time and frequency domain markers derived from the HP variability and R signal.

Index SB CB10 CB15

μHP [ms] 1,010 ± 168 989 ± 157 1,023 ± 162

HFHP [ms2] 1,390 ± 1,631 2,800 ± 2,986 1855 ± 1873

fR [breaths·minute−1] 14.7 ± 1.7 12.1 ± 2.5§ 14.4 ± 1.2

SB, spontaneous breathing; CB10, controlled breathing at 10 breaths·minute−1; CB15, controlled breathing at 15 breaths·minute−1; HP, heart period; R, respiration; μHP, mean HP; HFHP, HP

power in the HF band; fR, respiratory rate. All values are expressed as mean ± standard deviation. The symbol § indicates p < 0.05 vs. SB.
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The simple error bar graphs of Figure 5 report 0V-0V%
(Figure 5A), 1V-1V% (Figure 5B), 2LV-2LV% (Figure 5C), and
2UV-2UV% (Figure 5D) as a function of the time shift when data are
pooled regardless of the experimental condition. Significance was
tested against τ = 0. 0V-0V% decreased at τ = +1 (Figure 5A), while
1V-1V%, 2LV-2LV%, and 2UV-2UV% did not vary with τ with
respect to τ = 0 (Figures 5B–D).

Figure 6 has the same structure as Figure 5, but the percentages of
pattern classes are given as a function of the experimental condition
when data are pooled regardless of the time lag. Significance was tested
against SB. 0V-0V% significantly decreased solely during CB15
(Figure 6A), while the decrease of 2UV-2UV% was evident solely
during CB10 (Figure 6D). 2LV-2LV% increased both during CB10 and
CB15 (Figure 6C). CB did not affect 1V-1V% (Figure 6B).

The grouped error bar graphs of Figure 7 summarize 0V-0V%
(Figure 7A), 1V-1V% (Figure 7B), 2LV-2LV% (Figure 7C), and 2UV-
2UV% (Figure 7D) as a function of the experimental condition with the
time shift τ represented as the filling color of the bar from light gray to

black. Significance was tested against SB, and τ = 0. 0V-0V% decreased
during CB15 compared to SBwhen τ=−2, τ=−1, and τ= 0 (Figure 7A).
During SB, 0V-0V%was smaller at τ = +1 and τ = +2 compared to τ = 0
(Figure 7A). At τ= −2, 1V-1V% increased during CB10 compared to SB,
and during SB, 1V-1V%was higher at τ=−1 and τ=+1 compared to τ=
0 (Figure 7B). At any time lag, 2LV-2LV% increased during
CB10 compared to SB (Figure 7C). The increase of 2LV-2LV% was
evident even during CB15 but solely at τ = −1 and τ = +1 (Figure 7C).
During CB10, 2LV-2LV% increased at τ = −1 and decreased at
τ = −2 compared to τ = 0 (Figure 7C). At any time lag, 2UV-2UV%
declined during CB10 compared to SB (Figure 7D). During SB, 2UV-
2UV% decreased at τ = −1 compared to τ = 0 (Figure 7D).

Discussion

Themain findings of this study can be summarized as follows: ii)
LJSA was useful to quantify the CRC strength while testing different

FIGURE 2
The vertical box-and-whisker plots show φHP−R(fR) (A) and τHP−R(fR) (B) as a function of the experimental condition (i.e., SB, CB10, and CB15). The
height of the box represents the distance between the first and third quartiles, with the median marked as a horizontal segment, and the whiskers denote
the 5th and 95th percentiles. The symbol * indicates p < 0.05 versus SB.

FIGURE 3
The simple bar graphs show the percentage of H0 rejections as a function of the experimental condition (i.e., SB, CB10, and CB15) (A), and the
grouped bar graphs show the percentage of H0,τ rejections as a function of the experimental condition with the time lag τ coded according to the filling
color of the bar from light gray to black (B). No significant differences were detected across experimental conditions and lags.
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temporal schemes and time scales of the HP–R interactions; ii) the
test performed over surrogate data proved that HP and R were
significantly coupled in any experimental condition and coupling
did not occur more likely at a specific time lag; iii) CB10 reduced the
CRC strength at fast time scales and increased it at intermediate time
scales, thus leaving the overall CRC strength unvaried; iv) despite
exhibiting similar R rates and RSA values, SB and CB15 induced
different cardiorespiratory interactions; v) no dominant

time-shifted coordinated pattern was observed with relevant
contributions of HP patterns either leading or lagging R.

Characterizing CRC through LJSA

We exploited LJSA (Baumert et al., 2002; Wessel et al., 2009;
Kabir et al., 2011; Porta et al., 2015a; Porta et al., 2015b) to typify

FIGURE 4
The simple error bar graphs show C% as a function of the time lag (i.e., to τ = −2, τ = −1, τ = 0, τ = +1, and τ = +2) when data are pooled regardless of
the experimental condition (A) and C% as a function of the experimental condition (i.e., SB, CB10, and CB15) when data are pooled regardless of the time
lag (B). The grouped error bar graphs showC% as a function of the experimental condition with τ coded according to the filling color of the bar from light
gray to black (C). The symbol # indicates a significant between-time lag difference versus τ = 0 with p < 0.05. Data are reported as mean plus
standard deviation.

FIGURE 5
The vertical grouped error bar graphs show 0V-0 V% (A), 1V-1V% (B), 2LV-2LV% (C), and 2UV-2UV% (D) as a function of the time lag (i.e., to τ = −2,
τ = −1, τ = 0, τ = +1, and τ = +2). Data are pooled regardless of the experimental condition. The symbol # indicates a significant between-time lag
difference versus τ = 0 with p < 0.05. Data are reported as mean plus standard deviation.
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CRC from spontaneous fluctuations of HP and R according
to the implementation proposed in Porta et al. (2015b). The
characterization is grounded on the assessment of the probability

of joint patterns, expressed as a percentage, describing coordinated
behaviors between HP changes and R (i.e., C%). The C patterns were
classified according to the frequency content of the features

FIGURE 6
The vertical grouped error bar graphs show 0V-0V% (A), 1V-1V% (B), 2LV-2LV% (C), and 2UV-2UV% (D) as a function of experimental condition
(i.e., SB, CB10, and CB15). Data are pooled regardless of the time lag between HP and R series. The symbol * indicates a significant between-experimental
condition difference versus SB with p < 0.05. Data are reported as mean plus standard deviation.

FIGURE 7
The vertical grouped error bar graphs show 0V-0V% (A), 1V-1V% (B), 2LV-2LV% (C), and 2UV-2UV% (D) as a function of experimental condition
(i.e., SB, CB10, and CB15). Data relevant to τ = −2, τ= −1, τ= 0, τ= +1, and τ=+2 are coded according to the filling color of the bar from light gray to black.
The symbol * indicates a significant between-experimental condition difference versus SBwith p < 0.05within the same time shift (i.e., to τ= −2, τ= −1, τ=
0, τ = +1, or τ = +2). The symbol # indicates a significant between-time lag difference with p < 0.05 within the same experimental condition (i.e., SB,
CB10, or CB15). Data are reported as mean plus standard deviation.
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comprising the joint behavior from the slowest (i.e., 0V-0V) to the
most rapid (i.e., 2UV-2UV) passing through intermediate levels of
rapidity (i.e., 1V-1V and 2LV-2LV), thus allowing the assessment of
the contribution of time scales to the total coordination. The joint
pattern is formed by imposing a time shift between the symbolic
patterns, built separately over the two series and combined to form
the joint pattern in such a way as to test different temporal schemes
of cardiorespiratory interactions (Baumert et al., 2002; Wessel et al.,
2009; Kabir et al., 2011): negative time shifts imply that HP leads R,
no time shift implies HP–R immediate interaction, namely,
associations between HP and R within the current HP, and
positive time shifts imply that HP lags behind R. According to
the definition of patterns built separately over the two series, both in-
phase and out-of-phase schemes are present within the same LJSA
class (Wessel et al., 2009; Suhrbier et al., 2010). The selected
approach has three potential strengths: i) being a model-free
approach, it can describe nonlinear interactions between HP
variability and R (Baumert et al., 2002; Wessel et al., 2009; Kabir
et al., 2011; Porta et al., 2015a; Porta et al., 2015b); ii) different
temporal schemes can be easily introduced by setting the delay/
advancement between patterns built separately over HP variability
and R (Wessel et al., 2009; Suhrbier et al., 2010; Kabir et al., 2011;
Baumert et al., 2015); iii) different time scales of interactions can be
explored according to the definition of the joint patterns (Porta et al.,
2015b; Bari et al., 2016; Porta et al., 2016).

The range of lags explored in the present analysis was limited
according to previous studies (Angelone and Coulter, 1964; Eckberg,
1983; Saul et al., 1989). Angelone and Coulter (1964) suggested that
heart rate and thoracic movements are in-phase at fR =
10 breaths·minute−1. Eckberg (1983) extended this observation by
observing that the onset of HP shortening occurs progressively
earlier during inspiration while slowing R such that it precedes
the onset of inspiration at fR = 8 breaths·minute−1. Through a broad-
band respiratory approach and cross-spectral analysis between heart
rate and R volume, Saul et al. (1989) found that in the range of R
frequencies between 0.15 and 0.25 Hz, heart rate and R volume
interact with minimal lead (i.e., about zero phase), while robust
phase leads are observed below 0.15 Hz. Therefore, because we
recorded HP, being in phase opposition with heart rate, and an
R flow signal, being in quadrature with the R volume, our two series
are expected to be in quadrature. Cross-spectral analysis confirmed
that the absolute value of the median phase at the R rate was smaller
than π/2 in all the experimental conditions, and the values of lags
expressed in samples are between −2 and +2 beats. Although the
phase values are mostly negative, thus indicating that HP lagged R,
the variability of phase values suggested the necessity of exploring
even the positive phase, compatible with the observation that HP
changes might precede R variations. The relevance of this
exploration is supported by previous studies stressing the
presence of a pathway from the heart to the respiratory system,
even in healthy subjects (Tzeng et al., 2003; Larsen et al., 2010;
Friedman et al., 2012). The relevance of this pathway was confirmed
by modeling approaches as well (Yana et al., 1993; Perrott and
Cohen, 1996; Porta et al., 2013b). The procedure adopted in the
present study based on cross-spectral analysis allows the
optimization of the range of lags compared to studies where a
much wider interval of lags was considered (Galletly and Larsen,
1997), thus limiting the number of statistical comparisons and

increasing the statistical power of the analysis. In addition, LJSA
could provide a unique possibility of monitoring the evolution of the
CRC strength by simultaneously accounting for nonlinearity, delays/
advancements, and time scales of the HP–R dynamic interactions.
These characteristics result from the model-free nature of the
method, the introduction of the time shift between HP and R
patterns, and the types of joint schemes combining HP and R
patterns that interact at different frequencies.

Coupling strength and LJSA

Simulations support the ability of LJSA to follow variations of
the coupling strength. Indeed, in situations of unidirectional or
bidirectional coupling set between processes exhibiting a
dominant and fast component, markers describing the
association between realizations occurring at the fastest time
scale were able to follow the progressive increase of the coupling
strength. It is worth noting that an unspecific marker of
association such as C% is much less powerful than a very
specific index such as 2UV-2UV%, thus corroborating the
relevance of following a specific class of joint pattern selected
according to whether coupling could occur at faster or slower
time scales. However, given the shortness of the considered
patterns combined to form the joint scheme, the time scales of
interactions remain roughly defined, but this characterization is
sufficient to separate different classes of interactions. Differences
between markers computed over different joint pattern classes
support the relationship of the indexes with the temporal scheme
of interactions and their ability to separate leading interactions
from lagging ones (e.g., in the simulation of unidirectionally
coupled processes). Because 0V-0V, 1V-1V, 2LV-2LV, and 2UV-
2UV patterns belong to the class of C pattern, an increased
percentage of one or more classes corresponds to a decrease of at
least one of the others. This situation is evident in the simulation
of bidirectionally coupled processes when 2UV-2UV% increased
above the level set by the uncoupling situation and gradually
increased with the coupling strength, while all the other classes
became insignificant (i.e., less than the level of uncoupling). This
effect might be particularly useful when coupling occurs at a
dominant time scale, like in CRC, but it might be particularly
limiting in situations where the association occurs
simultaneously at different time scales.

CB affects CRC even in the absence of RSA
modification

The invariable value of C% with the experimental condition
might suggest that CRC strength did not vary during CB. This
result disagrees with studies that suggested that CRC strength
increases while slowing R (Porta et al., 2000b; Porta et al., 2023).
However, when the analysis was made more specific by
accounting for the time scales of the interactions governing
CRC, we observed that 2LV-2LV% increased and 2UV-2UV%
decreased during CB10, thus suggesting that slowing the fR
diminishes the coordination between HP and R at the fastest
time scale, but it improves it at intermediate time scale. It has
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been proven that CB at the same fR as the SB did not alter RSA
(Patwardhan et al., 1995; Pinna et al., 2006). The present study
confirms this finding. However, SB and CB15 could not be
considered indistinguishable. Indeed, 0V-0V% decreased and
2LV-2LV% increased during CB15 compared to SB as a likely
result of the smaller impact of slow fluctuations on the HP series
and a greater regularization of the HP fluctuations occurring at
the fR (Porta et al., 2000a). Because the practice of CB is widely
utilized to standardize the impact of fR on HP variability analysis
(Patwardhan et al., 1995; Pinna et al., 2006), the present finding
suggests that CB might have the wanted effects over some linear
univariate parameters, such as RSA, but it might be ineffective,
and even introduce additional confounding influences, over
nonlinear bivariate markers.

No predominant HP–R temporal scheme is
observed

As previously observed in Kabir et al. (2011) and Baumert
et al. (2015), introducing a lag between HP and R might lead to
observing higher values of CRC strength. However, the
procedure adopted to maximize the value of CRC strength
should also take into consideration that HP might lead R, in
addition to lagged interactions of HP to R (Wessel et al., 2009;
Suhrbier et al., 2010). Indeed, the pathway from HP to R is
plausible because a constant latency between the inspiratory
onset and the last heartbeat preceding it was found (Tzeng
et al., 2003; Larsen et al., 2010; Friedman et al., 2012), even at
physiological breathing rates (Eckberg, 1983; Saul et al., 1989).
It is worth noting that the values of lag to be explored should be
carefully chosen according to the type of the recorded signals,
here HP and R flow, and with the help of specific analyses, here
cross-spectral analysis, limiting the interval of values to be
tested. The present study suggests that there is no dominant
temporal scheme in the HP–R dynamic interactions, given that
LJSA markers did not show a clear behavior at a specific time
lag. Conversely, the presence of some peaks at both positive and
negative time lags suggests the possible presence of closed-loop
interactions, given that the open-loop condition should be
characterized by the dominant presence of an assigned
temporal scheme as suggested by simulations of
unidirectionally coupled processes. Therefore, contrary to
the warning raised in Larsen et al. (2010), our data do not
support the statement that the CB could disrupt the
anticipatory action of HP on R and highlight the importance
of considering closed-loop models when describing the
dynamic relationship between HP and R (Larsen et al., 2010;
Porta et al., 2013b) instead of the more traditional approaches
that exclusively model the action from R to HP (Baselli et al.,
1994; Triedman et al., 1995; Porta et al., 2000b; Chen and
Mukkamala, 2008; Porta et al., 2012a; Porta et al., 2012b; Porta
et al., 2013a). While the pathway from R to HP is usually
considered to be the result of the activity of the respiratory
centers in the brain stem modulating vagal and sympathetic
motoneuron firing and, in turn, sinus node activity (Gilbey
et al., 1984; Eckberg, 2003; Skytioti and Elstad, 2022), fewer
hypotheses have been advanced regarding potential

physiological mechanisms underpinning interactions from
the heart to the respiratory system. It has been proposed
that HP changes at the fR precede modifications of the R
signal due to the rapidity of vagal cardiac control compared
to the slowness of modifications of the R volume (Yana et al.,
1993; Triedman et al., 1995; Perrott and Cohen, 1996; Porta
et al., 2013b). Less trivially, it has been suggested that
modifications of the baroreceptor activity during systole
occurring in the late expiration could contribute to starting
the inspiratory phase at a preferred latency (Galletly and
Larsen, 1999; Dick and Morris, 2004; Dick and Morris,
2004) and modulating the CRC strength (Abreu et al., 2020).

Conclusion

This study evaluates the effect of SB and CB on CRC
strength in healthy subjects using LJSA over HP variability
and R signal. LJSA accounts for temporal schemes with
either HP leading or lagging R. Results show that CB has an
impact on CRC strength not only when the breathing rate is
slower than that of SB but also when the rates are similar. In
addition, the study proves that in healthy subjects, no dominant
temporal scheme governing HP–R dynamic interactions is
present with relevant contributions of HP patterns either
leading or lagging R. This result is compatible with closed-
loop dynamic interactions between the heart and the respiratory
system. More experiments are needed to further elucidate the
physiological meaning and mechanisms behind the observed
closed-loop interactions and whether results might depend on
the strategy adopted for LJSA computation, including
symbolization and pattern construction procedures. In
addition, future studies should compare the information
derived from measures of association, like those proposed in
the present study, with indexes more specifically designed to
assess the directionality of coupling and causality
(Bahraminasab et al., 2008; Staniek and Lehnertz, 2008;
Chicarro and Andrzejak, 2009; Wessel et al., 2009; Suhrbier
et al., 2010; Li et al., 2011; Martini et al., 2011; Dicken and
Lehnertz, 2014).
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